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                             1. Introduction

   Noether's theorem [7] has been extensively initiated for the derivation of
conservation laws based on the symmetries in the Lagrangian or the Hamiltonian
structures. However, without using the structures (which may fail to exist), Caviglia

[1, 3] determined the new operative procedure for the laws via the application of a
suitable version of Noether's theorem to the composite variational principle. And the

procedure was analyzed by Mimura and N6no [5] (also [6]) with various viewpoints
for the derivation of the laws of a given second-order (partial) differential system.

    In this paper, the local version of [5] is reformulated with a geometric notion
of the calculus on manifolds (refer, e.g., to Sarlet and Cantrijn [9]). In 2, on a
setting of a bundle J =: TM Å~ R for a configuration manifold M, a set of 1-forms scr

(symmetry 1-forms of r) and a set of vector fields Xr on J or its subset Xft (coEXr,
KE8i: differentiable functions on J) are introduced associating with the equation field

r of a given differential system in the kinematical form. In 3, conserved quantities
of r, i.e., quantities C on J satisfying r(C) = O, can be constructed from elements of
IEr and IE2, or particularly EEkn (dS2eEa;r, where S2? is a conserved quantity). In 4, a

further derivation of constructing conserved quantities is given under a correspondence

between an element of Xr and an element of cer defined by a given regular Lagrangian,

or particularly an element d9EXr given by a conserved quantity S2. In 5, such a
correspondence is explicitly realized by virtue of a closed 2-form defined by the exterior

derivative of Poincare-Cartan form. The realization contributes to make the ring of
all conserved quantities of I' into an infinite dimensional Lie algebra. In 6, we
re-examine the equations of two-dimensional harmonic oscillator, of single particle
motion under a central force and that arises in gas dynamics [8], which are illustratively

used in [5], [4, 5] and [11], respectively.
    For convenience, differentiability is assumed to be of sufficiently high order and

the summation convention is employed throughout.

          2. Geometric characters associated with second-order system

   Adding the time-axis R to the tangent bundle TM of m-dimensional configuration
manifold M, let J= TM Å~R and U be its local chart with coordinate functions
(4, q, t) = (4ct(t), q"(t), t) (ct = 1,•••,m). On the setting, we consider a given second-order
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system of m differential equations in the kinematical form:

(1) ija-f"(4, q, t),
together with its equation field

                               D OO                        r=fa .+4a +-.
                              oqa aqa ot
To a contact system {6pt}, where ea are given in coordinates as ect = dqa - dadt on U,

there corresponds a contact distribution, i.e., a subset A of vector fields X on J
(characteristic vector fields of (9ct):

                     A = {xExl i.ea =o; ct = 1,•••,m},

where ix denotes the interior product (contraction) by X. Associating with the
equation field T, the distribution is used to define

                        EEr = {XEEEl[I7, X]ezl}.

Then, in view of the relations

                        [bZa• r] - eo//•:- o/,-•-B + b-Z-d•

                        [oZa''] :2il oZ'fi'

a vector field XEX, when expressed with respect to the basis {O/04a, a/Oqct,r}:

                               ao                        X== nyct .+4a +utT,
                              Oqa 0qa

has the following commutator with T

        [r, x] =- r(nyct) oaq.. + r(4ct) oZ. + r(ut)r- nya[oaq.., T] - 4cr[oOq. , r]

(2)
             - (I"(na) - nfi oOf4: - 4" oOfq:) oeq.. + (I"(4a) - n") oOq. + r(ut)T.

So that i[r,x]ect == O imply nyct = I](Cct). Therefore we have a local expression of XEeer

(cf. [9], the dynamical symmetry of T in Lemma 3.1; Eq. (17) and (18) in [1]):

   THEoREM 1. A vector field XEXF is written as follows with respect to the basis
{o/odct, o/oqct, T} :

                                 oa(3) X= T(ect) odct-+4a  oqa +WL
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Particularly a vector .field X satisfying [T, X] =O is an element of eer. In this case,

(3) is provided with the conditions I"(ut)=O and

(4) r2(4a)-T(4fi) oOf 4:-efi oafqi-O•

   Alternatively, in terms of the Lie derivative 2F, a subset of 1-forms X" on J
(symmetry 1-forms of r) is defined:

                         Xr = {tuEX*12rto == O}.

Here introduce 1-forms ipct = d4a -fadt for the basis {ipct, 0ct, dt} to write toesc* on

U as

                          co = ltt.q5a + v.(9ct + Tdt.

