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                                   SYNOPSIS
    This paper deals with the self-synchronization of mechanical vibrators in the

multidegree-of-freedom system, when the frequencies of the unbalancedrotors are near

a natural frequency to. of the system.
    By means of a transformation to the principal coordinate, the equation of motion

of the masses of the vibrating system can be represented as a series of elementary
oscillators. And to study single frequency resonance conditions, we can, to a first

approximation consider only one of the n equations of the vibrating system.

    The generating phase angle of the unbalanced rotors and the steady state
vibration of the system are derived by the method of averaging. The stability of

the steady state solution are analyzed by use of Routh-Hurwitz criterion.

1. INTRODUCTION
    The phenomenon of synchronization occurs in dynamical system as well as in

electric ciruits and automatic control systems.
    In the previous papers [1,2,3],the authors have discussed some problems,
i.e. the rotation of an unbalanced rotor dependent on oscillation of its axis, the rolling

mechanism due to small oscillation, the gearless low head screen or the vibro-motor

which has, on a rigid body two unbalanced rotors without the coupling to each, and

the automatic balancer.
    I.I.Blekhman [4] has studied the synchronization of mechanical vibrators on a
rigid body which can accomplish a translational oscillations with one degree-of-

freedom, by method of Poincare-Liapnov.
    In this paper, we investigate the synchronization of unbalanced rotors on some
rigid bodies of a n degree-of-freedom vibrating system by the method of averaging and

derive the periodic mode of the resonant vibrating, conveyer with multi-vibrators.
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                          NOMENCLATURE
   Oo: center of mass of the system at rest
   O: center of mass of the system in operation
   Oi: center of revolution of the i-th unbalanced rotor
O,-xy: fixed rectangular coordinate, axisOo-År' is parallei to the direction of

         motion of vibrator body
O-uv: movingcoordinate fixed to conveyer trough

    ep: angle of rotation of conveyer

   M: total mass of the system
  Mc: mass of conveyer trough
   Ic: moment of inertia of conveyer trough about center of mass
   Rc: distance between mass center of conveyer and that of system
  Mi.: mass of i-th vibrator body
   Ii.: moment of inertia of vibrator body about Oi
Ri, 6i: position of shaft of the i-th rotor, distance and angle from mass

         center, at rest
   6i: angle which makes Oou makes with OoOi
   vi: relative displacement of i-th vibrator body with respect to conveyer

         trough

ki,ci: spring constant and damping coefficient of the spring which connects
         i-th vibrator body to conveyer trough

  mi: unbalanced mass of the i-th rotor
miri: unbalanced mass moment of the i-th rotor

   Ji: moment of inertia of the i-th unbalanced rotor about center of shaft

   epi: angle of rotation of the i-th unbalanced rotor

   Ai: viscous damping of the i-th unbalanced rotor

   Li: torque of motor driving the i-th rotor
    s: number of vibrators
  tur: one of natural frequencies of the system
   zr: principal coordinate

   9: frequency of stationary rotation of vibrator

2. EQUATION OF MOTION
    Fig.1 shows the model of the system and coordinates.
    Vibrator body Mi i's constrained to move on a line vi which is parallel to the

axis v.

    The kinetic energy, the potential energy and Rayleigh's dissipation function,
neglecting the energies of the force of gravity and the damping force of the support,

can be written:
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                  s         M=Mc+2(Mio+mi), Mi=Mio+mi
                 i=1
                        s         I =Ic+McRg+2(Iio+MiR;)
                        i=1
and the directions of rotations of all unbalanced rotors are assumed clockwise.

   Applying Lagrange's equation, we obtain the differential equations of motion:

      liq' 'i+AiÅë i= miri{ g'sin q- dr'cos qi+ Riq' 'sin ( Si-qi)

                   +b'isinqi}+Li (i=1,2,•••,s)

     Mii 'i+ ci v' i+ kivi= Mi( Riq' 'cos 5i- g')

           +miri(Åë?•cosqi+Åë',sinqi) (i=1,2,•••,s)

                s     Mdr' + lexx =2 mj rj( Åëg•sin qj- Åë'jcos qj)
               J'= 1

                ss     Mg' + feyy = 2 mj rj( Åëg•cos qj+ Åë'jsin qj) -2 Mji'j

               j'=1 J'--1
     I Åë'+ kgq = ,:.il..],mj rjRj{ Åë',sin ( 6j - qj) - Åëg•cos ( Sj - qj)

                 s               +2M,R,cos S,• b',• (2)
                 j--1

Here we shallassume that each unbalanced rotor runs at high speed in comparison
with the frequencies wx, ca. and w., then the second terms on the left hand side in

last three equations of Eq.(2) may be neglected.

   The vibrators are considered alike, i.e.

