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2 F. CARRAVETTA

1. Introduction. 1 The aim of this paper is to show that a kind of systems
immersion, namely the quadratic immersion (QI), that we have introduced in the
paper [1], can be fruitfully used for the design of nonlinear feedback regulators for
certain classes of nonlinear control systems2 described by ordinary differential equa-
tions. A systems immersion, as was defined in [2], [3], is a smooth map, say Φ ,
between the state spaces (in general, smooth manifolds) of two given systems, that
allows to represent one system (the lower dimensional one, said original system) as
a subsystem (said: immersed system) of the other (the larger dimensional one), in
the following way: first, the image of the immersion (which is a sub-manifold of the
recipient space, or manifold) is the state-manifold of the sub-system, and second, ev-
ery state trajectory, say the one passing throughout x, of the original system can be
recovered – by means of some smooth map – from the trajectory of the immersed
system state passing throughout Φ(x). A quadratic immersion – as we have defined
it in [1] – is an immersion into a quadratic system, with the particular feature that it
is not required to be defined in all of the original system domain, but just on a dense
subset of it, leaving aside a zero measure set or, in purely topologic terms, a subset
of the original system manifold having a nonempty interior. The main result of [1] is
that a QI exists for every analytic integral-closed-form (ICF) nonlinear system, which
is a wide class (within the linear in control class) including all systems whose systems
functions can be written as any finite composition of the most common transcendent
functions with any composition of the elementary algebraic operations, with even any
composition of integrals of the above functions, provided that the final function is an-
alytic3. Among the analytic ICF systems, a sub class is to be distinguished, namely
the class of σπ-systems, for which the QI applies in a very direct way, in that the
immersed system, i.e. the system satisfying a quadratic differential equation, can be
build up directly from the parameters of the original σπ-system. These parameters,
that can be time-varying in general, are of two kinds: exponents and coefficients. As
a matter of fact a σπ-system is nothing else that a formal polynomial in IRn, where
the exponent are allowed to be real numbers in general. A result of [1] is that for any
analytic ICF system, there exist an immersion (a complete immersion in this case,
not only a dense immersion) into a σπ-system. For this reason σπ-system occupies a
central role in a QI-based vision of nonlinearity (as it is our vision), indeed a sort of
nonlinear paradigm, in that an huge class of nonlinear systems4 can be reduced to a
σπ-system by systems immersion.

With the motivation above discussed, in this paper we focus on the class of σπ-
system, with the aim of giving a first answer to the following question: how the
property of representability through a quadratic system can be exploited for the main
problem of interest in control, that is the design of nonlinear regulators, and in general
of nonlinear controllers? The answer we propose is the final result of the paper where
we present a systematic way, QI-based, for building up state-feedback regulators for
σπ-systems. A sufficient condition will be presented for such regulators to be global

1The author wishes to thank Professor Hiroshi Ito for the many helpful discussions had dur-
ing his stay at the Kyushu Institute of Technology, Japan, where the present technical report has
been completed. Many of the suggestions arisen during these discussions have surely contributed in
improving the technical report in many of his aspects.

2Besides further sub categorizations, all systems here considered are linear in the control
3Note that, if the composition does not include integrals, the composed function is surely analytic

in every point where it is smooth.
4Said in a very rough way, ICF systems are all systems that one can write down through a

formula, since a ’formula’ is in practice just a finite composition of ’simple’ operations, or in other
words a finite composition of the more commonly used functions.
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and having an exponential, and tunable performance, meaning this that the regulation
task can be achieved at an exponential speed, that can be even fixed in advance by the
designer. A nonlinear regulator designed with the method that we present here has
thus a performance similar to the performance of regulators for linear systems, and
as a matter of fact, as we will see, the design method will be by itself formally similar
to a classical linear regulator design, in that all the matter will be finally reduced to
an eigenvalue assignment problem for a few suitable matrices, that will be precisely
defined in the following, related to the original σπ-system at issue.

We believe that the method we are going to present in this paper constitutes a
new approach in nonlinear control, and has few concern with the existing methods
classically used in control literature, as methods based on finding Lyapunov func-
tions, or methods based on the exact linearization. Peraphs, the more closely related
approach, is the exact linearization one [4]–[6], in that QI-based methods share with
exact linearization a common basic guideline consisting in searching a solution to a
nonlinear problem by reducing it to a simpler and known problem. The QI reduces
indeed a wide class of nonlinear system to a simpler one, but not to a kind of nonlinear
system for which solutions to the regulation problem are well known. The present
paper aims to reduce this gap, by showing that the quadratic representation obtained
through QI has, as a matter of fact, some nice features that can be indeed exploited
for control purposes.

The paper is sub divided into two Parts. The above described QI-based regulator
design method is developed in the Part II. In the present Part I, a few topics will be
considered with the aim of building up the main tools used next in Part II. First of
all, we perform a review of the main concepts related to the QI, and also go further
by focusing on certain additional results that are consequent to the main results of
[1], but weren’t included therein. We also introduce a particular notation, as well as
a classification of σπ-systems, that will be widely used in the sequel to manipulate
this kind of systems. The main result of Part I is Theorem 5.3, where it is shown
that, under certain conditions, a particular kind of σπ-system, so called self-driver:
1) admits a solution defined (and, hence, continuous) on a right-unbounded interval
(kind of [t̄,+∞) ⊂ IR for some t̄ ∈ IR), namely a steady-state solution, and: 2) the
steady state solution can be calculated as a ratio of free-evolution modes of a certain
linear system associated to the self-driver, namely the bilinear frame5

Part I of the paper is organized into 5 sections. In §2 a few notations are intro-
duced, and in particular the assembling notation, that is widely used throughout the
paper in both Parts I and II. §3 is focused on σπ-systems. A classification is intro-
duced for this kind of systems, as for the various equivalent forms in which they could
be given (S-form, C-form, assembled, ordered-form etc.). Also, the main features of
a σπ-system, like size and order, are defined. In §4 the homogeneous quadratic part
of the immersed subsystem (cf. supra), namely the driver, associated to a σπ-system
is focused. Since the driver constitutes the central component of a QI, the review of
the main definitions and concepts related to QI are given in this section. Also, as
above mentioned, σπ-systems of the type self-driver – which, as the name suggests,
are σπ-systems whose associated driver is the system itself – are taken under consid-
eration. §6 includes the main result, given in Theorem 5.3. Some top-up issues, as

5It will be clear later why we use the term ’bilinear’ for an actually linear system.
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the existence of an inverse counterpart of a driver (namely the inverse driver), and
related inverse results are explored as well.

2. Some remarks on the notation. In this paper we adopt a few conventions
concerning indices, below explained. Intermediate lowercase letters, such as i, j, k, l,
will be preferably used to indicate indices taking values in some countable set. For the
purposes of the present section let us denote by Ii the set of values of an index i. The
indices mostly used in the present paper are finite subsets of the natural numbers:
Ii = {1, . . . , νi}, having cardinality νi ∈ IN (depending in general by i) and, in general,
n-tuples from the above set: j ∈ Ij , Ij = Ij1×. . .×Ijνj , where νj = (νj1 , . . . , νjνj ), and

Ij is canonically ordered as a cartesian product, that is to say, it forms the sequence:
(1, . . . , 1), (1, . . . , 2), . . . , (1, . . . , νj1), (1, . . . , 2, 1), (1, . . . , 2, 2), . . . , (νj1 , . . . , νjνj ).

The following assembling convention will be used: if at a point of the paper a real
scalar quantity has been named with a subscripted and/or superscripted symbol of
the type ξi1,...,inj1,...,jm

thereinafter the omission of the l-th superscript l = 1, . . . , n (resp.
subscript l = 1, . . . ,m), which is marked by a bar:

ξ
i1,...,il−1,−,il+1...,in
j1,...,jm

,(2.1)

(resp. ξi1,...,inj1,...,jl−1,−,jl+1,...jm
) shall indicate the corresponding aggregated vector. Thus:

ξ
i1,...,il−1,−,il+1...,in
j1,...,jm

= [ξ
i1,...,il−1,1,il+1...,in
j1,...,jm

, . . . , ξ
i1,...,il−1,νl,il+1...,in
j1,...,jm

]T ,(2.2)

ξi1,...,inj1,...,jl−1,−,jl+1,...jm
= [ξi1,...,inj1,...,jl−1,1,jl+1,...jm

, . . . , ξi1,...,inj1,...,jl−1,νl,jl+1,...jm
]T .(2.3)

The omission of a further index in the above vectors, for instance js in (2.1), shall
symbolize the stacked vector:

ξ
i1,...,il−1,−,il+1...,in
j1,...,js−1,−,js+1,...,jm

= [ξ
i1,...,il−1,−,il+1...,in
j1,...,js−1,1,js+1,...,jm

T
, . . . , ξ

i1,...,il−1,−,il+1...,in
j1,...,js−1,νs,js+1,...,jm

T
]T ,(2.4)

and so on. In this way ξ shall represent the composed stack of the above vectors,
in a certain order, given by the sequence of indices il, jm, ..., indicating in which
sequence the stacks have been performed. If the latter sequence is undefined, i.e.
at a certain point of the paper we write ξ, just after the definition of ξi1,...,inj1,...,jm

, then
it shall be understood that the sequence used for the recursive stack is as follows:
the superscripts are removed first in the order right to left and then the subscripts
in the order right to left as well. Thus, by successive stacks one passes from scalar
quantity ξi1,...,inj1,...,jm

, to the νin -dimensional vector ξ
i1,...,in−1

j1,...,jm
, then to the νin−1·νin

-vector

ξ
i1,...,in−2

j1,...,jm
, and so on, up to ξ, which is νi1 · · · νinνj1 · · · νjm -dimensional.