Then, in view of

                                Dfa                                       Ofa                         9rip" = o4B ip6 + oqB eP'

                         2rge = ipct'

it follows that

         2rto = (r(ps.) + ptB Oof42 + v.) di" + (r(v.) + "p aafqP. ) ea + r(T)dt

Therefo re, the condition 2r co = O for co E ai 7! leads to I' (T) = O and

                                  OfB
                                     + v. = O,                         T(".) + ptfi
                                  odct

                                  afB
                                  aqct == O,                         I-'(v.) + jUB

from which we have a local expression of tuEeer (cf. the adjoint symmetry in [10];
Eq. (14) in [1]):

    THEoREM 2. A 1-form coEII;r is written as follows with respect to the basis
{dia, ect, dt}:

(s) tu - pt. ip ct - (r(".) + #B Oof42)ect + Tdt,

which is provided with the conditions I"(T)=O and

(T(pt.)+#fi Oof4fi.)- ptB Oof,fi. -O•
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   Particularly a multiple Wr (WEg: differentiable functions on J) of T is an element
of ce. (see (3) with 4a). So we regard that Xi and X2 in Xr are equivalent if Xi - X2
is equal to such a multiple; and in each equivalent class of scb we can take particularly

an element

                                    oo(3)•  x -= T(ea) o4. + 4a  -a-q.•

Then, for coEser of the form (5), through (2) with ut =O and na=T(4ct), we have

(7) i[r,x]to == pt.(r2(4ct)- r(4fi) oOf,i -Cfi aafqi)

For an arbitrary 1-form coEXr, associating with an element KE& we now define a
subset XR of eer:

                      X2 - {X E 3Er 1 i[., .] co = I" (K)}.

Then it follows that (cf. Eq. (3.8b) in [3])

    THEoREM 3. A vector .t)'eld X in each equivalent class of a;r can be put as (3)'
with respect to the basis {O/Odct,O/Oqa,T}. And then, for KE8i and coEXr of the
form (5), XE;I;ve if and only if

(8) k(r 2(4 ct) - T(4P) oafql - 46 oOfqi)- r(K)

   REMARK 1. For XEXr of the form (3), since in view of T(T)=O and
iripa == ir6)ct = O:

                    i[F,utr]co = T(IPt)i.co = T(iPf)T = r(iPfT),

the right hand side of (7) is modified by adding a term I'(WT). So the condition
i[r,x]w=r(K) for X2 differs form (8) essentially nothing but in that K must be
replaced with K - !frT.

              3. Conserved quantities associated with Xr and Xve

   Elements of scr and sc2 can be used effectively to construct conserved quantities
of r (first integrals of the system (1)), i.e., quantities C(d, q, t) on J satisfying

r(C)=O. An element coEXr vanishes by ÅíF, i.e., 2rco=O, so that

                    i[r,x]tu = r(ixw) - ix(Åírtu) == I"(i.co);

which implies r(i.co - K) == O ifXEsc2. Therefore it is deduced (cf. Eq. (22) in [1]):

   THEoREM 4. Elements coEscr and XEee2 give rise to a conserved quantity C:
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   The respective appearance (5) and (3)' of coE;l;r and XEGE2 give a local version
of the theorem 4. In fact the solutions ". of (6) and 4" of (8) yield the conserved
quantity ([5], Remark 4; cf. [3], Theorem)

ao) i.co -K == #.r(4ct)- (T(pa.) + de Oofdfii)gct -K

Particularly, together with the solutions pt. of (6), an element XeX8 (K = O) satisfying

[r, X] = O, i.e., 4ct of (3)' satisfying (4) yield the conserved quantity i.tu, i.e., the

quantity (10) with K=O ([5], Theorem 2).
   Whenever fct do not depend explicitly on the time t, i.e., fct = fct(4, q), the equation

field r supplies [I7, r-O/Ot] =O, so that I7o !iT-O/OtE:];g for arbitrary coEXr.
Therefore solutions pt. of (6) yield the conserved quantity ([5], Theorem 5; cf. Eq.
(21) in [1])

(ii) ir. tu=ptafa-dct (r(ptct)+"6 2fq.2)

   REMARK 2. Similarly as in the remark 1, if XEEI;ve is not of the form (3)' but
(3), K is replaced with K - WT in the resulting conserved quantity (10).