       Mi=M2=''', ki==le2='''=ks

       m1=m2=•.. =ms=m, r1=r2==". rs--r
       Ji =12 =''' == ls == J, Ai == A2='"=A s=A, Li='"L s=L

EIiminating x, y and ep from Eq.(2) and neglecting smaller terms, we have the
following equations.

     MV+Kv=eF
      ip't+ epÅëi= eq2( D',sin q,+]llh{- bsinq, (3)
                           J==1
               + h5•sin( 5i- qi)•Ri} b'J•] + e7V

                                   (i=1,2,•••,s)
where

v=

Vl

V2
:
.

V3

, M=:[mzj), mzj=(i:,ib.',ig,1") [illl
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eFi --t- eqi(Åë?•cos qi+ ip'isin qi) -egzi i

               (i=1,2,•••,s)

                         2.lei mr           M,        b=M, ton-M,,                                         eql=Ml

        hi,.= M}RiRj cosa,cos a,, eq2=MJr

        hs•= Mi 5i cos s,cos s,, e;='MCt

        ep=-iÅrm, eN=`if

Putting eF= lOIin the fist equation of Eq.(3), we can get the natural frequencie

wi, •••, tos and modal column matrix [ptiJ•] of the system.
   The coordinates v can be related to the principal coordinates Z by the relatio]

                            V= [KZi,J]Z (4)
By means of transformation to the principal coordinates of the undamped system, th(

initial system (3) can be represented as follows:

     Z+AZ=eÅë
                         s     Åë'i = e q2( [pt ,] Zsin q i + ;.ll]= ,{ - bsinq i

          + h;•Risin( Si- qi)} [pt i] Z) + e( IV - gÅë i)

where (i=1,2,'",s)
A=

to? o ••• o
9 qZ eÅë=(a i,•] 'i(pt i,•) Te 17,

----O O ••• to 2s ' (a ij•] =(pt ij•) TM(pt iJ•]

(5)

 [pti] and [pt,] are ith and 7'th row vectors of the modal column matrix [ptii

respectively.

3. ANALYSIS
   To study single frequency resonance conditions of forced oscillation in the systen

we can, to a first approximation consider the equations describing the rotation,

motions of unbalanced vibrators and one of n equations of the oscillating systerr

   If the forced oscillations near the frequency to. are to be determined then th

equation in (s) referring to tu. is chosen. Thus we consider the equations.
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         Zr+te2rZr=eer
                       .. (6)         Åë'i=sf(qi,Åëi,Zr) Åqi=1,2,"',s)

The remaining (n-1) coordinates of the system are assumed to be far from resonance;

their oscillations will then be small in comparison with the resonance oscillations of

the coordinate Zr, and they will be neglected in the first approximation.

    By use of the method of averaging, we can get the conditions of stationary
synchronous rotations of unbalanced vibrators as following sections.

    3.1Conveyer with 2 Resonant Vibrators.
    For the system with two resonant vibrators, we obtain the natural frequencies

and the modal column matrix in the form

       22 2 can 2. tontui == 1-2h , to2-1-2b

(,tw]= [-l i,]
(7)

where
h= hi2 = h2i == MiR3o/I

R,, = R,cos6, = - R,cos S,

    3.1.1 In The Case of 9=w2
    Let us consider the problem in the useful case that the angular frequencies of

two unbalanced rotors are near the natural frequency w2. Neglecting the coordinate

Zi, Eq. (6) can be written in the form.

22 + to ;Z2 = 2r( flll-2sJi -2b)( Åë? cos qi + Åë'i sin ep i + ÅëZ cos q2

                    +ip',sinq,)-1e-g2b2,

ip'i= eq2(1-2b)Z2sinqi+EIV-epÅëi

ip'2 = eqZ( 1 - 2b) Z2 sinq2 + eN - ep Åë2

(8)

For E=O Eq.(8) describes a harmonic oscillation and rotations with constant frequ-
encies. Therefore for et O it is natural to expect that. the oscillations are approxi-

mately harmonic and frequencies epi,q2 are approximately constant, i.e. they vary
slowly.

    It is convenient to introduce the substitutions

                   ep, == 9t+e,

                   ep, == 9t +e, (9)
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                 Z,==A,cos (2t+=.,)
                 Z2 = -A2 to 2sin (2t + =. 2)

The new variablesei,e2,A2,:.2 will be slowly varying functions of time. They
represent the essential parameters of motion,i.e. ei,e2 are the generating phase angle

of unbalanced rotors, A2 is the amplitude and :.2 is the angular phase of oscillations.

