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Abstract

As the market of electronic commerce grows explosively, it becomes more and
more important to provide the recommendation system which suggests the pre­
ferred iteJ1IS for consumers using the large-scale customers database. In this paper,
we discuss the algorithms and their performances of the recommendation systems
using the collaborative filter~ng in the case of the Netflix database: they are, 1)
memory-based system (k-nearest neighbor using the correlation coefficients), 2)
model-based system (matrix decomposition), and 3) the combination method. When
the customer-item matrix is a sparse matrix like the Netflix database, the·matrix
decomposition method shows better performance than the k-nearrest neighbor; in
addition, it is found that the combination method of the two methods provide a
much better performance.

Key words: Netflix, collaborative filtering, k-nearest neighbor, matrix
decomposition, singular-value decomposition, combination method.

1 Introduction

In October 2006, a surprising news, the Netfiix Prize competi­
tion, was announced. The 'competition is held by Netflix, an on...
line DVD-rental service, with the grand prize of $1,000,000 for
the best collaborative filtering (CF) algorithm that predicts u~er
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ratings for films, based on previous ratings. The performance is
measured by the RMSE (shown later), and the prize will be
given to the entry who attains 10% improvement to the Netflix's
own algorithm.

Although the collaborative filtering is known to be important as
Amazon.com and Yahoo! may u~e in everyday e-commerce, this
news, however, has again drawn our attention to the recommen­
dation systems which are extremely valuable to entrepreneurs in
e-commerce world.

There are mainly two kinds of recommendation systems; one is
the profile-based or content-based system and the other is the
collaborative filtering system. The prifile-based system uses the
profiles of users as the explanation variables, and it uses the deci­
sions of users as the objective or target variables. Some database
may provide such profiles, but the database like the film rec­
ommendation systems may not do so much. In such a case, the
collaborative filtering system will work. There are two kinds of
systems in the collaborative filtering systems; one is the memory­
based system, and the other is the model-based system. See Fig­
ure 1.

CoUaborative
filtering

Fig. 1. Methods in Recommendation Systems.

-1166-



RECOMMENDATION SYSTEMS AND THEIR PREFERENCE PREDICTION ALGORITHMS

A typical example for the memory-based system is to use the
k-nearest neighbor (k-NN) with the (Pearson's) correlation coef­
ficients, and that for the model-based system is to use the matrix­
decomposition method which is also called the singular-value de­
composition (SVD) method.

2 Netflix data and the evaluation criterion

Netflix provides a data set of 100,480,507 ratings that 480,189
users give to 17,770 movies. We observe, thus, in the data set,
the sparseness of the user-movie matrix; 100,480,507/(480,189 x
17,770) = 0.0118. Each training rating is a quadruplet (user,
movie, date of grade, grade). The user and movie fields are inte­
ger IDs, while grades are from 1 to 5 stars. Three kinds of data
sets are used in the competition. Training data and Probe data
are shown to the contestants, and they are used to construct the
prediction algorithm and self-evaluation. The third one is Qual­
ifying data which contains 2,817,131 triplets (user, movie, date
of grade), with grades known only to the jury. A participating
team's algorithm must predict grades on the entire Qualifying
set, but they are only informed of the score for half of the data,
the quiz set. The other half is the test set, and performance on
this is used by the jury to determine potential prize winners. Only
the judges know which ratings are in the quiz set, and which are
in the test set. See Table 1 and Figure 2. Since the performances
by the contestants are evaluated by Netflix, the reported perfor­
mances are considered to be fair.

Table 1
Netflix Data Size

data name data size customer size movie size

FullTraining 100,480,5D7 480,189 17,770

Training 99,072,112 480,189 17,770

Probe 1,408,395 462,858 16,938

Qualify 2,817,131 478,615 17,470
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99,072,112

100,480,507

Fig. 2. Data Flow for Algorithm Evaluation

The performance is evaluated by the criterion of the root mean
squared error, RMSE, between the predicted scores x(i,j) and
the observed scores x(i, j), where i denotes the user ID and j
denotes the movie ID. If we define the indicator function I( i, j)
such that

I(i,j)=I,
=0,

if x( i, j) E {I, 2, 3,4, 5},
if x(i, j): vacant, (1)

the RMSE is expressed by

1
RMSE(T) = ITt ~ I(i,j)(x(i, j) - x(i, j))2,

'1,,)

(ITI = EI(i,j)).
i,j

(2)

Using the definition above, we can say that the collaborative fil­
tering problem can be described such that we want to estimate
x(i, j), (I( i, j) == 0) from x(i, j), (I( i, j) =I- 0).

