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1. Introduction

Noether’s theorem [7] has been extensively initiated for the derivation of
conservation laws based on the symmetries in the Lagrangian or the Hamiltonian
structures. However, without using the structures (which may fail to exist), Caviglia
[1, 3] determined the new operative procedure for the laws via the application of a
suitable version of Noether’s theorem to the composite variational principle. And the
procedure was analyzed by Mimura and Nono [5] (also [6]) with various viewpoints
for the derivation of the laws of a given second-order (partial) differential system.

In this paper, the local version of [5] is reformulated with a geometric notion
of the calculus on manifolds (refer, e.g., to Sarlet and Cantrijn [9]). In 2, on a
setting of a bundle J = TM x R for a configuration manifold M, a set of 1-forms X¥
(symmetry 1-forms of I") and a set of vector fields X on J or its subset Xy (we XF,
K e &: differentiable functions on J) are introduced associating with the equation field
I' of a given differential system in the kinematical form. In 3, conserved quantities
of I, i.e., quantities C on J satisfying I'(C) = 0, can be constructed from elements of
X* and X2, or particularly X4? (dQeX¥, where Q is a conserved quantity). In 4, a
further derivation of constructing conserved quantities is given under a correspondence
between an element of X,- and an element of X} defined by a given regular Lagrangian,
or particularly an element dQe X} given by a conserved quantity Q. In §, such a
correspondence is explicitly realized by virtue of a closed 2-form defined by the exterior
derivative of Poincaré-Cartan form. The realization contributes to make the ring of
all conserved quantities of I' into an infinite dimensional Lie algebra. In 6, we
re-examine the equations of two-dimensional harmonic oscillator, of single particle
motion under a central force and that arises in gas dynamics [8], which are illustratively
used in [5], [4, 5] and [11], respectively.

For convenience, differentiability is assumed to be of sufficiently high order and
the summation convention is employed throughout.

2. Geometric characters associated with second-order system

Adding the time-axis R to the tangent bundle TM of m-dimensional configuration
manifold M, let J=TM x R and U be its local chart with coordinate functions
4, g, t) = (¢°(t), ¢*(t), t) (x = 1,---,m). On the setting, we consider a given second-order
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system of m differential equations in the kinematical form:

M 9 =14 q, 1),
together with its equation field
0 0

0
I'=f*"—+4¢4* + —.
0q* aq* Ot

To a contact system {6}, where 6* are given in coordinates as 6* = dg* — ¢*dt on U,
there corresponds a contact distribution, i.e., a subset 4 of vector fields X on J
(characteristic vector fields of 6%):

A={XeX|iy0*=0;0=1,---,m},

where iy denotes the interior product (contraction) by X. Associating with the
equation field I, the distribution is used to define

X ={XeX|[l, X]ed}.

Then, in view of the relations

a B
A
Gl g 84" oq*

p;] B
R
oq® 0q* 0g°

a vector field X € X, when expressed with respect to the basis {0/04%, 8/dq", I'}:

0 0
X=x + &

+ylr,
aq'd 6qd d/

has the following commutator with I”

o o 0
(X1=TW) + T (&) + T — n"[ F] - f“[ aa’ F}
o a4 dq aq dq
L
5qﬂ aqﬂ

=(F(n°‘)—nﬂ ) wr@e-m L s rer

il aq*

So that iy 0 = 0 imply n* = I'(¢%). Therefore we have a local expression of X e X,
(cf. [9], the dynamical symmetry of I in Lemma 3.1; Eq. (17) and (18) in [1]):

THEOREM 1. A vector field X € X is written as follows with respect to the basis
{0/0¢%, 0/9q*, I}

0 0
3) X=r¢) . +¢& — +yl.
aq

oq*
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Particularly a vector field X satisfying [I', X1 =0 is an element of X,. In this case,
(3) is provided with the conditions I'(y) =0 and

U _wd

@ rE) = TE

Alternatively, in terms of the Lie derivative £,, a subset of 1-forms X* on J
(symmetry 1-forms of I') is defined:

¥ ={weX*| 20 =0}.

