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Abstract

This paper concerns color image restoration aiming at objective quality im-

provement of compressed color images in general rather than merely artifact

reduction. In compressed color images, colors are usually represented by

luminance and chrominance components. Considering characteristics of hu-

man vision system, chrominance components are generally represented more

coarsely than luminance component. To recover such chrominance compo-

nents, we previously proposed a model-based chrominance restoration algo-

rithm where color images are modeled by a Markov random field. This paper

presents a color image restoration algorithm derived by the MAP estimation

where all components are totally estimated. Experimental results show that

the proposed restoration algorithm is more effective than the previous one.
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1. Introduction

In transform-based image compression, transform coefficients are sub-

jected to quantization, which produces information loss. The coarser the

quantization, i.e., the higher the compression ratio, the larger the amount of

information loss. At high compression ratios, the compressed images display

noticeable artifacts. A well-known artifact is the blocking artifact in JPEG

compression [1]. Many methods have already been proposed to remove arti-

facts, especially the blocking artifact.

According to [2], most postprocessing algorithms to reduce such coding

artifacts are derived from two different viewpoints, i.e., image enhancement

and image restoration. Image enhancement algorithms aim to improve sub-

jective quality in image perception. Image enhancement is usually carried out

by heuristic approaches, where no objective criterion is optimized. On the

other hand, image restoration algorithms aim to estimate an original image

given its compressed image. Several image restoration techniques have been

proposed including projection onto convex sets (POCS) [3], total variation

(TV) [4], and maximum a posteriori (MAP) estimation [5]. Most methods

proposed so far have focused on artifact reduction for gray images. Several

methods proposed for color images include [6] for color image enhancement

and [7] for TV-based restoration. This paper concerns color image restora-

tion aiming at objective quality improvement of compressed color images in

general rather than merely artifact reduction.

In compressed color images, colors are usually represented by luminance

and chrominance (YCbCr) components instead of red, green and blue (RGB)

components. Then considering characteristics of human vision system, chromi-
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nance (CbCr) components are generally represented more coarsely than lu-

minance component. For example, in JPEG compression, Cb and Cr compo-

nents are usually downsampled by a factor of two at its compression stage,

and afterward the downsampled chrominance components are interpolated at

its decompression stage. Furthermore, at quantization step of discrete cosine

transform (DCT) coefficients, DCT coefficients of chrominance components

are generally quantized more coarsely than those of luminance components.

To recover such chrominance components, we have already proposed a model-

based method [8] where color images are modeled by a Markov random field

(MRF) [9].

This paper presents a color image restoration algorithm where all com-

ponents are totally estimated. The proposed algorithm is derived by the

MAP estimation where two kinds of probability density functions (pdfs) are

used: the pdf of errors between color components of an original image and

those of its compressed image, and the pdf of color components of an origi-

nal image. The independent and identically distributed (i.i.d.) Gaussian is

used to model errors and an MRF is used to model original color images.

The proposed algorithm can be considered as an extension of [5] for gray

images to be able to apply to color images. However, we take a different

approach considering that the method in [5] needs to set many parameters

even for gray images and therefore its extension for color images may be very

difficult for practical use. By our approach where the MAP estimation for

a whole image can be approximately decomposed into pixelwise local MAP

estimation, a very simple color restoration algorithm is derived.
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2. Color Image Modeling by Markov random field

2.1. Markov random field

Let L = {(i, j); 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} denote a finite set of sites

of an N1 × N2 rectangular lattice. Let ηX
ij ⊂ L denote the (i, j) pixel’s

neighborhood of a random field XL 1 defined on L. Let CX
ij denote the set

of cliques C associated with ηX
ij which contains the (i, j) pixel, i.e., (i, j) ∈

CX
ij . For example, in the first-order neighborhood, ηX

ij = {(i, j + 1), (i, j −
1), (i + 1, j), (i − 1, j)} and CX

ij = {{(i, j)}, {(i, j), (i, j + 1)}, {(i, j), (i, j −
1)}, {(i, j), (i + 1, j)}, {(i, j), (i− 1, j)}} which consists of one singleton and

four doubleton cliques. Let the random field XL = {Xij ; (i, j) ∈ L} be a

Markov random field (MRF) defined on L with Xijs taking values from a

common local state space QX . It is well known that an MRF is completely

described by a Gibbs distribution

p(xL) =
1

ZX
exp{−U(xL)}, (1)

where xL is a realization of XL from the configuration space ΩX = QN1×N2
X

and

U(xL) =
∑

(i,j)∈L

∑

C∈CX
ij

U(xC) (2)

is the global energy function whereas U(xC) is the clique energy function and

ZX =
∑

xL∈ΩX

exp{−U(xL)} (3)

is the partition function. For details on MRFs and related concepts such as

the neighborhoods and cliques, see Ref. [9].

