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Abstract 

Binary decision diagrams (BDDs) and multi-valued decision diagrams (MDDs) are extensively 

used in logic synthesis, formal verification, logic simulation, pass transistor logic (PTL), soft-

ware synthesis, etc.. In these applications using decision diagrams (DDs), proper optimizations 

of DDs are required to reduce the memory sizes and runtimes. Particularly, in software syn-

thesis, intensive optimization of DDs is required to generate a compact and fact program code. 

The purpose of most optimization algorithms for DDs is minimization of the number of nodes 

in DDs. Minimization of the number of nodes results in reduction of memory size. However, 

logic simulation and software synthesis require shorter evaluation time of logic functions, as 

well as smaller memory size. In evaluation of logic functions using DDs, the evaluation time 

depends on the path length of DDs. Therefore, in logic simulation and software synthesis, min-

imization of the path length is important, as well as minimization of the number of nodes. This 

thesis proposes the optimization algorithms for DDs that minimize the memory size, average 

path length (APL), or both of them. 

  Since the graph structures of DDs depend on the variable order, the number of nodes and 

APLs for DDs can be reduced by changing variable order. Chapter 3 proposes APL minimiza-

tion algorithms for DDs considering only variable orderings. The APL minimization algorithms 

proposed in Chapter 3 yield an improvement over an existing algorithm in both APL and run-

time. However, the APL minimization algorithms considering only variable orderings often 

increase the number of nodes, since a variable order that minimizes the APL is often different 

from the variable order that minimizes the number of nodes. 

  Next, we use MDDs to reduce the memory sizes and APLs furthermore. MDDs are usually 

used to represent multi-valued logic functions. However, we use MDDs to represent binary 

logic functions. When MDDs are used to represent binary logic functions, we can use an 

additional optimization approach, which is a partition of binary variables. To represent binary 

logic functions using MDDs, we partition the binary variables into groups, and we treat each 

group as a multi-valued variable. Chapter 4 shows the relations between the values of k and 

the number of nodes, memory size, path length, and area-time complexity for quasi-reduced 
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MDD(k)  (QRMDD(k)), and derives the optimum values of k for each application. For many 

benchmark functions, the numbers of nodes and path lengths for QRMDD(k)s are inversely 

proportional to the value of k. Therefore, the numbers of nodes for QRMDD(k)s can be reduced 

with increasing the value of k. However, the memory size of each node in QRMDD(k) increases 

with 2". By experiments, we show that the memory sizes for QRMDD(k)s take their minimum 

when k = 2. To obtain the optimum values of k considering both memory size and path length, 

we introduce the area-time complexity. By experiments, we show that when both the memory 

size and path length are equally important, the optimum value of k is 3 or 4. On the other hand, 

when the path length is more important than the memory size, the optimum value of k is 4, 5 or 

6. 

  In MDD(k)s representing binary logic functions, the binary variables are partitioned into the 

groups with k binary variables. On the other hand, in heterogeneous MDDs, the binary vari-

ables can be partitioned into the groups with different numbers of binary variables. Therefore, 

the memory sizes and APLs of heterogeneous MDDs depend on the partition of binary vari-

ables, as well as the order of binary variables. Chapter 5 proposes the memory size and APL 

minimization algorithms for heterogeneous MDDs that consider both orderings and partitions 

of binary variables. By considering both orderings and partitions of binary variables, heteroge-

neous MDDs can represent logic functions with smaller memory sizes than free BDDs (FBDDs) 

and smaller APLs than ordered BDDs (OBDDs), and the APLs of heterogeneous MDDs can 

be reduced by a half of BDDs without increasing memory size. Heterogeneous MDDs have 

smaller area-time complexities than MDD(k)s, since heterogeneous MDDs allow more flexible 

partition of binary variables than MDD(k)s. 

ii



List of Publications by Author 

Journal Papers 

  1. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions us-

    ing heterogeneous MDDs,"  IEICE Transactions on Fundamentals of Electronics, Vol. E86-
    A, No. 12, pp. 3168-3175, December 2003. 

  2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Area-

    time complexities of multi-valued decision diagrams," IEICE Transactions on Funda-
    mentals of Electronics, Vol. E87-A, No. 5, pp. 1020-1028, May 2004. 

  3. Shinobu Nagayama, Alan Mishchenko, Tsutomu Sasao, and Jon T. Butler, "Exact and 

    heuristic minimization of the average path length in decision diagrams," Journal of Multiple-
    Valued Logic and Soft Computing, (accepted for publication). 

  4. Hui Qin, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura, 

    and Yukihiro Iguchi, "A realization of multiple-output functions by a look-up table ring," 
IEICE Transactions on Fundamentals of Electronics, Vol. E87-A, No. 12, December 

    2004, (accepted for publication). 

International Conference and Workshop Papers 

  1. Tsutomu Sasao, Munehiro Matsuura, Yukihiro Iguchi, and Shinobu Nagayama "Compact 

    BDD representations for multiple-output functions and their applications to embedded 

    system," IFIP VLSI-SOC'01, pp. 406-411, December 2001. 

  2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Repre-

    sentations of logic functions using QRMDDs," 32nd IEEE International Symposium on 

   Multiple-Valued Logic (ISMVL 2002), pp. 261-267, May 2002. 

iii



    3. Shinobu Nagayama and Tsutomu Sasao, "Code generation for embedded systems using 

      heterogeneous MDDs," The 11th Workshop on Synthesis And System  Integration of Mixed 

Information technologies (SASIMI 2003), pp. 258-264, April 2003. 

    4. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions 

      using heterogeneous MDDs," 33rd IEEE International Symposium on Multiple-Valued 

     Logic (ISMVL 2003), pp. 247-255, May 2003. 

    5. Shinobu Nagayama, Alan Mishchenko, Tsutomu Sasao, and Jon T. Butler, "Minimization 

      of average path length in BDDs by variable reordering," 12th International Workshop on 

     Logic and Synthesis (IWLS 2003), pp. 207-213, May 2003. 

    6. Shinobu Nagayama and Tsutomu Sasao, "Minimization of memory size for heteroge-

      neous MDDs," Asia and South Pacific Design Automation Conference (ASP-DAC'2004), 

      pp. 872-875, January 2004. 

    7. Shinobu Nagayama and Tsutomu Sasao, "On the minimization of average path lengths for 

      heterogeneous MDDs," 34th IEEE International Symposium on Multiple-Valued Logic 

      (ISMVL 2004), pp. 216-222, May 2004. 

    8. Shinobu Nagayama and Tsutomu Sasao, "On the minimization of longest path length for 

      decision diagrams," 13th International Workshop on Logic and Synthesis (IWLS 2004), 

      pp. 28-35, June 2004. 

 Japanese Domestic Workshop Papers 

    1. Munehiro Matsuura, Tsutomu Sasao, Yukihiro Iguchi, and Shinobu Nagayama, "Com-

      pact representations of BDDs for multiple-output functions and their optimization," (in 

      Japanese) IEICE Technical Report, VLD2001-100, November 2001. 

    2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Repre-

      sentations of logic functions using QRMDDs," (in Japanese) IEICE Technical Report, 

      VLD2001-142, January 2002. 

    3. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions us-

      ing heterogeneous MDDs," (in Japanese) IEICE Technical Report, VLD2002-98, pp. 97-

      102, November 2002. 

                                   iv



4. Qin Hui, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura, 

  and Yukihiro Iguchi, "On a sequential look-up table cascade," 7th System  LSI workshop, 

  pp. 311-314, November 2003. 

5. Shinobu Nagayama and Tsutomu Sasao, "Minimization of average path lengths for het-

  erogeneous MDDs," (in Japanese) IEICE Technical Report, VLD2003-107, pp. 223-228, 

  November 2003. 

6. Qin Hui, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura, 

  and Yukihiro Iguchi, "Realization of multiple-output functions by sequential look-up ta-

  ble cascades," IEICE Technical Report, VLD2003-127, pp. 13-18, January 2004. 

v



Contents 

Abstract 

List of Publications by Author iii 

List of Abbreviations and Symbolsix 

1 Introduction1 

  1.1 Backgrounds and Purposes of Research .....................1 

 1.2 Organization of Thesis ..............................3 

2 Preliminary4 

2.1 Logic Functions ..................................4 

 2.2 Partition of Binary Variables ...........................5 

 2.3 Decision Diagrams (DDs).............................5 

 2.4 Average Path Lengths (APLs) .......................... 7 

3 Minimization of APL in DDs by Variable Ordering8 

3.1 Introduction ....................................8 

3.2 Definitions .....................................9 

 3.3 Efficient Computation of APLs ..........................9 

 3.4 Lower Bounds on APL ..............................11 

 3.5 APL Minimization Algorithms ..........................13 

      3.5.1 Change of the APL during Swapping Two Adjacent Variables .....13 

   3.5.2 Symmetric Variables ...........................16 

    3.5.3 Exact Minimization Algorithm ......................17 

     3.5.4 Heuristic Minimization Algorithm ....................19 

      3.5.5 Initial Ordering of the Binary Variables .................21 

 3.6 Experimental Results ...............................22 

                               vi



 3.7 Conclusion and Comments ............................25 

4 Area-Time Complexities of QRMDD(k)s26 

4.1 Introduction ....................................26 

4.2 Definitions.....................................27 

 4.3 Number of Nodes in QRMDD(k) .........................28 

     4.3.1 Number of Nodes for General Functions .................29 

     4.3.2 Number of Nodes for Benchmark Functions ...............30 

      4.3.3 Number of Nodes for Randomly Generated Functions ......... 33 

 4.4 Area-Time Complexity of QRMDD(k) ......................34 

    4.4.1 Memory Size for QRMDD(k) ......................34 

     4.4.2 Area-Time Complexity of QRMDD(k)s .................36 

   4.4.3 Experimental Results ...........................36 

      4.4.4 Analysis for the Functions that Satisfy Property 4.1 ........... 37 

 4.5 Conclusion and Comments ............................38 

5 Heterogeneous MDDs and Their Optimization Algorithms39 

5.1 Introduction ....................................39 

5.2 Definitions.....................................40 

 5.3 Number of Heterogeneous MDDs ........................42 

  5.4 Memory Size Minimization Algorithms .....................44 

      5.4.1 Bounds on Memory Size of Heterogeneous MDDs ...........44 

      5.4.2 Partition Algorithm for Memory Size Minimization ........... 45 

      5.4.3 Exact Memory Size Minimization Algorithm ..............47 

      5.4.4 Heuristic Memory Size Minimization Algorithm ............48 

 5.5 APL Minimization Algorithms ..........................48 

      5.5.1 Partition Algorithm for APL Minimization ...............50 

     5.5.2 Exact APL Minimization Algorithm ...................51 

     5.5.3 Heuristic APL Minimization Algorithm .................52 

 5.6 Experimental Results ...............................53 

   5.6.1 Comparison with FBDDs.........................55 

   5.6.2 Comparison with ROBDDs .......................57 

      5.6.3 Comparison of Computation Time for Algorithms............59 

    5.6.4 Comparison with MDD(k)s .......................59 

 5.7 Conclusion and Comments ............................62 

                              vii



6 Conclusion65 

Acknowledgements67 

References69 

Appendix77 

 A. Proofs of Theorems in Chapter 3 .........................77 

 B. Proofs of Theorems in Chapter 4 .........................80 

 C. Proofs of Theorems in Chapter 5 .........................81 

                            viii



List of Abbreviations and Symbols 

Abbreviations 

APL Average Path Length 

BDD Binary Decision Diagram 

CPU Central Processing Unit 

DAG Directed  Acyclic Graph 

DD Decision Diagram 

ECFN Encoded Characteristic Function for Non-zero output 

ETP Edge Traversing Probability 

FBDD Free Binary Decision Diagram 

FPGA Field Programmable Gate Array 

LUT Look-Up Table 

MDD Multi-valued Decision Diagram 

NTP Node Traversing Probability 

OBDD Ordered Binary Decision Diagram 

PDA Personal Digital Assistance 

PP Path Probability 

PTL Pass Transistor Logic 

ROBDD Reduced Ordered Binary Decision Diagram 

ROMDD Reduced Ordered Multi-valued Decision Diagram 

QRBDD Quasi-Reduced ordered Binary Decision Diagram 

QRMDD Quasi-Reduced ordered Multi-valued Decision Diagram 

SBDD Shared Binary Decision Diagram 

SDD Shared Decision Diagram 

SMDD Shared Multi-valued Decision Diagram 

                                ix



Symbols 

fsingle-output logic function 
Fmultiple-output logic function 

mthe number of outputs 

nthe number of inputs or the number of variables 
xvariable 

Xordered set of variables or super variable 
kthe size of a X or the number of variables in  a  X 

avector (al, a2i ... , an) 

eedge in a DD 

 ^non-terminal node in a DD 

 ddensity for a logic function 

rlnormalized difference 

 a ^ b a and b are nearly equal 

[al the smallest integer that is larger than a 
N fixthe number of different fixed-order partitions 

Nnon— fix the number of different non-fixed-order partitions 

 Snthe number of different FBDDs 

 0order notation showing the computational complexity 

                                        x



Chapter 1 

Introduction 

1.1 Backgrounds and Purposes of Research 

Binary decision diagrams (BDDs) [11] and multi-valued decision diagrams (MDDs) [3, 26, 37, 
38] are extensively used for representations of logic functions in logic synthesis [5, 17, 32, 
42, 80], formal verification [15, 56, 57], logic simulation [1, 22, 34, 35], pass transistor logic 
(PTL) [4, 69, 70], software synthesis [2, 25, 27, 45], etc.. For example, in logic synthesis, 
decision diagrams (DDs) are used for compact representation of a given logic function, for 
efficient Boolean operations, and for functional decomposition [5, 11, 17, 32, 42, 80]. Since the 
memory size and runtime needed for logic synthesis depend on the sizes of DDs, minimization 
of the size of DDs is required to reduce them. In logic simulation [1, 22, 34, 35], DDs are 
used to evaluate the logic functions quickly. Since the evaluation time for logic simulation 
depends on the path length of DDs, minimization of path length of DDs is required to reduce 
the design verification time. In software synthesis [2, 25, 27, 45], DDs are used to generate 
a program code, such as branching program [78] that can be derived directly from DDs by 
translating each node in DDs into a fragment of program code. Since the sizes and runtimes 
for the generated codes depend on the sizes and path length of DDs, minimizations of size and 

path length of DDs are required to generate compact and fast codes. Particularly, in software 
synthesis for embedded systems (e.g. consumer electronics, vehicle control, personal digital 
assistance (PDA), cellular phone, etc..), intensive optimization of DDs is required to generate a 
code satisfying the memory size limitation and timing limitation for systems. Thus, in various 
applications, the optimizations of DDs are key issue. This thesis focuses on the optimizations of 
DDs that are useful for various applications. In optimizations of DDs, the following approaches 
are well-known. 

  • Variable ordering [14, 17, 18, 19, 24, 38, 39, 59, 74] 
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  • Complemented edges [6, 40] 

  • Assignment of values to don't cares [33, 54, 71] 

Among them, the most widely used and effective approach is variable ordering approach. The 

paper [11] shows that the size of BDDs can be varied from linear to exponential of the number 

of input variables by changing variable order. Therefore, considering the variable orderings is 

important and effective to optimize DDs. 

  The purpose of most existing optimization algorithms for DDs is minimization of the num-

ber of nodes in DDs [14, 17, 18, 19, 20, 24, 38, 39, 59, 74]. Although minimization of the 

number of nodes results in reduction of size for DDs, it is not directly related to the reduction 

of the evaluation time of logic functions. Since the logic functions that are represented using 

DDs are evaluated by traversing DDs from the root node to a terminal node, the evaluation time 

depends on the path length in DDs. Thus, minimization of path length is important to reduce 

the evaluation time of logic functions. For example, logic simulation requires shorter evaluation 

time of logic functions, as well as smaller size of DDs. Therefore, in such applications, mini-

mization of the path length is important, as well as minimization of the number of nodes. Since 

the graph structures of DDs depend on the variable order, the number of nodes and path length 

in DDs can be reduced by changing the variable order. This thesis proposes the algorithms for 

minimization of path length in DDs considering only the variable orderings. 

