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                            1. Introduction

   Some biological phenomena exhibit a waveform which travels without change of
shape and has a constant speed. Keller and Segel [4] have put forward a mathematical

model for chemotaxis in a bacteria-substrate mixture to describe the phenomena of
traveling bands observed by Adler [1]. The simplified model is described by two
partial differential equations

,i.i) gl-8,G/-ct2g/)•
                            Os 02s

a2) brt =eo.,-b,
where ct ÅrO and s2 O. In the model, b(x, t) is the density of the bacteria at position

x and time t and s(x, t) denotes the concentration of the critical substrate.

    A traveling wave of (1.1), (1.2) is a solution having the form (b(x, t),s(x, t)) ==

(B(x-ct),S(x-ct)), where the constant c is refered to as the wave speed. By
introducing the traveling coordinate z = x - ct, the partial differential equations (1.1)

and (1.2) are reduced to the system of two ordinary differential equations on R

(1 3) o= (B'-ctgs'+cB)',

(1.4) O== sS"+cS'-B,
where ' = d/dz. As mentioned in [8], this system is considered under the conditions

(1.5) B;) O, S.co.B(z)dz == N,

(1.6) S;}) O, S(- co)-O, S(oo)-s.,
where N and s. are given positive numbers.
   When s == O, for ct År 1 Keller and Segel [4] have given explicit traveling waves,
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which have compared with experimental results. For ct f{1 Odell and Keller [9]
obtained an explicit solution (B(z), S(z)), which h.as an interesting feature such that

             B(z) = S(z) = O(z f{ z,) and B(z) År O, S(z) ÅrO(z År zo)

for some zo if ct Åq 1. Such a solution is called a singular solution. More general
systems have been studied by [12] numerically, and by [2, 5,10,11] analytically.
When 6 År O and ct År 1, the band propagation has been studied by [3] both numerically

and experimentally. Nagai and Ikeda [8] have proved the existence of traveling waves
and studied the linearized instability of traveling waves for some classes of perturbations

decaying at infinity. We refer to [7, 13] for mathematical models of biological waves.

    In this paper we deal with the case

                            6ÅrO and ct s{ 1.

Under the condition the existence of traveling waves will be shown, and for the case
ct Åq 1 the traveling waves are shown to be singular. We also discuss the dependency
of traveling waves with respect to ct and 6.

                             2. Main results

    Solutions of (1.3)-(1.6) are defined in the following way because of singularity in
(1.3). T(R) consists of all real valued functions (B,S)EC(R)Å~C'(R) such that
BECi(P(S)), where

                          P(S) = {zeRlS(z) År O}.

For (B, S)ET(R) we put

                                B
                         1 B' - ct s- S' + cB for zEp(s),

                   J(Z) ==io forzÅëp(s).

Our problem is to find (B, S)ET(R) and ceR satisfying

(2.1) JEC'(R) and J' =O in R,
(2.2) SEC2(R) and ÅíS"+cS'-B=OinR
under the conditions (1.5) and (1.6).

   As will be shown in Lemma 3.1 the traveling wave solution (B, S) satisfies the
relation

               B= CÅ~F(z, S) for some positiye constant C,

where F(z, S) is given by
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(2.3) F(z, S)=e'czsa.
Using a shift in z-coordinate system, we can assume B=F(z, S). Such a solution
(B, S) is called the normalized traveling wave, for which the problem is reduged to a

problem for a single equation with respect to S to obtain the following theorem.

    THEoREM 2.1. (i) For given N, s. ÅrO there exists a traveling wave solution (B, S)
which is unique up to shift in z-coordinate system, and the wave speed c is uniquely

determined by c = N/s..
    (ii) varhen ct = 1, B(z) ÅrO and S(z) ÅrO for zER.
    (iii) PVhen ctÅq1, P(S)=:(zo, oo) for some zoER, that is, (B,S) is a singular
solution.

    For ÅíÅr-O we denote the normalized traveling wave solution of (1.3)-(1.6) by
(B,,S,). When6=O, such a solution is given explicitly in [9] as follows: In the
case ct = 1

so(z) = s. exp(- 2, exp(- ez))

and in the case ct Åq1

so(z) = [(sin-a + ct-mtt2 1e-cz)+]i !' ct ,

where (a)' =max{a, O}. We then have the following theorem.

   THEoREM 2.2. Il S, - So llL.. = O(6) and ll B, - Bo II.. = O(efi) as e --År O, i,vhere fi == ct

if OÅq ct Åq1 and OÅq6Åq1 if ct == 1.

           Figure 1. Profiles of the exact solutions (F.' -- O.O).
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    By Theorem 2.2, (Bo,S,) is approximated by (B,,S,) when s is sufliciently
small. We are then concerned with the dependency of the band shape (the shape of
B,) with respect to ct and Åí. Figures 1-3 show the profiles of bacterial bands. The
curve A is for the case ct = 1.0, the curve B for the case ct = O.5 and the curve C for

the case ct = O.2. When 6 = O, the profiles of the exact solutions are shown in Figure 1.