   A conserved quantity S2 satisfies 2.(d9) =dl"(S2)=O, i.e., co ii d9Elllr. In view

of ixd9 =X(9), it reduces the theorem 4 to

   THEoREM 5. Together with a vector .field XEXdKn, a conserved quantity S2 gives

rise to a new one C:

   In the coordinates, since d9 of a conserved quantity 9 is expressed as

                    09 aS2 D9 09(13) d9 -=                              ea + T(9)dt -                       ipa +                                             ipa +                                                    ev)
                    a4ct                           Oqa                                          a4a                                                 aqa

the theorem 3 implies that X of the form (3)' is an element of eed.n if and only if

                 oO,g. (T2(4ct) - r(4fi) oOf,i - 4fi gfi,-: ) -= r(K),

under which the resulting conserved quantity (12) is written as

                                   ag og(14) X(9) -K= r(4a) biq•ll +4ct oqa 'K'
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Particularly an element XEecdon (K = O) satisfying [I7, X] = O, i.e., Cct of (3)' satisfying

(4), yields the conserved quantity (14) with K=O ([5], Theorem 4).

                       4. Euler-Lagrange systems

   Let L(4, q, t) be a regular Lagrangian, i.e., det(W.6) 7E O where W.B = 02L/a4ct04fi,

and the system (1) have resulted from the Euler-Lagrange equations

(i5) Sl,(aO,!.)-oO,t=47Wa7'47b,O;a2oL,"F'-oOia3'-,moO,k'-=O'

Then, after replacing ij7 with fV in (15), the equations are differentiated with respect
to dfi and qfi to obtain respectively

                        7 o2L 02L(16) Way 'oO-lii•J =- I'(WctB)- o4aoqfi +ooraqi'

('7) Wor7flfi,-]=:-r(biO•,'2i'B)'-o-aOLaii',-fi;

where the skew-symmetric parts of (17) for the indices ct and 6 lead to

(ls) WlvTO a'L qlCrl'-VVayl-LqlC-i'=I'(oqO•ct-2/"qB-'oq9fi2'o'iu'a')

   Now pt. = W.B4fi are substituted for the coeflicient of 0`Z in (5), and then (16) is

used to see

                   vct =' T(pta) + u7 'oOC,I-

(lg) - W.fir(gB)+(r(W.fi)+ W,fi -oOC.l)4fi

                     = Wcrfir(4fi) + (oqO..2oLqB - oqa.fi2oLq.)cfi,

and also for (6), together with the above v., to see

      r(w.,r(eB) + (oqa. .2oLq, - oqO. ,2oLq.)4fi) - v'v7ll 4p ilil

                 == WctBr2(4fi) + (r(wctB) + oqe..2oLqp- - oqO.fi2oLq.)r(46)

                           +(T(oqO•.2oLqfi-oqO•fi2aLqct)-Wfi7tt4'-ct7')4fi==O'
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in which, by (18) and (17), the terms in the last parenthesis are moreover rewritten as

            r(oqO.2oLq,um-aqa.,2oLq.)-wfiyiil='Wa7gtt

                                       =='(o8'cteLq'B)-o8ct2oL,fi

Therefore from the theorem 2 it follows (cf. Eq. (3.7) in [2]; Eq. (15) in [5]):

   THEoREM 6. A 1-form coL associated with the regular Lagrangian L:

(20) coL == wafiCfi q5cr -(wafiT(efi) +(oqO.2oLqfi - oqOfi2oLq.)efi)ea + Tdt

is an element of II;r if and only of ir(T)=O and 4ct satisfy

(21)

  Wafir2(4B) + (T(Wafi) + b2qiO•i2-i'firm - oqO. fi2iq.) I"(efi) + (r( oqD. .2oLq6) - oqO.2aLqfi )cfi = o

   The left hand side of (21), for which (16) and (17) are substituted, isjust the same as

                     Wa7(r2(47) - r(4") oOf4i m 4B oOfqi)

So that, since det(W.fi) 7! O, the equations (4) and (21) are to be equivalent. Therefore

from the theorem 1 it follows:

   THEoREM 7. To a 1-form coLEjl;r of the form (20) associated with the regular
Lagrangian L, there corresponds a vector field XEXr of the form (3) uniquely up to
a multiple of T satisfving [r, X] i O (mod r), and vice versa.