  MDDs are usually used to represent multi-valued logic functions, and are usually optimized 

by changing variable order [38, 39]. However, when MDDs are used to represent binary logic 

functions, an additional optimization approach can be used. To represent binary logic functions 

using MDDs, binary variables are partitioned into some groups, and each group is treated as a 

multi-valued variables. In this case, the graph structures of MDDs depend on the size of groups 

(i.e. the number of binary variables in a group) and the partition of binary variables, as well 

 as the variable order. The papers [20, 62] present the optimization algorithm for pairing binary 

variables. Since these papers focus on the logic design for the field programmable gate arrays 

(FPGAs) with 6-input look-up tables (LUTs) as an application using MDDs, the size of groups 
is set to two and MDDs are optimized. However, this thesis assumes that size of groups can be 

changed, and discusses on the size of groups that optimizes MDDs. The paper [34] claims that 

when the size of groups is five, the best performance for the logic simulator using MDDs can 

be obtained. However, this paper does not show any theoretical or experimental justification. 

This thesis shows the optimum size of groups by experimental results using many benchmark 

functions. 
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  When the binary variables are partitioned into groups, in many cases, groups have the same 

number of binary variables. However, in a heterogeneous MDD proposed in this thesis, the 

groups can have the different number of binary variables. Thus, heterogeneous MDDs allow 

more flexible partition of binary variables than MDD(k)s that have groups with k binary vari-

ables, and in heterogeneous MDDs, both orderings and partitions of binary variables can be 

optimized to minimize memory size and path length. 

1.2 Organization of Thesis 

This thesis consists of six chapters. Each chapter is organized as follows. 

  Chapter 2 defines basic terminologies, assumptions, and computational model used in this 

thesis. 

  Chapter 3 proposes APL minimization algorithms for DDs considering only variable orders. 

Experimental results in Chapter 3 show that the proposed APL minimization algorithms yield 

an improvement over an existing algorithm in both APL and runtime, and the APL minimization 

algorithms considering only variable orders often increase the number of nodes. 

  Chapter 4 shows the relations between the values of k and the number of nodes, memory 

size, path length, and area-time complexity [8, 76] for QRMDD(k), and derives the optimum 

values of k for each application. 

  Chapter 5 proposes the memory size and APL minimization algorithms for heterogeneous 

MDDs that consider both orderings and partitions of binary variables. Experimental results in 

Chapter 5 show that by considering both orderings and partitions of binary variables, heteroge-

neous MDDs can represent logic functions with smaller memory sizes than FBDDs and smaller 

APLs than OBDDs, the APLs of heterogeneous MDDs can be reduced by a half of BDDs with-

out increasing memory size, and heterogeneous MDDs have smaller area-time complexities 

than MDD(k)s. 

  Chapter 6 concludes this thesis. 
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Chapter 2 

Preliminary 

This chapter defines basic terminologies used in this thesis. 

2.1 Logic Functions 

Definition 2.1 A logic function, denoted by  f (xi  ,x2, ...,xn) or simply f, is a mapping: 

f(xl,x2,...,xn) : {0,1,...,r- 1}n -+ {0,1,...,r-1}, 

where each xi is called a variable. When r = 2, a logic function is a binary logic function that 

is a mapping: 

_f (xi ,x2i...,xn) : {0,1}n -+ 10, 11, 

where each xi is called a binary variable. When r > 2, a logic function is a multi-valued logic 

function, and each xi is called a multi-valued variable. 

Definition 2.2 A multiple-output logic function F = (fo, fi, • • • , fm-1) is a mapping: 

F : {0,1,...,r- 1}n -* {0,1,...,r- 1}m. 

Specially, when m = 1, it is called single-output logic function. 

Definition 2.3 Let S C {0, 1, ... , r - 1}. Then, xs is a literal of variable x. 

Definition 2.4 Shannon expansion of a logic function f with respect to a variable xi is: 
                                             r-1 

f(x1,x2,...,xn) = V Xi'.f(xl,x2,...,xi—l,.I,xi+l,...,xn), 
j=o 

and each f(xi,x2, ...,xi_1, j,xi+l,...,xn) is called a cofactor of f with respect to xi. 

  In this thesis, we assume that a given logic function is completely specified and has no 

redundant variables. 

                           4



2.2 Partition of Binary Variables 

Definition 2.5 Let  f  (X) be a binary logic function, where X = (x1, x2, ... , xn) is an ordered 

set of binary variables. Let {X} denote the unordered set of variables in X. Let Xi C X. If 

{X}_{X1}U{X2}U...0{Xu},{Xi}04), and {Xi}n{xi}_ (i0j), then (xi ,X2,...,Xu)isa 

partition of X. Xi is called a super variable. If AI = ki (i = 1, 2, ... , u) and k1 +k2+... + ku = 
n, then a binary logic function f (X) can be represented by a multi-valued input two-valued 

output logic function that is a mapping f (X1,X2, ...,Xu): R1 x R2 x R3 x ... x Ru -+ B, where 
Ri = {0,1,2,...,2k; —1} and B = {0,1}. 

Definition 2.6 A fixed-order partition of X = (x1,x2,...,xn) is a partition (Xi,X2,...,Xu), 
where 

Xi = (xi,x2,...,xk1), 

                X2 = (xki+1,xki+2, • • •,xki+k2), 

XU = (xkl+k2+...+ku-1+1,xk1+k2+...+ku-1+2,...,xn-1,xn), 

and 1Xil = ki. That is, in the fixed-order partition of X, the order of variables (xi ix2, ... ,xn) is 

fixed. 

  When the order of variables is not fixed, we call the partition non-fixed-order partition. In 

this thesis, a partition means fixed-order partition unless stated otherwise. 

Example 2.1 Consider (Xi,X2), which is a fixed-order partition of X, where X = (xi, x2, x3 , x4, 
xs) and each xi is a binary variable. When X1 = (xi ,x2) and X2 = (x3,x4,x5), we have k1 = 2, 
k2 = 3, P1 ={O,1,2,3}, and P2 = 10, 1, ... , 7}. Note that X1 takes 4 values, and X2 takes 8 
values. So, a 5-variable binary logic function f (X) can be represented by the multi-valued 
input two-valued output function f(Xi,X2): R1 x R2 -* B. (End of Example) 

2.3 Decision Diagrams (DDs) 

Definition 2.7 A decision diagram (DD) is a rooted directed acyclic graph (DAG) G(V, E) 
representing a logic function f, where V and E denote sets of vertices and edges in G, respec-
tively. Specially, vertices in G are called nodes in the DD, nodes without outgoing edges are 
terminal nodes, and nodes with outgoing edges are non-terminal nodes. Each terminal node 
is labeled with a value of f, and each non-terminal node is labeled with a variable. 
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Definition 2.8 In a DD, the number of nodes in the DD, denoted by nodes(DD), is the sum 

of all non-terminal nodes. 

Definition 2.9 A DD can be obtained by applying Shannon expansion repeatedly to a logic 

function f, and in such case, each non-terminal node labeled with a variable  x; has some outgo-

ing edges which refer to succeeding nodes representing cofactors of f with respect to xi. When 

all non-terminal nodes in the DD have two outgoing edges, the DD is called binary decision 

diagram (BDD). On the other hand, when all non-terminal nodes have more than two outgoing 

edges, the DD is called multi-valued decision diagram (MDD). 

  In this thesis, DD means either BDD or MDD. 

Definition 2.10 A variable order of DD is the order of variables that were used for Shannon 

expansion. 

Definition 2.11 In a DD, a sequence of edges and non-terminal nodes leading from a root node 

to a terminal node is a path. 

Definition 2.12 An ordered BDD (OBDD) has the same variable order on any path. On the 

other hand, a free BDD (FBDD) allows the different variable orders along each path. 

Definition 2.13 A reduced ordered BDD (ROBDD) is derived by applying the following two 

reduction rules to an OBDD: 

  1. Share equivalent sub-graphs. 

  2. If all the outgoing edges of a non-terminal node v refer to the same succeeding node u, 

    then delete v and connect the incoming edges of v to u. 

A quasi-reduced ordered BDD (QRBDD) is derived by applying only the above reduction 

rule 1. 

  A reduced ordered MDD (ROMDD) and a quasi-reduced ordered MDD (QRMDD) can 

be defined similarly. 

  In this thesis, BDD and MDD means ROBDD and ROMDD, unless stated otherwise. 
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2.4 Average Path Lengths (APLs) 

Definition 2.14 A path length is the number of edges in the path. 

  The sequence of edges in a path  pi of a DD corresponds to an assignment of values ai to 

the specific variables associated with those edges in the DD. We say that such an assignment 

ai selects path pi. Similarly, if an assignment of values ci to all variables agrees with ai for all 

variables assigned in ai, we also say ci selects path pi. 

Definition 2.15 Let x be an r-valued variable, and c E {0, 1, ... , r — 11. Then, P(x = c) denotes 
the probability that x has value c. 

Definition 2.16 In a DD for an n-variable function, the path probability of a path pi, denoted 

by PP(pi), is the probability that the path pi is selected in all assignments of values to the 

r-valued variables. PP(pi) is given by 

PP(pi) = P(xi = ci) x P(x2 = c2) x ... x P(xn = Cn), 
CEC1 

where Ci denotes a set of assignments of values to the variables selecting the path pi, c = 

(cl, c2, ... , cn), each ci E {0, 1, ... , r— 11, and P(xi = ci) is the probability xi has value ci. 

Definition 2.17 The average path length, or APL, of a DD is given by: 

N 
APL = PP(pi) x li, 

i=1 

where i indexes the paths, N denotes the number of paths, and li denotes the path length of path 

Pi. 

  In this thesis, we assume the following computation model: 

  1. The logic functions are evaluated by traversing DDs from the root node to a terminal node 

    according to values of variables. 

  2. Encoded input values are available, and their access time is negligible. For example, 

    when Xi = (xl,x2ix3,x4) = (1, 0,0, 1), Xl = 9 is immediately available as an input to the 

    super variable. 

  3. Most of computation time is devoted to accessing nodes. 

  4. The evaluation time for all DD nodes are the same. 

In this case, the average evaluation time of a DD is proportional to the APL of the DD. Thus, in 

this model, we can use the APL to compare the evaluation times of different types of DDs. 
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Chapter 3 

Minimization of APL in DDs by Variable Ordering 

This chapter proposes APL minimization algorithms for DDs considering only variable orders. 

3.1 Introduction 

In applications using DDs to evaluate logic functions, the average evaluation time is propor-

tional to the APL in the DD. Therefore, minimization of the APL leads to faster evaluation of 

the logic function. Particularly, in logic simulation using DDs [1, 22, 34, 35], minimization of 

the APL reduces the simulation time substantially because logic functions are evaluated many 

times with different test vectors. 

  Minimization of the APL can also be applied to logic synthesis. A method for functional 

decomposition [80] uses BDDs to detect Boolean divisors. The quality of a divisor is measured 

by the number of don't-cares it provides for the minimization of the quotient. The don't-cares 

are generated by the paths in the BDD that lead to the terminal nodes. The shorter the paths, the 

more don't-care minterms they contain. Therefore, minimizing the APL in BDDs can improve 

the quality of decomposition. 

  In PTL synthesis, the circuits are derived directly from BDDs representing logic functions . 

In this case, the longer paths in BDDs cause larger voltage drop and larger delay. This problem 

can be solved by inserting buffers in long paths [4]. Obviously, minimizing the APL in the BDD 

can reduce the number of buffers that must be inserted. 

  In this chapter, we propose an exact APL minimization algorithm based on the branch-

and-bound algorithm. This algorithm finds an optimum variable order much faster than ex-

haustive search, which enumerates all possible variable orders. However, the exact method is 

time-consuming for functions with many inputs. To minimize the APL of such functions in a 

reasonable time, we propose a heuristic algorithm based on dynamic variable reordering. 
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  This chapter is organized as follow. Section 3.2 contains the necessary terminology and 

definitions. Section 3.3 shows the efficient computation method of the APLs. Section 3.4 

introduces lower bounds on the APL. Section 3.5 proposes an exact and a heuristic minimization 

algorithm for the APL. Section 3.6 shows the efficiency of the algorithms using benchmark 

functions. 

3.2 Definitions 

This section provides definitions used in this chapter. 

Definition 3.1 The node traversing probability of a node v, denoted by  NTP(v), is the prob-

ability that an assignment of values to the variables selects a path that includes the node v. 

Definition 3.2 The edge traversing probability of an edge e, denoted by ETP(e), is the prob-

ability that an assignment of values to the variables selects a path that includes the edge e. 

  Note that the node traversing probability of the root node in a DD for a single-output func-
tion is 1.0, since all paths start from the root node. 

  In this chapter, we use shared DD (SDD) to represent a multiple-output function F = 

(fo, .. • , fm—i) [40]. For reasons that will be clear later, we view the APL of an SDD as 
the sum of the APLs of the individual DDs or for each component logic function f. 

3.3 Efficient Computation of APLs 

This section provides the efficient computation method of APLs. This computation method 

plays an important part of APL minimization algorithms proposed in this chapter. 

Lemma 3.1 [67] The node traversing probability of node v is the sum of the edge traversing 

probabilities of all incoming edges to v. Also, the node traversing probability of node v is the 

sum of the edge traversing probabilities of all outgoing edges from v. 

Proof See Appendix. 

  From Lemma 3.1, the following relation holds: 

ETP(e) = P(x = c) x NTP(v), 

where P(x = c) is the probability x has a value c, v is a node representing a variable x, and e is 
an outgoing edge corresponding to a value c of v. 
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 fPath  pi PP(pi) Path length ii  
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       e4e5-e6P4 0 .06254 
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               (a) BDD(b) PPs and path lengths 

           Figure 3.1: Example of node traversing probability in a BDD. 

Theorem 3.1 [67] The APL is equal to the sum of the edge traversing probabilities of all edges. 

Also, the APL is equal to the sum of the node traversing probabilities of all the non-terminal 

nodes. 

Proof See Appendix. 

  From Theorem 3.1, we have the following: 

           NeNv 
APL = E ETP(ei) = E NTP(v.i), 

               i=1j=1 

where Ne and N,, denote the number of edges and non-terminal nodes, respectively. 

Example 3.1 Consider the BDD in Fig. 3.1(a), where solid lines and dotted lines denote l-
edges and 0-edges, respectively. For simplicity, assume that P(xi = 0) = P(xi = 1) = 0.50 (i = 

1, 2, 3, 4). This BDD has 10 different paths: path pi is (vl, el, v2, e3), path P2 is (vl, el, v2, e4, v4, 

e7), ..., and path pio is (vl, e2, v3, e5, v5, elo). The PP(pi) and path length ii of each path pi are 
listed in Fig. 3.1(b). Therefore, by Definition 2.17, 

10 

APL =EPP(pi)xli=3.125. 
                                     i=1 

By using node traversing probabilities, we can compute this APL as follows: First, we have 

NTP(vl) = 1.00 for root node vi. Then, NTP(v2) = ETP(el) = P(xi = 0) x NTP(vl) = 0.50 
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                       Figure 3.2: Partition of DD. 

and NTP(v3) = ETP(e2) = P(xi = 1) x NTP(vl) = 0.50. Similarly, 

NTP(v4) = P(x2 = 1) x NTP(v2) +P(x2 = 0) x NTP(v3) = 0.50, 

NTP(v5) = P(x2 = 1) x NTP(v3) = 0.25, and 

NTP(v6) = P(x3 = 1) x NTP(v4) +P(x3 = 0) x NTP(v5) = 0.375. 

Thus, we obtain 
                               6 

APL = I NTP(vi) = 3.125. 
                                     i=1 

Similarly, we can compute the APL using the edge traversing probabilities. (End of Example) 

3.4 Lower Bounds on APL 

In this section, we derive lower bounds on the APL. Such bounds result in a reduction of the 

computation time in the algorithm, as discussed later. 

Definition 3.3 Suppose a DD is partitioned into two parts as shown in Fig. 3.2. Here, Xupper 

denotes the variables above or in level i, Xlower denotes the variables below or in level i+ 1, and 

Cut(i) denotes a set of edges connecting the nodes above or in level i with the nodes below or 

in level i + 1. 