If ξi1,...,inj1,...,jm
is a p-vector, then the apposition of a further subscript, say jm+1

shall denote its jm+1-th component, with jm+1 = 1, . . . , p. In this way, ξi1,...,inj1,...,jm+1

has received the definition as a scalar quantity, and thus thereinafter the assembling
convention applies. Note that a subscripted/superscripted symbol as ξi1,...,inj1,...,jm

is not
necessarily a vector, or a scalar. In case, for instance, it is defined as a matrix,
say a p × q-matrix, the assembling convention shall not be applied to that symbol,
but the following matrix convention is applied: the apposition of two subscripts, say
jm+1, jm+2: ξi1,...,inj1,...,jm+2

, indicates the (jm+1, jm+2)-th element of the matrix, with

jm+1 = 1, . . . , p (row index) and jm+2 = 1, . . . , q (column index). Also, any index
in the indexed quantity ξi1,...,inj1,...,jm

is not necessarily a single index (a natural number),
but can be a multi-index as well (cf. supra). Thus, for instance, if i1 (or any other
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index) is equal to (l1, . . . , ls), where the l·’s are scalar indices, then replacing for i1 is

allowed, and ξl1,...,ls,i2,...,inj1,...,jm
shall represent the same quantity.

In case a symbol is defined as anything else than expected – i.e. the definition is
inconsistent with the above rules – than the convention is suspended for that symbol,
which shall be considered a new symbol with no more a predefined meaning.

Finally, in this paper we widely use summation with respect to multi-indices. The
basic convention we use is to indicate the summation bounds when a single index is
involved, thus (with r being i or j):

νrk
∑

rk=1

ξi1,...,inj1,...,jm
,(2.5)

otherwise, when a multi-index, say (rk1
, . . . , rks

), is involved, we simplify the notation
as follows

νrk1
,...,νrks
∑

rk1
,...,rks

ξi1,...,inj1,...,jm
.(2.6)

Sometimes, when the lower bounds are not clear from the context, we write rk1
, . . . , rks

=
(b1, . . . , bs) below the summation, thus explicitly indicating lower bounds for rk1

, . . . , rks

equal to b1, . . . , bs in the order.

3. σπ-systems. In the paper [1] we considered equations having the following
form (written componentwise for i = 1, . . . , n):

ẋi(t) =

νi
∑

i′=1

f i′

i (x(t))vi,i′(t), x(t0) = x̄,(3.1)

where f
(i′)
i are C∞ scalar functions all defined on some open set X included in IRn.

The initial value x̄ belongs to X , and the functions vi,i′ ’s are Lebesgue measurable into
some real interval including zero and represent perturbations, time varying parame-
ters, or controls. Note the controls vi,i′ could be dependent of each other, nonethe-
less we assume that there is always an underlying set of independent scalar controls
{u1, . . . , uq} from which the controls vi,i′ can be determined, and the map u 7→ vi,i′

is linear6, which means: for any control vi,i′(u) there exist q time-varying coefficients

bi
′

i,0, . . . , b
i′

i,q such that

vi,i′(u) =

q
∑

s=1

bi
′

i,sus + bi
′

i,0.(3.3)

We assume here that system (3.1) is σπ-algebraic, that is: either f i′

i ≡ 0, or

f i′

i (x) = Xi,i′ =

n
∏

j=1

x
pi′

i,j

j ,(3.4)

6This is a direct implication for any nonlinear system of the type

ẋ = f(x, t) + g(x, t)u,(3.2)

i.e. linear in the control. The class of system (3.1) that we are considering, is just another way of
writing the more classical (3.2), where the explicit dependence on t of the functions f, g comes just
from another linear binding with time-varying parameters of the type vi,i′
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where pi
′

i,j are real numbers. Any σπ-algebraic system (σπ-system for short) has a
maximal C∞-domain, D, which is the maximal open set on which all the functions in
(3.4) are well defined and C∞, and can be directly derived as soon as all the exponents
pli,j are given. In particular we have that D is not in general a connected set, but it
is has always a finite number of connected components, each one of which is an open
convex set7. Also note that any σπ-system is analytic on D.

As shown in [1] if a system of the type (3.1) is analytic and ICF8, then it is
proto-σπ-algebraic, and then undergoes a quadratization. Thus, the σπ-algebraic
case considered in this paper includes actually the more general analytic ICF case, as
the latter case can be always reduced to the former by analytic systems immersion.

Note that a σπ-system has two basic constituents: the monomials Xi,i′ and the
coefficients vi,i′ . The monomials are always non-zero quantities (non zero functions
of x) whereas the coefficients could be zero (the zero function in general). The form
(3.1), by replacing (3.4) rewrites as follows

ẋi =

νi
∑

i′=1

vi,i′Xi,i′ .(3.5)

3.1. S-form. We call (3.5) the standard form (S-form) of a σπ-systems, if the
control-dependent coefficients satisfy (3.3) with bli,0 = 0. The S-form of a σπ-system is
the one used in [1]: it is the form corresponding to the usual way in which a system of
scalar equations is written, where only the terms that are not a priori zero are actually
written, and labeled following some order (being unessential which order is chosen)
with any distinction between control dependent coefficients and ’pure’ parameters. If
the monomials Xi,i′ ’s are labeled so to obey to the restriction: Xi,l 6= Xi,m if l 6= m,
we say that (3.5) is in an assembled S-form. However, note that, in an assembled
S-form, identity (3.3) holds in general with bli,0 6= 0.

3.2. C-form. Besides the S-form, in this paper we extensively use another form
obtained from the S-form by distinguishing the vi,l’s depending on whether they are
control-dependent. For any i define Ii = {1, . . . , νi}, and let Ic

i ⊂ Ii such that vi,i′

depends of the control u – i.e. satisfies (3.3) with bi
′

i,0 = 0 – for any i′ ∈ Ip

i . Also,
denote Ip

i = Ii\I
c. Let νci (resp. νpi ) be the cardinality of Ic

i (resp. of Ip

i ), and i∗(i
′),

(resp. i∗(i′)) an invertible change of indices defined as: i′ ∈ Ic

i 7→ i∗ ∈ {1, . . . , νci }
(resp, i′ ∈ Ip

i 7→ i∗ ∈ {1, . . . , νpi }). We settle i′(i∗(i
′)) = i′(i∗(i′)) = i′ so that

i′(i∗) (resp. i′(i∗)) shall denote the inverse map i∗ ∈ {1, . . . , ν
(c)
i } 7→ i′ ∈ Ic

i (resp.

i∗ ∈ {1, . . . , ν
(p)
i } 7→ i′ ∈ Ip

i ). Then we define

vci,i∗ = vi,i′(i∗), Xc

i,i∗
= Xi,i′(i∗);(3.6)

vpi,i∗ = vi,i′(i∗), Xp

i,i∗ = Xi,i′(i∗).(3.7)

We call vci,i∗ and Xc

i,i∗
(resp. vpi,i∗ and Xp

i,i∗) the control coefficients and the control
monomials (resp. the parameters and the parametric monomials). That said, system
(3.5), can be rewritten

ẋi =

ν
p

i
∑

i∗=1

vpi,i∗X
p

i,i∗ +

νc

i
∑

i∗=1

vci,i∗X
c

i,i∗
.(3.8)

7For a characterization of D see [1], Proposition 2.2
8ICF: Integral Closed Form. For the definition of ICF system see [1] §3.).
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We call (3.8) a σπ-system in control form (C-form). For the parametric and control
monomials we have:

Xp

i,i∗ =

n
∏

j=1

x
p
p,i∗

i,j

j , with pp,i
∗

i,j = p
i′(i∗)
i,j(3.9)

Xc

i,i∗
=

n
∏

j=1

x
p
c,i∗
i,j

j , with pc,i∗i,j = p
i′(i∗)
i,j .(3.10)

From (3.3) 9 we have

vci,i∗ =

q
∑

s=1

bc,i∗i,s us,(3.11)

where bc,i∗i,s = b
i′(i∗)
i,s , and u denotes a q-vector of scalar independent controls. By

substituting (3.11) into (3.8), we obtain another type of C-form (we call it Cu-form)
of the system:

ẋi =

ν
p

i
∑

i∗=1

vpi,i∗X
p

i,i∗ +

νc

i ,q
∑

i∗,s

bc,i∗i,s Xc

i,i∗
us,(3.12)

3.3. Size. For a σπ-system, the triple (i′, i∗, i∗) associated to a C-form will be
said size triple, and in particular i′: size index; i∗: parametric index; i∗: control
index. A size triple depends of what is named i in (3.5) e.g. : the equation index of
the system. As a matter of fact, in the following we generally use the convention of
naming the size, the parametric, and the control indices, the same as the equation
index with a prime, a superscripted star and a subscripted star respectively. Given
a σπ-system, hereinafter we say that it is i-labeled, with this understanding that the
equation index is named i, the triple (i′, i∗, i∗) labels the C-form and the Cu-form as
in (3.8), (3.12), and the S-form is labeled by i′ as in in (3.5). The number νi in (3.5)
or νi = νpi + νci in (3.8) will be said the i-th size of the system. The numbers

ν = max
i

νi;

(

resp. d =

n
∑

i=1

νi,

)

(3.13)

are named the size (resp. the total size) of the system. Moreover, the numbers

νq = max
i

νqi ;

(

resp. dq =
n
∑

i=1

νqi

)

,(3.14)

with q ∈ {p, c}, are said (resp. total) parametric (if q = p) or control (if q = c)
size. If ν > n (resp. ν(q) > n) the system is said to be oversized (resp. parametrically
oversized for q = p and oversized in control for q = c).