    The correspondence in the theorem 7 can be applied to the theorem 4 for a
derivation of conserved quantities of the Euler-Lagrange equations (15).
    At first, in a pair of elements tui and tu2 of scr, i.e., in those of solutions 4I

(i == 1, 2) of (21), Cl define an element XEec. of the form (3)' satisfying [I7, X] =O,
while C" :Ca2 are left in the appearance (20) of tu2. Then, by the theorem 4, such
elements coZEair and XEXr (of course XelEg for arbitrary coEIIir) yield a conserved

quantity (see (10) with K = O)

                        - ix tu2 - v. 4f - VV.B 4g r(Cf),

where v. are given as (19) in which 4ct = 4S and ". = W.6C2fi. So that ([5], Theorem 6)

- ixtu2 = Wctfi(e"i r(4g) - Cgr(4f)) + (oqO.ibLqh - oqO. fi2oLq.) 4f 4g
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    Whenever L= L(4, q), i.e., fa =fa(4, q), by co.eecr of the form (20), i.e., by 4ct
satisfying (21), the resulting conserved quantity (11) is written as

                         - iro COL = 4ct Va - fct Wafi (i6,

for which v. of the last expression of (19) are substituted and then (15) is used to
lead ([5], Theorem 7)

            - iro coL =: dct Wct6r(4") + (4ct -o'qO..-2oLq, - 4a ite, i'i. ne fa W.fi)4fi

(22)
                   = dct Wa6r(4") + (dct oqO• .2oLq6 m eOqt ) 46

    REMARK 3. In the case of L= L(4, q) the Hamiltonian

                                   OL
                             H=4a -L
                                   O4a

is a conserved quantity. It is interesting to note that, together with XEser of the
form (3)' satisfying [L X] = O, i.e., solutions 4ct of (4) or equivalently of (21), the

Hamiltonian gives rise to a new one (see (12) with K = O):

                                      OH OH                     ixdH == X(H) == I'(4ct) + 4cr ',
                                      e4ct                                             aqat

which is just the same as (22).

    A further application of the theorem 7 begins with a conserved quantity S2. Since
dS2Elli7! as seen before, it can be written as (5). In fact, in view of I'(9)=O in

                     [b02,:a ' i7] (9' == (Si'2 b-Z'B ' oZ ct)(9"

(23)
                     i.e., -T(g,e.) == gZ: g,g, + ,,,`2.•

d9 of (13) leads to

(24) dg - g,e. ipa - (r(oO,g.) + aO,e, 0ofd2)ea

This appearance follows also from (20) by putting 4a= Wa6a9/Odfi where (Wct6) =
(W.B)-', i.e., pt. = W.pCfi = OS2/04a; which are substituted for the first expression of v.

in (19) to confirm that the coeMcients of ea in (20) lead to those in the above d9.
Therefore in the theorem 7, the corresponding vector field XgEfEF to dS2E2ET is
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(2s) x.-r(wctB oOqe,)oaq..+w"6 oOqg, El[i.r,

which is provided with [lr7, X.] = O. So that, together with an element (DEeer of the
form (5), i.e., ". satisfying (6), the conserved quantity 9, i.e., the corresponding vector

field Xn, gives rise to a new one (see (9) with K == O)

            - ix.co - - pt.T(waB aOqeB ) + (T(Lt.) + ", 2i:.l) wct6 aaqEl, ,

in which the terms are rewritten by (23) as

             r(waB oO,g,) == r(w"B) oO,e, - w"B(aaf4i g;, + oOq9,);

so that

    - i.,,tu - pt.(Wct7 Oof4", + W"7 gi.: - r(Wct6)) DOqe, + Wa6 (r(".) oOq$, + ". -oOq9, )

Moreover the symmetric parts of (16) for the indices ct and 6:

                    r(w.fi) = 'i(Way aOf4i ' WB7 2i•I)

are substituted for the differentiation of J?V.BWB7 = 6i by T:

                      r(W.6)WfiY + W.llT(WBY) == O, i.e.,

(26) T( VVctfi)=- Wct7 WPe l"(W,.),
to obtain

                    r(waP) - g(wct7 Oof4", + Wfi7 g'ti, );

which are used to have the final appearance ([5], Theorem 9)

(27) - ix.co =- i pt.(Wct7 Oofdg + wfi7 eo:.",-)oOq{i,l + w"" (i'(pt.) eO,{i,l + pt. aa,S2,), or

                       a9 09(27)'  ' ix.CO == I"(ptct Wctfi) o4B + #ct MZ"fi aqfi '

