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1. Introduction

Some biological phenomena exhibit a waveform which travels without change of
shape and has a constant speed. Keller and Segel [4] have put forward a mathematical
model for chemotaxis in a bacteria-substrate mixture to describe the phenomena of
traveling bands observed by Adler [1]. The simplified model is described by two
partial differential equations
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where o > 0 and £ > 0. In the model, b(x, t) is the density of the bacteria at position
x and time t and s(x, t) denotes the concentration of the critical substrate.

A traveling wave of (1.1), (1.2) is a solution having the form (b(x, 1), s(x, t)) =
(B(x — ct), S(x — ct)), where the constant c¢ is refered to as the wave speed. By
introducing the traveling coordinate z = x — ct, the partial differential equations (1.1)
and (1.2) are reduced to the system of two ordinary differential equations on R

B ’
(1.3) 0= (B’ — a§S’ + cB) ,

(1.4) 0=eS"+cS" — B,

where ' = d/dz. As mentioned in [8], this system is considered under the conditions
(1.5) B >0, J B(z)dz = N,

(1.6) §>0, S(— ) =0, S(c0) = s,

where N and s, are given positive numbers.
When ¢ =0, for « > 1 Keller and Segel [4] have given explicit traveling waves,
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which have compared with experimental results. For « <1 Odell and Keller [9]
obtained an explicit solution (B(z), S(z)), which has an interesting feature such that

B(z)=S(z)=0(z<z,) and B(z)>0, S(z) > 0(z > z)

for some z, if « < 1. Such a solution is called a singular solution. More general

systems have been studied by [12] numerically, and by [2, 5, 10, 11] analytically.

When ¢ > 0 and « > 1, the band propagation has been studied by [3] both numerically

and experimentally. Nagai and Tkeda [8] have proved the existence of traveling waves

and studied the linearized instability of traveling waves for some classes of perturbations

decaying at infinity. We refer to [7, 13] for mathematical models of biological waves.
In this paper we deal with the case

e>0 and a<1.

Under the condition the existence of traveling waves will be shown, and for the case
o < 1 the traveling waves are shown to be singular. We also discuss the dependency
of traveling waves with respect to « and e.

2. Main results

Solutions of (1.3)—(1.6) are defined in the following way because of singularity in
(1.3). T(R) consists of all real valued functions (B, S)e C(R) x C*(R) such that
Be CY(P(S)), where

P(S) = {zeR|S(z) > 0}.
For (B, S)e T(R) we put

B'—a?S’+cB for ze P(S),
J(z) =
0 for z¢ P(S).

Our problem is to find (B, S)e T(R) and ceR satisfying

@.1) JeC'(R) and J' =0 in R,
(2.2) SeC?*R) and &S”"+c¢S'—B=0in R

under the conditions (1.5) and (1.6).
As will be shown in Lemma 3.1 the traveling wave solution (B, S) satisfies the
relation

B=Cx F(z,9) for some positive constant C,

where F(z, S) is given by
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(2.3) F(z, S) = e =S™.

Using a shift in z-coordinate system, we can assume B = F(z, §). Such a solution
(B, S) is called the normalized traveling wave, for which the problem is reduced to a
problem for a single equation with respect to S to obtain the following theorem.

THEOREM 2.1. (i) For given N, s, > O there exists a traveling wave solution (B, S)
which is unique up to shift in z-coordinate system, and the wave speed c is uniquely
determined by ¢ = N/s,.

(ii) When o =1, B(z) >0 and S(z) > 0 for zeR.

(i) When a <1, P(S)=/(zy, ) for some zy,€R, that is, (B, S) is a singular
solution.

For ¢ >0 we denote the normalized traveling wave solution of (1.3)-(1.6) by
(B, S,). When ¢ =0, such a solution is given explicitly in [9] as follows: In the
case oo = 1

So(2) = 5, exp(— izexp(— cz)>
c

-1 + _,,&_&
SO(Z) = {(sio_“ + a2e°cz> }1 ,
C

where (a)* = max {4, 0}. We then have the following theorem.

and in the case a < 1

THEOREM 2.2. ||S, — So .= = O(¢) and | B, — By ||~ = O(e®) as ¢ = 0, where ff = o
fOo<oa<land 0<f<1lif a=1

—4 0 7

Figure 1. Profiles of the exact solutions (¢ = 0.0).
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By Theorem 22, (B,, S,) is approximated by (B,, S,) when ¢ is sufficiently
small. We are then concerned with the dependency of the band shape (the shape of
B,) with respect to « and & Figures 1-3 show the profiles of bacterial bands. The
curve A is for the case a = 1.0, the curve B for the case o = 0.5 and the curve C for
the case o = 0.2. When ¢ = 0, the profiles of the exact solutions are shown in Figure 1.
The bacterial bands become steeper in the rear and narrower as a decreases. When
g > 0, the profiles of numerical solutions say that the bacterial bands have the same
properties as in the case ¢ =0 (see Figures 2 and 3).

l -
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Figure 2. Profiles of numerical solutions (¢ = 0.1).