1In this paper, xA and f(xA) denote the set {xa1 , . . . , xal
} and the multivariable func-

tion f(xa1 , . . . , xal
) respectively, where A = {a1, . . . , al}.
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2.2. Color Image Model Using Gaussian MRF

A color image can be considered as a realization xL = {xij ; (i, j) ∈ L}
of a random field XL = {Xij; (i, j) ∈ L}. In YCbCr color space, xij =

(yX
ij , cb

X
ij , cr

X
ij )

T , i.e., a color vector at (i, j) pixel is composed of a luminance

component yX
ij and two chrominance components cbX

ij and crX
ij . Color images

can be modeled by a Gaussian MRF (GMRF) characterized by the following

local conditional pdf2 :

p(xij | xηX
ij

) =
1

(2π)3/2|ΣX |1/2
exp{−1

2
(xij − x̄ηX

ij
)T (ΣX)−1(xij − x̄ηX

ij
)},(4)

x̄ηX
ij

=
1

|N |
∑

τ∈N
xij+τ . (5)

Here x̄ηX
ij

is the mean of neighboring pixels’ color vectors xηX
ij

= {xij+τ , τ ∈
N}, where N denotes the neighborhood of (0, 0) pixel. For example, N =

{(0, 1), (0,−1), (1, 0), (−1, 0)} for the first-order neighborhood, and if τ =

(0, 1), xij+τ = xi,j+1. ΣX is the covariance matrix of xij − x̄ηX
ij

, i.e., ΣX =

E[(xij−x̄ηX
ij
)(xij−x̄ηX

ij
)T ], which is the expectation of (xij−x̄ηX

ij
)(xij−x̄ηX

ij
)T .

3. Color Image Restoration

Let xL = {xij ; (i, j) ∈ L} and yL = {yij ; (i, j) ∈ L} denote an original

color image and its compressed one, respectively. Given yL, xL can be esti-

mated by maximizing the a posteriori probability p(xL | yL), i.e., by MAP

2The used GMRF is one of the simplest GMRFs, which can model only nontextured

smooth images. We here used this GMRF as a first step, though there are more compli-

cated GMRFs applicable to textured images.
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estimation. The MAP estimate x̂L is written as

x̂L = arg max
xL

p(xL | yL), (6)

where the a posteriori probability p(xL | yL) is described as

p(xL | yL) =
p(yL | xL)p(xL)∑
xL p(yL | xL)p(xL)

. (7)

Note that it is practically impossible to find the MAP estimate x̂L since the

search space over all possible configurations of xL is huge. To overcome this

problem, hereinafter we consider mean-field-based decomposition of the a

posteriori probability.

Assuming that the error vector at (i, j) pixel eij (eij = yij − xij) intro-

duced by lossy compression is modeled by i.i.d. Gaussian with zero-mean,

p(yL | xL) is described as

p(yL | xL) =
∏

(i,j)∈L
p(yij | xij), (8)

p(yij | xij) =
1

(2π)3/2|ΣE|1/2
exp{−1

2
(yij − xij)

T (ΣE)−1(yij − xij)},(9)

where ΣE is the covariance matrix of eij , i.e., ΣE = E[(yij −xij)(yij −xij)
T ].