Here introduce 1-forms ¢* = dq* — f*dt for the basis {¢*, 6%, dt} to write we X* on
U as

o = U, % + v, 0 + dt.

Then, in view of

Lro® = Zj;: ¢’ + 2’;; 0°,
Lo = ¢,
it follows that
Lro= (F(ua) + g 2{; + v,) P* + <I’(va) + g %)9“ + I(1)dt.
Therefore, the condition £ w =0 for we X¥ leads to I'(t) =0 and
ofb
(1) + 1 oF + v, =0,
oft

F(V“H““Tq“ =0,

from which we have a local expression of we X§¥ (cf. the adjoint symmetry in [10];
Eq. (14) in [1]):

THEOREM 2. A 1-form weX¥ is written as follows with respect to the basis
{¢p*, 0%, dt}:

ofk
&) O = " — (F(ua) + pg %)0“ + tdt,

which is provided with the conditions I'(t) =0 and

ork oft
© F(r(ua) " uﬁaiq,) D=0
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Particularly a multiple ¢ I" ( € & : differentiable functions on J) of I" is an element
of X (see (3) with £%). So we regard that X, and X, in X are equivalent if X, — X,
is equal to such a multiple; and in each equivalent class of X, we can take particularly
an element

0 0
3y X =r¢ + &
() (& )aq“ ¢ oF
Then, for we X¥ of the form (5), through (2) with ¢ =0 and »* = I'(¢%), we have
] . afa afa
(N i@ = ua<f2(f ) — r(éﬂ)a—qﬁ —&F 6qﬂ)‘

For an arbitrary I-form we X%, associating with an element Ke§, we now define a
subset Xg of X :

2 ={XeX lirqo=T(K)}.
Then it follows that (cf. Eq. (3.8b) in [3])

THEOREM 3. A wvector field X in each equivalent class of Xy can be put as (3)
with respect to the basis {0/0q%, 0/3q*, I'}. And then, for Ke§ and weX¥ of the
form (5), X e€Xg if and only if

of*
aq*

af

s M) = I'(K).

®) m(Fz(ﬁ“) - I
REMARK 1. For XeX, of the form (3), since in view of I'(tr)=0 and
irp*=ir0*=0:
i[r,wr]w =TI'Yiro=TW)=T{yr1),

the right hand side of (7) is modified by adding a term I'(yr). So the condition
iirxo = I'(K) for X% differs form (8) essentially nothing but in that K must be
replaced with K — .

3. Conserved quantities associated with X¥ and X2

Elements of X} and Xg can be used effectively to construct conserved quantities
of I' (first integrals of the system (1)), i.e., quantities C(4, q,t) on J satisfying
I'(C) =0. An element we X} vanishes by £, ie, 8w =0, so that

irxo = I'(ixyw) — ixy(Lro) = I'(iyw);
which implies I'(iyw — K) = 0 if X e Xg. Therefore it is deduced (cf. Eq. (22) in [1]):

THEOREM 4. Elements we X§ and X e X3 give rise to a conserved quantity C:
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(9) C = ixw - K.

The respective appearance (5) and (3) of we X} and X e Xy give a local version
of the theorem 4. In fact the solutions u, of (6) and &* of (8) yield the conserved
quantity ([5], Remark 4; cf. [3], Theorem)

0
(10) o — K = uJ(f"’)—(F(ua)Jrﬂp af )«:“

Particularly, together with the solutions u, of (6), an element X € X3 (K = 0) satisfying
[, X]1=0, ie., &* of (3) satisfying (4) yield the conserved quantity iyw, i.e., the
quantity (10) with K =0 ([5], Theorem 2).

Whenever f* do not depend explicitly on the time ¢, i.e., f* = f*(4, q), the equation
field I" supplies [, I'— 0/0t] =0, so that I'y =1 — d/0teXy for arbitrary we X}k
Therefore solutions p, of (6) yield the conserved quantity ([5], Theorem 5; cf. Eq.
(21) in [1])

a B
iy i = — <r(ua) g a{;)

REMARK 2. Similarly as in the remark 1, if X eXg is not of the form (3) but
(3), K is replaced with K — 7 in the resulting conserved quantity (10).