Note that the nodes are indexed by i starting with the root node at level 1. The nodes just below 

have i= 2, etc.. 
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Definition 3.4  ETP(Cut(i)) denotes the sum of edge traversing probabilities of edges in Cut(i), 

and is given by 

ETP(Cut(i)) = ETP(e). 
eECut(i) 

Lemma 3.2 Suppose an SDD represents a multiple-output logic function F. Then, 

ETP(Cut(i)) = mu, 

where mu is the number of the root nodes of the multiple-output function F above or in level i. 

Proof See Appendix. 

Corollary 3.1 Suppose a DD represents a single-output function f. Then, 

ETP(Cut(i)) = 1.0. 

Lemma 3.3 Let 

Cut'(i) = {e e E Cut(i), such that e is incident to only non-terminal nodes}. 

Then, for every permutation of Xupper, 

ETP(Cut'(i)) = ci, 

where ci < mu. 

Proof See Appendix. 

Theorem 3.2 Consider an SDD for multiple-output function F. Let L be the sum of the node 

traversing probabilities of the non-terminal nodes below or in level i + 1. Let mL be the num-

ber of root nodes for F below or in level i + 1. Then, for any permutation of Xiower and any 

permutation of Xupper, 

ETP(Cut'(i)) +mL < L. 

Proof See Appendix. 

Theorem 3.3 Consider an SDD for multiple-output function F. Let U be the sum of the node 

traversing probabilities of the non-terminal nodes above or in level i. When the order of Xupper 

is fixed, 

                  U +ETP(Cut'(i)) +mL < APL. 

Proof See Appendix. 

Corollary 3.2 Consider an SDD of multiple-output function F. Let U and L be the sums of the 

node traversing probabilities of the non-terminal nodes above and below or in level i , respec-

tively. If the variable order of the SDD is fixed, 

max{L, U} < APL. 
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(a) APL = 2.875 (b) APL = 1.875 

           Figure 3.3: Relation between the variable orders and the APLs. 

3.5 APL Minimization Algorithms 

Example 3.2 Consider a binary logic function f = x4(x3 V x2x1), and assume that P(xi = 0) = 

P(xi = 1) = 0.50 (i = 1,2,3,4). When the variable order of BDD for f is (xi ,x2,x3ix4), we 
have the BDD shown in Fig. 3.3(a). For the BDD in Fig. 3.3(a), nodes(BDD) = 4, APL = 
2.875. When the variable order is (x4, x3, x2, xi ), we have the BDD in Fig. 3.3(b), where 

nodes(BDD) = 4, APL = 1.875. Note that the the numbers of nodes of two BDDs are min-
imum.(End of Example) 

As shown in Fig. 3.3, since the APL in a DD depends on the variable order, the APL minimiza-

tion problem can be formulated as follows: 

Problem 3.1 Given a DD for a logic function f, find a variable order that produces a DD with 

the minimum APL. 

3.5.1 Change of the APL during Swapping Two Adjacent Variables 

Our APL minimization algorithms go from one variable order to another variable order by a 

sequence of steps that swap pairs of adjacent variables. A part of the algorithms that has a 

significant effect on computation time is updating the APL after swapping each pair of adjacent 

variables. This section describes a fast method to update the APL after the swap of two adjacent 

variables. 
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             Figure 3.4: Six cases of exchanging two adjacent variables. 

Theorem 3.4 Let U be the sum of the node traversing probabilities of non-terminal nodes above 

or in level i — 1, and let L be the sum of the node traversing probabilities of non-terminal nodes 

below or in level i + 2. Then, after the variable swap of level i with level i + 1, U and L remain 

unchanged. 

Proof See Appendix. 

  Theorem 3.4 shows that the previously computed node traversing probabilities need not be 

repeated in computing the new APL caused by the swap of two adjacent variables . Fig. 3.4 

illustrates a subgraph of level i and level i + 1 in the BDD when two adjacent variables are 

interchanged. Since the principles of variable swap for the binary case and the multi-valued 

case are the same, we describe only the binary case. The details of variable swaps for the multi-

valued case are discussed in [38]. A subgraph composed of BDD nodes involved in the variable 

swap belongs to one of the six classes shown in Fig. 3.4. For each class, the figure on the left 

occurs before the swap, while the figure on the right occurs as a result of the swap. In Fig . 3.4, 
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only cases (e) and (f) do not change the APL, while other cases change the APL. For example, 

in case (a), the node traversing probabilities of nodes v2 and  v3 are changed as a result of the 

swap. Before the swap, the node traversing probabilities of v2 and v3 are given by: 

NTP(v2) = ETP(eo) = P(xi = 0) x NTP(vi ) 

NTP(v3) = ETP(ei) = P(xi = 1) x NTP(vi), 

where eo and el denote the edges from vi to v2 and from vi to v3, respectively. On the other 

hand, after the swap, the node traversing probabilities of v2 and v3 are: 

NTP(v2) = P(x1+i = 0) x NTP(vi) 

NTP(v3) = P(x1+i = 1) x NTP(vi). 

When P(xi = 0) = P(xi+i = 0) and P(xi = 1) = P(xi+i = 1), the node traversing probabilities 

of v2 and v3 do not change after the swap. Therefore, in case (a), the APL is changed by the 
edge traversing probabilities of outgoing edges from vi. Similarly, in other cases except for (e) 

and (f), the APL is changed by the edge traversing probabilities of outgoing edges from the root 
node of a subgraph. Note that from Theorem 3.4, we consider only the edges from the root node 
to nodes in level i+ 1 to update the APL. 

  We summarize the strategy for updating the APL as follows: 

  1. Before the swap, for each subgraph involved in the swap, the edge traversing probabilities 

    of edges from the root node of a subgraph to nodes in level i+ 1 are subtracted from 1) the 
    APL and from 2) the node traversing probabilities of nodes in level i + 1. 

  2. After the swap, for each subgraph, the edge traversing probabilities of edges from the root 

    node of a subgraph to nodes in level i + 1 are re-calculated. 

  3. The calculated edge traversing probabilities are added to 1) the APL and to 2) the node 

    traversing probabilities of nodes in level i + 1. 

Example 3.3 Fig. 3.5 shows BDDs for a binary logic function f = xix4 V x2x4 V x3. Fig. 3.5(a) 

shows the BDD with the variable order (xi ,x2,x3,x4), top to bottom. For simplicity, assume 
that P(x1 = 0) = P(xi = 1) = 0.50 (i = 1,2,3,4). Then, the APL of the BDD in Fig. 3.5(a) is 

2.875. In this BDD, we consider the swap of variables x2 and x3. During such a swap, case 

(b) applies to node v2 and case (f) applies to node v4. Performing the swap leads to the BDD 

shown in Fig. 3.5(b). Note that the swap decreases the APL by 0.25 because the node v4 after 

the swap does not have the incoming edge from node v2. The node traversing probabilities 
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                Figure 3.5: Example of the update of the APL 

associated with nodes v2 and v3 do not change. The overall APL decreases from 2.875 to 2.625. 

                                                 (End of Example) 

Example 3.4 Fig. 3.6(a) shows the BDD with the variable order (x2,x3,xl) for logic function 

f = xl (x2 V x3). Assume that 

P(xl = 0) = 0.6, P(xi = 1) = 0.4, 

P(x2 = 0) = 0.3, P(x2 = 1) = 0.7, 

                  P(x3 = 0) = 0.8, P(x3 = 1) = 0.2. 

The APL of the BDD in Fig. 3.6(a) is 2.06. For the swap of variables x3 and xi, case (d) applies 

to node v2 and case (f) applies to node v3. Performing this swap yields the BDD shown in 
Fig. 3.6(b). It changes the node traversing probabilities of v3 and v4 (a new node). Before the 

swap, the edge traversing probability of edge from v2 to v3, 0.06, is subtracted from the APL 

and from the node traversing probabilities of v3. After the swap, the edge traversing probability 
of edge from v2 to v4, 0.12, is added to the APL and to v4. The overall APL increases from 2.06 

to 2.12.(End of Example) 

3.5.2 Symmetric Variables 

Definition 3.5 A logic function f (xi , x2i ... , xi, ... , Xi, ... , xn) is symmetric with respect to 

Xi and xi if the interchange of xi and xi does not change f. xi and xi are called symmetric 

variables. 
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             Figure 3.6: Another example of the update of the APL 

  In a DD, swapping symmetric variables xi and xi does not change the graph structure. 

Definition 3.6 Let Ttl and n2 be permutations of the variables. If the positions of variables in itl 

are the same as in Tt2 except for symmetric variables, Ttl and Tt2 are called symmetric orders. 

  Since symmetric orders produce DDs with the same graph structure, the DDs have the same 

APL when P(x1= 0) = P(xi = 0), P(xe = 1) = P(xf = 1), ..., and P(x1= r-1) = P(xi = r-1) 
for symmetric variables x; and xi. Therefore, in such a case, detection of symmetric orders can 
reduce the computation time for an APL minimization algorithm. 

Example 3.5 Consider the logic function f = xlx4 V x2x4 V x3 (Fig. 3.5). Let variable orders 
Ttl and 7t2 be (xl,x2,x3,x4) and (x2,xl,x3,x4), respectively. Since x1 and x2 are symmetric 

variables, Ttl and 1t2 are symmetric orders. The BDDs for the two orders are the same except 

the labels x1 and x2 are interchanged, and have the same APL and the same number of nodes. 

                                                (End of Example) 

3.5.3 Exact Minimization Algorithm 

Fig. 3.7 shows a pseudo-code to solve Problem 3.1. This algorithm finds an optimum solu-

tion using a branch-and-bound method, similar to the top-down algorithm (JANUS) in [16]. 

JANUS [16] uses the number of nodes in a BDD as the cost function, while our algorithm uses 

the APL of a DD (BDD or MDD) as the cost function. By using the node traversing probability 

(NTP), the changes in APL can be calculated at each node locally. This locality of computation 
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Figure 3.7: Exact APL minimization algorithm by variable ordering . 
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allows a top-down algorithm. To our knowledge, this is the first time an APL minimization 

algorithm based on branch-and-bound has been proposed. This algorithm finds an optimum 

variable order much faster than the exhaustive search method, which enumerates all possible 

variable orders. 

  In lines 11 and 31 of Fig. 3.7, procedure ordering changes the variable order of the DD into 

the given order from the top to the specified level. For example, let the current variable order 

be  (xl,x2,x3,x4,xs). We seek the order (x5,x4) at level two. That is, we seek (x5,x4, *, *, *), 
where "*, *, *" represents xi, x2, and x3 in some order. Then, procedure ordering(DD, (x5,x4), 
2) obtains the order (x5i x4, xl , x2, x3) in 7 swaps from the order (xi , x2, x3, x4, x5 ). Procedure 

symmetry_check in line 15 checks symmetry of adjacent variables [53]. When the variable 
order of XS , which has already been stored in array "order[X Ub]" as a candidate, and the 
current variable order of the DD are symmetric, and all P(x = c) s are same for the symmetric 

variables, the current order is excluded from candidates. In line 19, Theorem 3.3 is used to 

eliminate the unneeded variable exchanges to reduce computation time. In line 21, NTP(level) 

denotes the sum of the node traversing probabilities of the nodes on the given level (level). The 

initial values of array cost in Fig. 3.7 are set to infinity. 

3.5.4 Heuristic Minimization Algorithm 

The algorithm in Fig. 3.7 obtains an optimum solution for Problem 3.1. However, when the 

number of input variables is large, finding the optimum variable order may require much com-

putation time. 
  In this section, we show a heuristic minimization method using variable sifting [59]. The 

sifting algorithm repeatedly performs the following basic steps: 

  1. Change the variable order. 

  2. Compute a cost. 

The proposed sifting algorithm uses APL as the cost function. It was shown in Section 3.5.1 that 

the APL can be efficiently updated after the swap of two adjacent variables. As a result, the time 

needed to compute the cost in our sifting algorithm is comparable to the time needed to update 

the number of nodes in the classical sifting algorithm, which minimizes the number of nodes. 

Fig. 3.8 shows the pseudo-code of the heuristic minimization algorithm. In this algorithm, each 

variable xi is sifted across all possible positions to determine its best position. First, xi is sifted 

in one direction to the closer extreme (top or bottom). Then, xi is sifted in the opposite direction 

to the other extreme. In lines 10 and 20 of Fig. 3.8, Corollary 3.2 is used to eliminate unneeded 
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Figure 3.8: Heuristic APL minimization algorithm by variable ordering . 

                   20



sifting of  xi. When variable xi moves down to the bottom, we use U equal to the sum of the 

node traversing probabilities of the nodes above xi. If cost < U, sifting of xi further down to 

the bottom cannot lead to a smaller APL than cost. In such cases, there is no need to continue 

sifting to the bottom. Similarly, when variable xi moves up to the top, we use L equal to the 

sum of the node traversing probabilities of the nodes below xi. This lower bound for the APL is 

similar to the one introduced for the number of nodes during the classical sifting [14]. 

3.5.5 Initial Ordering of the Binary Variables 

The initial ordering of variables influences the effectiveness of the heuristic minimization algo-

rithm described in the previous section. An analysis of variable orders that produces the mini-

mal APL in several known classes of functions [12, 68] leads to a heuristic to find a good initial 

variable order. In this section, we propose an initial variable order using Walsh spectrum [21] 

for binary logic functions. 

  The value of a first-order Walsh spectral coefficient expresses the correlation between the 

variable value with the function value. For n-variable logic function f(X), the first-order Walsh 

spectral coefficient can be computed as follows [13]: 

                          R—Ix`®fl-1 
2n-1, 

where 1.77i ® fl denotes the number of assignments of values to the variables X that the values of 

xi and f (X) are equal. The initial variable order is found by placing the variables in descending 
order of the absolute value of Ri. For variables with identical absolute values of R1, we arbitrarily 
choose the order. 

  All spectral coefficients can be computed by scanning the nodes beginning at the root node 
and ending on the terminal nodes using a fast algorithm [77]. The first-order coefficients can be 

computed by a simplified version of the general algorithm. 

Example 3.6 Consider the binary logic function f = x1x4 V x2x4 V x3 in Example 3.3. For each 

binary variable xi, the value of I xi ® f i is given by: 

Ix1®fl= 9, 1x2®fI=9, Ix3®fI=13, 114®f1=11. 

The value of each Ri corresponding to xi is as follows: 

1 1 5 3 
R1=g, R2=g,R3 =R4 R4=g. 