The RMSE given by Cinematch which is computed by Netflix's
own algorithm is 0.9514, and the prize will be given to the first en­
try who attains the 10% improvement of RMSE, that is 0.8563,
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by October 2, 2011. We define the relative improvement to Cin­
ematch by riC such that

(3)

~ RMBE I riC (%)

riC == RMS ECinematch - RMS Eproposed .

RMS ECinematch

Roughly estimated RMSE values by simple methods are shown
as the reference here; they are obtained by putting values of
x(i,j) such that, 1) x(i,j) == J-l, where J-l is the mean value of
all x( i, j), (I( i, j) =1= 0), 2) x(i, j) == J-li, where J-li is the mean
value of all x(i,j), (i : fixed), 3), x(i,j) = J-lj, where J-lj is the
mean value of all x(i,j), (j : fixed). These RMSE are shown in
Table 2.
Table 2
RMBE by Simple Methods.-------,

J-l 1.1312 -18.9

J-li 1.0655 -12.0

J-lj 1.0536 -10.7

Cinematch 0.9514 0
uSIng QualIfy

We have been so far searching for efficient algorithms using vari­
ous methods (see references (14), (15), (16)); however, we could
not accomplish the performance improvement of 5% to the Cin­
ematch result. In this paper we show that we have made a sub­
stantial progr~ss by using the proposed method.

3 k-nearest neighbor method

The most common approach to CF is the neighborhood-based
approach (see references (1), (2), (7), (8)). There are two kinds
of approach in the k-nearest neighbor rnethod: one is the user­
oriented approach and the other is the item-oriented approach.
Here, we use the item-oriented approach because 1) the average
movie is rated by over 5,000 users and the average user rates
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over 200 movies in the training set, 2) an overwhelming portion
(99%) of the user-item matrix is unknown, "and 3) the pattern
of observed data may be very non-random. Sarwar et al. (13)
found that item-oriented approaches deliver better quality esti­
mates than user-oriented approaches while allowing more efficient
comI?utations.

3.1 Correlation coefficients

Assume we are given ratings about m users and n items, arranged
in an m x n matrix X == (x(i,j)), (1 < i < m, 1 <j < n). Now,
to estimate the unknown x(i,j), we identify a set of neighboring
items N(j; i) that other users tend to rate similarly to their rat­
ing of j. All items in N(j;i) must have been rated by i. Then,
x( i, j), the estimated value of some function of x( i, j), is taken
as a weighted average of the ratings of neighboring items:

A(' .) _ ~lEN(j;i) s(j, l)f(x(i, 1))
X'l,) - ( . I) ,

~lEN(jii) S ),
(4)

where f(x(i, 1)) is a function of x(i, I), and it will be introduced
later. The item-item similarities (denoted by s(j, 1)) are typically
taken as either correlation coefficients or cosine similarities. Here,
we use the (Pearson's) correlation coefficient and it is denoted by

(
. I) == ~k (x(k, j) - 1]j) (x(k, I) - 1]z)

S), . V .,
V~k (x(k,j) _1]j)2~k(x(k, I) _1]z)2

(5)

between items j and 1, where 1]j is the mean value for x(k,j); k
is counted when I(k, j) =f. 0 and I(k,l) ¥- O.

We will use the variants of the correlation coefficient as the sim­
ilarities because users are inclined to select preferred items than
the disliked items so that s(j, I) tends to show higher values. The
variants are, 1) ls(j, 1), the lower percentile point for s(j, I), and
2) es(j, I), the size expansion index for s(j, I).
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3.2 Lower percentile point

Due to the asymmetric property of the distribution for the corre­
lation coefficient, Fisher's z-transform method is usually used to
find the confidence limits. Since the raw values by Eq. (4) may be
biased by the user's inclination, the use of .the lower confidence
limit is expected to produce the better performance in minimiz­
ing the RMS E. As a tuning parameter, we investigated various
values of lower confidence limit point 1s(j, 1) as the substitute for
s(j, 1); the confidence probabilities are 0.7,0.85,0.95,0.98,0.999,
and thus they correspond to 15,7.5,2.5, 1,0.05 percentile points.
By z-transformation, we can define

lsU, l) = exp(2ZL) - 1,
exp(2zL) + 1

_ Za/2
ZL - Z - Vn _ 3'

z == ~ 10 1 + s(j, 1)
2 g 1 - s(j, 1) ,

(6)

where a is the significance level probability, e.g., 2.5 percentile
point when a == 0.05.