A conserved quantity  satisfies L(dQ) =dI'(Q) =0, i.e., o =dQeX¥. In view
of iydQ = X (), it reduces the theorem 4 to

THEOREM 5. Together with a vector field X e X&2, a conserved quantity Q gives
rise to a new one C:
(12) C=XQ) —-K

In the coordinates, since d@Q of a conserved quantity Q is expressed as

.Q
+——0“+F(Q)dt —d)“ g o,
aq aq*

(13) dQ =

the theorem 3 implies that X of the form (3) is an element of %‘,’(" if and only if

0Q
0q*

* 6
(rz(é“)—r(c”)g—,, o > r(K),

under which the resulting conserved quantity (12) is written as

o0 0Q
(14) X(@Q)—-K= I"(é“)~~ +¢° o
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Particularly an element X e X{? (K = 0) satisfying [, X] =0, i.e., &* of (3) satisfying
(4), yields the conserved quantity (14) with K =0 ([5], Theorem 4).

4. Euler-Lagrange systems

Let L(qg, g, t) be a regular Lagrangian, i.e., det (W) # 0 where W,; = 0>L/04*04°,
and the system (1) have resulted from the Euler-Lagrange equations

) ( 6L>— o =qW., +q" 0*L ’L 8~L =

15 e e
(13) dt \ 04

0.

o VT saog T aqrar og®

Then, after replacing §” with f” in (15), the equations are differentiated with respect
to ¢* and ¢* to obtain respectively

of” oL 0*L
(16) W, = —rwy - Sk L
aq 0q%0q 29" dq
k2 2 2
(7 w, O (o) ¢ o
oq* il 0q*0q*

where the skew-symmetric parts of (17) for the indices « and f§ lead to

of? of r( 0*L 02L )

18 2w, = -
1 Vog ogh\ogrog o ogr

Now pu, = VK,,{" are substituted for the coefficient of 6* in (5), and then (16) is
used to see

of”
Vo = F(lua) + uy ‘(;)T;
q
’ "\ s
(19) = VK;;F(é )+ F(”ﬁp) + VVyﬂ 5} 4
0%L 0%L
= aﬂr(éﬂ)"‘( . ~ A >ﬂ§
0g*0q®  0¢°0q°

and also for (6), together with the above v,, to see

0’L 2L of?
(e 2 - 7)) mo
0q*0q*  04°0q” oq*

o°L o’L
= W, T2 + | T (W) + - I
s "% (&) <( s) s ol aqﬂaq“> (¢")

2L 2L v
0¢°0q*  0¢*oq” oq
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in which, by (18) and (17), the terms in the last parenthesis are moreover rewritten as

L L of" of?
F( . Y >_ ﬂyi:_mv“fi
04*oq* 04" oq” o7 aq*

< *L ) %L
-y - .
04°0q° 0q*0q*

Therefore from the theorem 2 it follows (cf. Eq. (3.7) in [2]; Eq. (15) in [5]):

THEOREM 6. A 1-form w; associated with the regular Lagrangian L:

0°L 0L
20 = W, — | W, I(E%) + — £)0® + rdt
(20) 0, = Wil ( oI (&) ((Maaq,, aqﬂaqaﬁ) :

is an element of X¥ if and only if I'(t) =0 and &* satisfy
21

%L 0*L 0*L o*L
W I2(EP) + [ T (W) + - )F "+(F( )— )”:0.
s I (CF) < (Wap) oiragd  ooq (") sl ) agod ¢

The left hand side of (21), for which (16) and (17) are substituted, is just the same as

of’ of ”’)
W\ F3E) = T(EPH)— — EF .
( @)= TE 5=,
So that, since det (W) # 0, the equations (4) and (21) are to be equivalent. Therefore
from the theorem 1 it follows:

THEOREM 7. To a 1-form w e X¥ of the form (20) associated with the regular
Lagrangian L, there corresponds a vector field X € X of the form (3) uniquely up to
a multiple of I satisfying [T, X] =0 (mod I'), and vice versa.