1
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Figure 3. Profiles of numerical solutions (¢ = 1.0).

3. A single equation related to (1.3), (1.4)

For given N, s, > 0 let (B, S) be the traveling wave solution with the wave speed
¢. In order to reduce (1.3), (1.4) to a single equation, we need the following lemma.
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LemMa 3.1. (i) S(£ 0)=0 and "> 0.
(ii) B(z) = Ce “S*(z) for a constant C > 0.
(i) ¢=N/S,.

Proof. By using the same way as in the proof of Lemma 2.1[8], (1) and (iii)
are proved. To prove (ii) we put

zo = inf {zeR|S(z) > 0}.

When z, = — o, S(z) >0 for zeR. Hence, (i) is proved in the same way as in
Lemma 2.1[8]. We will prove (ii) in the case when — c0 <zy < 0.

By $' >0 and the definition of z,, we have P(S) = (o, ). Hence, by (2.1) we
obtain

S/
B’—a§B+cB=O for z > z,,

which implies that B(z) > 0 for z > z, and
3.1 B(z) = Ce™“*S%(2) for z > zq,

where C is a positive constant. For z < z,, it follows from (2.2) that B(z) = 0.
Therefore (i) holds for zeR. Thus the proof is complete.

Using a shift of (B, S) in z-coordinate sysytem, we can take C in (3.1) to be 1,
which means that (B, S) can be a normalized traveling wave. S(z) in this case is a
solution of the problem

(3.2) ¢S" + ¢S’ — F(z,S)=0 in R,
(3.3) S>0, S(— ) =0, S(0) = 5.,
(3.4) F(z, S)e L'(R),

where ¢ = N/s,, and F(z, S) is the same one as in (2.3).
The following lemma is used to prove the uniqueness of solutions of (3.2)-(3.4)
and that a solution of (3.2)-(3.4) is singular when « < 1.

LEMMA 3.2. Let — oo <a<b<ow. Suppose vthat S, S,eC?(a, b) and
(3.5) eS| +c¢Sy —F(z,8) <0, &85 + ¢S, —F(z,$,) =0 in (a, b).
If S,(a) < S (a) and S,(b) < S,(b), then S,(z) < §,(z) on (a, b).

Proof. For W= 8§, — S, it follows from (3.5) that
(3.6) eW” + cW' > F(z, S;) — F(z, Sy).
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Let us assume that sup {W(z)la <z <b}>0. Since W(a) <0 and W(b) <0, there
exists zy€(a, b) such that W(z,) = max {W(z)la <z < b} > 0. At the point z,, W” <0
and W' =0. Using these in (3.6), we have

0> eW"(zo) 2 F(zo, S2(20)) — F(zo, S1(20)) > 0,

which gives a contradiction. Hence, our assertion has been proved.

Let S be a solution of (3.2)-(3.4) and put B= F(z, S). It is easily seen that
§">0 and §'(+ ©) = 0, from which P(S) is an interval, J =0 and [ B(z)dz = N.
Hence, (B, S) is a normalized traveling wave, which means that the problem for
(1.3)~(1.6) is reduced to the problem for (3.2)—(3.4). We also note that the uniqueness
of solutions holds for (3.2)—(3.4) by Lemma 3.2.

LemMma 3.3, (i) A normalized traveling wave of (1.3)-(1.6) is a solution of
(3.2)-(3.4).

(i1) For a solution S of (3.2)~(3.4), (B, S) with B = F(z, S) is a normalized traveling
wave of (1.3)—(1.6) with wave speed ¢ = N/s,,.

(iii)  The uniqueness holds for the problem (3.2)—(3.4).

LEMMA 3.4, For a solution S of (3.2)~3.4) the following assertions hold.
(1) When a=1, S(z) >0 for zeR.
(iy When o < 1, for ¢, >0 there exists z, such that for 0 <& < g,

S(z)=0 (z < zy).

Proof. Since the assertion (i) is easily shown, we prove (ii) by using Lemma
3.2. We choose f§ and z, so that

2
B>1ms  wBB-Dtche s <0,
— o

and define the function W on (— o0, z,) by

Sz —zo+ 1) forzy — 1 <z < z,,
0 forz<z,—1.

W(z) = {

Then it is clear that
S(— o0) = W(— ), S(zo) < Wi(z).