It should be noted that the same σπ-system may have different sizes, i.e. its size
can be always increased by adding terms of the type vi,i′Xi,i′ with vi,i′ = 0 and Xi,i′

9Hereinafter, when an S-form is handled, we understand that it is bl
i,0 = 0 in (3.3).
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being any monomial. Moreover, an oversized system can be always reduced in size by
defining the additional variables {xn+1, . . . , xν}, by adding the new equations ẋi = 0,
for i = n + 1, . . . , ν, pinned at the initial condition xi(t0) = 1, and redefining the
monomials Xi,i′ := Xi,i′x

0
n+1 · · ·x

0
ν .

That said, we can always consider a σπ-system rewritten in constant (resp. para-
metric and/or control) size, that is to say with νi = ν ∀i (resp. νpi = νp, and/or
νci = νc, ∀i), or in square (resp. parametric and/or control) size, which means that
it is in constant (resp. parametric and/or control) size with ν = n (resp. νp = n
and/or νc = n). Moreover, we can always write a σπ-system in aligned (resp. para-
metric and/or control) size, which means that Xi,i′ = Xj,i′ , (resp. Xp

i,i∗ = Xp

j,i∗ and
Xc

i,i∗
= Xc

j,i∗
) for any pair of equation indices i, j such that the monomials are defined.

3.4. Double-indexed σπ-systems. As well as i-indexed σπ-systems, in this
paper we have concern with double indexed σπ-systems of the type:

ẋi,i′ =

n,νj
∑

j,j′

vj,j
′

i,i′ X
j,j′

i,i′ ,(3.15)

where i, j are two equation indices – of some underlying i-indexed σπ-system – span-
ning {1, . . . , n}, whereas i′, j′ are the corresponding size indices. System (3.15) is
then another σπ-system having the couple (i, i′) as equation index, and the couple
(j, j′) as size index. v and X represent as usual the coefficients and the monomials
of this σπ-system, though they have now each four indices: the lower pair the new
composite equation index, and the upper pair the new composite size index. We sup-
pose that the control-coefficients and control-monomials (resp: the parameters and
the parametric-monomials) in (3.15) are just those indexed by (j, j∗) (resp. by j, j∗),
and thus we can set:

vc,j,j∗i,i′ = v
j,j′(j∗)
i,i′ , Xc,j,j∗

i,i′ = X
j,j′(j∗)
i,i′ ;(3.16)

vp,j,j
∗

i,i′ = v
j,j′(j∗)
i,i′ , Xp,j,j∗

i,i′ = X
j,j′(j∗)
i,i′ .(3.17)

We call (3.15), featuring (3.16), (3.17), the S-form of a (i, j)-indexed σπ-system. With
the symbolic association: i ↔ (i, i′), and i′ ↔ (j, j′), (on right sides the equation and
size indices of the underlying system, and on the left sides their counterparts in the
double indexed system) we can derive the C-form of (3.15) in the same way as in the
mono-index case, though now the equation index (i, i′), and the size index (j, j′), both
range in the set 10 :

{(1, 1), . . . , (1, ν1), (2, 1), . . . , (2, ν2), . . . , (n, 1), . . . , (n, νn)}.(3.18)

With the above guidelines, the C-form of (3.15) is easily derived by, first, splitting
the summation in (3.15) according to (3.16), (3.17), which gives

ẋi,i′ =

n,ν
p

j
∑

j,j∗

vp,j,j
∗

i,i′ Xp,j,j∗

i,i′ +

n,νc

j
∑

j,j∗

v
(c,j,j∗)
i,i′ Xc,j,j∗

i,i′ ,

10As a matter of fact, (3.15) is always a square form, even though the underlying system were
not. There is no problem in considering more general expressions that (3.15), but this is the more
general case we are concerned with in this paper.
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and, second, by gathering the above set of equations into two distinct subsets, distin-
guishing between those labeled by (i, i∗) and those labeled by (i, i∗):

ẋp

i,i∗ =

n,ν
p

j
∑

j,j∗

vpp,j,j
∗

i,i∗ Xpp,j,j∗

i,i∗ +

n,νc

j
∑

j,j∗

vcp,j,j∗i,i∗ Xcp,j,j∗
i,i∗ ,(3.19)

ẋc

i,i∗
=

n,ν
p

j
∑

j,j∗

vpc,j,j∗

i,i∗
Xpc,j,j∗

i,i∗
+

n,νc

j
∑

j,j∗

vcc,j,j
∗

i,i∗
Xcc,j,j∗

i,i∗
,(3.20)

where – for χ equal to any of the two symbols v,X:

xp

i,i∗ = xi,i′(i∗); xc

i,i∗
= xi,i′(i∗),(3.21)

χpp,j,j∗

i,i∗ = χp,j,j∗

i,i′(i∗); χcp,j,j∗

i,i∗
= χ

(p,j,j∗)
i,i′(i∗)

;(3.22)

χpc,j,j∗

i,i∗
= χp,j,j∗

i,i′(i∗)
; χcc,j,j∗

i,i∗ = χc,j,j∗
i,i′(i∗)

;(3.23)

We call (3.19), (3.20), the C-form of a (i, j)-indexed σπ-system whose S-form is (3.15)
and whose coefficients and monomials satisfy (3.16), (3.17).

3.5. Ordering. For σπ-systems we sometimes use quantities that depend of the
particular ordering, i.e. the map i′ 7→ Xi,i′ , used for writing the i-th, i-labeled, system
equation. Let us define the set of the single monomials in the variable xi:

Mi = {mi = xp
i ; p ∈ IR}

we define a canonic total order relation ’≺’ (CTOR) on Mi by setting mi ≺ m′

i ⇔
pi ≥ p′i. The CTOR on the set Mi of all monomials of the type mi = mimi+1 · · ·mn,
with mj ∈ Mj j = i, . . . , n is then directly obtained recursively as follows: since
Mn = Mn the two sets have the same CTOR, the CTOR on Mi is defined by
mim

i+1 = mi ≺ m̄i = m̄im̄
i+1 if and only if either mi ≺ m̄i and mi 6= m̄i, or

mi = m̄i and mi+1 ≺ m̄i+1. We say that a σπ-system is canonically ordered if the
maps i′ 7→ Xi,i′ are, for each i = 1, . . . , n, accordingly defined by the CTOR on M1

(i.e. they are monotone increasing).

In conclusion, different forms can be considered for a given σπ-system. All of such
forms are equivalent (i.e. are different expressions of the same differential equation):
every σπ-system in S-form can be put in a C-form and vice-versa, as well as enlarged
in size and/or (canonically) ordered. All these different forms will be said different
versions of the same σπ-system.

3.6. Dynamic matrix, control matrix and generator of a σπ-system. To
any σπ-system of order n, and with q independent controls, we can associate a couple
of matrices (A,B), A ∈ IRn×n, B ∈ IRn×q, defined as (for an i-labeled system):

Ai,j =

νi
∑

i′=1

vi,i′
∂Xi,i′

∂xj

=

ν
p

i
∑

i∗=1

vpi,i∗
∂Xp

i,i∗

∂xj

+

νc

i
∑

i∗=1

vci,i∗
∂Xc

i,i∗

∂xj

,(3.24)

Bi,s =

νc

i
∑

i∗=1

bc,i∗i,s Xc

i,i∗
, s = 1, . . . , q.(3.25)
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We call A the dynamic matrix, and B the control matrix of the system. Note that
A = A(x, u) and B = B(x), i.e. the control matrix depends (in general) of x, and
the dynamic matrix depends in general of the control (through the control coefficients
vc). Moreover, notice that the definition of A and B does not depend of the particular
version to which (3.24) and (3.25) are applied. The reason why we use the well known
terms ’dynamic’ and ’control’ for the matrix defined in (3.24) and (3.25) will be clear
in the Part II of the present paper.