Assuming an MRF for xL and then using the mean field approximation, p(xL)

can be decomposed as

p(xL) �
∏

(i,j)∈L
p(xij | 〈x〉ηX

ij
), (10)

where 〈x〉ηX
ij

denotes the mean fields for xηX
ij

[10]. Substituting (8) and (10)

into (7) and replacing
∑

xL

∏
(i,j)∈L by

∏
(i,j)∈L

∑
xij

, we obtain the following

decomposition for p(xL | yL) [10]:

p(xL | yL) �
∏

(i,j)∈L
p(xij | yij , 〈x〉ηX

ij
), (11)
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where

p(xij |yij , 〈x〉ηX
ij

) =
p(yij | xij)p(xij | 〈x〉ηX

ij
)

∑
xij

p(yij | xij)p(xij | 〈x〉ηX
ij
)
. (12)

In the following, xηX
ij

is simply used for 〈x〉ηX
ij
. Then p(xij | yij,xηX

ij
) =

p(xij | yij, 〈x〉ηX
ij

) is considered as local a posteriori probability (LAP). Us-

ing these LAPs, the global MAP estimation problem shown by Eq. (6) is

approximately decomposed into the local MAP estimation problems

x̂ij = arg max
xij

p(xij | yij ,xηX
ij

). (13)

Considering that the LAP p(xij | yij ,xηX
ij
) is proportional to the product of

two Gaussian pdfs for p(yij | xij) in (9) and p(xij | xηX
ij

) in (4), the local

MAP estimate x̂ij is explicitly derived as

x̂ij = (Σ−1
E + Σ−1

X )−1(Σ−1
E yij + Σ−1

X x̄ηX
ij

). (14)

In order to solve (14) for all (i, j) pixels, their neighboring color vectors

xηX
ij

should be given. Since such a problem as shown in (14) can be solved

iteratively as is popular in numerical analysis, we rewrite Eq. (14) as

x
(p+1)
ij = (Σ−1

E + Σ−1
X )−1(Σ−1

E yij + Σ−1
X x̄

(p)

ηX
ij

), (15)

where p represents the pth iteration. Color components derived from a given

compressed color image are used as initial values x
(0)
ij s in this iterative esti-

mation. If chrominance components are downsampled, interpolated chromi-

nance components are used as their initial values.
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4. Implementation Details

In the calculation of x̄ηX
ij

in (5), we here used the third-order neighbor-

hood3. The third-order neighborhood of (i, j) pixel ηX
ij is shown in Fig. 1.

However, if at least one of three components in xij+τ is far from the corre-

sponding component in xij , xij+τ was excluded from the calculation. In the

following experiments, the used condition for exclusion was |xk
ij+τ −xk

ij | > 20

(k = 1, 2, 3), where xk
ij is the kth component of xij , i.e., x1

ij = yX
ij , x2

ij = cbX
ij ,

x3
ij = crX

ij . This elimination of outliers is necessary to prevent harmful effects

by pixels which belong to different regions beyond edges with different color

features. Regarding the elimination of outliers, experimental results with

and without elimination are shown in Table 1. This experiment is one by the

proposed method corresponding to one shown in Table 4 in Section 5. The

amount of quality improvement with outlier elimination is larger than that

without outlier elimination. The elimination procedure considering all com-

ponents is slightly better than that considering only the luminance compo-

nent, but the difference of quality improvement between the two elimination

procedures is very small. This is considered to indicate that nearby pixels

having different luminance values are likely to have different chrominance

values.

Furthermore, to prevent an excessive change by the iterative estimation in

(15), the following intermediate value (x
(p+1)
ij )′ between successive estimates

3For the third-order neighborhood, N = {(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (−1,−1),

(1,−1), (−1, 1), (0, 2), (0,−2), (2, 0), (−2, 0)}
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(i,j)

Figure 1: The third-order neighborhood of (i, j) pixel.

x
(p)
ij and x

(p+1)
ij was used instead of x

(p+1)
ij :

(x
k(p+1)
ij )′ = wkx

k(p+1)
ij + (1 − wk)x

k(p)
ij , (16)

where

wk = exp{−|xk(p+1)
ij − x

k(p)
ij |

10
}, k = 1, 2, 3. (17)

Regarding this relaxation procedure, experimental results with and without

relaxation are shown in Table 2. This experiment is one by the proposed

method corresponding to one shown in Table 5 in Section 5. The relax-

ation procedure seems to be effective at higher quality compression levels,

particularly for JPEG2000 images.

The proposed algorithm can be summarized for practical implementations

as follows.