Therefore, we have an initial variable order x3, x4, x1, x2, and APL = 1.875. This is the minimum 

APL for f .(End of Example) 
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             Table 3.1: Minimization of APL for individual BDDs 

 Name In Out (a)  Min_Nodes(b) Min_APL (c) Liu [31] (d) sifting 
               Nodes APL lime Nodes APL Time Nodes APL Nodes APL Time 

5xpl 7 10 66 34.13 0.01 81 31.28 0.01 91 31.31 79 31.28 0.01 
 alu4 14 8 448 41.75 22.76 547 39.69 28.71 899 47.54 516 39.97 0.01 
 b12 15 9 64 23.86 0.03 68 21.84 0.01 81 22.22 71 21.88 0.01 

conl 7 2 14 6.06 0.01 16 5.94 0.01 16 6.06 16 5.94 0.01 
 cordic 23 2 73 13.74 416.57 89 9.43 1006.08 259 11.82 88 9.47 0.01 
 sao2 10 4 99 10.90 0.26 116 10.59 0.06 128 10.71 121 10.59 0.01 
 vg2 25 8 202 31.00 6431.83 222 29.91 376.78 230 30.37 204 30.16 0.01 

misexl 8 7 54 23.22 0.01 57 21.97 0.02 68 22.16 64 21.97 0.01 
cm150a 21 1 32 3.50 1106.23 32 3.50 1510.58 33 3.50 32 3.50 0.01 
cm151a 12 2 32 6.00 0.38 32 6.00 0.28 36 6.50 32 6.00 0.01 
cm162a 14 5 41 11.76 0.06 52 11.70 0.05 59 11.70 48 11.71 0.01 
cm163a 16 5 35 11.70 0.01 38 11.70 0.01 42 11.70 36 11.70 0.01 

 cm85a 11 3 38 7.72 0.05 38 7.72 0.01 47 8.28 38 7.72 0.01 
 mux 21 1 32 3.50 1098.72 32 3.50 1410.57 33 3.50 32 3.50 0.01 

z4m1 7 4 28 18.25 0.01 30 16.38 0.02 32 17.13 28 16.38 0.01 
f51m 8 8 51 28.08 0.01 65 27.33 0.02 76 27.45 64 27.45 0.01 

 pcle 19 9 79 22.50 0.11 84 22.50 0.03 89 22.50 79 22.50 0.01 
 Average of ratios 1.00 1.00 1.00 1.12 0.95 0.93 1.40 0.99 1.10 0.95 0.40  

3.6 Experimental Results 

Experiments using MCNC benchmarks were conducted in the following environment: 

  • CPU: Pentium4 Xeon 2.8GHz 

  • L1 Cache: 32KB 

  • L2 Cache: 512KB 

  • Main Memory: 4GB 

  • Operating System: redhat (Linux 7.3) 

  • C-Compiler: gcc -02 

In this section, we assume that P(xi = 0) = P(xi = 1) = 0.5 for binary logic functions. 
  Table 3.1 compares the number of nodes and APL of BDDs optimized using four different 

methods: (a) exact minimization of the number of nodes; (b) exact minimization of the APL; 

(c) the algorithm in [31]; and (d) the heuristic APL minimization algorithm presented in this 

chapter. In the table, Name lists the names of benchmark functions. In and Out lists the numbers 

of input variables and single-output functions, respectively. Columns Nodes contain the number 

of non-terminal nodes. Columns Time contain the CPU time of three algorithms coded by us, 
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        Table 3.2: Minimization of APL for shared BDDs for larger functions 

 Name In Out classical sifting Coef. Without Walsh spectrum With Walsh spectrum 

             NodesAPL  Time Nodes APL Time Nodes APL Time 

 C432 36 7 106386.58 0.01 1081 86.24 0.15 1899 82.09 0.83 

 C499 41 32 25873 782.66 0.02 32105 641.16 7.12 32105 641.16 7.11 

 C880 60 26 4122140.42 0.01 41701 123.85 4.48 91767 122.22 52.12 

 C1908 33 25 5532254.65 0.01 16634 179.20 0.96 13868 171.96 2.73 

 C2670 233 140 1882303.34 0.05 2755 278.17 1.30 

 C3540 50 22 24231 209.15 0.10 25162 208.44 7.44 56898 212.73 75.21 

 C5315 178 123 1728 460.78 0.05 1820 446.26 0.26 

 C7552 207 108 2212 485.03 0.05 2207 471.54 0.87* 

 apex3 54 50 931 188.58 0.01 900 158.82 0.04 905 158.73 0.03 

apex7 49 37 242 113.88 0.01 277 82.44 0.01 280 82.45 0.02 

 b9 41 21 10861.16 0.01 131 55.25 0.01 129 55.39 0.01 

 dalu 75 16 688 102.67 0.01 990 78.81 0.08 1069 78.81 35.31 

 des 256 245 3297 1209.50 0.18 3343 1081.13 0.47 3886 1077.63 2.15 

 duke2 22 29 360 87.89 0.01 386 77.52 0.01 392 77.52 0.02 

 e64 65 65 128 128.00 0.01 128 128.00 0.01 573 128.00 0.05 

 ex4 128 28 497 51.38 0.01 629 47.26 0.02 630 47.26 0.03 

 frg2 143 139 1379 607.00 0.04 1580 322.89 0.15 2189 321.75 0.23 

 k2 45 45 1257 181.80 0.01 1426 177.52 0.07 1418 177.50 0.10 

 rot 135 107 7891 446.47 0.05 16164 312.08 5.61 18503 308.68 30.34 

 Average1.00 1.00 0.03 1.87 0.85 1.53 3.01 0.84 12.89 
 * Memory overflow precluded computation of these values . 

in seconds. Unfortunately, the CPU time of the algorithm in [31] is unavailable. Columns "(a) 

Min_Nodes", "(b) Min_APL", "(c) Liu [31]", and "(d) sifting" show the exact nodes minimiza-

tion algorithm in [16], the exact APL minimization algorithm in Section 3.5.3, the heuristic 

APL minimization in [31], and the heuristic APL minimization in Section 3.5.4, respectively. 

Initial variable order for "(d) sifting" was obtained using Walsh spectrum described in Sec-

tion 3.5.5. The BDDs in this table use complemented edges [6, 40]. Table 3.1 includes the same 

benchmark functions as the experiment in [31] except for incompletely specified functions. 

  We omitted incompletely specified functions because the number of nodes and the APL in 

BDDs for incompletely specified functions depend on the assignment of values to don't cares, as 

well as the variable order. To make our results compatible with the results in [31], we optimized 

each output of the multiple-output benchmark functions independently, and obtained the sum of 

the values over all outputs. Thus, the number of nodes and APL in Table 3.1 are different from 

those of the shared BDD (SBDD). Two rounds of sifting are performed in all experiments. The 

row labeled Average of ratios represents the normalized averages for Nodes, APL, and Time as-
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suming the values  of  "(a) MinJNodes" to be 1.00. The columns "(b) Min_APL", "(c) Liu [31]", 

and "(d) sifting" of this row contains the relative values to the results of "(a) Min_ Nodes". 

  The heuristic method in [31] obtained BDDs with the exact minimum APLs in 5 out of 

17 benchmark functions. However, for alu4, cm151 a, and cm85a, the algorithm in [31] ob-

tained BDDs with much larger APLs than the exact minimum APLs. On the other hand, our 

heuristic method in Section 3.5.4 obtained BDDs with the exact minimum APLs in 11 out of 17 

benchmark functions. 

  For five of the remaining functions, the APLs in the column labeled "(d) sifting" are smaller 

than or equal to the APLs in "(c) Liu [31]". For cm162a, our sifting algorithm obtained BDDs 

with slightly larger APLs than the exact minimum APLs. 

  An exhaustive search algorithm finds the minimum APLs for the functions with up to 14 

inputs within a reasonable computation time. Meanwhile, our exact minimization algorithm in 

Section 3.5.3 found the minimum APL for functions with 25 inputs (vg2) within a reasonable 

computation time. 

  Table 3.2 shows the results for larger MCNC benchmarks and the effectiveness of the initial 

variable order using the Walsh spectrum. In this table, we used SBDDs with complemented 

edges for multiple-output functions. In Table 3.2, the column "classical sifting" shows the 

number of nodes and APL for BDDs obtained by the sifting algorithm [59] which minimizes 

the number of nodes in BDD. The column "Without Walsh spectrum" shows the results of our 

sifting algorithm, which minimizes the APL, where the initial variable orders are the variable 

orders of BDDs obtained by "classical sifting". And, the column "With Walsh spectrum" shows 

the results of our sifting algorithm, where the initial variable orders were obtained using Walsh 

spectrum shown in Section 3.5.5. The column "Coef. Time" denotes the CPU time needed 

to calculate the values of first-order Walsh spectral coefficients R1, in seconds. Unfortunately, 

for C2670, C5315, and C7552, BDDs with the initial variable orders could not be constructed 

due to memory overflow. The row labeled Average represents average of Time and normalized 

averages of Nodes and APL assuming the values of "classical sifting" to be 1.00. The columns 
"Without Walsh spectrum" and "With Walsh spectrum" show the relati ve values to the results 

of "classical sifting". 

  For some benchmark functions, for example, C1908, frg2, and rot, the APLs are reduced 

drastically. For C7552, the number of nodes is reduced as a byproduct of the APL minimization . 

However, for most functions, the number of nodes is increased by the APL minimization . The 
comparison of "Without Walsh spectrum" and "With Walsh spectrum" shows the effectiveness 

of the initial variable order using Walsh spectrum. For 8 out of 19 benchmark functions , the 
APLs in the column "With Walsh spectrum" are smaller than the APLs in "Without Walsh 
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spectrum". The computation time to calculate the values of  R1 is short. 

  However, for most functions, the computation times of sifting for "With Walsh spectrum" 

are significantly longer than that for "Without Walsh spectrum" because the number of nodes in 

BDD with initial variable order computed using Walsh spectrum is large. When the number of 

nodes in the BDD is large, swapping one pair of adjacent variables takes a longer time because 

the time needed for the swap is roughly proportional to the number of nodes present on the 

given levels in the BDD. 

  Tables 3.1 and 3.2 show that the proposed heuristic minimization minimizes the APL in 

short computation time. For small benchmark functions in Table 3.1, the heuristic minimization 

could obtain BDDs with near-minimum APLs. For large benchmark functions in Table 3.2, the 

heuristic algorithm reduces APLs to 84% on the average. 

3.7 Conclusion and Comments 

In this chapter, we have proposed an exact and a heuristic APL minimization algorithm for 

BDDs and MDDs by variable ordering. The experimental results using MCNC benchmark 

functions show that: 1) The exact minimization algorithm finds BDDs with the minimum APL 

for the function with up to 25 input variables within a reasonable computation time. 2) Using 

the node and edge traversing probabilities to compute and update the APLs after the swap of 

two adjacent variables, the proposed sifting algorithm can heuristically minimize the APLs as 

fast as the classical sifting, which minimizes the number of nodes. 3) Using an initial variable 

order computed using Walsh spectral coefficients increases the quality of the results of APL 

minimization algorithms. However, in some cases the initial variable order leads to BDDs 

with a large number of nodes, which slows down APL minimization. 4) For many benchmark 

functions, APL minimization by variable ordering increases the number of nodes. 
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Chapter 4 

Area-Time Complexities of QRMDD(k)s 

This chapter shows the relations between the values of k and the number of nodes, memory size, 

path length, and area-time complexity [8, 76] for QRMDD(k), and derives the optimum values 
of k for each application. 

4.1 Introduction 

Since modem computer systems have the memory hierarchical structure, suitable DDs for the 

memory hierarchy can shorten the runtimes of applications using DDs [34, 35, 78]. QRBDDs 

and QRMDDs are suitable for the memory hierarchy [52], parallel process [23, 51], and design 

of LUT cascades [65]. However, in general, QRBDDs and QRMDDs require more nodes than 

corresponding ROBDDs and ROMDDs to represent logic functions. Hence, the minimizations 

of QRBDDs and QRMDDs are very important. In many cases, the minimizations of DDs use 

the variable reordering [14, 17, 18, 19, 24, 39, 59, 74]. In the minimization of MDDs, a partition 

of binary variables [20, 62] is important, as well as the variable ordering. 

  To represent a binary logic function using an MDD, binary variables are partitioned into 

groups. The papers [20, 62] present the optimization algorithm of partition of input binary 

variables into groups of binary variables. However, the size of groups (i.e. the number of binary 

variables in a group) is fixed in these algorithms. In this chapter, we assume that the size of 

groups, that is the value of k for QRMDD(k)s, can be changed, and we find the optimum sizes 

of groups experimentally by showing the relations of the values of k and the numbers of nodes, 

the memory sizes, and the path length. To show these relations, we assume that the order of 

binary variable is fixed. Our statistical results are useful for minimizations of MDDs , software 

synthesis [2], and logic simulation[1, 22, 34, 35]. 

  The rest of this chapter is organized as follows: Section 4.2 defines MDD(k)s, QRMDD(k)s , 
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computation model for MDDs, and a method to represent multiple-output functions. Section 4.3 

considers the number of nodes in QRMDD(k)s for general functions, benchmark functions, and 

randomly generated functions. Section 4.4 introduces the measure called area-time  complex-

ity [8, 76] to find the optimum value of k for QRMDD(k)s, and derives the optimum values of k 

by experiments. 

4.2 Definitions 

This section provides definitions used in this chapter. 

Definition 4.1 When = (xl,x2i...,xn) is partitioned into (Xi ,X2, ...,Xu), where IX' = k (i = 

1, 2, ... , u), an ROMDD representing a multi-valued input two-valued output logic function 

f(X1,X2,...,Xu) is called an MDD(k). Similarly, a QRMDD representing f(X1,X2,...,Xu) is 
called a QRMDD(k). An MDD(k) and a QRMDD(k) represent a mapping f : Ru -+ B, where 
R = {0, 1, ... , 2k — 1} and B = {0, 1 }. In an MDD(k) and a QRMDD(k), non-terminal nodes 
have 2k outgoing edges. 

  For n-variable logic functions f, if n < ku (i.e. n is indivisible by k), we use additional 

redundant binary variables, which are called dummy variables, to construct MDD(k). The set 
of binary variables with dummy variables is denoted by {X'} = {xi , x2, • . • , xn, xn+1, . - - , xn+t }, 

where = n + t, and t denotes the number of dummy variables. Note that f is independent 
of xn+1, Xn+2, - - - and xn+t. 

  The path length of an arbitrary path in a QRMDD(k) is equal to the number of super vari-

ables. Thus, APL of a QRMDD(k) is also equal to the number of supper variables. An MDD(k) 
has no redundant nodes, while a QRMDD(k) usually has redundant nodes. Therefore, we 
have the following relation between the number of nodes in an MDD(k) and its correspond-

ing QRMDD(k): 
                nodes(MDD(k)) < nodes(QRMDD(k)). 

Example 4.1 Consider the logic function f = xlx2x3 V x2x3x4 V x3x4x1 V x4xlx2 in Example 3.1. 

The BDD, the MDD(2), and the QRMDD(2) for f are shown in Fig. 4.1(a), (b), and (c), respec-

tively. In Fig. 4.1(a), the solid lines and the broken lines denote 1-edges and 0-edges, respec-
tively. In Fig. 4.1(b) and (c), the input variables X = (xi , x2, x3, x4) are partitioned into (Xi,X2), 

where X1 = (xl,x2) and X2 = (x3,x4). We have nodes(ROBDD) = 6, nodes(ROMDD(2)) = 3, 

and nodes(QRMDD(2)) = 4.(End of Example) 
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                Figure 4.1: BDD, MDD(2), and QRMDD(2). 

  In this chapter, we use an encoded characteristic function for non-zero output (ECFN) [64, 
66] to represent multiple-output logic functions F = (fo, f1, ... , fii_1). An ECFN uses u = 

ilog2 ml auxiliary variables to represent the outputs, and represents a mapping: 

ECFN : Bn+u B, 

where n is the number of binary variables and B = {0, 1 }. 

Definition 4.2 The density for an n-variable logic function f is defined as 

                     I2 I x 100, 
where f l denotes the number of a such that f (a) = 1. 
  The density for a multiple-output function F is the density for an ECFN representing F . 

4.3 Number of Nodes in QRMDD(k) 

In this section, we first obtain an upper bound on the number of nodes in a QRMDD(k) . Then, 

we obtain the numbers of nodes in QRMDD(k)s for benchmark functions , and show that an 
interesting property holds for many benchmark functions. Finally, we obtain the numbers of 

nodes in QRMDD(k)s for randomly generated functions, and show that they have quite different 

property from the benchmark functions. 
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          Table 4.1: Upper bounds on the number of nodes in QRMDD(k). 

 k 

 n 1 2 3 4 5 

          10 275 101 77 33 33 
          11 531 345 89 273 37 

           12 787 357 329 273 49 

            13 1299 601 589 277 289 

             14 2323 1381 601 289 1057 
             15 4371 1625 841 529 1057 

             16 8467 5477 4685 4369 1061 

             17 16659 5721 4697 4373 1073 

             18 33043 21861 4937 4385 1313 
             19 65811 22105 37453 4625 33825 

             20 131347 87397 37465 69905 33825 

4.3.1 Number of Nodes for General Functions 

Theorem 4.1 An arbitrary n-variable logic function can be represented by a QRBDD with at 

 most 
r 

                             2n—r —1 +122' 
                                             i=1 

non-terminal nodes, where r is the largest integer that satisfies relation n — r> 2r [29). 

Proof See Appendix. 

Theorem 4.2 An arbitrary n-variable logic function can be represented by a QRMDD(k) with 

at most                          sk — 1 
+~; +122" 

2k 2k —1 i=1 

non-terminal nodes, where u is the number of super variables, t is the number of dummy vari-

ables, and s is the smallest integer that satisfies relation 

                                      n—r 
                                    s> , k • 

Proof See Appendix. 

