
Debonding criterion based on the intensity of
singular stress

著者 Miyazaki Tatsujiro, Noda Nao-Aki, Li Long,
Uchikoban Takumi, Sano Yoshikazu

journal or
publication title

International Journal of Fracture Fatigue and
Wear

volume 1
page range 105-111
year 2013
URL http://hdl.handle.net/10228/5423

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/147426047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


International Journal of Fracture Fatigue and Wear, Volume 1 

105 

 

Proceedings of the 2nd International Symposium on  
Engineering Mechanics and its Applications, pp. 105-111, 2013 

             DEBONDING CRITERION BASED ON THE INTENSITY              

OF SINGULAR STRESS 

Tatsujiro MIYAZAKI1, Nao-Aki NODA2, Long LI3, 

Takumi UCHIKOBA3 and Yoshikazu SANO2  

1 University of the Ryukyus, Okinawa, Japan 
2 Kyushu Institute of Technology, Fukuoka, Japan 

3Graduate School of Engineering, Kyushu Institute of Technology, Fukuoka, Japan 
 

Abstract: In the previous study, the authors discussed a debonding fracture criterion for single lap joints 
(SLJs) with varying the adhesive thickness and overlap length in terms of the critical intensity of a singular 
stress field. Here it is simply assumed that the identical singular stress fields are formed at the edge corner 
of the SLJ for different geometries. In this paper, by applying the reciprocal work contour integral method 
(RWCIM) it is shown that the two distinct intensities of the singular stress fields are determined accurately 
when the orders of stress singularity are two different real numbers. It is found that the ratio of the 
intensities of two types of the singular stress fields is almost the same for the wide range of the adhesive 
thickness and the overlap length. Then, it is found that the debonding fracture criterion is represented in 
terms of the intensity of the singular stress field with the strong stress singularity when aluminum alloy is 
bonded by epoxy resin. 
 
Keywords: Intensity Of Singular Stress Field, Adhesion, Interface, Single Lap Joint, Reciprocal Work 
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1 INTRODUCTION  

The testing method for the tensile lap-shear strength of the single lap joint (SLJ) is standardized by 
Japanese Industrial Standards (JIS) [1]. In this standard, the fracture tensile load is measured as the tensile 
lap-shear strength. Therefore, when the overlap length and adhesive thickness are different, the tensile lap-
shear strength is also changed even if the same adherend and adhesive are used. The mechanical 
parameter, which is suitable for the design, should be chosen as the tensile lap-shear strength from the 
viewpoint of the fracture phenomenon.  

Recently, Mintzas – Nowell [2] reported that the debonding fracture criterion for the adhesively bonded 
joints can be expressed with the critical value of the generalised stress intensity factor, rcH  [2 - 4]. The 
authors also confirmed that the debonding fracture criterion for the butt joints with the various adhesive 
thicknesses can be expressed with the critical intensity of the singular stress field at the fracture [5]. The 
singular stress field of the butt joints is expressed with only one singular stress term with order 1−λ . 
However, generally, the singular stress field which is formed near an arbitrary interface corner edge is 
expressed with several singular stress terms with the orders 11 −λ , 12 −λ , L . Because the intensities of the 
singular stress field the number of which equals that of the orders exit, it is difficult to evaluate the 
debonding fracture criterion base on the intensity of the singular stress field. The authors clarified that the 
singular stress fields of the SLJs with various overlap lengths and adhesive thicknesses are almost similar 
by FEM analyses based on the crack tip stress method [6, 7] when the singular stress field of the SLJ is 
often expressed with two singular stress terms with the real orders 11 −λ  and 12 −λ  ( 21 λλ < ). From the 
analysis results, the debonding fracture criterion of the SLJs can be expressed with the critical intensity of 
the singular stress field at the fracture. However, the intensities of the singular stress field were not 
calculated in the earlier study [6, 7]. The similarity of the singular stress field needs to be examined from the 
intensities of the singular stress field in detail. 

In this study, the intensities of the singular stress field of the SLJ with two real orders 11 −λ  and 12 −λ  
( 21 λλ < ) are calculated by the reciprocal work contour integral method (RWCIM) [8] exactly. The similarity 
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of the singular stress field is examined from the intensities of the singular stress field. The validity that the 
debonding fracture criterion of the SLJs can be expressed with constant=cKσ  is discussed, where cKσ  is 
the critical intensity of the singular stress field at the fracture. 