3.3 Size-expansion index

For taking account of the size of the users who like movies, we
consider the following index,

es(j, I) == ls(j, 1)2 log n, (7)

where n denotes the number of users who rate both movies j and
1. This is intended to emphasize the audience size of the movie.
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3.4 Bias corrected score

As mentioned in 3.1, f(x(i, I)), a function of x(i, 1), actually be­
comes a bias corrected observed score,

f (x (i, I)) == 'T/i + (x (i, 1) - 'T/I); (8)

where, 1}i and 1}1 denote the mean values of the scores.

3.5 Performances by the k-nearest neighbor

es(j~/)
size expansion index .. ",, ""
~ , ~

lowerpercentUe point

0.95

0.94

0.935

tAt
~ 0.945
QZ

0.955

First, we take a look at the. optimal size of k in the three cases
of similarity, s(j, 1), ls(j, 1), and es(j, 1), mentioned above. Figure
3 shows the RMBE tendency to the number of neighbors when
a == 0.05. We can see that the optimal size of k can be obtained
around k == 20 to k == 30 when we use Probe data. The best
performance values are shown in Table 3. We can see that the
best performance is obtained by the size expansion index es(j, 1).

0.96

5040302010

0.93 " _".".N••ww" _" _ •.,.._ "w..~ ~.••_w_..~" _ _.'w· ~.~·" M_._".__ _.__ "'~M· ' "._ _'" _ _ , " .

o
k

Fig. 3. Optimum Number of Neighbors for Three Similarities,

We, next, look at the RMBE using es(j, l) when a is dealt with
as a parameter. Figure 4 shows the RMBE using es(j,l) vs. a
when we select es(j,1) as a similarity index. We can see that
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Table 3
RMSE by Nearest Neighbors in Various Index.

~ RMSE Ioptimal k IriC (%)

s(j, l) 0.9436 29 0.82

ls(j, l) 0.9353 21 1.69

es(j, l) 0.9281 25 2.45

uSIng QualIfy

the best performance is obtained when we adopt the value of Q

around 0.1.
0.94

0.939

0.938

w
I 0.931
0::

0.936

0.935

£FO.1S (70
lower percentile
point)

a=O.OOS (99.9 (ower percentile point)

a=O.075 (85 lower .ercentile point)

a=O.025 (95 lower percentile point)

50302010

O.934 , , , , ., ,., ··· ,.,·.·.···,w·.·····.. ·.····.·.·.'.·.'m··.w.'.,·.w···,··,···.·.· ·,·.····,,,······ ,·•.,w·..·····.,··,.··.···.··,···,·.·.·,·..·•.,··.. ·.,.·".,.··w·..···• ·••·..···•·•·.•·•· ·•··••· ··.·w···..·.·•·

o
k

Fig. 4. Optimum Number of Neighbors for Indices.

The results for the RMSE for various Q values are shown in
Table 4. We can see that the best performance is obtained when
Q == 0.075 and Q == 0.025, and the optimal k is around 25-27.

4 Matrix decomposition method

The singular-value decomposition, abbreviated as the SVD, is one
of the factorization algorithms for various applications which in­
clude computing the pseudo-inverse, least squares fitting of data,
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Table 4
RMSE by Nearest Neighbors (in the Case of es(j, l)).

a ~ RMSE Ioptimal k

0.15 0.93531) 25

0.075 0.93507 25

0.025 0.93508 25

0.01 0.93583 27

0.005 0.93723 27

uSIng Probe

matrix approximation, and determining the rank, range and null
space of a matrix. Suppose P E Rmxn, U E Rfxm , and M E Rfxn

are matrices. A simple idea that a matrix factorization P == UT M
produces the missing data of sCore matrix V leads us to the use
of the collaborative filtering. Thus, the matrix decomposition,
which is also used for recommendation systems (see references
(10), (11), (1 7) ), is used for the least square method here. That
is, we want to find the matrix U and M by minimizing the target
function E such that sum of the squares of the difference between
the observed score V(i,j) and the predicted score P(Ui , Mj ),

1 m n .

E = "2 Eti I(i,j)(V(i,j) - P(U;, Mj )?, (9)

where P(Ui , Mj ) denotes the (i,j) eleme~t of UT M. This idea of
the matrix decomposition is derived by the usual SVD formula­
tion such that A == UEV* where U and V are orthnormal and E
provides the singular values in the diagonal elements. If E is ab­
sorbed by either or both U and V, we can accomplish the matrix
decomposition of A.