  Table 4.1 shows the upper bounds on the number of nodes in QRMDD(k)s for n-variable 

logic functions. We can see that the upper bounds are non-monotone functions of k. 
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4.3.2 Number of Nodes for Benchmark Functions 

We used 157 benchmark functions [9, 63, 81] shown in Table 4.2, where n and m denote the 

number of input and output variables , respectively. In this table, the benchmark functions under 

sequential originally represented sequential circuits. We removed flip-flops (FFs) from these 

sequential circuits to make them combinational. Such functions are renamed by appending a 

subscript  'c' to the original names. In this chapter, encodings for ECFNs and binary variable 

orders of BDDs are obtained by the heuristic algorithm in [66]. In the following experiments, 

we use these variable orders, and we consider only the partition of binary variables. For each 

benchmark function, we counted the number of nodes in the corresponding QRMDD(k)s for 

various k. In Table 4.3, avg denotes the arithmetic average of the relative numbers of nodes, 

where the number of nodes in QRBDD is set to 1.00, and stdv denotes the standard deviation. 

Definition 4.3 The relation ' is defined as follows: 

a b4 11<0.1, 

where a and b are positive integers, and the normalized difference rl is given by: 

                          11= ~a—bI  
min(a, b) 

If a ^ b, then a and b are nearly equal. 

For 133 functions in Table 4.2, the following property holds. 

Property 4.1 

              nodes(QRMDD(k))^~knodes(QRBDD) 
For the remaining 24 functions, 11 > 0.1 holds. Table 4.4 lists these 24 functions. In Table 4.4, 
"# nodes"

, "dens.", and "cater' denote the numbers of nodes in QRBDDs, the densities, and the 

categories of functions described below, respectively. Fig. 4.2 shows the relation between the 

normalized difference 11 and the densities for benchmark functions. The symbols +, x ,O, and 

A correspond to the values for k = 2, 3, 4, and 5, respectively. For each function, we assume 

that Property 4.1 holds when all the symbols are below the border line of 11 = 0.1 (i.e., B < 0.1 

holds for k = 2 , 5). From Fig. 4.2, we categorized 24 functions in Table 4.4 into three sets. 

  1. The densities of functions are between 40% and 60%, and the number of nodes for QRB-

    DDs are large relative to the number of inputs. 

  2. The functions have iterative properties (i.e., adder and comparator). 

  3. The numbers of nodes, inputs, and outputs are small. Property 4.1 does not hold for k = 4 

or 5. 
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Table 4.2: List of benchmark functions. 

 n m Name n m Name 

18 12 i5 133 66 signet 
36 7  i6 138 67 soar 
41 32 i7 199 67 spla 
60 26 i8 133 81 sgr16 
41 32 i988 63 tl 
33 25 i10 257 224 t2 

233 140 ibm 48 17 table5 
50 22 inl 16 17 tcon 

178 123 in2 19 10 terml 
207 108 in3 35 29 ti 

 50 69 in4 32 20 too_large 
16 9 in5 24 14 ts10 
18 10 in6 33 23 ttt2 
16 47 in7 26 10 unreg 

 15 38 inc16 16 17 vda 
45 45 inc17 17 18 vg2 
39 3 inc18 18 19 vtxl 
54 50 jbp 36 57 wgt17 

117 88 k2 45 45 wgt18 
135 99 lal 26 19 xl 
49 37 Iog16 16 16 x3 

 16 17 Iog17 17 17 x4 
32 20 log18 18 18 xldn 

 33 23 mainpla 27 54 x2dn 
41 21 markl 20 31 x6dn 

 26 11 misex2 25 18 x7dn 
26 46 misg 56 23 x9dn 
26 39 mish 94 43 xparc 
26 45 misj 35 14segue 

 26 38 mlp8 16 16 s2088. 
28 18 mlp9 18 18 s2988 

 21 20 m1p10 20 20 s344r 
29 7 mux 21 1 s349, 

 47 36 my_adder 33 17 s382., 
21 1 nrm8 16 9 s4000 
32 3 nrm9 18 10 s4200 
23 2 opa 17 69 s444r 

 35 16 pair 173 137 s5 10c 
 24 109 pcle 19 9 s5266 

 75 16 pcler8 27 17 s641c 
256 245 pdc 16 40 s713c 

 15 17 pml 16 13 s820c 
22 29 rckl 32 7 s832, 

 65 65 rdm16 16 16 s838c. 
128 28 rdm17 17 17 s119k 

 85 66 rdml8 18 18 s1423, 
 30 63 rot 135 107 s5378r 

28 3 rot16 16 9 s923k 
143 139 rot17 17 9 s13207, 

 25 16 rot18 18 10 s 15850 
201 1 sct 19 15 s384177 
132 6 seq 41 35 s38584, 
192 6 shift 19 16  
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Table 4.3: Relation of nodes in QRMDD(k) and k for benchmark functions. 

 k 

       1 2 3 4 5 

          avg 1.000 0.498 0.333 0.248 0.202 

          stdv 0.000 0.013 0.009 0.016 0.016 

          Table 4.4: Benchmark functions with  r1  > 0.1. 

         Name # in # out # nodes dens. cate. 

      C499 41 32 24476 50.0 1 

C1355 41 32 30156 50.0 1 

C1908 33 25 9292 45.8 1 

      adr8 16 9 153 50.0 2 
      adr9 18 10 180 50.0 2 

      comp 32 3 114 37.5 2 

incl7 17 18 236 48.4 3 
log16 16 16 11216 59.9 1 

log 17 17 17 23054 55.1 1 

log18 18 18 31458 55.2 1 
mlp8 16 16 10112 41.5 1 

mlp9 18 18 28332 37.5 1 

m1p10 20 20 82077 38.5 1 

       my_adder 33 17 450 50.0 2 

      nrm8 16 9 8689 49.1 1 
       nrm9 18 10 23152 49.0 1 

     pcle 19 9 221 29.3 3 
rot16 16 9 1021 60.8 3 
rot17 17 9 1429 49.3 3 
sgr16 16 32 18366 42.9 1 

      tcon 17 16 183 50.0 3 
     vg2 25 8 217 22.9 3 

vtxl 27 6 326 12.5 3 
     xldn 27 6 332 12.5 3 
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Figure 4.2: Relation between the normalized difference ri and density for benchmark functions. 

4.3.3 Number of Nodes for Randomly Generated Functions 

For d = 1, 2, ... , 99, we randomly generated one 25-variable function with density d to obtain 

99 functions. Fig. 4.3 shows the relation between the normalized difference rl and the densities 

for randomly generated functions. In this case, no randomly generated functions of 25 variables 

satisfied Property 4.1. This fact shows that randomly generated functions have quite different 

property from the benchmark functions in Table 4.2. 

  For many benchmark functions, the numbers of nodes in QRMDD(k)s decrease as k in-

crease. However, for randomly generated functions, the number of nodes is a non-monotone 

function of k. For example, for many randomly generated functions of 25 variables, the numbers 

of nodes in QRMDD(5)s were larger than those in QRMDD(3)s. 

  For n = 10, 11, ... , 20, we also randomly generated ten n-variable functions with density 

50%. Table 4.5 shows the average numbers of nodes in QRMDD(k)s for randomly generated 

functions. The deviations were within +2% of the averages. From Table 4.1 and Table 4.5, 

we can see that the numbers of nodes in QRMDD(k)s for randomly generated functions with 

density 50% are nearly equal to the upper bounds. 
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Figure 4.3: Relation between the normalized difference i and density for randomly generated 

functions. 

4.4 Area-Time Complexity of QRMDD(k) 

4.4.1 Memory Size for QRMDD(k) 

Definition 4.4 The memory size for a QRMDD(k) is the number of bits needed to store the 

QRMDD(k) in memory. 

  In memory, a non-terminal node in an MDD(k) requires an index and a set of pointers that 
refer the succeeding nodes. However, in a QRMDD(k), each non-terminal node has no index 
because X1, X2,.. - ,Xu are evaluated always in this order, and the index of the super variable to 
evaluate can be obtained by a counter, where the super variable order is Xi ,X2, ...,Xu. 

Example 4.2 Fig. 4.4 illustrates data structures of a non-terminal node in an MDD(2) and a 

QRMDD(2).(End of Example) 

  Because each non-terminal node in a QRMDD(k) has 2k outgoing edges, we need 

2knodes(QRMDD(k)) 
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     Table 4.5: Number of nodes in QRMDD(k) for randomly generated functions. 

                           k 

   n 1 2 3 4 5 

          10 247.4 101.0 77.0 33.0 33.0 

           11 437.1 251.2 89.0 179.2 37.0 

           12 754.0 356.5 296.5 272.5 49.0 

            13 1292.8 596.6 587.2 277.0 284.6 
            14 2316.0 1374.1 601.0 289.0 1050.1 

            15 4341.1 1625.0 841.0 529.0 1057.0 

            16 8336.5 5346.5 4554.5 4238.5 1061.0 

            17 16165.3 5721.0 4697.0 4373.0 1073.0 
            18 31155.9 19973.9 4937.0 4385.0 1313.0 

            19 58836.4 22105.0 30478.4 4625.0 26850.4 

            20 107220.3 63270.3 37465.0 45778.3 33825.0 

                  Memory Memory 

          0index                       0- edge 0- edge 

 1-  edge 1- edge 
     0 1 2 3 2- edge 2- edge 

      (a) A non-terminal node 3- edge 3- edge 

          in MDDs. (b) MDD(2). (c) QRMDD(2). 

              Figure 4.4: Data structure of a non-terminal node in DDs. 

words to store all nodes in a QRMDD(k). Since each node in a memory requires a unique 

address, each pointer requires 

[loge (nodes (QRMDD(k)) )1 

bits to specify the address. Therefore, the memory size for a QRMDD(k) is 

2knodes(QRMDD(k)) Flo g2 (nodes (QRMDD(k)))1. 

  As shown in Section 4.3.2, for many benchmark functions, nodes(QRMDD(k)) can be re-

duced with increasing k. On the other hand, the memory sizes for QRMDD(k)s increase with 
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 2k. This fact shows that in QRMDD(k), there exists optimum value of k that minimizes the 

memory size. 

4.4.2 Area-Time Complexity of QRMDD(k)s 

Because a QRMDD(k) evaluates k binary variables at a time, the path length of a QRMDD(k) 

is k of the corresponding QRBDD. On the other hand, the memory size for a QRMDD(k) 
increases with 2k. In this section, we consider the area-time complexity [8, 76] for QRMDD(k) 

and obtain the k that minimizes the area-time complexity. 

Definition 4.5 The area-time complexity is the measure of computational cost considering 

both area and time. It is defined by 

              AT = (area) x (time), AT2 = (area) x (time)2. 

  In this chapter, the area A corresponds to the necessary memory size for QRMDD(k), and 
the time T corresponds to the number of memory accesses to evaluate logic function (i.e. path 
length of QRMDD(k)). 

  The measure AT is used when both the memory size and the path length are equally impor-
tant. The measure AT2 is used when the path length is more important than the memory size. 
For example, AT can be used for software synthesis, while AT2 can be used for logic simulators. 

In the software synthesis for embedded systems [2, 25, 27, 45], compact and fast program codes 
are required because of the memory limitations and the time limitations for systems. Thus, in 

the software synthesis using DDs, the optimization of DDs considering both the memory size 
and the number of memory accesses is important. In logic simulators [1, 22, 34, 35], fast evalu-

ation of logic functions is more important to reduce the design verification time. Thus, in logic 
simulators, minimizing the number of memory accesses using a reasonable amount of memory 
is important. 

4.4.3 Experimental Results 

For each benchmark function in Table 4.2, we obtained three measures A, AT, and AT2. Ta-

ble 4.6, Table 4.7, and Table 4.8 show the relations of k and A, AT, and AT2, respectively. In 

these tables, avg denotes the arithmetic average, and stdv denotes the standard deviation for 

benchmark functions. 
  For each benchmark function in Table 4.2, A takes its minimum when k = 2; AT takes its 

minimum when k = 3 or k = 4; and AT2 takes its minimum when k = 4 — 6. 
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       Table 4.6: Relation of k and A for QRMDD(k) for benchmark functions. 

                            k 

         1 2 3 4 5 

                 avg 1.00 0.90 1.14 1.61 2.54 

                stdv 0.000 0.035 0.079 0.144 0.292 

       Table 4.7: Relation of k and AT for QRMDD(k) for benchmark functions. 

                             k 

         1 2 3 4 5 

                avg 1.00 0.46 0.39 0.42 0.54 

                stdv 0.000 0.019 0.030 0.039 0.070 

4.4.4 Analysis for the Functions that Satisfy Property 4.1 

In Section 4.4.3, for QRMDD(k)s, we found the values of k that make A,  AT, and AT2 minimum, 

experimentally. In this section, we assume that Property 4.1 holds, and will find the values k that 

make A, AT, and AT2 minimum, analytically. Let A and T be the memory size for a QRMDD(k) 

and the number of memory accesses necessary to evaluate a QRMDD(k), respectively. Then, 

we have the following: 

           A = 2k nodes (QRMDD(k)) [log2 (nodes (QRMDD(k)))1, 

T=[k1. 
Let nodes(QRMDD(1)) = N and assume that Property 4.1 holds. Then we have: 

                               k 

                     A^'-Nrlog2(k)1, 

                                k 

                 AT,--k2NFlog2(k)1, 
                              k2                    AT2,.,2nNFlog2(k)1 

Note that N is usually greater than 200, while k is usually at most 7. Thus, we can use the 

following approximation: 

[loge (N) — log2 (41 r„ [loge (N)] . 
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      Table 4.8: Relation of k and AT2 for QRMDD(k) for benchmark functions. 

 k 

       1 2 3 4 5 6 7 

           avg 1.000 0.232 0.133 0.110 0.114 0.128 0.167 

           stdv 0.000 0.011 0.012 0.012 0.019 0.023 0.046 

Therefore, A,  AT, and AT2 can be simplified to 

     2k2k2k                A^kCo, ATk2C1,and AT2k3C2, 

respectively, where the constants Co, Cl and C2 are independent of k. From the above formulas, 

we can see that A, AT, and AT2 take their minimum when k = 2, k = 3, and k = 4, respectively. 

4.5 Conclusion and Comments 

In this chapter, we considered representations of binary logic functions using QRMDD(k)s. 
Experimental results showed that: 1) For many benchmark functions, the numbers of nodes 
in QRMDD(k)s are nearly equal to k of the corresponding QRBDDs. On the other hand, for 
randomly generated functions, the number of nodes is a non-monotone function of k. 2) For 

many benchmark functions, the memory sizes and the area-time complexities for QRMDD(k)s 

take their minimum when k = 2 and k = 3 — 6, respectively. 

  In commercial LUT-based FPGAs, the numbers of inputs k for LUT cells are usually be-

tween 4 and, 6 [10]. The studies in [28, 58] show that when k = 4 , 6, the architectures of 

FPGAs are optimum. The cost of k-LUT cell increases with k, while the level of network re-

duces with k. Thus, in logic synthesis with FPGAs, we can do a similar discussion. However, 

the optimum value of k for FPGAs depends on interconnection delay, logic synthesis tools, and 

process technology as well as the cost of k-LUT cell and the level of networks [79]. It is in-

teresting that in both cases, the optimum values of k are 4 — 6 even if they have different cost 

functions. 
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Chapter 5 

Heterogeneous MDDs and Their Optimization 

Algorithms 

This chapter proposes the representations of binary logic functions using heterogeneous MDDs 

and the optimization algorithms for heterogeneous MDDs that consider both orderings and 

partitions of binary variables. 

5.1 Introduction 

As shown in Chapter 4, when MDDs are used to represent binary logic functions, we can use an 

additional optimization approach, which is a partition of binary variables, as well as the variable 

ordering. To represent a binary logic function using an MDD, binary variables are partitioned 

into groups. In an MDD(k), the groups have the same number of binary variables. On the 

other hand, in a heterogeneous MDD proposed in this chapter, the groups can have different 

numbers of binary variables. Thus, heterogeneous MDDs allow more flexible partition of binary 

variables than MDD(k)s, and in heterogeneous MDDs, both orderings and partitions of binary 

variables can be optimized to minimize the memory sizes or APLs. 