2 EXPERIMENTAL DATA 

The tensile shear-lap strength as obtained from experiments performed by Park et al [9] is used. Figure 1 
shows the schematic illustration of the specimens. In the experiment, the adherend and adhesive are 
aluminum alloy 6061-T6 (Young’s modulus 9.681 =E GPa, Poisson’s ratio 3.01 =ν ) and epoxy resin 
( 2.42 =E GPa, 45.02 =ν ), respectively. The total length of the specimen is 225 mm; the adhesive thickness 
is varied from 15.0 mm to 9.0 mm; the overlap length is vaired from 15 mm to 50 mm. 

Table 1 shows the tensile lap-shear strength faP . In the experiment, the linear relation between the load 
and displacement was obtained except for the specimen A10. The results suggest that the fracture was 
caused by the debonding crack which was initiated from the corner edge of the interface between the 
adhesive and the adherend. Then, the experimental result gives the validity that the critical intensity of the 
singular stress field at the fracture is used as the debonding fracture criterion. 

Figure 2 shows the tensile lap-shear strength faP under 2t constant condition. The faP  tends to increase 
with increasing the 2l . Figure 3 shows the average shear stress at the fracture, ( )WlP fac 2=τ . When the 2l  
is smaller than 15 mm, the cτ  becomes constant at about 7.28 MPa. However, When the 2l  is larger than 
15 mm, the cτ  tends to decrease. Nono and Nagahiro [10] reported that the fracture is caused by the 
general yielding of the adhesive layer and the cτ  becomes constant when the overlap length is short. In this 
study, it is supposed that debonding fracture occurs when 152 >l mm. 

 
Fig. 1. Specimen configurations [9]. 

 
Table 1. Experimental results [9]. 

(a) 2t constant condition  (b) 2l constant condition 

Specimen 2l  [mm] 2t  [mm] faP  [kN]  Specimen 2l  [mm] 2t  [mm] faP  [kN] 

A10 10 0.15 6.87  A25 25 0.15 14.17 
A15 15 0.15 10.57  A25-30 25 0.30 14.32 
A20 20 0.15 12.41  A25-45 25 0.45 14.26 
A25 25 0.15 14.17  A25-90 25 0.90 14.19 
A30 30 0.15 14.56  A30 30 0.15 14.56 
A35 35 0.15 16.41  A30-30 30 0.30 16.91 
A40 40 0.15 18.09  A30-45 30 0.45 16.12 
A50 50 0.15 18.22  A30-90 30 0.90 15.37 

 

  
Fig. 2. Adhesive tensile strength of specimens  

with 15.02 =t mm [9]. 
Fig. 3. Average shear stress at fracture  

           of specimens with 15.02 =t mm [9]. 
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3 SINGULAR STRESS FIELD 

3.1 Characteristics of the singular stress field 
Figure 4 shows the schematic illustration of the analysis model and boundary condition. 1l  and 1t  are 
adherend length and adherend thickness, respectively; 2l  and 2t  are overlap length and adhesive thickness, 
respectively; E  is Young’s modulus, ν  is Poisson’s ratio, and subscripts 1  and 2  refer to the adherend 
and the adhesive, respectively. 

The singular stress field is formed at the corner edge of the interface between the adherend and the 
adhesive. The singular stress field is governed by the order of stress singularity, 1−λ . The eigenvalue λ  
can be obtained by solving the eigenequation which was derived by Bogy [11]. In the case of the corner 
edge as shown in Fig. 4, the eigenequation is given by the following equation [6, 7, 11]. 
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Here, mG  ( 1=m , 2 ) is the shear modulus of elasticity. 

The root of the eigenequation (1), λ , depends on the α  and the β . In the case of the material 
combination in Section 2, 6062.01 =λ  and 9989.02 =λ  are obtained from 8699.0−=α  and 006642.0−=β . 
The stresses at a radial distance r  from the point O on the interface, θσ  and θτ r , are expressed as follows. 
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Here, 1K  and 2K  are real numbers, ( )kf λθθθ ,  and ( )krf λθθ ,  are non-dimensional funuctions of the angle θ , 
the kλ , the α  and the β , 

k
K λσ ,  and 

k
K λτ ,  are the intensities of the singular stress field. Because four 

intensities of the singular stress field, 
1,λσK , 

2, λσK , 
1, λτK  and 

2,λτK  are determined by two real numbers 1K  
and 2K , the singular stress field in the vicinity of the corner edge is also determined by them. 

 
Fig. 4. Analysis model and boundary condition. 