The bacterial bands become steeper in the rear and narrower as ct decreases. When
s År O, the profiles of numerical solutions say that the bacterial bands have the same

properties as in the case s =O (see Figures2 and 3).

Figure 2. Profiles of numerical solutions (e = O.1).

           Figure 3. Profiles of numerical solutions (s = 1.0).

                  3. A single equation related to (1.3), (1.4)

    For given N, s. År O let (B, S) be the traveling wave solution with the wave speed

c. In order to reduce (1.3), (1.4) to a single equation, we need the following lemma.
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   LEMMA 3.1. (i) S'(Å} oo) =O and S' År. O.

   (ii) B(z) == Ce'CZSct(z) for a constant C År O.

   (iii) c = N/s..

   Proof. By using the same way as in the proof of Lemma 2.1[8], (i) and (iii)

are proved. To prove (ii) we put

                         z, = inf {zGR1S(z) År O}.

When zo=- oo, S(z)ÅrO for zER. Hence, (ii) is proved in the same way as in
Lemma 2.1[8]. We will prove (ii) in the case when - oo ÅqzoÅq oo.
   By S' 2}r O and the definition of z,, we have P(S) == (zo, oo). Hence, by (2.1) we

obtain

                           s'                     B' - ct -B+ cB =O for zÅr zo,
                           s

which implies that B(z) ÅrO for zÅr zo and

(3.1) B(z)=Ce-CZS"(z) forz}i zo,
where C is a positive constant. For zÅqzo, it follows from (2.2) that B(z)=O.
Therefore (ii) holds for zER. Thus the proof is complete.

    Using a shift of (B, S) in z-coordinate sysytem, we can take C in (3.1) to be 1,
which means that (B, S) can be a normalized traveling wave. S(z) in this case is a

solution of the problem

(3.2) ÅíS"+cS'-F(z, S) =-O in R,
(3.3) S;}) O, S(- oo)-O, S(co) -= s.,

(3.4) F(z, S)EL' (R),
where c= N/s. and F(z, S) is the same one as in (2.3).
    The fo11owing lemma is used to prove the uniqueness of solutions of (3.2)-(3.4)

and that a solution of (3.2)-(3.4) is singular when ct Åq 1.

    LEMMA 3.2. Let -oo saÅqbf{; co. Suppose that Si,S2EC2(a, b) and

(3.5) 6Sl' +cSl-F(z, S,) sg O, 6SS' +cSS-F(z, S,) ;})O in (a, b).

If S2(a) s{ S,(a) and S,(b) f{! S,(b), then S,(z) f{ S,(z) on (a, b).

    Proof. For JiV== S2-S,, it follows from (3.5) that

(3.6) eW"+cW' ;}i F(z, S2)-F(z, Si)•
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Let us assume that sup{W(z)laÅqzÅqb}ÅrO. Since W(a) f{gO and W(b) sg O, there
exists z,e(a, b) such that W(zo) = max{W(z)laÅqzÅq b} År O. At the point z,, W" gO

and W'=O. Using these in (3.6), we have

                 O 2 ÅíW"(z,) ;}l F(zo, S2 (zo)) - F(Zo, Si (Zo)) År O,

which gives a contradiction. Hence, our assertion has been proved.

    Let S be a solution of (3.2)-(3.4) and put B == F(z, S). It is easily seen that
S' }}r O and S'(Å} co) = O, from which P(S) is an interval, J =- O and See.B(z)dz == N.

Hence, (B, S) is a normalized traveling wave, which means that the problem for
(1.3)-(1.6) is reduced to the problem for (3.2)-(3.4). We also note that the uniqueness

of solutions holds for (3.2)-(3.4) by Lemma 3.2.

    LEMMA 3.3. (i) A normalized traveling wave of' (1.3)-(1.6) is a solution of
(3.2)-(3.4).

    (ii) For a solution S of' (3.2)-(3.4), (B, S) with B == F(z, S) is a normalized traveling

wave qf (1.3)-(1.6) with wave speed c == N/s..

    (iii) The uniqueness holds .fbr the problem (3.2)-(3.4).

    LEMMA 3.4. For a solution S of (3.2)-(3.4) the .folloixving assertions hold.

    (i) vahen ct = 1, S(z) ÅrO for zER.
    (ii) When ct Åq 1, ,for 6o ÅrO there exists zi such that fbr OÅq e; Åq eo

                            S(Z) =' O (Z S Zi)•

    Proof. Since the assertion (i) is easily shown, we prove (ii) by using Lemma
3.2. We choose 6 and zo so that

                      2
                 6 År i-:-tt, Åío6(fi - 1) + c6 - e-czosa.ua ' g o,

and define the function W on (- oo, zo) by

                 w(.) =. fsoo (z - zo + 1)ll for zo - 1 Åqz sg z,,

                        ÅqO forzfg zo-1.
Then it is clear that

                     S(- oo) == W(- co), S(zo) S W(zo).