  As shown in Chapters 3 and 4, APL minimization approaches using variable reordering 

and QRMDD(k)s often increases the memory sizes of DDs. In fact, Table 3.2 shows that for 

benchmark function C880, APL minimization by variable ordering increases the number of 

nodes in the BDD by 10 times of original one. In QRMDD(k)s, although path length can be 

reduced by increasing the value of k, it increases the memory size. However, in heterogeneous 

MDDs proposed in this chapter, APLs can be reduced without increasing the memory size by 

considering both orderings and partitions of binary variables. 

  The rest of this chapter is organized as follows: Section 5.2 defines heterogeneous MDDs. 
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Section 5.3 shows the number of different heterogeneous MDDs. Section 5.4 proposes memory 

size minimization algorithms for heterogeneous MDDs. Section 5.5 proposes APL minimiza-

tion algorithms for heterogeneous MDDs. Section 5.6 compares memory sizes and APLs of 

heterogeneous MDDs for many benchmark functions. 

5.2 Definitions 

This section provides definitions used in this chapter. 

Definition 5.1 When X =  (xl  ,  x2, ... , xn) is partitioned into (Xi, X2, . . . , Xu), an ROMDD rep-
resenting a multi-valued input two-valued output function f 0(11X2, ... , Xu) is called a hetero-

geneous MDD. Specially, when k = IXlI = IX2I = ... = IXu1, an ROMDD for f (Xi ,X2,...,Xu) 
is called an MDD(k). A heterogeneous MDD represents a mapping f : R1 x R2 x ... x Ru -+ 

B, while an MDD(k) represents a mapping f : Ru -+ B, where Ri = {0, 1, ... ,2k1 — 1}, R = 

{0, 1, ... , 2k — 1}, and B = {0, 1 }. In a heterogeneous MDD, non-terminal nodes representing a 
super variable Xi have 2ki outgoing edges, where ki denotes the number of binary variables in 

Xi. Similarly, in an MDD(k), non-terminal nodes have 2k outgoing edges. 
  For n-variable logic functions f, if n < ku (i.e. n is indivisible by k), we use additional redun-

dant binary variables to construct MDD(k). The set of binary variables with dummy variables 
is denoted by {X'} = {xl ,x2, ... , xn, xn+1 , - - - , xku }, where IX' I = ku. Note that f is independent 
of xn+l , xn+2 ,... and xku. 

Example 5.1 Consider the logic function f = x1x2x3 V x2x3x4 V x3x4x1 V x4x1x2 in Example 3.1. 

Fig. 5.1 shows the heterogeneous MDDs for f. In Fig. 5.1(a), the binary variables X = (xi, x2,x3, 
x4) are partitioned into (Xi,X2), where Xi = (xl,x2,x3) and X2 = (x4). In Fig. 5.1(b),Xl = (xl) 

and X2 = (x2ix3,x4).(End of Example) 

Definition 5.2 The width of a DD with respect to xi1, denoted by width(DD, i), is the number 

of nodes in the DD corresponding to the variable xi. The number of nodes in the DD is given by 

                   nodes(DD) = I width(DD, i), 
                                           i=1 

where n denotes the number of variables. 

  1Note that this definition differs from that of "width of BDDs" in [41] . 
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                      Figure 5.1: Heterogeneous MDDs 

Definition 5.3 The memory size of a DD, denoted by Mem(DD), is the number of words 

needed to store all non-terminal nodes in the DD into a memory, where we assume that a word 

is large enough to store a variable index or an edge pointer.2 

  In memory, each non-terminal node in a DD requires an index and a set of pointers that refer 

the succeeding nodes. Since each non-terminal node in a BDD has two pointers, the memory 

size of a BDD is given by 

              Mem(BDD) = (2+ 1) x nodes(BDD).(5.1) 

Similarly, since each non-terminal node in an MDD(k) has 2k pointers, the memory size of an 
MDD(k) is given by 

              Mem(MDD(k)) = (2k+ 1) x nodes(MDD(k)). 

In a heterogeneous MDD, each super variable can take different domain. Therefore, the memory 

size of heterogeneous MDD is calculated by summation for every super variables: 

u 

      Mem(heterogeneous MDD) = I (2k' + 1) x width(heterogeneous MDD, i), 
i=1 

where u and ki denote the number of super variables and the number of binary variables in a 

super variable Xi, respectively. 

  2Note that this definition slightly differs from Definition 4 .4 in Chapter 4. 
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Example 5.2 The memory sizes of BDD, MDD(2), and heterogeneous MDDs are as follows: 

for the BDD in Fig. 4.1(a), it is 18; for the MDD(2) in Fig. 4.1(b), it is 15; for the heteroge-

neous MDD in Fig. 5.1(a), it is 12; and for the heterogeneous MDD in Fig. 5.1(b), it is 21. 

                                                 (End of Example) 

Definition 5.4 Given a binary logic function f and the order of binary variables, the fixed-

order minimum heterogeneous MDD for the logic function f is the heterogeneous MDD 

with the minimum memory size among the fixed-order partitions of the variables. 

Definition 5.5 Given a binary logic function f, the minimum heterogeneous MDD for the 

logic function  _  f is the heterogeneous MDD with the minimum memory size among the non-

fixed-order partitions of the variables. 

  In this chapter, we use SDDs to represent multiple-output logic functions F = (fo, • • 

fm—i) [40]. APL of an SDD is the sum of the APLs of individual DDs for each logic function 

.fi• 

5.3 Number of Heterogeneous MDDs 

This section shows the number of different heterogeneous MDDs to estimate complexity of 

optimization for heterogeneous MDDs. 

Lemma 5.1 Let N;x(n) be the number of different fixed-order partitions of X. Then, 

Nfix(n) = 2'1. 

Proof See Appendix. 

   Therefore, when we fix the order of the binary variables X = (xi ,x2,...,xn) and consider 

only partitions of binary variables for an optimization, the number of different heterogeneous 

MDDs to consider is 2n-1 

Theorem 5.1 Let Nnon- fix(n) be the number of different non-fixed-order partitions of X = 

(xi,x2i...,xn). Then, 
n r 

Nnon-fix(n) = I I rCi(r- i)n(-1)`. 
r=1 i=0 

Proof See Appendix. 
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          Table 5.1: Number of different DDs for n-variable logic function. 

      ROBDD Heterogeneous MDDFBDD 

 nn!  Nfix(n) Nnon-fix(n)Sn  

11111 

22232 

 3641312 

 424875576 

 512016 5411658880 

  672032 468316511297126400 

    75040 64 47293 1908360529573854283038720000 

840230 128 545835— 

  9 362880256 7087261— 

  10 3628800512 102247563— 

  11 399168001024 1622632573— 

   12 4790016002048 28091567595— 

  Therefore, when we consider both orderings and partitions of the binary variables for an 

optimization of heterogeneous MDDs, the number of different heterogeneous MDDs for an 

n-variable logic function is given by N non- fix(n). 
  Table 5.1 compares the numbers of different ROBDDs, heterogeneous MDDs, and FBDDs 

for n-variable logic functions, where the number of different ROBDDs is equal to the number 

of different permutations of variables, that is n!, and the number of different FBDDs Sn is given 

by [74] 

n Sn =nsn-1=~k2n-k• 
k=1 

  When we fix the order of the binary variables and consider only partitions of binary variables 

for an optimization of heterogeneous MDDs, the number of heterogeneous MDDs to consider 

is smaller than that of ROBDDs. On the other hand, when we consider both orderings and 

partitions of the binary variables for an optimization of heterogeneous MDDs, the number of 

heterogeneous MDDs to consider is larger than that of ROBDDs. The number of different 

FBDDs is much larger than those of ROBDDs and heterogeneous MDDs. 

  When we assume a naive optimization method that finds an optimum solution by enumerat-

ing all possible ones, we have the followings: 

  1. When we fix the order of the binary variables and consider only partitions of binary 
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    variables, an optimization of heterogeneous MDDs is easier than that of ROBDDs; 

  2. When we consider both orderings and partitions of the binary variables, an optimization 

    of heterogeneous MDDs is more difficult than that of ROBDDs; 

  3. Optimizations of heterogeneous MDDs and ROBDDs are much easier than that of FB-

    DDs. 

5.4 Memory Size Minimization Algorithms 

Since memory size of a heterogeneous MDD depends on the partition of binary variables, as 

well as the order of binary variables, memory size of a heterogeneous MDD can be minimized 

by considering both orderings and partitions of binary variables. 

Example 5.3 Fig. 5.1(a) shows the minimum heterogeneous MDD for the function f, while 

Fig. 5.1(b) shows the maximum heterogeneous MDD for the function f. (End of Example) 

  In this section, we formulate the memory size minimization problem of heterogeneous 

MDDs considering both orderings and partitions of binary variables, and we present an exact 

minimization algorithm to solve it and a heuristic minimization algorithm. 

  We formulate the memory size  minimization problem of heterogeneous MDDs considering 

both orderings and partitions of binary variables as follows: 

Problem 5.1 Given a binary logic function f (X), find an order and a partition of X that pro-

duces the minimum heterogeneous MDD for f. 

5.4.1 Bounds on Memory Size of Heterogeneous MDDs 

In this section, we derive upper and lower bounds on memory size of heterogeneous MDDs. 

Such bounds result in a reduction of the computation time in the algorithm, as discussed later. 

Theorem 5.2 In a fixed-order minimum heterogeneous MDD, the following relation holds for 

any super variable Xi = (xi , x j+1, - - - ,xj+kj-1) 

k;-1 

(24 1)width(heterogeneous MDD, i) < 3 x I width(BDD, j + t), 
t=O 

where the heterogeneous MDD and the BDD represent the same logic function, the variable 

order is fixed. 
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Proof See Appendix. 

Theorem 5.3 Consider a BDD and a heterogeneous MDD for an n-variable logic function that 

is not a constant function. When an order of binary variables is fixed, for the number of nodes 

in the BDD and the memory size of heterogeneous MDD obtained by considering only the 

fixed-order partitions, the following relation holds: 

               Mem(heterogeneous MDD)  >  nodes(BDD)  +2. 

Proof See Appendix. 

Theorem 5.4 An arbitrary n-variable logic function can be represented by a heterogeneous 

MDD with at most the following memory size: 

2n—r + 3.22T 5, 

where r is the largest integer satisfying the relation 

n — r> 2r+1og23. 

Proof See Appendix. 

Property 5.1 Consider a binary logic function f (X). Let Memmin(f) be the memory size of a 

fixed-order minimum heterogeneous MDD for f. When f is decomposed into f = g(h(Xi ),X2), 
let Memmin (g) and Memmin (h) be the memory sizes of fixed-order minimum heterogeneous 
MDDs for g and h, respectively. For many benchmark functions, the following two relations 

hold: 

Memmin(f) > Memmin(g) 

Memmin(f) > Memmin(h) 

5.4.2 Partition Algorithm for Memory Size Minimization 

To solve Problem 5.1 efficiently, we use a partition algorithm that considers only the fixed-

order partition of binary variables. This section presents the partition algorithm for memory 

size minimization. 
  Fig. 5.2 shows a pseudo-code for the partition algorithm. This algorithm uses dynamic 

programing. All sub-solutions are stored in the table. For simplicity, we assume that the variable 
order is xi , x2, ... , xn• 
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             Algorithm 5.1  

         1:  minimize_nemory (BDD) { 

         2: table[n] = (2+ 1)width(BDD,n) ; 

          3: for(i = n — 1; i > 1; i — —) { 
          4: min_rnem = (memory size of BDD) ; 

         5: for(/ = 0; l < n — i; l + +) { 
         6: k = branch[i][l] ; 

          7: mdd_nem = (2k+ 1)width(heterogeneous MDD, j) ; 
          8: if (mdd_rnem > upper bound) 

       9: break ; 

         10: next index i' = i + k ; 
         11: mdd_nem += table[i'] ; 

         12: if (mininem > mddinem) { 

         13:min_mem = mdd_mem ; 

         14: register the partition k ; 

     15: } 
      16: } 

         17: table[i] = min.inem ; 

        18: } 
         19: return table[1] ; 

 20: }  

           Figure 5.2: Partition algorithm for memory size minimization. 

  This algorithm finds an optimum fixed-order partition. table[i] in Fig. 5.2 stores the fixed-

order minimum memory size for sub-graph from xi to xn. In the 6th line, branch[i][l] stores an 

integer k that makes the following ratio the l-th smallest, 

ratio = (2k+ 1)width(heterogeneous MDD, j)  
                    3 x E1 o width(BDD, i + t) 

where j is the index of corresponding super variable Xj. And, the 8th line uses upper bound , 
which is obtained by Theorem 5.2. The j in the 7th line denotes the index of corresponding 

super variable Xj. 

  Let n and N be the numbers of binary variables and nodes for the BDD , respectively. Algo- 

rithm 5.1 examines at most2z candidates, and calculates the following value per the examina-
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              Algorithm 5.2  

             1: exhaustive_search_memory (BDD) { 
              2:  min_nmory = minimize_memory (BDD) ; 

             3: for (all permutations of binary variables) { 
             4: Change the variable order for BDD ; 

            5: if (min.inemory < nodes(BDD) +2) 

            6: continue ; 
              7: current_nmory = minimize_memory (BDD) ; 

              8: if (current_memory < min_memory) { 

              9: min.Jnmory = current_memory ; 

            10: Record the variable order for the BDD ; 

             11: Record the partition of binary variables ; 

        12: } 
          13: } 

 14: }  

              Figure 5.3: Exact memory size minimization algorithm 

tion: 

(2k + 1) width (heterogeneous MDD, j). 

The time complexity to calculate it is 0(N). Therefore, the time complexity for Algorithm 5.1 

is 0(n2N). The space complexity for Algorithm 5.1 is 0(N). 

5.4.3 Exact Memory Size Minimization Algorithm 

When an order of binary variables is fixed, the memory size of a heterogeneous MDD depends 
on only the partition of binary variables. Thus, we use the following strategy for memory size 

minimization: 

  1. Change the order of binary variables; and 

  2. Fix the variable order, and change the partition of the binary variables. 

  Fig. 5.3 shows a pseudo-code to solve Problem 5.1. It uses a BDD for the given logic 

function as the internal representation. In the 2nd and 7th lines in Fig. 5.3, Algorithm 5.1 is used 

to find an optimum fixed-order partition that produces the fixed-order minimum heterogeneous 
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MDD. In the 5th line, Theorem 5.3 is used to reduce the computation time. This algorithm finds 

the minimum heterogeneous MDD by exhaustive search. 

5.4.4 Heuristic Memory Size Minimization Algorithm 

Although Algorithm 5.2 can find the minimum heterogeneous MDD, enumerating all possible 

permutations of binary variables is impractical when the number of binary variables is large, 

as shown in Table 5.1. Thus, this section proposes a heuristic minimization for heterogeneous 

MDDs using the sifting algorithm [59] and partition algorithm (Algorithm 5.1). The sifting 

algorithm repeatedly performs the following basic steps: 

  1. Change the variable order. 

  2. Compute a cost. 

Most sifting algorithms use the number of nodes in DD as the cost. In memory size minimiza-

tion, however, we use the memory size of heterogeneous MDD as the cost. 

  Fig. 5.4 shows a pseudo-code for the heuristic minimization algorithm. In this algorithm, 

each variable  xi is sifted across all possible positions to determine its best position. First, xi 

is sifted in one direction to the closer extreme (top or bottom). Then, x, is sifted in the op-

posite direction to the other extreme. In the 10th line in Fig. 5.4, Property 5.1 is used to find 

useful siftings of xi. The Lmem in the 9th line denotes the memory size of fixed-order min-

imum heterogeneous MDD for logic function g or h obtained by functional decomposition 

f(X) = g(h(Xl),X2). When x; moves down to the bottom of the BDD, we use h to compute 
L111em, where X1 contains the binary variables which are above the level of x; in the variable 
order, and X2 contains the remaining ones. If cost < Lmem, we stop the sifting of x; to the bot-

tom because sifting of x; further down to the bottom seldom reduces the memory size due to 
Property 5.1. Similarly, when x, moves up to the top of the BDD, we use g to compute Lmem, 

where X2 contains the binary variables which are below the level of x; in the variable order, and 
Xi contains the remaining ones. This lower bound for the memory size is similar to the one 

introduced for the number of nodes during the classical sifting [14]. 