The correspondence in the theorem 7 can be applied to the theorem 4 for a
derivation of conserved quantities of the Euler-Lagrange equations (15).

At first, in a pair of elements w)] and w} of X%, i.e., in those of solutions &7
(i=1,2) of (21), &} define an element X e X of the form (3) satisfying [/, X] =0,
while £* = ¢% are left in the appearance (20) of w?. Then, by the theorem 4, such
elements wZeX* and X e X (of course X € X3 for arbitrary we X}) yield a conserved
quantity (see (10) with K = 0)

- lelz, = vaé‘; - m#igr(é(:),
where v, are given as (19) in which &* = &5 and p, = VI{,ﬂég. So that ([5], Theorem 6)
0*L 0’L
ca ﬂ - B a ) i? ég'
dq*0q 0¢” 0q

—iywi = W& (&8 — &) + (
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Whenever L= L(qg, q), ie., f*= f*(4, q), by w, eX} of the form (20), i.e., by &
satisfying (21), the resulting conserved quantity (11) is written as

— i, = 4"V, —f"%af‘*,

for which v, of the last expression of (19) are substituted and then (15) is used to
lead ([5], Theorem 7)

2L 2L |
_ :'awr ﬂ+ sa o _am)[}
irgp = ¢ Wy I'(E) (q siod L ovag [* Wy )€
@2) )
— e+ (i 50— e
. oo o)

REMARK 3. In the case of L= L(q, q) the Hamiltonian

is a conserved quantity. It is interesting to note that, together with X e X, of the
form (3) satisfying [/, X] =0, i.e., solutions &* of (4) or equivalently of (21), the
Hamiltonian gives rise to a new one (see (12) with K = 0):

oH 0H
iydH = X(H) = (&) 4 &7
lilia oq*

which is just the same as (22).

A further application of the theorem 7 begins with a conserved quantity Q. Since
dQ2e X} as seen before, it can be written as (5). In fact, in view of I'(2) =0 in

o NG
[54‘“‘ ’ F] @ = <aq'“ ot 5&;>(9)’

B
ie, — r<69>: af aﬁ + ?8
04" 04" 04" oq*

(23)

bl

dQ of (13) leads to

0Q B
49 sa= 2o (r(32)+ 25 Do
g 0q* 0q® 04”

This appearance follows also from (20) by putting ¢* = W*0Q/04* where (W*) =
(W)™ 1, de., p, = W,3E# = 0Q2/34*; which are substituted for the first expression of v,
in (19) to confirm that the coefficients of ¢* in (20) lead to those in the above dQ.
Therefore in the theorem 7, the corresponding vector field X,e X, to dQe X} is
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(25) X,,=F<W“ﬁi9—> 0 w2 0
04k ) 0¢* 0g*® 0q°

which is provided with [, X,] = 0. So that, together with an element we X¥ of the
form (5), i.e., p, satisfying (6), the conserved quantity €, i.e., the corresponding vector
field X, gives rise to a new one (see (9) with K =0)

a2 of’ o
—i = —u T\ W —— )+ | I'(u) + |
anCO R < aq.ﬁ) ( (:u ) ﬂy aqa> 8qﬂ

in which the terms are rewritten by (23) as

0Q Q of" o 0Q
r(W“ﬂf.> = rows 22 W""(i. o —>;
o4’ a¢* a¢* 047 g
so that
oft * 0Q 0Q oQ
N (s rown) % w1 5 )
oq’ aq’ ag* il ¢
Moreover the symmetric parts of (16) for the indices « and B:
1 of’ of?
T = =Wy + Wy
(W) 2( " og" ’”Oq“>
are substituted for the differentiation of W, W?" =4} by I
F(W)Wh + W, (W) =0, ie,
(26) F(W*) = — W W I(W,),
to obtain
B 4
F(waﬂ) — l <W°W ai. + whv €£>,
2 oq’ oq’
which are used to have the final appearance ([5], Theorem 9)
. 1 oft af*\ 0 o0Q oQ
27 — iy, = — G(W‘”+W‘”—— W M) — + uy— |,
X 5 H o o ) aqp (ﬂ)aqﬂ o o or
0Q 0Q
27) —iy,0=TWuUW® — +py Wb —.
(27) Xa (u )aéﬁ mWe o