   We may transform Eq.(8) to the form

                                .         A2 = -2( iq-'92 i) ., {(i+ 28-')cos(2t + e2)} sin( 2t + =. ,)

                               +(1+2S2)cos(2t+ e2)}sin(2t+ =.2)

             -:lf-2flft-sta22bin2(2t+=.2)

         ='2=-2r(i=ag2ivai4s-i-2b9i,A,{(i+28L')cos(2t+e,)

                                +( 1+ 28') cos( 2t + e 2)}cos( 2t + =. 2)

                  eg              -2( 1.2b) Sin 2( 2t + =. ,) +( w, -2)
                                                               (10)
          e'i= -eq2(1-2b)A2to2S2sin(9t+ ei)cos(2t+=.2)

              + e{N-p(2+ei)}
          e 2= - eq2(1-2b)A2 tu22 sin( 2t + e2) cos( 9t + =. 2)

              +e{N-p(9+ e'2)}

Since it is assumed that the variables are slowly varying function, Eq.(10) may be

averaged over one cycle as follows

                     .A2=4(iSqSf)2., {(i+28')sin( e,-=.,)

                                        egA2                      e2                +(1+2 o-)Sin( e2- =' 2)}-2( 1-2b)

tt2="4r(ir4}llYaJs7iii-2f)2.,A,{(i+2g')cos(e,-=.,) (ii)

                   +(1+ 28-L')cos( e2- =. 2)}+( tu2-2)

e'i == --l}-eq2(1-2b)A2to29sin( ei-E2)+e{N-p(2+ e' i)}

e' 2= --l}-eq2(1-2b) A2to29sin( e2- =.2)+e{N-p(9+ e2)}

                         (49)



    The conditions for existence of a stationary motion are

           A2=a2, E2=62, el= elo, e2= e2o
                         ... (12)                     d2= 62= elo= e2o=O

From Eq.aD and a2) we have

           eqi92{ sin( eio- e2)+sin( e2o- e2)}-2egto2a2=O

           eqi22{ cos( eio- e2) +cos( e2o- e2)}-4( 1-2b) to2a2( tu2-9)=O
                                                                      (13)
           --li"eq2(1-2b)a2to22sin( eio-&)+e(N-p2)=O

           --li-eq2(1-2b)a2tu22sin( e2o-62)+e(N-p2)=O

For stationary conditions of motion Eq.a3) gives the following expression for the

generating phase relation between the rotations of two rotors and the amplitude

of vibration

            e2o- e1o ==o

               mrg2 1 (14)
           a2= M, 4di(1-2b)2(w,-9)2+A292/M,2

To study the stability of the stationary motions, let rpi, rp2, a2 and a3 be small

perturbations and put

           A2=a2+ a2, =.2= 62 + a3
                                           (15)
           el= elo+v,, e2= e2o+rp2

If we substitute Eq. a5) into aD and use the Eq.a3), aO, the corresponding
characteristic equation becomes

           p{p2+,pp+2q2Wi (1-2b)2a22(to2-9)}Å~
                         qi
                                              8q2 to 22aZ                     eg             Å~(p3+(                         + sp)p2+( to2-2)2{2+                                                      (1-2b)2}p                                                q,22                    1-2b

               +( to,-2)2{2ep+8q2 to 34eg( i-2b) }] =o (i6)
                                 ql to

Applying the Routh-Hurwitz criterion to Eq.(16), the condition for stability is finally

obtained as follows.

                   w,-,S? ÅrO (17)
When the angular frequencies of the vibrators are just under the natural frequency
          .tu2, the motions of the conveyer trough are represented in the form

                                    (50)



y = - 1 -a i bcos( gt + e,)

                                 (18)

x=q=O
A strong linear vibration is produced in the direction of axis y.

3.1.2 In the Case of 9=tui
    Here let us consider the problem of synchronization in the case that the
frequencies of two unbalanced rotors are near the natural frequency coi. For this
case, the coordinate Z2 in Eq.(6) will be neglected. Following the same method which

was applied in the previous section, we obtain the following equations for stationary

conditions of motion

         eqi92{ sin( e io- 6i) -sin( e2o- ei) }-2e gw iai =O

         eqis2 2{ cos( e io-&)-cos( e 2o'ei)} -4(1-2h) (v iai( wi-2) =O

         - -li-eq2 to i2a i( 1-2h) sin( e io - 6i) + e( N - p2 ) =O

          teq2toi9ai(1-2h)sin(e2o-6i)+e(N-p2)=O (19)

Eq.(19) gives the following connection between the generating phases of two rotors.

          e2o-e,,=n (20)
By the same method of stability analysis as in the previous section, we obtain the

condition for the stability of the solution eO) in the form

         to,-9ÅrO (21)
From the above results we conclude that the motion of the conveyer trough becomes

the rotational motion when the frequencies of the vibrators are just under the

frequency tui•
    3.2Conveyer with 3 Resonant Vibrators. (9=to3)
    For the system with three resonant vibrators, letting

s =3 , R, cos 5, =-R, cos S, =R,,

cos S2 =O , R2 sin S2 =R2

in Eq.(s), we obtain the natural frequencies and the modal column matrix of the

vibrating system in the form

.? =.2n

(51)



       2 2 tonto2 = 1-2h
       2 2 tonca3 = 1-3b

(,fZ iJ') = -2 O 1
 1 -1 1

(22)

Here we consider the problem of synchronization, when the frequencies of unbalanced

rotors are near the natural frequency tu3 which corresponds to the most useful one

of the normal modes of vibrations for the conveyer.