5.5 APL Minimization Algorithms 

Since APL of a heterogeneous MDD also depends on the partition of binary variables, as well as 

the order of binary variables, APL of a heterogeneous MDD can be minimized by considering 

both orderings and partitions of binary variables. 
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              Algorithm 5.3  

            1:  sifting_nemory (BDD) { 
             2: cost = minimize memory (BDD) ; 

           3: do { 
           4:for (Vx;EX){ 

              5:best _p = current position of x, ; 

            6: for (all position p) { 
             7: Move x1 to position p ; 

             8: memory = minimizesnemory (BDD) ; 

           9: Compute Lmem ; 

            10: if (cost < Lmem) 

        11:break ; 

            12: if (memory < cost) { 
          13:cost = memory ; 

           14:best _p = p ; 

            15:Record the partition of binary variables ; 

     16: } 
       17: } 

             18: Move x1 to best _p ; 

        19: } 

            20: } while (cost is reduced) ; 
 21: }  

             Figure 5.4: Heuristic memory size minimization algorithm 

Example 5.4 The APLs of BDD, MDD(2), and heterogeneous MDDs are as follows: for the 

BDD in Fig. 4.1(a), it is 3.125; for the MDD(2) in Fig. 4.1(b), it is 1.75; for the heterogeneous 
MDD in Fig. 5.1(a), it is 1.375; and for the heterogeneous MDD in Fig. 5.1(b), it is 2.0. Note 

that P(x1 = 0) = P(x1 = 1) = 0.5.(End of Example) 

  In this section, we formulate the APL minimization problem of heterogeneous MDDs con-

sidering both orderings and partitions of binary variables, and we present an exact minimization 

algorithm to solve it and a heuristic minimization algorithm. 

  For any n-variable logic function f (X), the trivial partition of X, where X = Xi and IX' I= n, 

produces a heterogeneous MDD with the smallest APL (i.e., APL = 1.0), independently of the 
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variable ordering. However, since the memory size of the heterogeneous MDD for the trivial 

partition is nearly  2n, such a heterogeneous MDD is impractical in most cases. Therefore, we 

seek an order and a partition of X that minimizes the APL within a given memory size limita-

tion. We formulate the APL minimization problem considering both orderings and partitions of 

binary variables as follows: 

Problem 5.2 Given a binary logic function f (X) and a memory size limitation L, find an order 

and a partition of X that produces the heterogeneous MDD with the minimum APL and with 

memory size equal to or smaller than L. 

5.5.1 Partition Algorithm for APL Minimization 

To solve Problem 5.2 efficiently, we use a partition algorithm that considers only the fixed-order 

partition of binary variables. This section presents the partition algorithm for APL minimiza-

tion. 

  Fig. 5.5 shows a pseudo-code for the partition algorithm for APL minimization. This al-

gorithm uses a branch-and-bound method and a cache to reduce computation time. The sub-

solutions are stored in the cache, but only a subset of sub-solutions is kept in it because the 

number of sub-solutions is too large in many cases. In other words, this algorithm is similar 

to the dynamic programing, except for that the cache is overwritten. In the case of cache miss, 

the sub-solution is searched again. Since this algorithm is recursive procedure, the top level for 

BDD (i.e. level = 1) and the memory size limitation L are required as the initial arguments. 

  This algorithm produces an optimum fixed-order partition by calculating the APLs for dif-

ferent partitions of X. The calculation of the APL uses Theorem 3.1. To compute the node 

traversing probability prob(heterogeneous MDD, v) of the 17th line, we used the computation 
method in Section 3.3. The 13th line uses lower bounds on the memory size obtained by 

Algorithm 5.1 to reduce computation time. 

  Let n, N, and C be the number of binary variables, the number of nodes in the BDD , and 

the cache size, respectively. Algorithm 5.4 examines at most 2n-1 candidates by exhaus-

tive search. The time complexities for the calculations of lower bounds and the value of 

prob(heterogeneous MDD, v) are 0(n2N) and 0(N), respectively. Note that these values are 
calculated before the exhaustive search and stored in tables. Therefore, the time complexity for 

Algorithm 5.4 is 0(2n+n2N). The space complexity for Algorithm 5.4 is O(N+C) = 0(N) , 
where C is considered as a constant value. 
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            Algorithm 5.4  

         1:  minimize_APL (level, mem_size 1, BDD) { 

        2: if (level > n) 
         3: return 0 ; 

         4: check the cache ; 
         5: if (cache.level == level && cache.mem == l) { 

         6: register the partition cache.k ; 

         7: return cache.APL ; 

       8: } 
        9: minAPL = (APL for BDD) ; 

        10: for (k=n— level +1;k> 1;k--) { 

        11: memory = (2" + 1) width(heterogeneous MDD, j) ; 
        12: next level level' = level + k ; 

        13: if ((1 — memory) < lower_bound[level']) 

        14: continue ; 

        15: current _APL = 0 ; 

        16: for (all nodes v representing Xj) 

        17: current _APL += prob(heterogeneous MDD, v) ; 

         18: current APL += minimize_APL (level', 1 — memory, BDD) ; 

        19: if (current .APL < minAPL) { 

        20: register the partition k ; 

        21: minAPL = current _APL ; 

     22: } 

      23: } 
        24: store (overwrite) to the cache ; 

        25: return minAPL ; 

26: }  

              Figure 5.5: Partition algorithm for APL minimization. 

5.5.2 Exact APL Minimization Algorithm 

When an order of binary variables is fixed, the APL of a heterogeneous MDD depends on 

only the partition of binary variables. Thus, we use the same strategy as the memory size 

minimization. 
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                Figure 5.6: Exact APL minimization algorithm 

  Fig. 5.6 shows a pseudo-code to solve Problem 5.2. In the 2nd and 10th lines in Fig. 5.6, 

Algorithm 5.4 is used to find an optimum fixed-order partition that minimizes the APL of het-

erogeneous MDD within a memory size limitation L. Since it is recursive procedure, the top 

level for BDD (i.e. level = 1) is required as the initial argument. This algorithm finds an 

optimum solution for Problem 5.2 by exhaustive search. 

5.5.3 Heuristic APL Minimization Algorithm 

As well as the memory size minimization, Algorithm 5.5 is time-consuming for functions with 

many inputs. Thus, this section proposes a heuristic APL minimization method for heteroge-

neous MDDs using a sifting algorithm and partition algorithm (Algorithm 5.4). 

  Fig. 5.7 shows a pseudo-code for the heuristic APL minimization algorithm . In this algo-

rithm, the APL of a heterogeneous MDD is used as the cost. 
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              Algorithm 5.6  

            1: sifting_APL (BDD, L, #sifting rounds R) { 
            2: cost =  minimize.APL (1, L, BDD) ; 

            3: for (r = 0; r < R; r++) { 
           4: for (Vx1 E X) { 

             5: best_p = current position of x; ; 

           6: for (all positions p) { 

            7:Move x1 to position p ; 
             8:memory = minimize memory (BDD) ; 

           9:Compute Lmem ; 
           10: if (L < Lmem) 

        11:break ; 

           12: if (L < memory) 
         13:continue ; 

            14: APL = minimize_APL (1, L, BDD) ; 
           15: if (APL < cost) { 

         16:cost = APL ; 

         17:best_p=p; 

            18:Record the partition of binary variables ; 

     19: } 

      20: } 
            21: Move x1 to best_p ; 

        22: } 

          23: } 
 24: }  

               Figure 5.7: Heuristic APL minimization algorithm 

5.6 Experimental Results 

To show the compactness of heterogeneous MDD and the efficiency of optimization algorithms, 

we compare heterogeneous MDDs with the different types of DDs using benchmark functions. 

Experiments were conducted in the following environment: 

  • CPU: Pentium4 Xeon 2.8GHz 
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Table 5.2: Memory sizes of OBDDs, FBDDs, and heterogeneous MDDs for  all  4-variable logic 

functions 

  GroupOBDDFBDDHeterogeneous MDD 
       No. Mem #class #function Mem #class #function Mem #class #function 

  0 0 12 0 12 0 1 2  
  1 3 18 3 18 3 1 8  
   2 6 148 6 148 5 1 48 

   3 9 4364 9 4364 5 1 12 
                            8 3 352  

    4 12 143168 12 143168 8 3 320 
                     9 1 96 
                                10 6 1216 

                                11 4 1536 
    5 15 3812440 15 3812440 9 3 104 
                               10 7 1056 

                                    11 13 4400 
                                    12 12 6528 
                            14 3 352 
     6 18 7022488 18 7022488 10 3 168 
                                        12 41 12064 

                                    14 13 4928 
                                    15 13 5328 
     7 21 6820346 18 31536 12 11 3520 
                       21 6518810 15 57 16826 

     8 24 256672 21 104032 15 25 6672 
                           24 15 • 2640 

   Avg. 1.00 —— 0.99—— 0.72 — — 

  • L1 Cache: 32KB 

  • L2 Cache: 512KB 

   • Main Memory: 4GB • 

  • Operating System: redhat (Linux 7.3) 

   • C-Compiler: gcc -02 

  In this section, we assume that P(xi = 0) = P(xi = 1) = 0.5 for binary logic functions. 
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5.6.1 Comparison with FBDDs 

In this section, we compare heterogeneous MDDs with FBDDs to show the compactness of 

heterogeneous MDDs. FBDDs allow the different variable orders along each path, and are well 

known as more compact DDs than OBDDs. 

  We implemented Algorithm 5.2 and compared the minimum heterogeneous MDDs with 

the minimum OBDDs and the minimum FBDDs for all 4 and 5-variable logic functions. To 

compare them, we classified all the logic functions into NPN-equivalence classes [43, 63]. 

For the 4-variable case,  65,536 functions are classified into 222 NPN-equivalence classes, and 

for the 5-variable case, 4, 294, 967,296 functions are classified into 616,126 NPN-equivalence 

classes. Table 5.2 compares minimum DD sizes for the 4-variable case. In Table 5.2, 222 NPN-

representative functions are grouped into 9 rows according to the memory size of the minimum 

OBDD. The column "Mem" denotes the memory size of each DD. The columns "#class" and 
"#function" in Table 5.2 denote the number of NPN-equivalence classes and the number of 

functions included in the classes, respectively. The bottom row "Avg." denotes the arithmetic 

average of the relative memory sizes for all functions, where the memory size of OBDD is set 

to 1.00. In this experiment, no complemented edges [6, 40] are used in OBDDs, FBDDs, or 

heterogeneous MDDs. 

  For the 4-variable case, FBDDs are smaller than OBDDs for 5, 568 functions, 8.5% of all 

functions, while heterogeneous MDDs are smaller than OBDDs and FBDDs for all functions 

except for 10 degenerate functions (0, 1, x;, and xl where i = 1, 2, 3, 4). For these 10 functions, 

the memory sizes of OBDDs, FBDDs, and heterogeneous MDDs are equal. On average over 

all functions, minimum FBDDs require 99% of the memory size of minimum OBDDs, while 

minimum heterogeneous MDDs require 72% of the memory size for minimum OBDDs. 

  For the 5-variable case, FBDDs are smaller than OBDDs for 1, 938, 548, 576 functions, 

45% of all functions, while heterogeneous MDDs are smaller than OBDDs for 4, 294, 967, 284 

functions, 99% of all functions. Also, heterogeneous MDDs are smaller than FBDDs for 

4,294, 921, 204 functions, 99% of all functions, and for the others, heterogeneous MDDs are 

equal in size to FBDDs. There was no function whose FBDD is smaller than the heterogeneous 

MDD. On average over all functions, minimum FBDDs require 96% of the memory size for 

minimum OBDDs, while minimum heterogeneous MDDs require 67% of the memory size for 

minimum OBDDs. 

  Algorithm 5.2 could obtain exact minimum heterogeneous MDDs for the functions with up 

to 12 inputs within a reasonable computation time, while the exact FBDD minimization [18] 

can find the minimum one for the functions with up to 8 inputs. 
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Table 5.3: Memory sizes of OBDDs, FBDDs, and heterogeneous MDDs for MCNC benchmark 

functions 

                                     Memory Size 

            Name In Out OBDD FBDD MDD 

            C432 36 7 3189 3171 2824 

             C499 41 32 77595 77595 59739 

             C880 60 26 12156 8394 11812 
             C1908 33 25 16575 15141 13493 

             C2670 233 64 5319 3186 4649 

             C3540 50 22 71481 62997 65029 

             C5315 178 123 5154 4434 4582 
             C7552 207 107 6633 4782 6119 

          alu4 14 8 1047 900 855 

 apexl 45 45 3735 3531 3016 

             apex6 135 99 1491 1365 1414 

            cps 24 102 2910 2706 2533 
            dalu 75 16 2064 1947 1548 

            des 256 245 8832 8706 7288 

             frg2 143 139 2886 2760 2671 
         i3 132 6 396 396 330 

            i8 133 81 3825 3570 3662 

i10 257 224 61977 56439 55766 
           k2 45 45 3735 3408 3018 

toolarge 38 3 954 858 857 

            vda 17 39 1431 1401 1088 

                Average of ratios 1.00 0.90 0.86 

  Table 5.3 compares heterogeneous MDDs with OBDDs and FBDDs for selected MCNC 

benchmark functions. The OBDDs are obtained by the best known variable orders [72], and the 

numbers of nodes for FBDDs are taken from [ 18, 19]. The memory sizes of OBDDs and FBDDs 

are calculated by the formula (5.1) in Section 5.2. The columns "In" and "Out" in Table 5.3 

denote the number of inputs and outputs for each benchmark function, respectively. Column 
"MDD" denotes the heterogeneous MDDs obtained by Algorithm 5 .3, where the OBDDs [72] 

are used as initial solutions. The DDs in this table may not be the exact minimum since the 

algorithms are heuristic methods. The bottom row "Average of ratios" denotes the arithmetic 

average of the relative memory size, where the memory size of OBDD is set to 1.00. In this 
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Table 5.4: Memory sizes and APLs of ROBDDs and heterogeneous MDDs for n-variable logic 

functions 

       Memory sizeAPL 
          BDDHeterogeneous MDD BDDHeterogeneous MDD 

   n MinNodes  MinAPLB MinMem MinAPLM MinNodes MinAPLB MinMem MinAPLM #samples 
  4 1.001.07 0.72 0.86 1.00 0.99 0.52 0.37 216 

  5 1.001.07 0.67 0.91 1.00 0.98 0.39 0.27 232 
  6 1.001.08 0.68 0.80 1.00 0.97 0.45 0.32 1,000 

  7 1.001.08 0.64 0.79 1.00 0.97 0.40 0.27 1,000 
  8 1.001.08 0.58 0.81 1.00 0.97 0.33 0.22 1,000 
  9 1.001.07 0.55 0.83 1.00 0.98 0.29 0.19 1,000 
  10 1.001.06 0.54 0.84 1.00 0.98 0.26 0.17 1,000 

experiment, OBDDs, FBDDs, and heterogeneous MDDs use complemented edges. 

  Heterogeneous MDDs require smaller memory size than FBDDs for 14 out of 21 benchmark 

functions in Table 5.3. Especially, for C499, dalu, and vda, heterogeneous MDDs require at 

most 80% of the memory sizes for the FBDDs. 

5.6.2 Comparison with ROBDDs 

Table 5.4 compares the memory sizes and the APLs of BDDs and heterogeneous MDDs for 

n-variable logic functions. The BDDs and heterogeneous MDDs are optimized using four dif-

ferent algorithms: (1) exact nodes minimization algorithm for a BDD considering only the 

orderings (column "MinNodes"); (2) exact APL minimization algorithm for a BDD (Algo-

rithm 3.1) considering only the orderings of binary variables (column "MinAPLB"); (3) exact 

memory size minimization algorithm for a heterogeneous MDD (Algorithm 5.2) considering 

both orderings and partitions of binary variables (column "MinMem"); and (4) exact APL min-

imization algorithm for a heterogeneous MDD (Algorithm 5.5) considering both orderings and 

partitions of binary variables (column "MinAPLM"). The memory size limitations L for Algo-

rithm 5.5 are set to the memory sizes of the BDDs in "MinNodes". The values in this table 

are the normalized averages of n-variable logic functions, where the memory sizes and APLs 

of "MinNodes" are set to 1.00. Columns "MinAPLB", "MinMem", and "MinAPLM" show the 

relative values of the memory sizes and APLs to "MinNodes". Columns "#samples" denotes 

the number of sample functions used for each n-variable function. Note that the BDDs and 

heterogeneous MDDs in this table do not use complemented edges. 