Particularly for conserved quantities 2, and 2,, w in (27) is replaced with dQ,,
ie., u, = 0Q2,/0q%, while Q = Q,, to derive
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1 of? wa)agl 00, ( (ale)agz 00, agz>
iy d, =W D e 2y p( O ) 022 | 050 Oca )
Pay 0501 2( o 0 ) 0q* od o ) 0 T agr og

which, in view of (23), can be written as ([S], Theorem 10)

(28)
by = L (9008 00 00, 00,20, 00
: 2 0’ \ 0¢* 0¢*  94* 94"

while (27) leads to

Q,\ o2 , 09, 00
— iy, dQ, = F(W”"’ d 1)—2 + Wt 2

aq* ) 94" Frard
PO
o o¢° aq* ) a¢"  0¢ o4

ofe )agl 02, Wa,;(@f?g R, 09, @_Q_Z>
q’) 4% 9¢* 0" o4 oq* o4’

= (F(W“”) whr =

Since by (16) and (26):

2 2 a T
wowse( OL _ OL ): — werwhe (F(m,,) + mf>
0q’0q 0q°0q" dq

=T (W) — whkr = of
2§’
it follows, beside (28), the other expression

28y

§ 2 Q, 00, 2,00
1x92d91=W‘”W"”< oL oL )‘ml a%+Wﬂﬂ<a : ! 2)

0§70q°  0¢°0q’) 0¢* 8¢’ ot 8"  oq* o
00, 09, 00, agz)+ Waﬁ<ag 0Q, 00, 592)

2
:WWWIMWa L < R}
0q"0q° \ 0¢* 04* o¢¢ o

o o8 oqr oy

5. Lie algebra structure on conserved quantities

Similarly as in 4, let the system (1) have resulted from the Euler-Lagrange equations
(15) with the regular Lagrangian L. Then, within the context of the calculus on
differential forms, a procedure of constructing an infinite dimensional Lie algebra
structure on the ring R of all conserved quantities of I, will begin with a closed
2-form Z which is given by the exterior derivative of Poincaré-Cartan form @ associated
with the regular Lagrangian L:
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oL
@ =_—0*+ Ldt.
aq*
In the derivative, d¢* and dq* are replaced respectively with ¢* + f*dt and 6* + ¢*dt

2
0°L 6L>H"/\dt,

oq* ot Oq”

to have the appearance of the form =& =d@:
2
oL 0"/\9”—<f”m

=W, NOF — —
s 34" 0q"
which is, by the Euler-Lagrange equations (15) and its equivalent form (1), reduced to

2
oL N

E=Wy¢p* AP —
ot 04°0q"

For the vector field X € X, expressed as (3), in view of (16) with an alternation of

the indices o and f3:
0*L 0*L af?
A B AFAa =TI'(Wy) + W, —,
9q*0q" 94" 0q aq
it follows that (note: i ¢* = i0* =0)
0’L 0*L
— iy E = Wyegr — WJ”““( - >p>91
xE = Wyt ( R R

= W&o ~ (F(%si”) + V%f”?fq,:)@“

(29)
Therefore, by the regularity condition of L: det (W) # 0, iy& =0 implies W,,¢” =0,
So that = is non-degenerate on the set of

i.e., £ = 0, consequently X =0 (mod I').

equivalent classes of X .
Now, for an arbitrary element X e X, define a 1-form wy by

wx=_lx

Then, since dZ =d?® =0 and since iE =0 by i ¢* =i0% =0, it follows that

(30)
LrE=ifdE+dipE=0,
and so, moreover that
= Brixgz - Qrwx.