    Particularly for conserved quantities 9i and 92, to in (27) is replaced with d9i,
i.e., pt. = 09,/04ct, while Sl2 = S2,, to derive
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 - ix.,d9i =;(Wct7 Oof4f + MiP7 oOf41) Oo94.i Oo?.,2 + Wa" (r( Oo94.' ) Oo94,2 + Oo94.i Oo?,2),

which, in view of (23), can be written as ([5], Theorem 10)

(28)

  -ix.,dg,-i wa7 Oof4g(Oo94.i Oog.,2 - Oo94i Oof..2)+ wct6(Oo9oj.i eo?,2 ff Oo9,.i aoS.,2),

while (27)' leads to

    - ixg2dS2i = T(WaP Oa94i) Oe9cr2 + Wct" OoS422 ea?.,2

            - r(wafi) Oa94.i Oa2.,2 + wctfi (r( ao94.i) ae94,2 + Oo94i Oog,2)

            -= (T(Wctfi) - w"7 oOf41) Oo94.i ao?.,2 + w"fi(OD94,ir eo.ge2 - Oo9,.' Oog.,2)

Since by (16) and (26):

          VVctBWfia(ai,2ir6 - oLq-O..2oLq,) == - Wa7W6a (T(W7a) + M17T oOf41)

                                = T(wafi) - wp, O(a ,

                                             Oq7

it follows, beside (28), the other expression

(28)t

-ixfl2d9i=Wa7W"O
(oqO.,2oLq.-oqO..2oLq,)Oo9d.i'amuog,,2+Wafi(Oa94.iOa?,2-ao9q.iTOo'rg.f)

        -wct7wpobije.v2i.(Oo94.iOog.,2-ao9oj,iOoZ..2)+wctp(-Oa-tL?d;Oo?,2-Do9,.iOoZ.,2)

               5. Lie algebra structure on conserved quantities

   Similarly as in 4, let the system (1) have resulted from the Euler-Lagrange equations

(15) with the regular Lagrangian L. Then, within the context of the calculus on
differential forms, a procedure of constructing an infinite dimensional Lie algebra

structure on the ring S{ of all conserved quantities of r, will begin with a closed
2-form =. which is given by the exterior derivative of Poincare-Cartan form e associated

with the regular Lagrangian L:
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                                aL
                            (E) = ea + Ldt.
                               04a

In the derivative, ddct and dqct are replaced respectively with ipct +fadt and e" + 4adt

to have the appearance of the form =. = dO:

   =' = w.fi ipct A efi - oqO..2oLqB ea A efi - (ffi l'vafi + 4fi oqO..2oLq'6 + oOq2.SIt " oOq{i) ez Adt,

which is, by the Euler-Lagrange equations (15) and its equivalent form (1), reduced to

                                     a2L
                     =' = WaBipa A efi - b-q'•.oq6 ect A efi'

For the vector field XeXr expressed as (3), in view of (16) with an alternation of
the indices ct and 6:

                     02L 02L                                              Of7
                    o4aoqp - Taww?-o-i' = I-'(WaB) + Wp7o4. ,

it follows that (note: i.ipa= i.e" = O)

             - ix=' = WctB4Pq5ct - (VVa6I'(4B) + (oqO..2oLqfi - oqa.fi2oLq.)46) o"

(29)
                  =: w.ficBipct - (i'(w.fi4P) + w6,46 2i.I)ea

Therefore, by the regularity condition of L: det(J2JZ.B) 7E O, ix=' =O implies W.Bee == O,

i.e., 4fi = O, consequently XiO (mod r). So that =. is non-degenerate on the set of

equivalent classes of scr•

   Now, for an arbitrary element XEscr, define a 1-form wx by

(30) cox == -ix='.
Then, since d=. =d2(E) =O and since i.=' == O by iripct = irOct = O, it follows that

                         Åír=' = ird=' +dir=' == O,

and so, moreover that

                        imx]=' = Åírix=' - ix2r='

                             = Åítrix=' == - 2Fcox•

Therefore the non-degeneracy of =. implies that tuxeXr, i.e., Åírtux=O, if and only
if [T, X] iO (mod T). Thus the correspondence in the theorem 7 can be realized by =..
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   THEoREM 8. Under the relation (30), the form =' deLfines a bi'ection between the
set 21;r and the equivalent classes of a subset of IEF:

                    ec9 = {XGscrl[I7, X] !O (mod T)}.