For z, — 1 <z < 2,
eW" + cW' — F(z, W)
=5,z—zo+ D2 {eBB—- D+ cflz—zo+ 1) —e =% Hz —zo + 1) EF2}
<so(z—2zo + 1P 2{eB(B— 1) + cf — e =05 1}

<0,
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from which we have
eW” + cW' — F(z, W) <0 in (— 00, zg).
Hence, by Lemma 3.2 we obtain
S < Wz (z<2),

which implies (ii)). Thus the proof is complete.

4. Proofs of Theorems 2.1 and 2.2
Proof of Theorem 2.1. By Lemmas 3.1 and 3.3, we have ¢ = N/s, and the

uniqueness of solutions up to shift in z-coordinate system. The assertion (iii) follows
from Lemma 3.4. For the proof of existence it sufficies to show the existence of
solutions of (3.2)-(3.4).

Let us consider the problem
(4.1) w'(y) = py'w(y)  in (0, ),
4.2) w(+0)=s, and w(y) >0, w(y)<0 0 <y < o0).

Here p and g are given by

1 £—2
p=—<f> and g=¢-—2.
e\e

The existence of solutions of (4.1), (4.2) is guaranteed by [6]. With a solution w(y)
of (4.1), (4.2), we define S(z) by

S(z) = w(y), y=§exp(—£z).

&

We see that S(z) satisfies (3.2), S > 0 and S(o0) =s5,. In order to prove that S is a
solution of (3.2)-(3.4), we have to show that (3.4) and S(— o) =0.
Let us prove (3.4). It follows from (4.1) that

(yw/)/ — pyq+1wa + Wl.

By integrating this relation on (y;, y,)(y; > 0), we have

(4.3) pj Zy"HW“(y)dy < =y W)+ wi),

Y1

from which we get

(4.4) f Y IwA(y)dy < + .

y1
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Since weC[0, ), (4.4) implies that y?*!'w*(y) is integrable on (0, cv). Then (3.4)

follows from ,
© ¢ e—1 foo
f e “S*(z)dz = (—) j Y iwe () dy.
- € 0

We next show S(— oo0) = 0 for the case « = 1. By (4.2) there exists w(+ o0)(= 0).
Assume w(+ oo) > 0. This assumption together with (4.3) implies

J yi*dy < oo,
which contradicts j'"’ yi*tdy = oo. Hence we have w(+ o0) =0, which implies that

S(— o) = w(+ ) =0. Thus the proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. For U =S8, — S, we begin by showing the relation
4.5) e(U%(z)) + cU%2) < 28J [Soldz || U || fe for zeR.

When a > 1/2, Soe C*(R) and Sje L'(R)nL™(R). Hence, we have (4.5) in the same
way as in the proof of Theorem 1.2 in [8]. Let us consider the case a < 1/2. For
zo such that S,(z) = 0(z < z4) and S, > 0(z > zp), Sg is discontinuous at z = z,. But
we see S;e L'(R). Hence, a slight modification of the proof in the case o > 1/2 gives
4.5).

By using the same way as in Theorem 1.2 [8], it follows from (4.5) that

2¢
UL S?IISSIIU,

which implies
(4.6) IS, — SollLe =0(¢) as &—0.
For the case a < 1, by Lemma 3.4 we have
S.(z2)=0 (z < zy)
for 0 < ¢ < 1, where z, is independent of &. Hence,
IB, — Bollo < e || S, — Sollix,

from which we have |B, — By« = 0(&%) as ¢ —>0.
Let us consider the case o« = 1. Choose p satisfying p > ¢, and take z, and a
such that

e 0 =2p%  a=s e "
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Define the function W(z) on (— o0, z,] by

W(z) = ae™.

For 0 <e<1 and z < zy, we have

ew" +cW —e “W=(ep> +cp—e SW
<Qp* — e )W<O.

Since S,(— o) = W(— o) and S,(zo) < s, = W(z,), by Lemma 3.2 we obtain

4.7

S.(2) < ae?* for z<z,and 0 <e< 1.

For B with 0 <pf <1, we choose p in (4.7) so that (1 —f)p>c, and put

g= (1 —pP)p. For z <z,, it follows from (4.6) and (4.7) that

|B,(2) — Bo(z)| = 9797 {e77*|S,(2) — So(2)|}' "*1S,(2) — So(2)I
< Const.|S,(z) — So(2)1?

< Const. &”.

For z > z,, by (4.6) we have

|B,(z) — Bo(2)] < e™*°8,(z) — So(z)| < Const.&”.

Hence, we obtain | B, — B |- = O(¢f) as ¢ > 0. Thus Theorem 2.2 has been proved.
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