Therefore the non-degeneracy of = implies that wyeX¥, ie., Loy =0, if and only
Thus the correspondence in the theorem 7 can be realized by =.

if [I, X]=0 (mod I).
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—
=

THEOREM 8. Under the relation (30), the form E defines a bijection between the
set X% and the equivalent classes of a subset of Xr:

Xy ={XeX,|[I, X]=0 (mod I')}.
Particularly for an element dQ2 of a subset X} of X¥:
X§ = {dQ|Qe®R, ie., I'(Q) =0},
there exists an element X, e X%, uniquely up to a multiple of I, satisfying

dQ = — iy &F;

0

whose appearance in coordinates follows from (29) by putting X as X, of (25), i.e.,
E* as W*9Q/04P, and consequently (25) leads to dQ of (24). So that, since I'(R) = 0,
it is well-defined a product {2, Q,}eR of elements Q,eR (i =1, 2):

(31) {91, Qz} = — iy dg1 = - X.Qz(Ql)’

22
which is written in coordinates as (28) or equivalently as (28)'. Then, in a familiar
calculations on differential forms, we can see the anti-commutativity for Q;eR
(i=12):
{2, ;) = ixg,ixg, T = —ixg,ixa,=
= —{Q,, @1},
and the Leibniz identity for 2,eR (i=1, 2, 3):
{2,92,, 2} = — X,(2,2,)= —Q2,X,(2,) — 2,X,,(2))

=Q,{Q,, 2;} + 2,{Q,, 2,}.
Moreover, in view of

Lo, Z = [dix,, +ix, d)E

= —d*Q, +ix, d*0 =0,

it follows that

== (QX_Ql ngl - iX_ngX_Ql)‘:’

= — 8, dQ2, = —dXg,(2,)
=d{Q,, 2} = —d{Q, 2,};

lXa, Xa,

so, by the theorem 8, that
X, 0y =[Xg,, Xo,] (mod I').

Therefore, since I'(2;) =0 for Q;eR, we can see
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{Qa’ {Ql? Qz}} == X{.Q[,.Qz}(Q3) = —[Xgq,, X0,]1(£2;)
= — X,(X0,(2;)) + X0,(Xp,(£25))
= X0, {923, @5} — X0,{Q5, 24}
= — {{Q;, 25}, 2.} + {{25, Q}, 25},
which is rearranged to conclude the Jacobi identity
Q1 2.}, Q) + {{2,, 24}, 2.} + {25, @4}, 2,} =0.
Thus the product (31) gives the Poisson algebra structure on R.

THEOREM 9. The ring R of all conserved quantities of I' forms an infinite
dimensional Lie algebra under the Poisson product defined by (31).

6. Illustrative examples

In illustration of the geometric derivation of conservation laws, we first re-examine
the second-order equations of two-dimensional harmonic oscillator

@ +qd*=0 (x=1,2),
with the Lagrangian
L=3¢"¢"— 49"
As in [5], since f* = — g%, the equations (4) and (6) are written as the similar forms:
I?EH+¢ =0, I'*(u)+pu, =0,

which have solutions &7 (i =1, 2, 3, 4):

& = =4, & = p; = a,cost,

i=ui=a,sint, & =u;=4¢",

where a, are some constants. For the respective solutions &f, elements X;eX,
satisfying [, X;] = 0 are determined (Theorem 1):

.0 .0 0
X, =¢—+¢"~—, X, =—a,sint— +a,cost—,
09" aq° oq* o

X t d + a,sint g X « 0 + g* 0
=a,cost— + a, . =—q :

3 oG oq* 4 q o¢* q oq*

and for the respective solutions pu/, elements w;e X% are determined also up to a
multiple of dt (Theorem 2):
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w, =q"¢* — §*0*, w, = (a,cos t)p* + (a, sin 1)6*,
w3 = (a, sin t)$* — (a, cos t)0*, w, = ¢*P* + 0.