Along with the dynamic and control matrix, we associate to a σπ-system a third
matrix, that we name the generator, namely V ∈ IRn×n, of the system, defined as
follows: Vi,j = vi,j where vi,j are the coefficients of the assembled, square sized and
canonically ordered S-form of the system. The generator of a σπ-system may depend
of u, but never depends of x. It is in general a time-varying matrix.

4. Drivers, self-drivers, and driver-type σπ-systems.

4.1. Quadratic Immersion. We briefly summarize the concept of quadratic
immersion, and refer the reader to our former paper [1] for all the details. We also go
deeper into certain issues that were only mentioned in [1].

A systems immersion (resp. a dense immersion) (cf. [1]-[2]-[3]) from a system,
S1 in IRn, into another system S2 living in IRm (with m ≥ n) is a smooth map from
the domain11 (resp. the domain with possibly the exception of a zero-measure set)
of S1 onto a smooth manifold, say M, included in the domain of S2, such that any
trajectory of S2 starting from M includes a trajectory of S1, and all the trajectories
of S1 can be generated by trajectories of S2 starting from M. A quadratic immersion
is a dense immersion into a quadratic system.

The basic results proved in [1] is the following: if (3.5) is σπ-algebraic, with
domain D ⊂ IRn, then the (scalar) variables

Zi,i′ =
Xi,i′

xi

,(4.1)

satisfy the following system of quadratic ordinary differential equations (QODEs):

Żi,i′ =

( n
∑

j=1

p
(i′)
i,j Z

T
j vj − ZT

i vi

)

Zi,i′ ,(4.2)

every time they are well defined. The QODE (4.2) constitutes a new quadratic system
(written component wise) said the driver associated to the σπ-system (3.5). Note that
(4.2) is constituted by d equations, where d is the total size (cf. §3.3) of the system,
and thus Z ∈ IRd. Looking at (3.5), (3.4), and (4.1) we have

ẋi =
(

νi
∑

i′=1

Zi,i′vi,i′
)

xi = (ZT
i vi)xi ,(4.3)

11Hereinafter by ’system domain’ we mean the maximal open set which includes all system tra-
jectories. In system-theoretic terms it is the ’state space’, but it is not supposed to be a (vector)
space. In fact, in our framework, where the system function is always given through finite composi-
tions of algebraic and/or transcendent well known maps (cf. [1]), the system-domain is always the
maximal open set, in some analytic sub-manifold of IRn, where the system function is well defined
and analytic.
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whose solution can be written as

xi(t) = e

∫

t

to
ZT

i vi
xi(t0) ,(4.4)

provided that Zi(τ) is defined ∀τ ∈ [t0, t]. Another result ([1] Theorem 2.5) is that
even the monomials Xi,i′ are differentially related to the driver components. Indeed
the Xi,i′ ’s satisfy

12 the following set of differential equations:

Ẋi,i′ =

( n
∑

j=1

p
(i′)
i,j Z

T
j vj

)

Xi,i′ ,(4.5)

and thus, similarly to (4.4), we can write each monomial Xi,i′ as well, as a function
of the driver:

Xi,i′(t) = e

∑

n

j=1

∫

t

to
p
(i′)
i,j

ZT
j vj

Xi,i′(t0) =

n
∏

j=1

e

∫

t

to
p
(i′)
i,j

ZT
j vj

Xi,i′(t0) ,(4.6)

which holds under the same conditions we have already seen as for xi.
The general solution of a σπ-system can be written as in (4.4), i.e. as a function

of the solution of the associated driver, every time both the solutions are defined on
a time interval (T1, T2), with T1, T2 ∈ [−∞,+∞], and t0, t ∈ (T1, T2). The quadratic
system described by eqs. (4.2) can be thought of as ’driving’ the ’final stage’, i.e.
another system given by eqs. (4.3), which is said the final system, and giving back
the original state components. An alternative ’cascade decomposition’ (cf [1]) can
be obtained by involving (4.5). As a matter of fact, equations (4.5) can be viewed
as a bilinear system, which in [1] is named the medial system, whose input is Z.
Assuming this representation, we can interprete the original system equations (3.5) a
final system (different than (4.4)) given by an integral action on the medial state (i.e.
the collection of all σπ-system monomials), and thus the σπ-system can be viewed as
the cascade of three systems: the driver (feeding the medial) and the medial feeding
an integral action (cf [1] Fig. 1).

The map x 7→ Z has the same domain as the original σπ-system, except all the
coordinate hyperplanes13 in IRn, namely Xi:

Xi = {x ∈ IRn : xi = 0} .(4.7)

By denoting D′ such a domain, we have that D \ D′ has zero measure14 in IRn.
Moreover, the driver (4.2), if starts from a Z̄ ∈ IRd satisfying (4.1) for i = 1, . . . n,
gives the original state x through eq. (4.3). Thus the map x 7→ (x, Z), namely
Φ : IRn ⊃ D′ → IRn×d:

(x, Z) = Φ(x) ,(4.8)

is a dense immersion into the quadratic system constituted by (4.2), (4.3), that is: a
quadratic immersion.

12In [1] the monomials of a σπ-system are indicated with the symbol Z
(l)
i,0 , which in the present

notation would became Xi,l .
13Note that it could be lacking coordinate hyperplanes the original domain itself.
14Or, in pure topologic terms: has non empty interior. The only case in which D \ D′ is empty

(and not only has an empty interior) is when the original domain lacks all coordinate hyperplanes.
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We conclude this eye-bird view of the main results of [1], by pointing out a fact
that in [1] has not been highlighted: as a matter of fact (4.5) holds in general for any
monomial of the type (3.4), even if it is not included in the system expression. This
can be directly entailed by a few new concepts we have introduced in previous sections,
and in particular by the fact that we can always enlarge the size of a σπ-system, by
adding a new monomial, multiplied by zero, to any of the system equations. Also,
since the driver components, are σπ-functions of x – i.e. Zi,i′ = Zi,i′(x) where the
map x 7→ Zi,i′ is a σπ-function – it follows that any monomial can be included into
a new σπ-system, equivalent to the original on the common domain, and with order
increased by one: i.e. by adjoining equation (4.5), considered as a σπ-equation of x,15

as a further equation to (3.5).

Example. Consider the σπ-system:

ẋ1 = x1x2 ,

ẋ2 = x2
1 .

We want to write a differential equation for the term x5
1x

7
2. Let us enlarge the system

size by introducing the fictitious term 0·X2,1 in the second equation, withX2,1 = x5
1x

7
2,

where the other monomials are X1,1 = x1x2, and X2,2 = x2
1. It is easily seen that

the enlarged-size-system has three driver components: Z1,1 = x2, Z2,1 = x5
1x

6
2, and

Z2,2 = x2
1/x2, thus by formula (4.5) we have

Ẋ2,1 =
(

p
(1)
2,1(Z

T
1 v1) + p2,2(Z

T
2 v2)

)

X2,1 = (5Z1,1 + 7Z2,1)X2,1 .(4.9)

Thus, if we want to adjoin X2,1 as a new state variable of the original system, we
adjoin the above equation with the drivers components replaced by their expressions
in x:

Ẋ2,1 = 5x2X2,1 + 7
x2
1

x2
X2,1 = 5x5

1x
9
2 + 7x7

1x
6
2 ,(4.10)

where we can use the first or the second expression above, as the right hand side of
the new equation. In both cases the new equation has to be initialized to x5

1(t0)x
6
2(t0).

4.2. Some more insight into Quadratic Immersion. In this paper we go
deeper into the structure of the quadratic representation (4.2), (4.3), thus, in order
to avoid ambiguities, we introduce some new terminology.

In the following we call ’subsystem’ of a system described by a set of differential
equations of the type (3.5) defined on some analytic sub manifold of IRn, say M,
the system described by a subset of these equations, say those labeled {i1, . . . , iL},
with domain given by the trace of M on span{xi1 , . . . , xiL}. The dependent variables
of the system that appears without derivative in the subsystem are re-interpreted as
parameters of the subsystem, solutions of the complement sub-system, given by the
equations labeled {1, . . . , n} \ {i1, . . . , iL}, with domain given by the trace of M on
span⊥{xi1 , . . . , xiL}.

15As shown in [1] products and sums of σπ-functions are σπ-functions. However, note that the
domain of the new system might change
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We call the system described by (4.2), (4.3), whose domain is all of IRn×d, the
abode system, whereas the same system restricted to the manifold16:

MΦ = {(x, Z) ∈ IRn×d : (x, Z) = Φ(x)} ,(4.11)

i.e. restricted to the image of the immersion Φ defined in (4.8), is said the image
system17. The system undergoing the quadratization, here system (3.5), is said the
original system (or the object system), whereas the subsystem of the image system
constituted by the final equations (4.4), is said the immersed system (and its comple-
ment the immersed driver). It should be stressed that the domain D of the original
system, and the domain MΦ of the image system, need not to be connected. As a
matter of fact, as we will see in a moment, it is very common the situation where MΦ

is the union of disconnected components.
Following the terminology of Fliess-Kupka [3] we can rephrase the quadratic im-

mersion theorem of [1] as follows: any σπ-system can be represented as a subsystem –
namely the immersed system (4.3) – of a quadratic system, namely the image system:
which is a quadratic system evolving on the manifold (4.11). However, there are some
differences with respect to [2], as we are here concerned with dense immersions, and
thus even though all the trajectories of the immersed system are trajectories of the
original system, the converse is true only for the pieces of the original trajectory that
lies in the domain of the immersed system.