For zo - 1 ÅqzÅq zo,

    Åíw"+cW'-F(z,W)
      = s. (z - zo + 1)iS-2 {Åí6(fi - 1) + c6(z - zo + 1) - e-czsa.u i (z - zo + 1)afiHB+2}

      f{g s. (z - zo + 1)fi-2 {s6(6 - 1) + c6 - e-czosa.' i}

      f{ o,
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from which we have

                 eW"+cW'-F(z, W) sgO in (- co,zo).

Hence, by Lemma 3.2 we obtain

                         S(z) f{ W(z) (z S zo),

which implies (ii). Thus the proof is complete.

                    4. Proofs of Theorems 2.1 and 2.2

   Proof of Theorem 2.1. By Lemmas 3.1 and 3.3, we have c=N/s. and the
uniqueness of solutions up to shift in z-coordinate system. The assertion (iii) follows

from Lemma 3.4. For the proof of existence it sufficies to show the existence of
solutions of (3.2)-(3.4).

   Let us consider the problem

(4.1) w"(y) =pyqwa(y) in (O, oo),

(4.2) w(+O) == s. and w(y) 2}i O, w'(y) f{gO (OÅqyÅq oo).

Here p and q are given by

                      p=t(g)e'2 and q==s-2.

The existence of solutions of (4.1), (4.2) is guaranteed by [6]. With a solution w(y)

of (4.1), (4.2), we define S(z) by '
                     s(z) - w(y), y = 2exp (- gz)

We see that S(z) satisfies (3.2), S2O and S(co)=s.. In order to prove that S is a
solution of (3.2)-(3.4), we have to show that (3.4) and S(- oo) = O.

   Let us prove (3.4). It follows from (4.1) that

                          (yw')t = pyq+iwa + w'.

By integrating this relation on (yi, y2)(yi År O), we have

(4.3) pj:i2 yq+i wa (y) dy s-y, w' (y,)+w(yi),

from which we get

(4'4) .(,Åé yq"wct (y) dy Åq+ ..
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Since wEC[O, oo), (4.4) implies that yq"w"(y) is integrable on (O, co). Then (3.4)

follows from

                  j'ff. e-cz sa (z) dz = ( g )Åí - ' jl,co yq + i wct (y) dy•

    We next show S(- oo)=O for the case ct = 1. By (4.2) there exists w(+ oo)(;}i O).

Assume w(+ co)ÅrO. This assumption together with (4.3) implies

Sco yq+idy Åq co,

which contradicts Scoyq"dy= oo. Hence we have w(+ oo)=O, which implies that
S(- oo)=w(+ oo)=O. Thus the proof of Theorem 2.1 is complete.

    Proof of Theorem 2.2. For U=S,-So we begin by showing the relation

(4.s) e(U2(z))' +cU2(z) rE{; 2s j'.i!'.IS61dz llUllLoo for zER•

When ctÅr1/2, SoEC2(R) and S6'EL'(R)nLco(R). Hence, we have (4.5) in the same
way as in the proof of Theorem 1.2 in [8]. Let us consider the case ct sg 1/2. For
zo such that So(z) == O(z s zo) and So ÅrO(z Årzo), S6' is discontinuous at z= zo. But
we see S6'EL'(R). Hence, a slight modification of the proof in the case ct År 1/2 gives
(4.5).

    By using the same way as in Theorem 1.2 [8], it follows from (4.5) that

                                    2e
                            Il U llLao fi{I - 11 S6' 11Li,

                                    c

which implies

(4.6) IIS,'SollL-"O(8) aS 8-O•
    For the case ct Åq 1, by Lemma 3.4 we have

                           S,(z)iO (z f{ zo)

for OsgÅq 1, where zo is independent of e. Hence,

                      11 B, - Bo IILco f{l e-CZO II S, - So Il2co,

from which we have II B, - Bo IIL. = O(ect) as Åí . O•

    Let us consider the case ct = 1. Choose p satisfying pÅr c, and take zo and a

such that

                        e-CZo = 2p2, a = sco e'PZO.
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Define the function W(z) on (- oo,zo] by

                                    W(z) == aePz.

For OÅqÅísg1 and zÅq zo, we have

                      6w " + cW' - e-CZW = (Åíp2 + cp - e-CZ) W

                        Åq (2p2 ne e'cz) Ws O.

Since S,(- co)= W(- oo) and S,(zo) f{ s. = W(zo), by Lemma 3.2 we obtain

(4.7) S,(z)saePZ forzs{ zo and OÅq6s! 1.
    For 6 with OÅq6Åq1, we choose p in (4.7) so that (1-6)pÅrc, and put
q=(1 - 6)p. For z f{; z,, it follows from (4.6) and (4.7) that

              IB,(z) - Bo(z)I = e(q"C)Z{e-PZlS,(z) - So(z)I}i-BlS,(z) - S,(z)lfi

                            s; Const. IS,(z) - So(z)IP

                            Åq Const. sB.

For zÅr- z,, by (4.6) we have

                   IB,(z) - Bo(z)l s: effCZO IS,(z) - So(z)l fi{; Const. 66.

Hence, we obtain ll B, - Bo llL. = O(efi) as 6. 0. Thus Theorem 2.2 has been proved.
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