   PutZi=Z2=O inEq.(s).
   Then Eq. (6) can be written in the form

2'3 + tu3 Z3 = Iii((-illliizls'1 -3b) tP. ,( Åë?• cosqj + Åë'J• sin g" ) -1ei3b 23

Åë'i=eq2(1'-' 3b) Z3 sinÅëi+eN-epÅëi (23)
Åë'2 = eq2(1-3b)Z3 sinq2+ eN - epÅë2

Åë'3 = eq2( 1 -3b) Z3 sinÅë3 + eN - epÅë3

Introduce the substitutions of the new variables ei, e2, e3, A3, :.3 for the variables

qi, Åë2, q3, Z3, Z3, according to the expressions

         Åë,=2t+ e, (i -- 1, 2, 3)

         Z, == A,cos(2t+A'-',) (24)
         Z3 :-A3to3sin(2t+=.3)

Following the same method which was applied in the previous sections, we obtain

the following equations for stationary conditions of motion

eqi22{ sin( e io- e3)+sin( e2o- e3)+sin( e3o-e3)}-3S;to3a3 =O

eq,92{ cos( e io- e3)+cos( e 2o- e3)+cos( e3o- 63)}

                               -6(1-3b)to3a3( to3-2) =O

-Seq2(1-3b)a3w39sin( eio-63)+elV-ep2 = O (2s)

- -lieq?( 1-3b)a3 to32sin( e 2o - e3 ) + eN - ep9 =O

(52)



          --l}msq2( 1-3b)a3 tu32sin( e3o- e3) + eN - ep9 =O

From Eq.(25)we obtain the solutions for stationary motion, i.e. phase relations and

amplitude of vibration as follows

           e2o- elo==o

           e,,- e,,=o (26)
                             eqi92
               a3=                    4( 1-3b)2 tu 32( to3-9)2+(e;w3)2

The characteristic equation of the system corresponding to the above solutions

becomes

          p{p2+ ,pp +(i nu,3qb, b2 to gag( to,-g)}(p3+( ep +i S-g3 b)p2

          +{4(iS-;3)b2 ), +(to,- g )2 + iP-e3;b+(i-- 3,bqli tugag + eqisq292 }p (27)

          +eg( 1,-q ,32b ) to gag ( to3-g)- ep{4[ le l)gb),+( to,-g)2}+ ei(elq-i e3qb292)=o

Applying Routh-Hurwitz criterion to Eq.(27) the condition for stability is obtained, as

follows

          ca,-9ÅrO (28)

4. EXPERIMENTAL RESULTS
   To verify the results of the above theory, the test apparatuses were set up as

shown in photo, 1 and 3.
    Steel pipes of diameter 90mm were used as conveyer troughs. 75W variable
speed electric motors with unbalance weights were employed as the vibrators and

connected to the conveyer trough by the rubber springs.
    The main dimensions of apparatuses are shown in Table 1.
    Photo.1 shows the conveyer with two vibrators in operation at the frequency 9=

50HzS-w2. The phase relation of revolution of the unbalalanced rotors can be

observed e2o-eiouOO.
    Photo.2 shows 2 vibrators at the frequency 9=:40.7 HzÅq--toi and e2o-eio't"v'rr.

    Photo.3 shows the conveyer with three vibrators in operation at the frequency

S2=49.5 HzÅq=co3 and the phase relations e3o-eio :OO, e2o-eioeOQ
    These experimental results are in good agreement with the theoretical results.
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Table 1

Items 2vibrators 3vibrators

WeightofconveyertroughMc 83kg 123kg

Lengthofconveyertrough 20oomm 300omm

WeightofvibratorbodyMi 23kg(Å~2) 23kg(X3)

Unbalancedmassmomentmr 4.83kg-mm 4.83kg-mm

Springconstantofthespringwhich
connectstheVibratorbodyto 148kg/mm 148kg/mm
conveyerhi

Naturalfrequencieswr cai=46Hz
to2=52Hz

co3=52Hz

Springconstantofthespring
whichsupportsthesystem 3.36kg/mm 4.48kg/mm

Photo. 1

Photo. 2
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