   Particularly for an element d9 of a subset eco* of eer:

                     X,* - {dS219Eg{, i.e., I"(g) = o},

there exists an element XQGX9, uniquely up to a multiple of I7, satisfying

                             d9 =: - ixs} =' ;

whose appearance in coordinates follows from (29) by putting X as Xn of (25), i.e.,
4ct as WctBaS2/04fi, and consequently (25) leads to d9 of (24). So that, since T(S;2) = O,

it is well-defined a product {9,, S22}E9{ of elements 9iE9{ (i = 1, 2):

(3 1) {9i, 92} =' ixn, d9i =' Xo2 (9 i),
which is written in coordinates as (28) or equivalently as (28)'. Then, in a familiar

calculations on differential forms, we can see the anti-commutativity for 9iEYI
(i -= 1, 2):

                    {91, S22} = ixg,ixn,=' == ww iXniiXst2='

                            - - {9,, 9,},

and the Leibniz identity for S:2iEY{ (i -- 1, 2, 3):

           {9i92, 93} : - Xn,(9i92) = - 9iXn,(92) - 92Xn3(9i)

                     = 9, {9,, 9,} + 9, {9,, 9,}.

Moreover, in view of

                     2xgi=' = (dixni + ixnid) ='

                           = - d291 + ix.,d2e = O,

it follows that

                   i[xni,xn2] :' = (2xgiixg2 - ixn22xs},) ='

                            = - 2xn,d92 = - dXni(92)

                            - d{9,, 9,} =- -d{9,, 9,};

so, by the theorem 8, that

                     X{ni, n,} E [Xn,, Xn,] (mod r).

Therefore, since r(93) == O for 93G9{, we can see
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            {93, {9i, 92}} = - X{n,,g,}(93) = - [Xni, Xn2] (93)

                         == - Xgi(Xn2(93)) + Xn,(XQi(93))

                         = Xni {93, 92} - Xg2 {93, 9i}

                         = - {{9,, 9,}, 9,} + {{9,, 9,}, 9,},

which is rearranged to conclude the Jacobi identity

            {{9,, 9,}, 9,} + {{9,, 9,}, 9,} + {{9,, 9,}, 9,} -= O.

Thus the product (31) gives the Poisson algebra structure on 9{.

   THEoREM 9. The ring ER of all conserved quantities of I' forms an inLfinite
dimensional Lie algebra under the Poisson product deLfined by (31).

                        6. Illustrative examples

   In illustration of the geometric derivation of conservation laws, we first re-examine

the second-order equations of two-dimensional harmonic oscillator

                         ija + qct -= O (ct = 1, 2),

with the Lagrangian

                          L -= S(da4ct - qaqct).

As in [5], since fcr == - qct, the equations (4) and (6) are written as the similar forms:

                    T2(4a) + 4a = o, I"2(".) + pt. = o,

which have solutions 4,ct• (i = 1, 2, 3, 4):

                     4f = pti = qct, 4S == pt.2 -- a. cos t,

                     4a, - ".3 = a. sin t, 4S - #2 - 4ct,

where a. are some constants. For the respective solutions e,ct•, elements XiEXr
satisfying [r, X,] == O are determined (Theorem 1):

                    oo oo             Xi=4a +qct ,X2=-a.sint +a.cost ,                                          a4ct                                                     Oqct                   04a                          Oqa

                        OO OD             X3 == a. cost +a. sint , X4 == -qct- +4ct ;
                                              a4ct                                                     Oqct                                 Oqct                       04a

and for the respective solutions #&, elements coiEeeT are determined also up to a
multiple of dt (Theorem 2):
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              cai = qct ipct - 4ct 0ct, co2 = (a. cos t)ipct + (a. sin t)ea,

              co3 = (a. sin t)dia - (a. cos t)ect, tu4 = 4ctipct + qaect.

The couples of elements XiEGEr and coiEair (i = 2, 3, 4) are carried into (9). Then,

through

                       ix,co2 = a.(4" cos t + qa sin t),

                       ix, co3 = a.(d" sin t - qct cos t),

                       ix,co4 == da4a + qaqct,

the following conserved quantities are obtained:

                         9a, = 4a cos t + qct sin t,

                         9a, = dct sin t - qct cos t,

                         S;2, - S(4a4ct + qaqa),

where S2f and S2S are independent, while S2,=}(9fS2}K+9"29ct,). These quantities
can be derived also form (11) with To =X4 and tui (i= 1, 2, 3):

               iro tui = - 93, iro tu2 = act 9ct2 , ir, to3 == - a. 9f •

By (12), one of the above 9's yields the other for suitable XiEXb e.g.,

                    X2(93) = - a.9",, X,(9a,) = - gf.