In order to get more insight from this point, first of all note that the domain of the
immersed system agrees with the domain D′ of the immersion Φ, and thus is included
in D. Now, let x(t), with t ∈ (a, b) ⊂ IR, the solution of the original σπ-system (3.5)
passing through a point x̄ ∈ D′ at some time t0 ∈ (a, b). The function x(·) describes
a smooth curve in D, thus it may well happen that some piece of this curve lies in
D \ D′ and not in D′. In this case the set:

Cx̄,t0 = {(x, t) ∈ D′ × (a, b) : x = x(t), t ∈ (a, b)},(4.12)

is just a union of disconnected curves, and what the quadratic immersion theorem tells
us is not that the original and the immersed system have the same trajectories (which
is not exact) but that: any connected component of Cx̄,t0 is a sub-curve18 of the curve
x(t). In the forthcoming lemma we see that, unless trivial cases, (x(t), t) 6∈ Cx̄,t0 holds
at most at isolated time points. Denote by Tx̄,t0 ⊂ (a, b) the set

Tx̄,t0 = {t ∈ (a, b) : x(t) ∈ D \ D′},(4.13)

and consider a σπ-system which does not contain trivial equations, that is zero equa-
tions of the type ẋ0 = 0 with initial condition xi(t0) = 0.

Lemma 4.1. For any σπ-system without trivial equations, either the set T defined
in (4.13) is empty, or is a union of isolated points in (a, b), corresponding to the times
in which x(t) crosses some coordinate hyperplane.

16Indeed a smooth sub-manifold of IRn+d

17The quadratic immersion theorem, stated in other words, guarantees that the image system is
well defined, or equivalently that MΦ is an invariant set of the abode system.

18Literally: it is a sub-graph of the graph of the curve x(t), but we identify the function with its
graph.
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Proof. Suppose that there exists an open interval (α, β) ⊂ T. Then we have
x(τ) ∈ D \ D′ ∀τ ∈ (α, β). But we have seen that D \ D′ either is empty or there
exists an i, 1 ≤ i ≤ n, such that Xi ⊂ D \ D′, where Xi is given by (4.7). In the
latter case it is xi(τ) = 0 ∀τ ∈ (α, β), and hence the original system includes the
trivial equation ẋi = 0 with x(t0) = 0. If T cannot include an open interval the thesis
follows.

Thus, the solution of the original system may be defined on some coordinate
hyperplane, while the immersed system may be not defined therein. In this case, the
original system – provided has not trivial equations – has a solution that can cross the
hyperplane, but cannot lie therein, moving in the hyperplane for a non zero length
time interval, and then leave it. The time t such that xi(t) = 0 shall be always a
single time. Obviously, trivial equations are useless, and can be always skipped while
applying the immersion (4.1). On the contrary, zero equations of the type ẋi = 0 with
non-zero initial condition, which is the case when we hide fictitious monomials in the
zero equation, plays an important role in the regulator design method we are going
to describe in the Part II of the present paper, but in this case as well, as claimed by
Lemma 4.1, the system trajectory x(t) can only cross the hyperplane Xi and not lie
within for a non-zero length time interval.

We highlight that (4.4) is the solution of (4.3), i.e.: is the solution of the final
system, and not of the original system. As we have already seen, the latter is a
smooth connected curve that just includes Cx̄,t0 , which is a union of distinct solutions
of (4.3) passing through distinct points of D′. Thus, formula (4.4) describes only the
connected component of Cx̄,t0 which (x(t0), t0) belongs to, and not all the trajectory
of the original system passing through x(t0), which might be larger. It should be
noted that what above described is not a sort of ’pathologic’ event, and in fact is
a common situation occurring while applying the quadratic immersion, even in very
simple cases, as shown in the following example.

Example. Let a, b be two fixed positive real numbers, t0 ∈ IR, and let us consider
the linear scalar system:

ẋ = −ax− b, x(t0) = x̄, x̄ ∈ IR,(4.14)

Whose domain is D = IR. As a σπ-system, (4.14) agrees with (3.5) with n = 1,
νi ≡ ν1 = 2, v1,1 = −a, v1,2 = −b, X1,1 = x, X1,2 = 1, p11,1 = 1, p21,1 = 0. The
driver components are given by (4.1), in this case: Z1,1 = 1, Z1,2 = x−1, and applying
formula (4.2) we obtain the driver equations:

Ż1,1 = 0,(4.15)

Ż1,2 = aZ1,1Z1,2 + bZ2
1,2.(4.16)

and by (4.3) the final equation:

ẋ = (−aZ1,1 − bZ1,2)x.(4.17)

The (analytic) immersion is Φ = (1, x−1) on the domain D′ = IR+ ∪ IR−. The abode
system is given by the three equations (4.15)-(4.17) with domain IR3 (which means:
with initial conditions (Z1,1(t0), Z1,2(t0), x(t0)) ∈ IR3). The image system is the abode
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system restricted to the manifold (4.11), i.e. MΦ = Φ(D′) ⊂ IR3, or, which is the
same: is given by eqs. (4.15)-(4.17) with (Z1,1(t0), Z1,2(t0), x(t0)) ∈ MΦ, that is:

Z1,1(t0) = 1; Z1,2(t0) = x̄−1; x(t0) = x̄, x̄ ∈ D′ = IR+ ∪ IR−.(4.18)

The immersed system is then the subsystem of the image system constituted by
equation (4.17) on the domain D′:

ẋ = (−aZ1,1 − bZ1,2)x, x(t0) = x̄ 6= 0.(4.19)

with Z1,1, Z1,2 solutions of the immersed driver:

Ż1,1 = 0, Z1,1(t0) = 1,(4.20)

Ż1,2 = aZ11Z1,2 + bZ2
1,2, Z1,2(t0) = x̄−1, (x̄ 6= 0).(4.21)

Let x(t) the solution of (4.14) with x(t0) = x̄ ∈ D and define

Tx̄,t0 = {t ∈ IR : x(t) ∈ D \ D′} (= {t ∈ IR : x(t) = 0}).

Tt0,x̄ is a countable set, by Lemma 4.1, and we can calculate it as follows. The
solution of (4.14) is

x(t) = x̄e−a(t−t0) −
b

a
(1− e−a(t−t0)),(4.22)

thus x(t) → −(b/a) for t → +∞. There are three cases that shall be considered:

(i) x̄ ≥ 0. In this case Tt0,x̄ = {t̄}, with

t̄ = t0 +
c

a
; c = − ln

(

b

ax̄+ b

)

> 0.(4.23)

and t0 ≤ t̄.

(ii) −(b/a) < x̄ < 0. In this case Tt0,x̄ = {t̄}, with t̄ as in (4.23), but t0 > t̄.

(iii) x̄ ≤ −(b/a). In this case T0,x̄ = ∅.

Consider first the case where T0,x̄ 6= ∅, That is x̄ > −(−b/a). In this case the set
(4.12) is Cx̄,t0 = C1 ∪ C2, where, denoted T1 = (−∞, t̄) and T2 = (t̄,+∞):

Ci = {(x, t) : t ∈ Ti, x = x(t)}, i = 1, 2.(4.24)

By naming G the graph of x(t), C1, C2 are two pieces of G separated by the point (0, t̄),
i.e. G = C1 ∪ C2 ∪ {(0, t̄)}.

The quadratic immersion theorem states that if (x̄, t0) ∈ Ci (i = 1, 2), then,
denoted x′(t) the solution of the immersed system (4.19), we have

{(x′(t), t) : t ∈ Ti} = Ci, i = 1, 2.(4.25)

We can use formula (4.4) in order to express only a single piece of the solution x(t):
the piece which (x(t0), t0) belongs to, with x(t0) 6= 0. In the example, for x̄ 6= 0 we
can write

x(t) = e

∫

t

t0
ZT

1 v1
x̄ = e

−

∫

t

t0
(aZ1,1+bZ1,2)

x̄,(4.26)



16 F. CARRAVETTA

where for x̄ > 0 we are in the case (i), thus t0 < t̄, (x(t0), t0) ∈ C1, and (4.26),
with Z1,1, Z1,2 given by (4.20), (4.21) with x̄ > 0, expresses the solution x(t) for
t ∈ (−∞, t̄). For −(b/a) < x̄ < 0, we are in the case (ii), thus t0 > t̄, (x(t0), t0) ∈ C2,
and (4.26) with Z1,1, Z1,2 given by (4.20), (4.21) with −(b/a) < x̄ < 0, expresses the
solution x(t) for t ∈ (t̄,+∞).

