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Quadrupole Moments of Odd-Neutron Nuclei

By Hiroyuki NAGAI and Hajime NARUMI

Yukawa Laboratory, Institute for Chemical Research, Kyoto University

Without taking into account the effect of configuration mixing, we attempt to calcu-
late electric quadrupole moments of odd-neutron nuclei on the basis of the single configura-
tion model. The quadrupole moments of odd-neutron nuclei are assumed to be due to the
promotion of two protons from the zeroth-order proton state of seniority zero to the states
of seniority two. These mixing coefficients of the ground state are determined by fitting
the wave function to the magnetic moment of the odd-neutron nucleus considered. We
have a fairly good agreement between the calculated and observed values except for the
nuclei with very large quadrupole moments.

1. Introduction

The extreme single-particle model manifests its most serious deficiency in accounting
for the nuclear quadrupole moments, particuiarly, those of odd-neutron nuclei, although
there is a definite correlation between nuclear quadrupole moments and nuclear shell struc-
ture. The quadrupole moment of the nucleus with a single proton in the orbit j outside
a core with zero angular momentum is Q;\*:
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D= 1
On the other hand, the single-particle shell model gives zero quadrupole moments for odd-
neutron nuclei, since the neutrons carry no charge and since the quadrupole moment
Q.ecoir induced by the effect of the recoil of the core
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is negligible small except extremely light nuclei. But the facts that the quadrupole mo-
ments of odd-neutron nuclei can be just as large as those of odd-proton nuclei and that
the behaviour of odd-neutron nuclei with the number of neutrons outside their closed
shells is similar to that of odd-proton nuclei with respect to the number of extra protons
seem to indicate that the nuclear angular momentum should be shared with the protons.
As an explanation of the fact that the odd-neutron nuclei have electric quadrupole mo-
ments the following three prescriptions have been proposed by various authors. First, in
the individual particle model, indeed, the angular momentum of a nucleus is shared
among all nucleons outside closed shells and therefore the odd-neutron nuclei in which
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there are loose protons outside closzd shells can possess electric quadrupole moments.
Flowers has calculated as a particular example quadrupole moments of j* configurations
for which I=j, T=1/2 and v== 1, where [ is the total angular momentum of a nucleus
and 7 the total isotopic spin and » the seniorily quantum number. His results are as
follows": for an odd-ncutron nucleus
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and by the way for an odd-proton nucleus
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We find in several light nuclei observations in good agreement with this result, But
eflects of this kind for heavier nuclei in which the neutron unfilled shell is different
from the proton unfilled shell cannot be expressed in the simple form. Secondly, the col-
lective model? ascribes quadrupole moments of odd-neutron nuclei to core deformation
induced by an extra neutron. However, this model gives 100 large quadrupole moments
for light and medium heavy odd-neutron nuclei.  Finally, the mixing of excited config-
urations to the ground configuration given by the single-particle shell model can also
give quadrupole moments for odd-neutron nuclei, In configuration mixing approach,
it is assumed that this admixture is so small that the effects proportional to the square
of the mixing coefficients can be neglected. The mixing coefficients a’s are given by the
perturbation theory in terms of the off-diagonal elements of residual nuclear interactions
and the energy difference between the ground and excited configurations. All the excited
configurations are taken into account for which the off-diagonal elements of the
quadrupole moment operator Qop=2,77(3 cos®#; — 1) donot vanish. The quadrupole mo-
ments of odd-neutron nuclei are only the contributions from the off-diagonal elements of
the quadrupole moment operator Q,, between the ground and excited configurations,
Thus, calculated values for the quadrupole moment in configuration mixing are in ex-
cellent agreement with the observed values®.

However, we donot very well know about the nuclear interaction between f{ree two
nucleons, still less residual nuclear interactions which should be considered in shell model
calculation. And it is diffcult to determine precisely the energy difference between the
ground and excited configurations. Then, without taking into acccount the effect of con-
figuration mixing, we attempt to calculate electric quadrupole moments of odd-neutron
nuclei on the basis of the single configuration model. The quadrupole moments of odd-
neutron nuclei are assumed to be due to the promotion of two protons in the unfilled
shell from the zeroth-order proton state of seniority zero to the states of seniority two,
And it is assumed that in the correct ground state wave function there exists the large
admixture of these states. The mixing cocfficients of the ground state are determined by
fitting the wave function to the magnetic moment of the odd-neutron nucleus considered.
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II. Caleulation of matrix elements for the electric quadrupole
moments of odd-neutron nuclei

Firstly, we explain the essential-features of our method in the simplest case, i.e. the
system consisting of one neutron and two protons outside closed shells. Let us denote the
zeroth-order ground state given by the single-particle model by