Since W.B == 02L/04"04fi = (5.B accordingly Wafi == 6ctfi, the corresponding vector fields

of (25) to the conserved quantities are

                                  eo                      Xnf == ' Sin to4a + COS toqa '

                                oo                      Xng = COS t o4. + Sin t oqct '

                                oo                      Xn3 = - of o4a + 4a oqa ;

which are used in the last term of (31) to obtain the Poisson product

              {s;2ff, 9fi,} - - 6a6, {9ct,, 9,} - 9f, {sl2,, sl2{} - S2!.

   Next example is a single particle moving under a central force, whose equations
of the motion are (refer to [4])

                     4' + 2ptd' + tu2q' - q'(42)2 == O,

                     q'ij2 + 2ptq'42 + 24'42 == O,
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with the Lagrangian given by

                     L : Se2"((4')2 + (q'42)2 - (coq')2),

for the generalized coordinates qi=r and q2= op, where # and tu are some
constants. In this case, since

                      fi = - 2ptdi + q'(42)2 - .2qi,

                             24i42
                      f2=- i                                  - 2pad2,
                              q
the equations of (4) are reduced to

            r2(4i) + 2ptr(4i) - 2qi42r(42) - ((42)2 - co2)4i = o,

            r2(c2) +2(gl + pt)T(42) + 2q4,2 r(4i) - 2(til)q',2 4i - o.

According to the respective solutions 4,at• (i = 1, 2) obtained in [5]:

                   41 - a4i, 4i - a42; 6S - bq', e,2 - k,

where a, b and k are some constants, elements XiEXr satisfying [I7, Xi] == O are written

as (Theorem 1)

                 Xi = af' oOq.i + "f2 oOq.2 + "4' oOqi + "42 oOq2,

                         oo                                         a                 X, = b4i                            + bqi                                    +k                                        Oq2'                                 eqi                         04i

Corresponding to the elements XiEscb we can find elements coLesci (Theorem 7). In
fact, in view of

                 (w.B) = e2"t (6 (q9)2 )'

                 (brLel:a2oLqB-DqO.p2oLq.)=2e2"t(q,Oq., -qo'`72),

they are determined up to a multiple of dt (Theorem 6):

        coL-e2"'(ip'ip2)(6 (,9),)(ii,')

             -e2pt(eie2)((6 (,9),)(,'-.((i,71)+2(,,O,., -q,id2)(ill))
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           - e2"'((p ' gb 2) ( (, ,i}D - e2"t (e' e2) ( (, iil2(fil)4 ,I ) illqiZ' i i• /7 c,i )

Therefore coL and co2 lead respectively to

   coi =- ae2"'(ip i ip 2) ( (q ,1)d, ) - ae2"'(e' e2) ( (qf)',fl 2+qi(qq',2q). L, )

     = ae2pt(4iipi + (qi)2d2 ip2) - ae2ptt((fi - 2qi(oj2)2)0i + ((qi)2f2 + 2qi4i42)e2),

   tu2 = e2"'(ip ' ip 2)( k?8,i), ) - e2pt (e' o2) ( b4i b?q ?)k,Zi,q' 2 )

     .,. e2"'(bqiip' + k(q')2 ip2) - e2"`((b4' m 2kqid2)e' + 2b(q')242e2).

Now (9) is calculated with the elements XiEII;. and coLEscr (i= 1, 2), e.g.,

        ix,to1 = abe2"'((d')2 - q'f' + 2(q'42)2) - ake2"'((q')2f2 + 2qioji42))

              = abe2pt((d')2 + (qi42)2 + (tuq')2 + 2ptq'4') + 2akpte2pt(q')242,

in which the following independent conserved quantities are observed:

                 9, = e2"t(S(4')2 + Å}(q'42)2 + S(tuq')2 + "qi4i),

                 92 = e2"'(ql)2oj2,

while 9i was obtained by Djukic [4] in the illustration for the gauge-variant
Lagrangians. Here note that (11) with I'o =Xi and to = tui2. can be written also as

                        •2                        ir,coL = - 2abS2i - 2aklt92.