We can perform a qualitative verification of (4.26) through the explicit calculation
of the the two components Z1,1, Z1,2 of the immersed driver. By (4.20) we immediately
realize that Z1,1 ≡ 1 for any t. The component Z2,2 is given by the ODE (4.16), which
is a Bernoulli quadratic differential equation, and thus the general solution can be
calculated by a well known method: define W1,2 = Z−1

1,2 , then (as it is easy to verify)
W1,2 satisfies the linear equation:

Ẇ1,2 = −aZ1,1W1,2 − b.(4.27)

As Z1,1 = 1, notice that (4.27) is the same equation as the original system (4.14).
Moreover W1,2(t0) = Z−1

1,2(t0) = x̄. The solution is then equal to (4.22), and by

Z1,2 = W−1
1,2 , we get the general expression for Z1,2:

Z1,2(t) =
a

(ax̄+ b)e−a(t−t0) − b
.(4.28)

The above function is (as expected) not defined for t = t̄.
For x̄ > 0 we already saw that t ∈ (−∞, t̄) and t0 < t̄, and thus the piece of

function (4.28) for t < t̄ is to be used in (4.26). By calculating the limits, we have: for

t → −∞, Z1,2 → 0+, and thus φ = aZ1,1 + bZ1,2 → a+ and −
∫ t

t0
φ → +∞ ⇒ x(t) →

+∞; for t → t̄−, Z1,2 → +∞, φ → +∞, and thus −
∫ t

t0
φ → −∞ ⇒ x(t) → 0+.

For 0 < x̄ < −(b/a) we have t ∈ (t̄,+∞) and t0 > t̄, and thus the piece of
(4.28) for t > t̄ shall be used in (4.26): we have in this case ax̄ + b > 0 again,
therefore for t → t̄+, Z1,2 → −∞, φ → −∞, and recalling that t0 > t̄ we have

−
∫ t

t0
φ → −∞, which entails x(t) → 0−. Finally, for t → +∞, Z1,2 → −(a/b)−,

φ → 0− and −
∫ t

t0
φ → k for some negative real number k. Therefore, by recalling

that x̄ < 0, we have x(t) → ekx̄ < 0, which is enough for our qualitative verification,
since is consistent with −(b/a) = ekx̄, that one would expect (c = −(b/ax̄) > 0 and
apparently k = ln c).

The case T0,x̄ = ∅, amounts to (iii): x̄ ≤ −b/a. In this case the original system
solution is equal to the immersed system solution for any t ∈ IR. The immersed
driver, i.e. (4.21) with x̄ ≤ −b/a has a solution defined for all t ∈ IR, since the
denominator in the expression of the general solution (4.28), never vanishes. We have
x(t) → −∞, Z1,2 → 0− for t → −∞, and x(t) → (−b/a)−, Z1,2 → (−a/b)+ for
t → +∞, accordingly with Z1,2 = 1/x. In the case x̄ = 0, the original solution
x(t) still has two separate branches (separated by (0, t0)), but any of them can be
expressed by (4.26). However, notice that this is just a formal issue, which is readily
overtaken by re-defining t0 in order that x(t0) 6= 0 (we have excluded the trivial case
ẋ = 0 thus x(t0 + ǫ) shall be non zero for some ǫ > 0).

4.3. Drivers in C-form. Let us introduce the symbol πi′

i,j defined as follows:

πi′

i,j =

{

pi
′

i,j for i 6= j;

pi
′

i,i − 1 otherwise.
(4.29)
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Then (4.2) can be rewritten as

Żi,i′ =

n
∑

j=1

πi′

i,j(Z
T
j vj)Zi,i′ =

n,νj
∑

j,j′

πi′

i,jvj,j′Zj,j′Zi,i′ ,(4.30)

where j′ is another size-index related to j 19. Given an i-indexed σπ-system of order n,
and total size d, we can directly write the associated driver, which is an homogeneous
quadratic system, and hence in particular another σπ-system having always order
equal to d. Note that the expression (4.30) describes a double-indexed σπ-system of
the type (3.15), where

vj,j
′

i,i′ = πi′

i,jvj,j′ ; Xj,j′

i,i′ = Zj,j′Zi,i′ .(4.31)

In the following we always assume the square form expression in (4.30) as the S-form
of an (i, j)-indexed driver.

The C-form of a driver is then derived from (3.19), (3.20), using the setting (4.31).
The result is:

Żp

i,i∗ =

n,ν
p

j
∑

j,j∗

πp,i∗

i,j vpj,j∗Z
p

i,i∗Z
p

j,j∗ +

n,νc

j
∑

j,j∗

πp,i∗

i,j vcj,j∗Z
p

i,i∗Z
c

j,j∗
(4.32)

Żc

i,i∗
=

n,ν
p

j
∑

j,j∗

πc,i∗
i,j vpj,j∗Z

c

i,i∗
Zp

j,j∗ +

n,νc

j
∑

j,j∗

πc,i∗
i,j vcj,j∗Z

c

i,i∗
Zc

j,j∗
,(4.33)

where the v(q)’s q ∈ {p, c} has been defined in (3.6), (3.7), and, with l a generic
equation-index, we have

Z
(p)
l,l∗ = Zl,l′(l∗); Z

(c)
l,l∗

= Zl,l′(l∗).(4.34)

π
(p,i∗)
i,j = π

i′(i∗)
i,j ; π

(c,i∗)
i,j = π

i′(i∗)
i,j .(4.35)

We will refer to (4.32), (4.33), as an (i, j)-indexed driver in C-form, or as the C-form
of the driver of an i-indexed σπ-system as (3.5) (or: as (3.8), if we want to relate it
to the C-form of the underlying system).

4.4. Inverse driver. The driver equations (4.2) are quadratic differential equa-
tion of the Bernoulli type (Riccati type with no zero degree term). The basic prop-
erties of this kind of equations are well known and can be find in any textbook of
ordinary differential equations. Let us define

Wi,i′ = Z−1
i,i′ ,(4.36)

where Zi,i′ is the (i, i′)-th component of the state of the driver (4.2), then we have
that Wi,i′ satisfies the equation:

Ẇi,i′=

(

ZT
i vi −

n
∑

j=1

pi
′

i,jZ
T
j vj

)

Wi,i′ = −

( n
∑

j=1

πi′

i,jZ
T
j vj

)

Wi,i′

= −

n,νj
∑

j,j′

πi′

i,jvj,j′W
−1
j,j′Wi,i′ .(4.37)

19As a matter of fact the index j used in (4.2) spans the system equations, and thus it is a second
equation-index. The index j′ spans the monomials on the j-th equation, and thus it is a size-index.
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Thus, the aggregate W is the state of another system, no more quadratic (but still
σπ-algebraic), that we call the inverse driver (associated to the system (3.5)). We see
that the inverse driver, as well as its direct counterpart, entails the calculation of the
original state, provided it feeds an inverse final system:

ẋi =
(

νi
∑

i′=1

W−1
i,i′ vi,i′

)

xi, xi = e
∑

νi

i′=1

∫

t

o
W

−1

i,i′
vi,i′xi(0).(4.38)

4.5. Self-drivers and canonic forms of bilinear and linear systems. There
are three particular cases of σπ-algebraic system that deserves a separate attention.
We define them as follows.

Definition 4.2. An i-labeled σπ-system, is said to be

(i) a canonic linear (CL) system, if it is in constant size νi = n+ 1 and

Xi,i′ =

{

xi′ for i′ = 1, . . . , n;
1 for i′ = n+ 1.

(4.39)

where the vi,n+1 only can be control-dependent.

(ii) a canonic bilinear (CB) system, if it is in constant size νi = 2n and

Xi,i′ =

{

xi′ for i′ = 1, . . . , n;
xi′−n for i′ = n+ 1, . . . , 2n.

(4.40)

where the vi,i′ , for i′ > n, only can be control-dependent.

(iii) a self-driver, if the S-form is in square size and Xi,i′ = xixi′ , ∀i, i
′ = 1, . . . n.

Note that any CB or CL system, always have a canonic version, provided it is
suitably i-labeled. A few features of i)-ii)-iii) will be used later in the paper.

4.5.1. CL systems. By Definition 4.2 (i)

ẋi =

n+1
∑

i′=1

vi,i′Xi,i′ =

n
∑

i′=1

vi,i′xi′ + vi,n+1,

and thus νpi = n, νci = 1, Ip = {1, . . . , n}, Ic = {1}, i∗(i
′) is the identity map, i∗(i

′)
is unique. Therefore, the C-form is constant in both parametric and control-size:
νpi = n, νci = 1, and we have

ẋi =

n
∑

i∗=1

vpi,i∗xi∗ + vci,1 =

n
∑

i∗=1

vpi,i∗xi∗ +

q
∑

s=1

bc,1i,s us,(4.41)

where in the left side we have made explicit the control, by (3.11). For the dynamic
and control matrix, by (3.24), (3.25) we have

Ai,j =

n
∑

i∗=1

vpi,i∗
∂xi∗

∂xj

+ vci,1
∂1

∂x1
= vpi,j ,(4.42)

Bi,s = bc,1i,s , s = 1, . . . , q.(4.43)
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and thus (A,B) agree with the pair dynamic/control matrix in the standard sense for
linear systems. We can use the couple (A,B) to rewrite system (4.41) in vector form.
The result is the familiar Kalman form of a linear control system:

ẋ = Ax+Bu.(4.44)

The reader can readily verify that, for a non-canonic linear system, e.g. such that
Xp

i,i∗ = xl, where in general l 6= i∗, formulas (3.24), (3.25) give the correct couple
A,B of the corresponding vector form as well. Also, any non-canonical linear system
can be turned into a CL system by simply writing the monomials in a way canonically
ordered.