1 Set initial values x
(0)
ij s at p = 0 to yijs of a given compressed color image,

i.e., x
(0)
ij = yij .
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Table 1: Average image quality improvement in PSNR (dB) value by the proposed method

with and without elimination of outliers for JPEG compressed images with chrominance

downsampling. Two elimination procedures are used, one considering all components and

the other considering only luminance component.

compression level with elimination without elimination

all components luminance component

qf=50 0.58 0.58 0.46

qf=60 0.58 0.58 0.45

qf=70 0.60 0.59 0.46

qf=80 0.60 0.58 0.42

qf=90 0.56 0.54 0.31

2 Compute the mean of neighboring pixels’ color vectors x̄
(p)

ηX
ij

considering the

neighborhood ηX
ij shown in Fig. 1 and the above-mentioned elimination

of outliers.

3 Compute the reestimate x
(p+1)
ij using (15).

4 Apply the relaxation procedure using (16) and (17).

In the following experiments, the iterative procedure in (15) was stopped

at only one iteration because image quality in PSNR value sometimes de-

creases after the second iteration4. The covariance matrix ΣX in (4) for each

image was here computed using each original image, and the covariance ma-

4This might be a problem. To resolve it, we need to investigate convergence of our

algorithm. It remains for future research.

10



Table 2: Average image quality improvement in PSNR (dB) value by the proposed method

with and without relaxation procedure for JPEG and JPEG2000 compressed images with-

out chrominance downsampling.

compression level with relaxation without relaxation

qf=50 0.92 1.03

qf=60 0.93 0.98

JPEG qf=70 0.98 1.01

qf=80 1.00 0.96

qf=90 1.02 0.96

0.25bpp 0.20 0.23

0.5bpp 0.28 0.23

JPEG2000 1.0bpp 0.31 0.14

1.5bpp 0.19 -0.02

2.0bpp 0.15 -0.04

trix ΣE in (9) for each image was computed using each original image and its

compressed one. Note that these matrices are global to the image and need

to be transmitted/attached only once. Since covariance matrix is symmetric,

the number of independent elements for each of these covariance matrices

is six. Therefore the overhead for sending these parameters is 12 × 4 = 48

bytes in case of 4 byte allocation for each element. However in practice,

the overhead can be reduced to 12 bytes since one byte integer is enough to

represent each element as described in Section 5.
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5. Experimental Results

Experiments were carried out using four standard color images (Lena,

Milkdrop, Peppers, Mandrill), which are shown in Fig. 2. These images

are 256 × 256 pixels in size and 24 bit per pixel (bpp) full color images.

The proposed restoration algorithm was applied to JPEG compressed color

images and JPEG2000 compressed ones. Our previous algorithm [8] and

a PDE-based one (TV-based one) [11] were also applied for performance

comparison. The previous algorithm was derived by maximization of the pdf

for color image without changing luminance components in the color image.

Its implementation details here are different from those in [8], and are similar

to those for the proposed one described in Section 4.

Table 3 shows experimental results for JPEG compressed color images

with chrominance downsampling at quality factor (qf) 70 as its compression

level. In the table, bpp value for each image means bit per pixel for each

compressed image. The amount of quality improvement in PSNR by the

PDE-based method is the smallest among the three methods. The proposed

method achieved better improvement than the previous one. The amount

of quality improvement for Mandrill is small as is expected. It is probably

because the used GMRF can model only nontextured smooth images and

cannot model textured ones like Mandrill.

Table 4 shows the average of quality improvement for the four images in

PSNR value. Results are shown for JPEG compressed images with chromi-

nance downsampling at five different compression levels, i.e., qf=50, 60, 70,

80, and 90. At all compression levels, the amount of quality improvement in

PSNR by the PDE-based method is the smallest, and that by the proposed
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Table 3: Image quality in PSNR (dB) value by several methods for JPEG compressed

images with chrominance downsampling at qf=70.

quality factor = 70

image bpp JPEG PDE previous proposed

Lena 1.28 32.10 32.37 32.59 32.76

Milkdrop 1.04 32.11 32.39 32.82 32.99

Peppers 1.41 31.50 31.73 31.95 32.11

Mandrill 2.07 26.63 26.74 26.79 26.86

method is larger than that by the previous one.

Table 4: Average image quality improvement in PSNR (dB) value by several methods for

JPEG compressed images with chrominance downsampling.

compression level PDE previous proposed

qf=50 0.23 0.40 0.58

qf=60 0.23 0.42 0.58

qf=70 0.22 0.45 0.60

qf=80 0.20 0.50 0.60

qf=90 0.13 0.49 0.56

Table 5 shows the average of quality improvement in PSNR for the four

images. Results are shown for JPEG and JPEG2000 compressed color im-

ages without chrominance downsampling at five different compression levels.