  
Fig. 5. Contour integral path for RWCIM. Fig. 6. Mesh pattern near the interface edge corner. 
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3.2 Analysis method 
The intensities of the singular stress field, 

k
K λσ ,  and 

k
K λτ , , were calculated by RWCIM.  Figure 5 shows the 

integral path C . The linear elastic analyses were perfomed under the plane strain condition using the 
commercial FEM code MSC Marc 2008 R1. Figure 6 shows the schematic illustration of the mesh pattern in 
the vicinity of the interface corner edge. In the region which contains the corner edge and the integral path, 
8-Node quadratic isoparametric element was used; in the other region, 4-Node quadratic isoparametric 
element was used. 

3.3 Analysis results and discussion 
The analysis result of the specimen A25 is mentioned. The contour integral path C  in Fig. 5 and the mesh 
pattern in Fig. 6 were used in order to calculate the intensities of the singular stress field. The intensities of 
the singular stress field under 10 =σ MPa were calculated changing the mine  and the minel  variously. Table 
2 shows the intensities of the singular stress field. The 

1, λσK  value converges at 1010.0  when 10min ≥el . 
On the other hand, the 

2,λσK  value tends to converge at 5485.0−  with increasing the minel . When 
10 =σ MPa, 1010.0

1, =λσK 1-1mMPa λ⋅ , 04723.0
1, −=λτK 1-1mMPa λ⋅ , 5485.0

2, −=λσK 2-1mMPa λ⋅  and 
01168.0

2, −=λτK 2-1mMPa λ⋅ were obtained in this analysis. Figure 7 shows the stress distributions on the 
interface. The solid line is the stresses θσ  and θτ r  which are obtained by substituting these intensities of 
the singular stress field into Eq. 3. Then, the circle and triangle marks are the stresses θσ  and θτ r  by FEM, 
respectively. When 01.0≤r mm, the marks are good agreement with the solid curves. 

Table 3 shows the intensities of the singular stress field of all specimens. Because the 
1, λσK  and the 

1,λτK  
are determined by the 1K  as shown in Eq. 3, the 

11 ,, λσλτ KK  becomes constant independent of the  2l  and 
the 2t . In the present SLJ models, 4678.0

11 ,, −=λσλτ KK  and 02130.0
22 ,, =λσλτ KK  were obtained. Then, the 

12 ,, λσλσ KK  values and the  
12 ,, λτλτ KK  values of all the models except for the models A10 and A15 range 

from 574.5−  to 827.4−  and from 2198.0  to 2538.0 , respectively. Figure 8 shows the relation between 
( )1

1
1

,
λ
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,

λ
λτθτ −rKr  and r . The dashed lines are the ( )1

1
1

,
λ

λσθσ −rK  and the ( )1
1

1
,

λ
λτθτ −rKr  of 

the model A50 the 
12 ,, λσλσ KK  and the 

12 ,, λτλτ KK  of which are mininum; the chain lines are the 
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1
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,
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λσθσ −rK  and the ( )1
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,

λ
λτθτ −rKr  of the model A25-90 the 

12 ,, λσλσ KK  and the 
12 ,, λτλτ KK  of which are 

maximum. There are a few differences between the dashed line and the chain line. From the analysis 
results, it can be found that the singular stress fields of all the models except for the models A10 and A15 
are similar. Then, the θσ  and the θτ r  are approximately expressed with the following equation. 
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Here, σC  and τC  are constant.  

Because the 
1, λσK  and the 

1,λτK  are determined by the 1K  as shown in Eq. 3, the intensities of the singular 
stress field can be represented with the 

1, λσK . Therefore, the condition that the debonding fracture of the 
SLJ does not occur can be expressed with the following equation. 

cKK σλσ ≤
1,  (5) 

Here, cKσ  is the critical intensity of the singular stress field at the fracture. 

Table 2. 
1,λσK and 

2, λσK  of specimen A25 under 10 =σ MPa. 

minel  
11

min 3−=e mm 9
min 3−=e mm 

1,λσK  
2,λσK  

1,λσK  
2,λσK  

5 0.1011 -0.5553 0.1011 -0.5510 
10 0.1010 -0.5500 0.1010 -0.5491 
20 0.1010 -0.5492 0.1010 -0.5486 
40 0.1010 -0.5484 0.1010 -0.5486 
80 0.1010 -0.5485 0.1010 -0.5484 

1,λσK : 1-1mMPa λ⋅ ，
2, λσK : 2-1mMPa λ⋅  
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Table 3. Intensities of singular stress field under 10 =σ MPa. 
(a) 2t constant condition  (b) 2l constant condition 