4.1 SVD

Suppose V E Rmxn is the score matrix of m users and n items,
and lEO, 1mxn is its indicator. The SVD algorithm finds two
matrices U and M as the feature matrix of users and items. That
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is, each user or item has an f -dimension feature vector and f
is called the dimension of the SVD. A prediction function p is
used to predict the values in V. The value of a score V(i,j) is
estimated by p(Ui, M j ), where Uiand Mj represent the feature
vector of user i and item j, respectively. Once U and Mare
found, the missing scores in V can be predicted by the prediction
function. For stable and robust computing, the optimization of U
and M is actually performed by minimizing the sum of squared
errors between the existing scores and their prediction values with
penalty factors:

1 m n
E=2Ej~ I(i,j)(V(i,j) - p(Ui , Mj))2

+ k
u f II Ui W+ k

m t II M j W
2 i=l 2 j=l

(10)

where ku and km are regularization coefficients to prevent overfit­
ting; II . II means the Frobenius norm. This formulation is a kind
of the ridge regressions. The most common prediction function
is the dot product of feature vectors. That is, p(U, M) == UT M.
The optimization of U and M thus becomes a matrix factoriza­
tion problem where V ~ UT M . But in most applications, scores
in V are confined to be in an intervel [a, b], where a and bare
the minimal and maximal score values defined in the domain of
data. For example, if the users rate the objects as 1-5 stars, then
the scores are bounded in the interval [1,5]. One way is to clip
the values of dot products. For example, we can bound the val­
ues of Ui

T Mj in the interval [0, b- a] and the prediction function
becomes a plus the bounded dot product. Hence, the prediction
function makes a kind of trimming.

When using the prediction function of p(U, M) == UT M, the
objective function and its negative gradients have the following
forms:
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_ aE = ~ 1(·. .) ((V(· .) _ (U. M,.)) ap(Ui, M j ))au- !-' 'l,) 'l,) p~, J au:.
z J=1 ~

- kuUi (11)

'aE ~ (( (..) (- .))8p(Ui ,Mj ))
-aM. =~ Iij V't,) - P Ui , Mj 8M.'

J ~=1 . J

- kmMj (12)

One can then perform the optimization of U and M by the de­
scent gradient method by using the algorithm,

8E
U(t+l) ~ U(t) + J-L~

au
8E

M(t+l) ~ M(t) + 11.-

r-8M' (13)

where J-L is the learning rate. Figure 5 shows the RMS E using the
SVD method for Training data and Probe data when the number
of embedded feature variable is varying. We can see that the
larger the number of feature variables, the smaller the RMSE.

0.92

0.93

0.91

0.925

0.915

probe
0.94

training
0.812

0.192

0.172.

~ 0.152

I 0.132

0.112

OJ~92

0.672

0.652 •.. ,.,..,.".,.,.",..,.".,., ,.,., ,.,..,.,..,.,.,..,." "." .."" ..,.,.,,, ,., ..,.. ,.. ,.,,,,,..""""""""""""""""""""""""'''''.,.",.,.,.,.,.,.",.,.,~.,."".,.,.".,.,.,.,.,.,.".,.,.,.,., ..,.,..,..,., ,.,.".,., ..,."."" ,." .., ,.",., ,.., , ,.,' 0.905

o 100 200 300

number of featurevariable# /

Fig. 5. RMBE vs. Number of Embedded Feature Variables (SVD).
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4.2 Biased SVD

A variant of the SVD method is a biased SVD method, in which
we consider biases for user i and movie j. The sum of squared
errors is expressed as

1 m n
E==- I: I: I(i,j)(V(i,j) - fp(Ui , M j ))2

2 i=l j=l

+ ~\E IIUiW +~ IIVjW)
A2 2 2

+2(bi +bj ), (14)

where fp(Ui , M j ) is a bias corrected function for estimated score,

f
fp(Ui,Vj, bi, bj ) == J-l + bi + bj + I: u(i, k)v(k,j).

k=l

Figure 6 shows the RMSE using the biased SVD method for
Training data and Probe data when the number of embedded
feature variable is varied. We can see that the smallest RMSE
can be obtained when the number of embedded feature variable
is around 100 in Probe data. However, there seems no tendency
of the "V" curve as well seen in the test data case in machine
learning world. The larger the the number of embedded feature
variable, the better performance is obtained.