The corresponding vector field Xn, == a/Oq2 to 92 fo11ows from (25) with

                  (wct")(g,9B)=(6 (,i9-2)((q9)2)=(?)'

So, by (31), the Poisson product of 9i and 92 leads to

                         {9i, 92} = m Xn,(9i) = O•

    Final example is the equation arises in gas dynamics (refer to [8], also [11])

                         ij - aqmi12 = O (a : const.),

with the Lagrangian

                             L= M2 + 2aq'!2.

Since f=aq-'!2, the equations (4) and (6) are written as the similar forms:



                 AGeometric Derivation of New Conservation Laws 53

                i2(4) + -,'- aq-3!24 = O, r2(u) +Saq-3!2# = O.

Here, assuming that 4 (also u) is of the form:

                   4 - k42 + g(q, t)4 + h(q, t) (k : const.),

the equation of 4 (also of pt) can be reduced to

     22qg, 43 + (2 oeiogt + S2qh, -sakq-3i2) 42 +(Oo2tg + 3aq-'i2 g6t +2 t/-q-2oht)4

          + 2aq'!2 g/ + Oa-ii?- + aq-'!2 I: + S- aq-3f2h+ 2a2kq-` = O,

which is satisfied for arbitrary 4 if

             02g
              - =o,(32a)
             Dq2

(32b) 2 oa iog-t + Oo- ?qh, - Sakq-3i2 = o,

(32c) -a o-2t2- + 3aq-'i2 Oa-Z+2 oOq2eht - o,

(32d) 2aq-'!2 il/t + ao2tg + aqmi!2 -Oo-hq +Saq-3i2h+ 2a2kq-' = o.

In view of (32a), by putting

                            g - rp(t)q + W(t),

(32b) leads to

                         02h                         -- = -2op' + -21 akq-312,
                         Oq2

which is integrated as

                     h = - op'q2 - 2akq'!2 + 7(t)q + T(t).

 So, by substituting these g and h for (32c), it follows that

                      3q"q - 3aopq-i!2 - W" - 27' = O,

 accordingly q = O and

 (33) iP( tt +2},,-O;
 and also for (32d), it follows that
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                27"q + a(4 ut' + 37)q-'12 + aTq-3!2 + 2T" = o,

accordingly 7" =: O, T = O and

(34) 4!P(t+37 == O.
By (33) and the differentiation of (34), W is determined as ut = 3mt + n (m, n: const.),

and then 7 = - 4m. So that g == 3mt +n and h=: - 2akqi12 - 4mq, consequently

                   4 = k(42 - 2aq'i2) + m(3t4 - 4q) + n4.

Now from the respective solutions:

            C, = Lti = Q2 - 2aq'i2, e2 =: Lt2 = 3t4 - 4q, C3 = Lt3 = 4,

it follows the elements XiEec. satisfying [I-I, Xi] = O (Theorem 1):

                              oo                  Xi = adq-'12 =-; + (42 - 2aqi!2) ,
                             Oq 0q
                  X2 = - (4 - 3atq-'i2) --a-,- + (3t4 - 4q) -e- ,

                                    Oq Oq
                             oa                  X3 = aq-'12 :-; + 4 -- ;
                            Oq Oq

and also the elements tuiEXr up to a multiple of dt (Theorem 2):

                     tui = (d2 - 2aq'!2)ip - aojq-i12e,

                     to2 = (3t4 - 4q) ip + (4 - 3atq-i!2)e,

                     tu3 = 4di - aq-'12e.

Therefore conserved quantities of (9), e.g., S2i = - ix,co3 and S[22 = ix,co2 are written

respectively as

                        91 = 42 - 4aql12,

                        92 == d3 - 6a4q'12 + 6a2t,

while (11) yields -ir,co2 == 9i (I7o =X3) also. By putting t=x, q=V+e2 and
a= 23i2(e/m)-'!2nl, the conserved quantities 9i and 92 lead respectively to those

(Eq.(5) and (6) in [8]) obtained by Parsons. For S2,, since 02L/042=1, (25) is
wrltten as

                                oo                   Xn, = 3a4qM'12 .-, + 3(d2 - 2aq'!2) -,
                                Oq Oq
which is used in (31) to obtain the Poisson product

                     {9i, 92} = - Xn,(9i) == - 12a2.
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