The couples of elements X, e X and w;eX¥ (i =2, 3, 4) are carried into (9). Then,
through

ix,w, = a,(q*cost + q*sin t),
ix, w3 = a,(g*sint — g% cos t),
ix, 4 = g4 + 4*q*,
the following conserved quantities are obtained:
Q] =q"cost+ g*sint,
Q% =4*sint — q* cos t,
=33 + 4* ),

where Q7 and Q% are independent, while Q5 = 3(£2%Q% + Q%0Q%). These quantities
can be derived also form (11) with I’y = X, and o, (i = 1, 2, 3):

irgwy = —Q;, ip0, = a5, ip0; = —a,07.
By (12), one of the above Q’s yields the other for suitable X,eX,, e.g.,
X5(823) = — a, 25, X,4(Q23) = — Q.

Since W, = 0°L/34"3¢" = 8,5 accordingly W* = §*, the corresponding vector fields
of (25) to the conserved quantities are

. 1%
X97=—S1nt7_+008t
oq" oq"
0 0
Xy =cost — +sint_—,
4" aq”
0 a
X — o + S —;
o, o q o

which are used in the last term of (31) to obtain the Poisson product
{QF, Q) = — 6, {Q3, Q) = Q%, (Q,, Q%) = O3,

Next example is a single particle moving under a central force, whose equations
of the motion are (refer to [4])

§' +2ud' + 0?*q* — 4 (¢%)* =
q'q* + 2pq*¢* + 24'¢* =0,
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with the Lagrangian given by
L=3e*((d@")? +(a'd*)? — (wq")?),

for the generalized coordinates q! =r and ¢?> = ¢, where u and  are some
constants. In this case, since

fl=—2u4¢" + 4" (¢*)* — 0’q’,
24'¢? )
fZ = - ql - 2.“‘12»

the equations of (4) are reduced to
I2EY +2ul(EY) = 2¢'¢° (&%) — ((6)° — 0?)E' =0,
24'¢?
4"?
According to the respective solutions &F (i = 1, 2) obtained in [5]:
¢i=ag', &l =ad*; &3 =bq', &=k,

where a, b and k are some constants, elements X; e X satisfying [I, X;] = O are written
as (Theorem 1)

1

r (52)+2<q—+N)F(62)+ reh - ¢t=o.

d d d 0
X, =af' = +af*— +aj' — +ad®—,
1 =daf o if PYE q o q o
d 0 0
X, =bg +bg' — +k—.
2 q@q qaq o

Corresponding to the elements X;e X, we can find elements o} e X% (Theorem 7). In

( )

<J?2L__5Z_L>=2ezm( 0 "11‘72>
8¢*dq"  04°oq" ¢ 0 )

they are determined up to a multiple of dt (Theorem 6):

0 \/&
— p2ut 2
oh=e (‘M)(o (1)2><63>
NS F(é?)) (0 —q‘ff)(é.-‘))
— (Pt 2
e )<<0 (q1)2><r(53) T\eg 0 N
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&l I —2q'4°¢
_2ut gl g2 — e (Pl p?
=eM(P P )<(q1)2§i2> (00 )((ql)zf(éiz) + 2q1é25i1>'

Therefore w] and w} lead respectively to
-1 1 9ya1(52)2
wizaezﬂ'ww)( 5 _2>ae2‘"(9192)( S )>
(@)q @)f +2q44'q
= ae™ (¢! + (@' dP 9% — ae (1 — 24" @0 + (@) + 24' 41 §)0%),
b 1 b'l — 2k 152
wi=e2"'(</>1</>2)< qu>—e2“'(9102)< AR )
k(g") 2b(g')*q
= (bgl ¢t + k(g'V$?) — e ((bd' — 2kq§)0" + 2b(q"2426?).
Now (9) is calculated with the elements X;eX, and wiec¥* (i=1,2), e.g.,
iy,op = abe*((§')* — q'f* + 2(¢'¢*)?) — ake®((@")f* + 24" ¢'¢?))
= abe™ (4 + (a4 + (@4')? + 214 d") + 2akpe* (¢ ¢,
in which the following independent conserved quantities are observed:
Q, = (4" + Ha' P + e + ug'd),
Q, = e*(q")*¢?%,
while @, was obtained by Djukic [4] in the illustration for the gauge-variant
Lagrangians. Here note that (11) with Iy = X, and w = w? can be written also as
ir,0f = —2abQ, — 2akuL,.