The driver of a CL system can be readily derived from the general formula (4.30),
taking into account that Definition 4.2 (i) is equivalent to assume that the exponents
of the σπ-system satisfy: pi

′

i,j = 0, for j 6= i′, pji,j = 1, and thus (after some arguing):

π
(i′)
i,j =

{ 1 for i 6= j = i′,
−1 for i = j 6= i′

0 otherwise.
(4.45)

The result is

Żi,m =

n+1
∑

j′=1

vm,j′Zm,j′Zi,m −
n+1
∑

j′=1

vi,j′Zi,j′Zi,m, i 6= m(4.46)

Żi,i = 0,(4.47)

Żi,n+1 = −
n+1
∑

j′=1

vi,j′Zi,j′Zi,n+1.(4.48)

with the initial conditions

Zi,i′(t0) =
Xi,i′(t0)

xi(0)
=

xi′(t0)

xi(t0)
, for i′ = 1, . . . , n,(4.49)

Zi,n+1(t0) =
1

xi(t0)
.(4.50)

Note that the initial conditions for the n equations Żi,i = 0, i = 1, . . . , n, are Zi,i(t0) =
1, that is Zi,i ≡ 1, as expected by the general immersion formula (4.1). Thus, the
driver of a CL system, which has order equal to the total size: n(n+1) = n2 +n, has
n redundant equations, those labeled (i, i). By removing the redundant equations, we
obtain a reduced driver of order n2 given by (i = 1, . . . , n):

Żi,i′ =

n+1
∑

j′=1

vi′,j′Zi′,j′Zi,i′ , i 6= i′ = 1, . . . , n+ 1.(4.51)

4.5.2. CB systems. By Definition 4.2 (ii)

ẋi =

2n
∑

i′=1

vi,i′Xi,i′ =

n
∑

i′=1

vi,i′xi′ +

2n
∑

i′=n+1

vi,i′xi′−n,
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and thus νpi = νci = n, Ip = {1, . . . , n}, Ic = {2, . . . , 2n}, i∗(i
′) is the identity map,

i∗(i
′) is the map i′ 7→ i′ −n, and the C-form is in both parametric and control square

size:

ẋi =

n
∑

i∗=1

vpi,i∗xi∗ +

n
∑

i∗=1

vci,i∗xi∗ .(4.52)

System (4.52) can be rewritten

ẋi =

n
∑

j=1

wi,jxj , with wi,j = vpi,j + vci,j ,(4.53)

which is an assembled S-form, and thus, the generator V is defined as Vi,j = wi,j , and
we have the vector form

ẋ = V x.(4.54)

For the dynamic and control matrix, by (3.24), (3.25) we have

Ai,j =
n
∑

i∗=1

v
(p)
i,i∗

∂xi∗

∂xj

+
n
∑

i∗=1

vci,i∗
∂xi∗

∂xj

= vpi,j + vci,j = wi,j ,(4.55)

Bi,s =

n
∑

i∗=1

bc,i∗i,s xi∗ , s = 1, . . . , q,(4.56)

and thus, for a CB system one has the important property V = A, as stated in the
following Proposition.

Proposition 4.3. For a CB system the generator is equal to the dynamic matrix.

Since the dynamic matrix of a σπ-algebraic system does not depend of the version,
we can also rephrase Proposition 4.3 as follows: the dynamic matrix of a bilinear
system is equal to the generator of the system canonic version.

Also, note that, differently than in the linear case, if we write a non-canonical
bilinear system in a canonically ordered form, we do not obtain the S-form, but the
assembled S-form (4.53)

4.5.3. Self-drivers. By definition, a self-driver is a σπ-system whose S-form is
an homogeneous quadratic system of the type

ẋi =

n
∑

i′=1

vi,i′xixi′ .(4.57)

Since (4.57) is quadratic, is σπ-algebraic as well, and thus undergoes a quadratization,
and has in turn an associated driver. The name ’self-driver’ comes from the fact that
system (4.57) has a driver which generates the components of system (4.57) itself,
and only these. Indeed, from (4.1), it is Zi,l = xl, and thus, although the driver
has n2 entries, only n of these are distinct, and these are just the n original state
components. From (4.2) the equations of the driver of (4.57) are:

Żl,i =(ZT
i vi+ZT

l vl− ZT
l vl)Zl,i =

n
∑

i′=1

vi,i′Zi,i′Zl,i, Zl,i(t0) = xi(t0)(4.58)
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thus, as expected, since Zl,i = xi and Zi,i′ = xi′ , (4.58) is equal to the equation (4.57),
and all the driver equations, for (l, i) = (1, 1), . . . , (n, n), are simply n copies of the
system of equations (4.57).

From (4.57) we see that the assembled S-form of a self-driver is the S-form itself,
and is square sized and canonically ordered. Thus, the generator of a self-driver is
directly V ∈ IRn×n, with Vi,j = vi,j , by definition as usual.

4.6. Bilinear frame of a self-driver. Here we give what is a basic notion of
this paper: the bilinear frame of a self-driver type system.

Definition 4.4. We define the bilinear frame of a self-driver type system with
generator V , as the canonical bilinear system whose generator is V .

We generally will use the symbol z for the state vector of the bilinear frame of
some self-driver type system having generator V ∈ IRn×n:

ż = V z. ⇔ żi =

n
∑

l=1

vi,lzl,(4.59)

where in the right side we have indicated the corresponding scalar equation.

5. Self-drivers and biased-solutions. Let V be the generator of the self-driver
(4.57), and let φV (z) the flow of the linear vector field V z passing through z. We also
denote by φV

i (z) the i-th component of the flow. Let us choose i, i′ ∈ {1, . . . , n} and
define the time function:

Ψi,i′(z) = −
φV
i′ (z)

(φV
i (z))

2
φ̇V
i (z),(5.1)

which we call the bias at z. We give the following Definition.

Definition 5.1. Let ζi the general solution of the i-th subsystem of the following
n2 scalar differential equations:

ζ̇i,i′ =
n
∑

j=1

vi′,jζi′,jζi,i′ +Ψi,i′(z).(5.2)

where Ψi,i′(z) is the bias at z, defined in (5.1), and the vi′,j’s are the coefficients of
a self-driver, as (4.57). Then ζi is said the be the i-th biased-solution at z of the
self-driver (4.57). We also call the the i-th subsystem of the system of equations (5.2)
the i-th biased-driver of (4.57).

One nice property, for a system of self-driver type, is that all of its n biased-
solutions can be explicitly calculated as stated in the following theorem.

Theorem 5.2. The i-th biased-solution at z of the self-driver (4.57) is given by:

ζi,i′ =
φV
i′ (z)

φV
i (z)

.(5.3)
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Proof. Let us consider the identity (5.1), defining the bias at z, and simplify the
notation of the flows φV

i′ (z) as φi′ . By adding the quantity φ̇i′/φi on both sides we
have:

φ̇i′

φi

=
φi′

φ2
i

φ̇i +
φ̇i′

φi

+Ψi,i′ .(5.4)

Now φ̇ = V φ, and thus

φ̇i′ =

n
∑

j=1

vi′,jφj .(5.5)

Let us multiply and divide by φi the left hand side of (5.4), and use (5.5) in the right
hand side, we have

φ̇i′

φ2
i

φi −
φi′

φ2
i

φ̇i =
1

φi

n
∑

j=1

ai′,jφj +Ψi,i′ =

n
∑

j=1

ai′,j
φj

φi

+Ψi,i′ ,(5.6)

and thus

n
∑

j=1

ai′,j
φj

φi′

φi′

φi

+Ψi,i′ =
φ̇i′

φ2
i

φi −
φi′

φ2
i

φ̇i =
φ̇i′φi − φi′ φ̇i

φ2
i

=
d

dt

φi′

φi

,(5.7)

which proves the Theorem.