For all cases, the amount of average quality improvement by the proposed

method is larger than that by the previous one. Comparing with the re-
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sults in Table 4, it is shown that significant quality improvement is achieved

for JPEG compressed images without chrominance downsampling. Results

for JPEG2000 compressed images show that the proposed and the previ-

ous methods are effective even for JPEG2000 images though the amount of

improvement is small.

Table 5: Average image quality improvement in PSNR (dB) value by the two methods for

JPEG and JPEG2000 compressed images without chrominance downsampling.

compression level previous proposed

qf=50 0.62 0.92

qf=60 0.64 0.93

JPEG qf=70 0.70 0.98

qf=80 0.75 1.00

qf=90 0.75 1.02

0.25bpp 0.11 0.20

0.5bpp 0.18 0.28

JPEG2000 1.0bpp 0.24 0.31

1.5bpp 0.14 0.19

2.0bpp 0.02 0.15

Regarding the overhead for sending information on the covariance matri-

ces ΣX in (4) and ΣE in (9), one byte integer representation is enough for

each element of the matrices. For example, in experiments shown in Table

4, almost same results for the proposed method were obtained by using low

precision elements represented by one byte integer (to be precise, only 0.001

to 0.002 reduction of average quality improvement in PSNR). Therefore the
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overhead can be considered to be only 12 bytes. Furthermore, without adding

the information on the covariance matrices to each compressed image file, the

use of averaged covariance matrices over many images might be possible. For

example, results using the averaged covariance matrices over the four images

stay within 0.02 to 0.03 reduction of average quality improvement in PSNR.

Quality improvement by the proposed method can be described also in

bit rate reduction point of view. Fig. 3 shows experimental results for

JPEG color images with chrominance downsampling, where PSNR values

are plotted for five different compression levels: qf=50, 60, 70, 80, and 90,

and the leftmost and the rightmost point of each line correspond to qf=50

and qf=90, respectively. The horizontal line corresponding to PSNR=34dB

in Fig. 3 shows that quality improvement in PSNR corresponds to 0.2 to 0.4

bit reduction for Peppers, Lena and Milkdrop.

This paper concerns objective quality improvement of compressed color

images in general rather than merely artifact reduction. However, we believe

that artifacts can be generally reduced by the proposed method. Though

artifact reduction is usually difficult to be perceived at high quality compres-

sion levels, it can be sometimes perceived at low quality compression levels.

For example, Fig. 4, Fig. 5 and Fig. 6 show a closeup image of JPEG com-

pressed Lena at qf=40, the restored closeup image by the previous method

and that by the proposed method, respectively. It can be visually perceived

by careful inspection that the blocking artifact in Fig. 4 is reduced by the

previous method and the proposed method in this order. Though the differ-

ence of quality improvement in PSNR between the previous method and the

proposed method is only 0.24dB, the difference of visual quality between the
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two restored images shown in Fig. 5 and Fig. 6 can be perceived. This may

indicate that restoration of all components by the proposed method is more

effective to reduce the blocking artifact than chrominance restoration by the

previous method.

6. Conclusions

This paper presented a model-based color image restoration algorithm in

order to improve objective quality of compressed color images by postprocess-

ing of given compressed images. The proposed algorithm was derived by the

MAP estimation where errors between an original image and its compressed

image are modeled by i.i.d. Gaussian and an original image is modeled by a

Gaussian MRF. Thanks to MRF modeling, the global MAP estimation prob-

lem for a whole image is decomposed into local MAP estimation problems

for each pixel. The proposed restoration algorithm was compared with our

previous algorithm where only chrominance components are estimated. Ex-

perimental results for JPEG and JPEG2000 images show that the proposed

restoration algorithm is more effective than the previous one.
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Lena Milkdrop

Peppers Mandrill

Figure 2: Four standard color images (Lena, Milkdrop, Peppers, Mandrill) used for exper-

iments.
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Figure 3: Experimental results for JPEG compressed four color images with chrominance

downsampling. Performance is measured by PSNR.
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Figure 4: JPEG compressed Lena with chrominance downsampling at qf=40

(PSNR=30.60dB).
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Figure 5: Restored image by the previous method (PSNR=31.07dB).
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Figure 6: Restored image by the proposed method (PSNR=31.31dB).
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