The corresponding vector field X, = 3/d¢* to Q, follows from (25) with

o 1 0 0 0
Wek ) = = .
w55) o w2 )goe) = ()

So, by (31), the Poisson product of £, and 2, leads to
(2, 2,} = —Xq,(Q)=0.
Final example is the equation arises in gas dynamics (refer to [8], also [11])
G—aq Y2 =0 (a:const),
with the Lagrangian
=14% + 2aq'/?.

Since f = aq~''?, the equations (4) and (6) are written as the similar forms:
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I8+ 3aq ¢ =0, I'*(u) + bag > *u =0.
Here, assuming that ¢ (also u) is of the form:
E=kq*> + g(g, t)q + h(g, t) (k: const.),

the equation of & (also of u) can be reduced to

0% 0? 0%h 0% d 0*h
I (2 g L07 iakq_”z)cjz + (J +3aq~12 %Y 4 2)4

FYE oqot = oq? or? aq oqot
0 0%h ch
+2aq”26i:+ a2 aq_”zgl+%aq‘3/2h+2a2kq_l=0,

which is satisfied for arbitrary q if

o2
(32a) a,ii =0,

0q

%9  0*h ~

(32b) 2;(];% + aqj —%akq 3/2 =0>

g dg o2h
(32¢) —Z 4 3aq V7 +2 =0,

or? dq  dqot

dg 0*h oh

32d 2 _1/2—+._i+ -1/2 7 _|__,1_ —3/2h+2 Zk —1:0.
( ) aq ot atz aq (')q 5aq a’kq

In view of (32a), by putting
g =g+ Y@,
(32b) leads to
Z% = —2¢' + akq >,
which is integrated as )
h= — @'q* — 2akq*’? + y(t)q + T(t).

So, by substituting these g and h for (32¢), it follows that

3¢"q —3apq '? =y — 2y =0,
accordingly ¢ =0 and
(33) U+ 2y =0;

and also for (32d), it follows that
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2y"q+a@y’ + 3y)q™ 2 +arg73? + 21" =0,
accordingly y" =0, t =0 and
(34) 4y’ + 3y = 0.

By (33) and the differentiation of (34), ¥ is determined as = 3mt + n (m, n: const.),
and then y = —4m. So that g =3mt + n and h = — 2akq'’? — 4mg, consequently

& =k(g* — 2aq''?) + m(3tq — 4q) + nq.

Now from the respective solutions:

1/2

i =u =4"—2aq""?, &, = p, =314 — 4q, &y =py =,

it follows the elements X;e X satisfying [/, X;] = 0 (Theorem 1):

0 0
X =adq '? —+(¢* — 2a9'"?) —,
aq dq

5} 0
X, =—(q—3aqg7'"?) — 4+ (3t — 4q) —,

oq oq
) L0

BRGNP

X.=a
T 5y

and also the elements w;e X¥ up to a multiple of dt (Theorem 2):
o, = (§* — 29" — adqg™10,
w, = (3t4 — 4q)¢ + (¢ — 3atq™''?)0,
w3 =q4¢ —aq™'?0.

Therefore conserved quantities of (9), e.g., 2, = — iy,w; and Q, =iy, w, are written
respectively as

Q, = ¢*> — 4aq*’?,
2, = ¢ — 6agg"* + 6a*,
while (11) yields —ip w,=Q, (I'y=X;) also. By putting t=x, g=V+ &% and
a=2%%(e/m)"'2xnl, the conserved quantities £, and £, lead respectively to those
(Eq. (5) and (6) in [8]) obtained by Parsons. For £,, since 62L/0¢* =1, (25) is
written as
s 1/2 0 -2 1/2 a
X o, =3aqq . +3@° —2aq""") —,
0q 0q
which is used in (31) to obtain the Poisson product
(Q, Q) = — X,,(2,) = — 1242,
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