Jro(f, jiv=0(0), J=M=]),

where j is the total angular momentum of the odd neutron and j, those of the extra protons.
Then we represent the excited states in which two j,-protons in the unfilled shell promote
from the zeroth-order ground state of seniority zero to the states of seniority two as

P, jlv=2(), J=M=))
where J’ is even and restricted by the conditions 2j, — 1 >/=2j+] == |j=J']. How-

ever, it can easily be scen that only the state with J'=2 gives nonvanishing off-diagonal
elements of Q,, between it and the zeroth-order ground state given by the shell model. In
the present paper we assume that the correct ground state wave function is the linear
combination

W(J=M=])=ctro (j, Fo=000), J=M=])+ Br(j, jio =22, T=M=}. (4)

In order to calculate the matrix elements of the quadrupole moment operator J.p we
transform the wave functions in Eq. (4) as follows:
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where U is the modified Racah coefficient defined by Jahn® and {J" M m |J” jJ= M=p>
is the Clebsch-Gordan Coefficient. Using this expression for the wave function, we can
easily calculate the diagonal matrix elements of Q. as follows:
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On the other hand,
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V is defined by Racah and IV is the Racah coefficient.”’
Similarly, off-diagonal elements of the quadrupole moment operator ., between r(j,
ji(0), J=M=j) and + (j, TN, J=M=) are easily obtained as
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From the triangle conditions among the arguments of the Racah coefficients in Eq. (7) it
can easily be seen that only in the case of J'=2 we have non-vanishing elements. Then,
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Now, let us consider the system consisting of an odd number of neutrons in the
orbit j and an even number of protons in the orbit j, outside the closed shells. We write
down the zeroth-order ground state of the odd-neutron nucleus given by the single-
particle model as

Yoo =UT,=}), jfv=00J,=0), J=j=M).

Then we represent the states in which two protons in the unfilled j, —shell promote the
seroth-order state of seniority zero to the states of seniority two as

W= 1T=j), flv=2(J,70), J=j=M).

Here, also we assume that the correct ground state wave {unction is the linear combination
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7 (5 jiT=j=M)=cro(jo=1{Ja=]), jlv=00,=0),J=j=M)
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In order to calculate the matrix elements we transform the wave functions as follows:
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Using this expression for the wave function, we can calculate the matrix elements of Q.;
in the same way as in the simple case. The results are as follows:
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III. Comparison with the observed values and discussions

The mixing cocfficients of the ground state wave functions (4) and (4') are determined
by fitting the wave functions to the magnetic moment of the odd-ncutron nucleus con-

sidered. The expectation value of the magnetic moment operator

n o~ P -
B=g 25t g 20
for the state (4) is

(GiT=j=M| | jii]=j=M)
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where B*=1—a?, g;and g;, are the g factor of a j-neutron and that of the j,-proton. By
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fitting the theoretical magnetic moment (11) to the observed value we cannot determine
the sign of the mixing cocfficients & and 8. In principle, the mixing cocfficients should
be determined by solving the secular determinant equation for residual neutron-proton in-
teractions. If residual neutron-proton interactions are attractive as usual, o and (3 are
equal sign for the ground state. Then, we assume that both « and B3 are positive.

The calculation of the quadrupole moments was carried out only for the odd-neutron
nuclei with normal coupling by using those ¢ and 3 and the results obtained in the pre-
ceding section, We obtain the values listed in Table 1. The value of the parameter ro for
the nuclear radius was assumed to be 1.45x 107*%cm. We have a fairly good agreement
between the calculated and observed values for light and medium heavy odd-neutron
nuclei.

The validity of the assumption that in the correct ground state wave function there
exists the large admixture between the zeroth-order state given by the single particle shell
model with the proton state of seniority zero and the excited proton state of seniority two,
i. e. the validity of the assumption that those states are almost degenerate and therefore
the first order perturbation theory for the degenerate states applicable, must be considered
in detail.”

Table I. Calculated and observed values of quadrupole moments of oddncutron nuclei.

<ri> =0.642/3rp% ro=1.45% 10~ 13cm. The Qp, ar.'s are the hydrodynamical esti
mate of the collective model (reference 2). The Q¢ a,'s are the calculated values
by configuration mixing (reference 3)

Configuration
Nucleus Qobs Qeat Qc.m, Qn. .
neutron proton
£33 (cday2)! {(da2)? —0. 064 -0.03 —0.09 —0.22
S35 (d3j2)~? {dyj2)2 40,035 +0.03 -+-0.09 +0.22
Gar3 (&) (p3i)? ~0.21 =10 ~0.12 e ~1.2
Kr3 (8ai2)° (pas2)-? +0.15 +0, 14 (.28
Kres +0.23 +0. 14
Xem1 (372 (g7/2)* —-0.1 -0.07 | —~0.26
Hg?o! (pait | (hu2? | +0.42 +0.17 | 4070
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