Specimen 1,λσK  
2, λσK  

1, λτK  
2,λτK   Specimen 1,λσK  

2, λσK  
1, λτK  

2,λτK  

A10 0.1065 -0.6469 -0.04981 -0.01378  A25 0.1010 -0.5485 -0.04723 -0.01168 
A15 0.1083 -0.6021 -0.05068 -0.01282  A25-30 0.09796 -0.5022 -0.04583 -0.01070 
A20 0.1056 -0.5735 -0.04940 -0.01222  A25-45 0.09777 -0.4884 -0.04574 -0.01040 
A25 0.1010 -0.5485 -0.04723 -0.01168  A25-90 0.1013 -0.4888 -0.04738 -0.01041 
A30 0.09606 -0.5237 -0.04494 -0.01116  A30 0.09606 -0.5237 -0.04494 -0.01116 
A35 0.09107 -0.4985 -0.04261 -0.01062  A30-30 0.09294 -0.4785 -0.04348 -0.01019 
A40 0.08618 -0.4741 -0.04032 -0.01010  A30-45 0.09246 -0.4644 -0.04325 -0.009893 
A50 0.07680 -0.4280 -0.03593 -0.009118  A30-90 0.09482 -0.4631 -0.04436 -0.009865 

1,λσK , 
1, λτK : 1-1mMPa λ⋅ ，

2, λσK ,
2,λτK : 2-1mMPa λ⋅  

 

  

Fig. 7. Comparison between stress distribution of  
Specimen A 25 by Eq. 3 and FEM. 

Fig. 8. Relationship between ( )1
1

1
,

λ
λσθσ −rK ,  

( )1
1

1
,

λ
λτθτ −rKr  and r . 

 

  

Fig. 9. Relationship between 
1,λσK  and 2l . 

Fig. 10. Relationship between 
faPP

KK c == |
1, λσσ . 

and 2l  

  

  
Fig. 11. Relationship between 

1,λσK  and 2t . Fig. 12. Relationship between 
faPP

KK c == |
1, λσσ .  
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and 2t  
 

 
Fig. 13. Debonding fracture criterion cKσ . 

4 DEBONDING FRACTURE CRITERION 

As mentioned in Section 3, the intensities of the singular stress field can be represented with the 
1,λσK  from 

the similarity of the simgular stress field. Figure 9 shows the 
1,λσK  values of the specimens with 

15.02 =t mm under 10 =σ MPa. When  152 ≥l mm, the 
1,λσK  tends to decrease with increasing the 2l . 

Figure 10 shows the critical intensities of the singular stress field of specimen with 15.02 =t mm, where 

faPP
K =|

1, λσ  is the intensity of the singular stress field under faPP = , 
faPP

KK c == |
1, λσσ . The cKσ  values 

become constant independet of the 2l . 

Figure 11 shows the 
1,λσK  values of the specimens with 252 =l , 30 mm under 10 =σ MPa. Figure 12 shows 

the critical intensities of the singular stress field of the specimen with 252 =l , 30 mm. The cKσ  values 
become constant independet of the 2t . 

Figure 13 shows the cKσ  values of all specimens in Figs. 10 and 12. The solid line is the average of the 
cKσ values, avecK ,σ . In this study, the avecK ,σ  was 4.030 1-1mMPa λ⋅ . The cKσ  values were within the range of 

10 % difference. From the result, it can be confirmed that the cKσ  becomes constant independent of the 2l  
and the 2t .  

5 CONCLUSION 

In this study, four intensities of the singular stress field of the SLJ with the different real orders 11 −λ  and 
12 −λ , 

1,λσK , 
2, λσK , 

1, λτK  and 
2,λτK , were calculated by RWCIM exactly. Then, the similarity of the singular 

stress field and the debonding fracture criterion based on the intensity of the singular stress field were 
examined. 

(1) The debonding fracture criterion was expressed with the critical intensity of the singular stress field at 
the fracture except that the overlap length is short significantly. 

(2) The 
12 ,, λσλσ KK  and 

12 ,, λτλτ KK  are nearly equal independent of the overlap length 2l  and the 

adhesive thickness 2t . From the analysis results, it was found that the similar singular stress fields are 
formed even if the  2l  and the 2t  are different. 

(3) Four intensities of the singular stress field can be represented with the 
1,λσK based on the similarity of 

the singular stress field. Therefore, the debonding fracture criterion cKσ  was expressed with the critical 
intensity of the singular stress field at the fracture, 

faPP
K =|

1, λσ ,  within the range of 10% error. 
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