If z(t) is the solution of the bilinear frame (4.59) passing at t = 0 through z, it is
z(t) = φV (z)(t), and thus (5.3) can be written as

ζi,i′(t) =
zi′(t)

zi(t)
.(5.8)

It is useful to express the above formula in words: the i′-th component, with i′ 6= i, of
the i-th biased solution (of a given self-driver) at z is equal to the ratio – the i′-th over
the i-th – between components of the solution, starting from z, of the driver bilinear
frame. Similarly, the i′-th component of the bias at z of the i-th biased driver (at z,
and with i′ 6= i) is given – in terms of the solution z(t) of the bilinear frame starting
from z – by the formula:

Ψi,i′(z)(t) = −
zi′(t)

z2i (t)
żi(t).(5.9)

The biased-solutions of a self-driver type system have the following important
property: they all converge – except in one component – to the true solution of the
system, provided a basic condition is verified, roughly speaking: that the bias at a
suitably defined pivoted point goes to zero for t → +∞

Theorem 5.3. Let x(t) be the solution at time t of the self-driver type system
(4.57) passing through x at t = 0. Let us choose an i, said pivot-index, and let z(t)
the solution of the bilinear frame (4.59), associated to (4.57), passing at t = 0 through
the point x(i) ∈ IRn, said the pivoted (on i) initial state, defined as

xi
i′ =

{

αxi′ for i′ 6= i;
α otherwise;

(5.10)
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where α ∈ IR \ {0}. Suppose that

lim
t→+∞

Ψi,i′(x
i) = 0, ∀i, i′ ∈ 1, . . . , n,(5.11)

then, if ζi is the i-th biased-solution at xi of (4.57) we have

lim
t→+∞

(ζi,i′(t)− xi′(t)) = 0, ∀i′ 6= i.(5.12)

Proof. By (5.8) it is, for i′ 6= i

ζi,i′(t0) =
zi′(t0)

zi(t0)
=

xi
i′

xi
i

= xi′ .(5.13)

From (5.2), the biased solution ζi,i′(t) at x
i satisfies

ζ̇i,i′ =

n
∑

j=1

vi′,jζi′,jζi,i′ +Ψi,i′(x
i),(5.14)

with initial condition given by (5.13). Thus, on account of hypothesis (5.11), it follows
that ζi,i′ → Zi,i′ , ∀i

′ 6= i, where Zi,i′ is the solution of (4.58), with initial condition
Zi,i′(t0) = xi′ . As the system is a self-driver the thesis follows.

5.1. Remark: pivot components. If a self-driver has an associated bilinear
frame giving rise to (5.11) then all of its entries can be calculated by setting a compo-
nent as a pivot component, say the i-th, and then for any i′ 6= i, by applying Theorem
5.3 which gives xi′ as a ratio of components of the bilinear-frame solution starting
from a suitable initial point xi pivoted on i. The remaining i-th component can be
calculated by applying again the same Theorem with another pivot component.

5.2. When the bias goes to zero?. There are some important cases in which
the condition (5.11) is verified. For instance, if the self-driver (4.57) is stationary, i.e.
the associated matrix V is a constant matrix, and V has at least one zero eigenvalue.
In this case, by the expression of Ψi,l given in (5.1), it’s easy to see that, for any x,

the time derivative of the flow: φ̇V (x) either goes to zero (for a single pole in the
origin) and φV (x) → const, or it goes to a limit (finite or infinite, which happens for
multiple poles in the origin) slower than the flow, and thus condition (5.11) is verified
even for any starting point. In the same case, note also that the convergence of the
biased-solution to the system solution occurs at an exponential rate.
In general, the linear vector field V x is a time-varying linear vector field, and the
matrix V depends of the control u, i.e. V ≡ V (t, u). Thus, we can calculate the
(unbiased) steady-state solution of a self-driver for all controls u that bring about all
pivoted flows to converge to a non zero constant.

5.3. Inverse driver of a self-driver. Let us derive the inverse driver (cf. §4.4)
of the self-driver (4.57). By (4.37) we readily get

Ẇi,i′ = −
n
∑

j=1

vi′,jZi′,jWi,i′ , Wi,l(0) =
1

x̄l

.(5.15)
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The inverse driver of a self driver gives the inverses, and only these, of the components
of the self-driver itself. All it has been shown before for the driver has a inverse
counterpart, in terms of inverse driver as show below.

We define the starred bias at z as follows

Ψ∗

i,i′(z) =
φ̇V
i (z)

φV
i′ (z)

,(5.16)

and give the following Definition.

Definition 5.4. Let ωi the general solution of the i-th subsystem of the following
n2 scalar differential equations:

ω̇i,i′ = −
n
∑

j=1

vi′,jζi′,jωi,i′ +Ψ∗

i,i′(z).(5.17)

where Ψ∗

i,l(x) is the time function (5.16), the vi′,j’s are the coefficients of the self-
driver (4.57). and ζi is the i-th biased-solution at z of the self-driver (4.57). We call
ωi the i-th inverse biased-solution of (4.57). Moreover, we call the i-th subsystem of
the system of equations (5.17) the i-th inverse biased-driver of (4.57).

Theorem 5.5. The i-th inverse biased-solution at x of the self-driver (4.57) is
given by:

ωi,l =
φV
i (z)

φV
i′ (z)

.(5.18)

Proof. Let us simplify the notation of the flows, as in the proof of Theorem 5.2,
and let us add and subtract the quantity φ̇lφi/φ

2
i′ on the left hand side of (5.16), we

have:

φ̇iφi′

φ2
i′

=
φ̇i

φi′
=

φi

φ2
i′
φ̇i′ −

φi

φ2
i′
φ̇i′ +Ψ∗

i,i′ =
φi

φ2
i′
φ̇i′ −

φi

φ2
i′

n
∑

j=1

ai′,jφj +Ψ∗

i,i′(5.19)

from which we have

d

dt

φi

φi′
=

φ̇iφi′ − φiφ̇i′

φ2
i′

= −
n
∑

j=1

ai′,j
φj

φi′

φi

φi′
+Ψ∗

i,i′ ,(5.20)

which proves the Theorem.

The inverse biased-solutions of a self-driver type system have the following prop-
erty: each converges – in all of the components except one – to the inverse of the true
solution of the system, provided the starred bias converges to zero for t → +∞.

Theorem 5.6. Let x(t) be the solution of the self-driver type system (4.57)
passing through x at t = 0. For any pivot index i consider the flow of the vector field
V x passing at t = 0 through the pivoted point x(i) ∈ IRn defined as in Theorem 5.3,
and suppose that

lim
t→+∞

Ψ∗

i,i′(x
(i)) = 0, ∀i, i′ ∈ 1, . . . , n,(5.21)
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Then, if ωi is the i-th inverse biased-solution at x(i) of (4.57) we have

lim
t→+∞

(

ωi,i′(t)−
1

xi′(t)

)

= 0, ∀l 6= i.(5.22)

Proof. By (5.3) it is, for i′ 6= i

ζi,i′(t0) =
φV
i (x

(i))(t0)

φV
i′ (x

(i))(t0)
=

x
(i)
i

x
(i)
i′

=
1

xi′
.(5.23)

Then, a similar argument as in Theorem 5.3 concludes the proof.

6. Conclusion and final remarks. Here’s a brief summary of the most im-
portant points of the Part I of the paper. First of all we have given some further
theoretical insight for the concept of QI first issued in [1], that is important in order
to well understand the sequel of the paper, and can be summarized as follows. Identity
(4.1) is the definition of ’driver state’. The right hand side of (4.1) gives the formula
of the dense immersion Φ(x), defining a QI. The QODE (4.2) is the driver equation,
which, with (4.3), constitutes the abode system, into which a given σπ-system is to
be immersed. The QI consists in the property of the trajectories of (4.2) passing
through a point of the manifold Φ(D), with D the domain of the original system, of
remaining confined in the manifold Φ(D) itself. Thus the basic feature of the QI can
be rephrased with the following two simple statements: 1) for any σπ-system having
domain D there exists a map Φ, analytic almost everywhere on D, and a quadratic
system, the driver, such that the flow of the driver is Φ(D) invariant, 2) any trajec-
tory of the original system is given as a solution of the bilinear differential equation
(4.3) driven by some driver trajectory lying in Φ(D). As argued in §4.2, there might
be many pieces of disconnected drivers trajectories for one original state trajectory,
but, with the possible exception of isolated points, any x(t) can be expressed through
formula (4.4) – which is is the integral form of the bilinear equation (4.3) – by means
of some of the above pieces of driver trajectory.

As for the specific contribution of Part I, the main result is Theorem 5.2, where,
for a particular kind of σπ-system, namely the self-drivers, defined in §4.5.3, under
the hypothesis that the bias – given by (5.1) – converges to zero for t → +∞, a steady
state solution exists and can be calculated as the limit of a biased solution (Definition
5.1) of the self-driver. In particular, a new system has been defined, said bilinear frame
(Definition 4.4), that can be always associated to any self-driver type system, and is
the linear, and in general time-varying, autonomous system whose dynamic matrix
is the generator (see §4.4) of the self-driver itself. Such a system can be viewed as a
time-varying linear system if we consider the control u as a kind of system parameter,
whereas if we in fact distinguish controls from other kind of parameters, it is indeed
a bilinear system. The i-th biased solution at z of a self-driver type system is then
given by formula (5.3), which shows that it is the ratio of two ’free evolution’ modes
of the bilinear frame, starting from suitable pivoted points defined in (5.10).
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