4.3 Performances by the matrix decomposition

Summering the results for the two methods, we can provide Table
5.
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0.93
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0.935
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0.712

0.692
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o 100 200 300

number of feature variable, I

Fig. 6. RMSE vs. Number of Embedded Feature Variables (Biased SVD).

Table 5
RMSE by the Matrix Factorization.

~ RMSE IriC (%)

SVD 0.9038 5.00

bi~ed SVD 0.8995 5.46
using Qualify

5 Combination method

We have so far derived many prediction models; we call predictor
I to each model. To predictor 1, we, here, denote the predicted
score x(i,j) by xz(i,j). The linear combination of the predictor
associated with L predictors can be expressed by

L
x(i, j) ::;:: I:WlXl( i, j).

l=l

Then, the least square error is obtained by minimizing

(15)

E = ~ ~(x(i,j) - x(i,j)? + ~t wl,
IJ Z=l

and this can be obtained by the descent gradient method with a
penalty factor,
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"aE(wz) "(A(") "(. '))A (..) \-"a == x ~,J - x ~,J Xz ~,J - AWL·
Wz

Using the algorithm,

(t+l) (t) + aE
Wz +- Wz v-a" ,

Wl
(16)

optimurn Wz can be obtained, where v is the learning 'rate. In
Table 6, we show the combination results using the two simple
models; one is the method that the vacant elements are estimated
by the mean value of the user, J.Li, and the other is to use the mean
value of the movie, J.Lj.

In Figure 7, we can see how WI affects the value of RMSE; when
WI == 0.46 in using Probe data, the optimum RMSE== 1.0154 is
obtained, which is smaller than 1.0688 obtained by single J.Li use
and than 1.0528 obtained by single J.Lj use. Thus, the combination
methods are expected to provide higher performance than that
in each model.

1.08

1.07

1.06

1.03

1.02

1.01 ,--------------"~---.---,.-~.- ..-

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

W

Fig. 7. RMS E Values by the Combination Method.

We, next, try to combine the best predictors in single use mO,dels
we have introduced above. That is the combination of es(j, l),
the size expansion index in the k-nearest neigbor, and the bi­
ased SVD. In Table 6, we can see that the combination result
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of RMSE == 0.8974 is the performance over 5% improvement to
Cinematch result,
Table 6
Results by the Combination Methods

~ RMSE I riC (%)

1.0149 -6.64

es(j, l) & biased SVD . 0.8974 5.68

using Qualify

6 Discussion

We have quickly glanced at the results of the performance in
various estimation methods. A serious but important thing in a
movie recommendation system would be the biased scores; some
are inclined to evaluate a high score in most times; some are
heavy viewers; some often evaluate neutral scores. This means
that we cannot believe the observed score as they are. Some cor­
rection may be required for accurate prediction. We have tried to
incorporate the factor for this. The size expansion index in the
k-nearest neighbor is the proposed method, and this worked very
well if it used alone.

The SVD is known to be very efficient to predict the unknown
scores. However, when new comers want to find his recommended
movies, the system again find the larger matrix decomposition.
On the contrary, the k-nearest neighbor will not require this.
Thus, there is a trade-off between the SVD method and the k­
nearest neighbor method.

To enhance the accuracy of prediction, the linear combination of
the various predictors is reported to provide good performance
somewhere. In some case, it works, but in some case, it does
not. Finding the best combination of predictors is a kind of tun­
ing work. The best result for the combination method by our
proposed predictors in this paper far exceeds the result of Cine­
match.
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7 Concluding remarks

We have discussed the algorithms and their performances of the
recommendation systems using the collaborative filtering in the
case of the Netflix database. We have tried three cases. First
one is the memory-based system, i.e., k-nearest neighbor method
using the correlation coefficients. Using the size expansion index
for the correlation coefficient proposed here, we have attained the
better performance the the usual the correlation coefficient and
its .lower confidence limit use. This might be due to the user's
score is somehow biased. The second method is the model-based
system, Le., the matrix decomposition method induced by the
singular value decomposition. This kind of method provides very
efficient results comparing to other methods like the k-nearest
neighbor method. The third method is the combination method
using the matrix decomposition, k-nearest neighbor, and others.
In the Netflix database, the matrix decomposition method shows
better performance than the k-nearrest neighbor; in addition, it is
found that the combination method of the two methods provide
a much better performance.
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