  For 4 and 5-variable logic functions, we calculated the exact averages over all functions. 

We did this by recognizing that the minimum memory size and APL for a function in one 

NPN-equivalence class [43, 63] are identical to the minimum memory sizes and APLs for other 
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Table 5.5: Memory sizes and APLs of ROBDDs and heterogeneous MDDs for MCNC bench-

mark functions 

           Memory sizeAPL 
                  BDDHeterogeneous MDDBDDHeterogeneous MDD 

 Name In Out MinNodes  MinAPLB MinMem MinAPLM MinNodes MinAPLB MinMem MinAPLM  
C432 36 7 31893243 2824 317986.58 86.24 55.74 45.45 

 C499 41 32 77595 96315 59739 77589 813.64 641.16 381.14 192.52 
 C880 60 26 12156 54810 11812 12154 135.79 121.03 125.73 99.13 
 C1908 33 25 16575 56328 13493 16564 254.35 183.61 145.81 92.09 
 C2670 233 64 53198286 4649 5319214.05 202.08 167.90 133.78 

 C3540 50 22 71481 74292 65029 71480 209.15 208.06 141.10 91.78 
 C5315 178 123 51545460 4582 5153462.05 446.26 373.23 304.38 

 C7552 207 107 66336585 6119 6633484.03 469.54 424.85 314.03 
 alu4 14 8 10471080 855 101940.81 40.70 24.41 19.59 

apexl 45 45 37354254 3016 3728180.59 177.69 87.35 67.63 
 apex6 135 99 14911887 1414 1490291.54 230.91 260.66 231.06 

 cps 24 102 29104656 2533 2906290.25 235.39 187.90 151.81 
 dalu 75 16 20642970 1548 2064102.67 78.81 39.40 28.09 
 des 256 245 88329177 7288 88311210.00 1080.38 910.63 687.50 

 frg2 143 139 28865070 2671 2884624.69 322.17 499.27 348.60 
 i3 132 6 396396 330 39626.76 26.76 17.84 12.61 
 i8 133 81 38256954 3662 3825302.54 270.82 229.12 207.54 

il0 257 224 61977 685215 55766 61974 1084.96 776.10 887.62 614.53 
 k2 45 45 37354254 3018 3728180.52 177.69 87.32 67.61 

toolarge 38 3 9542361 857 95413.16 11.52 8.47 6.24 
 vda 17 39 14311515 1088 1424176.34 171.54 81.72 69.54 

 Average of ratios1.002.03 0.86 1.001.00 0.88 0.67 0.51  

functions in the same class. Thus, it is sufficient to consider only one function from each 

class and form a sum weighted by the size of each class. For larger n, there are too many 

NPN-equivalence classes. For 6 < n < 10, we generated 1,000 pseudo-random n-variable logic 

functions with different number of minterms, and calculated the normalized averages for them. 

  For BDDs, APLs can be reduced up to 97% of BDDs with the minimum nodes, but the 

memory sizes increases to 108%. On the other hand, for heterogeneous MDDs, the APLs can 

be reduced up to 17% of BDDs with the minimum nodes without increasing memory sizes, 

and both the memory sizes and APLs can be reduced up to 54% and 26% of minimum BDDs, 

respectively. Table 5.4 shows that the relative values of memory sizes and APLs for hetero-

geneous MDDs decreases as the number of binary variables n increases. Algorithm 5.5 finds 

exact minimum APLs of heterogeneous MDDs for the functions with up to 11 variables within 

a reasonable computation time. 

  Table 5.5 compares memory sizes and APLs of BDDs and heterogeneous MDDs for same 

MCNC benchmark functions as Table 5.3. Columns labeled "MinNodes" denote the BDDs 

obtained by the best known variable orders [72]. These are used as the initial BDDs for the 

algorithms in this experiment. Columns "MinAPLB" denote the BDDs obtained by Algo-
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 rithm 3.2. Columns "MinMem" denote the heterogeneous MDDs obtained by Algorithm 5.3. 

And, columns "MinAPLM" denote the heterogeneous MDDs obtained by Algorithm 5.6. The 

memory size limitations L for Algorithm 5.6 are set to the memory sizes of the BDD in "MinN-

odes". In Algorithm 3.2 and Algorithm 5.6, the number of rounds of sifting is set to two. Note 

that the BDDs and heterogeneous MDDs in this table use complemented edges. The memory 

sizes and APLs in this table may not be exact minimum since the algorithms are heuristic meth-

ods. The row labeled Average of ratios represents the normalized averages of memory size and 

APL, where the memory size and the APL of "MinNodes" are set to 1.00. 

  Algorithm 3.2 that considers only variable orderings reduced APLs to 88% of "MinNodes", 

on average, but increased the memory sizes by twice. Especially, for C880, C1908, i10, and 

toolarge, Algorithm 3.2 increased the memory sizes significantly. On the other hand, by con-

sidering both orderings and partitions of binary variables, Algorithm 5.3 reduced both memory 

sizes and APLs to 86% and 67% of "MinNodes", respectively. Algorithm 5.6 reduced APLs to 

51% of "MinNodes" without increasing the memory size. 

5.6.3 Comparison of Computation Time for Algorithms 

Table 5.6 compares the computation times for Algorithm 3.2, Algorithm 5.3, and Algorithm 5.6. 

The values in Table 5.6 show the CPU times needed to obtain the BDDs and heterogeneous 

MDDs in Table 5.5, in seconds. 

  Although Algorithm 5.3 considers both orderings and partitions of binary variables for 

memory size minimization, its computation time is as short as that of Algorithm 3.2 that consid-

ers only variable orderings for APL minimization. Algorithm 5.6 requires longer computation 

time than other two algorithms, since Algorithm 5.6 considers memory size to keep a memory 

size limitation, as well as APL. 

5.6.4 Comparison with MDD(k)s 

Similarly, we compared heterogeneous MDDs with MDD(k)s. 

  Table 5.7 and Table 5.8 compare the memory sizes and APLs of BDDs, heterogeneous 
MDDs, and MDD(k)s for n-variable logic functions, respectively. In these tables, MDD(k)s 

have the exact fewest nodes. The values in these tables are the normalized averages of n-

variable logic functions, where the memory sizes and APLs of BDD with the fewest nodes 

(column ̀BDD") are set to 1.00. Columns "MinMem", "MinAPLM", "MDD(2)s", "MDD(3)", 
"MDD(4)", and "MDD(5)" show the relative values of the memory sizes and APLs to ̀ BDD". 
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     Table 5.6: CPU times [sec] for memory size and APL minimization algorithms 

              Name  MinAPLB MinMem MinAPLM 

          C432 0.23 0.23 1.04 

            C499 10.76 5.12 698.31 
           C880 4.54 1.23 22.09 

           C1908 1.44 0.67 27.38 

             C2670 2.21 1.99 1957.51 

             C3540 12.74 36.96 523.45 
             C5315 0.43 1.31 3663.57 

             C7552 1.35 4.76 2258.88 

          alu40.02 0.02 0.05 
apex l 0.11 0.29 36.07 

           apex6 0.05 0.33 79.47 

         cps0.09 0.12 0.80 

           dalu0.15 0.25 132.41 

          des0.91 3.59 60144 
           frg20.29 0.89 218.46 

         i30.01 0.23 95.69 

          i80.31 0.59 30.15 

i 10 160.91 69.27 71464 
         k20.11 0.29 33.99 

            toolarge 0.07 0.07 0.31 

         vda0.02 0.01 0.15 

  From Table 5.7 and Table 5.8, we can see that for n-variable logic functions, heterogeneous 

MDDs obtained by Algorithm 5.5 have the APLs as small as MDD(5)s. The memory sizes of 

MDD(5)s are twice the memory sizes of BDDs. On the other hand, heterogeneous MDDs have 

smaller memory sizes than the BDDs. 

  Table 5.9 and Table 5.10 compare the memory sizes and APLs of BDDs, heterogeneous 

MDDs, and MDD(k)s for MCNC benchmark functions, respectively. MDD(k)s in these tables 

are obtained by the minimization algorithm in [62]. BDDs and heterogeneous MDDs are the 

same as those in Table 5.5. 

  Table 5.9 and Table 5.10 show that in heterogeneous MDDs, APLs can be reduced to a 

half of the BDDs without increasing memory sizes. On the other hand, in MDD(k)s , to re-
duce the APLs to a half of the BDDs, we need to increase the memory sizes to 488% of the 

BDDs. The APLs of heterogeneous MDDs obtained by memory size minimization algorithm 
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Table 5.7: Memory sizes of BDDs, heterogeneous MDDs, and MDD(k)s for n-variable logic 

functions 

n BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) #samples 

         MinMem  MinAPLM 

4 1.00 0.72 0.86 0.96 1.22 0.94 1.83 216 

5 1.00 0.67 0.91 0.93 1.24 1.47 0.99 232 

6 1.00 0.68 0.80 0.92 1.10 1.50 2.02 1,000 

7 1.00 0.64 0.79 0.90 0.98 1.45 1.87 1,000 

8 1.00 0.58 0.81 0.85 0.98 1.49 1.79 1,000 
9 1.00 0.55 0.83 0.83 1.24 1.07 1.87 1,000 

10 1.00 0.54 0.84 0.81 0.82 0.96 2.01 1,000 

Table 5.8: APLs of BDDs, heterogeneous MDDs, and MDD(k)s for n-variable logic functions 

n BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) #samples 

         MinMem MinAPLM 

4 1.00 0.52 0.37 0.59 0.47 0.34 0.34 216 

5 1.00 0.39 0.27 0.60 0.47 0.36 0.25 232 

6 1.00 0.45 0.32 0.59 0.43 0.43 0.33 1,000 

7 1.00 0.40 0.27 0.58 0.42 0.36 0.36 1,000 
8 1.00 0.33 0.22 0.55 0.41 0.30 0.31 1,000 

9 1.00 0.29 0.19 0.59 0.38 0.32 0.26 1,000 

10 1.00 0.26 0.17 0.53 0.43 0.31 0.23 1,000 

(Algorithm 5.3) are as small as the APLs of MDD(3)s. 

  Finally, Table 5.11 compares the area-time complexities [8, 76] of BDDs, heterogeneous 

MDDs, and MDD(k)s for MCNC benchmark functions. In this section, we used AT, where the 

area A corresponds to the memory size and the time T corresponds to APL. 

  Table 5.11 shows that for these benchmark functions, area-time complexities of heteroge-

neous MDDs are a half of the BDDs, and are much smaller than MDD(k)s. 

                          61



Table 5.9: Memory sizes of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC benchmark 

functions 

  Name In Out BDD Heterogeneous MDD  MDD(2) MDD(3) MDD(4) MDD(5) 
MinMem MinAPLM  

 C432 36 7 3189 2824 3179 3075 4833 5508 12441 
  C499 41 32 77595 59739 77589 62660 76248 100810 174669 

  C880 60 26 12156 11812 12154 15610 21933 32742 53526 
  C1908 33 25 16575 13493 16564 16415 18720 30039 36135 
  C2670 233 64 5319 4649 5319 7600 12483 19584 36102 
  C3540 50 22 71481 65029 71480 84315 127809 194650 307197 

  C5315 178 123 5154 4582 5153 6725 9981 17000 30789 
  C7552 207 107 6633 6119 6633 8615 13338 21301 36828 
 alu414 8 1047 855 1019 1290 1431 2295 3927 

apexl 45 45 3735 3016 3728 4575 6138 8840 15411 
  apex6 135 99 1491 1414 1490 2190 3924 7123 12210 
  cps24 102 2910 2533 2906 3000 4482 7786 11748 
  dalu75 16 2064 1548 2064 2610 3690 6749 10263 
  des256 245 8832 7288 8831 9630 16299 21488 41712 
  frg2143 139 2886 2671 2884 4395 7191 12818 21879 
 i3132 6 396 330 396 340 603 646 1452 

  i8133 81 3825 3662 3825 6035 9855 17884 33924 
i10257 224 61977 55766 61974 85535 124065 234260 380655 

  k245 45 3735 3018 3728 4570 6165 8823 15345 
toolarge 38 3 954 857 954 1090 1521 2465 3696 

  vda17 39 1431 1088 1424 1375 2286 2788 4290 
  Average of ratios1.00 0.86 1.00 1.20 1.80 2.84 4.88  

5.7 Conclusion and Comments 

This chapter proposed the representations of binary logic functions using heterogeneous MDDs 

and the optimization algorithms for heterogeneous MDDs that consider both orderings and 

partitions of binary variables. Our experimental results show that: 1) Heterogeneous MDDs 

represent logic functions more compactly than ROBDDs and Free BDDs. Especially, for all 

4-variable and 5-variable logic functions, the minimum heterogeneous MDDs require 72% and 

67% of the memory sizes for the minimum ROBDDs, on average, respectively. Algorithm 5.2 

can find exact minimum heterogeneous MDDs for the functions with up to 12 inputs in a rea-

sonable computation time, and Algorithm 5.3 can reduce heterogeneous MDDs as fast as the 

sifting algorithm (Algorithm 3.2). 2) In heterogeneous MDDs, APLs can be reduced by a half 

of corresponding BDDs, on average, without increasing the memory size. And, both memory 

sizes and APLs can be reduced to 86% and 67% of BDDs, respectively. Algorithm 5.5 con-
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Table 5.10: APLs of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC benchmark func-

tions 

 NameIn Out BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) 
                          MinMem  MinAPLM 

 C43236 7 86.58 55.74 45.45 59.84 48.58 40.92 35.52 
 C49941 32 813.64 381.14 192.52 422.28 282.65 225.88 189.23 

 C88060 26 135.79 125.73 99.13 115.52 104.51 95.67 86.27 
 C1908 33 25 254.35 145.81 92.09 168.38 118.34 103.37 86.56 

C2670 233 64 214.05 167.90 133.78 189.35 179.05 154.69 152.89 
 C3540 50 22 209.15 141.10 91.78 160.52 132.50 109.62 93.03 
 C5315 178 123 462.05 373.23 304.38 400.05 378.00 342.61 339.44 

 C7552 207 107 484.03 424.85 314.03 418.23 380.40 336.50 309.67 
alu414 8 40.81 24.41 19.59 31.57 21.66 19.85 15.58 
apexl 45 45 180.59 87.35 67.63 154.81 124.86 94.26 95.72 

 apex6 135 99 291.54 260.66 231.06 268.39 271.51 263.92 247.19 
 cps24 102 290.25 187.90 151.81 203.95 211.43 192.44 149.73 
 dalu75 16 102.67 39.40 28.09 70.55 51.92 51.58 41.09 
  des256 245 1210.00 910.63 687.50 931.14 838.53 749.61 729.31 

 frg2143 139 624.69 499.27 348.60 584.58 531.48 512.31 501.66 
 i3132 6 26.76 17.84 12.61 18.84 15.03 13.10 11.97 

 i8133 81 302.54 229.12 207.54 292.75 248.84 243.43 238.52 
i10257 224 1084.96 887.62 614.53 950.62 821.89 903.42 788.22 

 k245 45 180.52 87.32 67.61 155.30 125.76 95.23 96.78 
toolarge 38 3 13.16 8.47 6.24 9.00 7.47 6.39 5.62 

 vda17 39 176.34 81.72 69.54 111.91 110.19 76.03 74.33 
 Average of ratios1.00 0.67 0.51 0.78 0.68 0.60 0.55  

sidering both partitions and orderings of binary variables finds heterogeneous MDDs with the 

minimum APLs for functions with up to 11 variables within a reasonable time. 3) In MDD(k)s, 

to reduce the APLs to a half of the BDDs, we need to increase the memory sizes to 488% of the 

BDDs. Area-time complexities of heterogeneous MDDs are a half of the BDDs, and are much 

smaller than MDD(k)s. 
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Table 5.11: Area-time complexities of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC 

benchmark functions 

    Name In Out BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) 
                                 MinMem  MinAPLM 

    C432 36 7 276118 157399 144476 184002 234806 225380 441951 
    C499 41 32 63134444 22768960 14937095 26460143 21551378 22771246 33053379 

    C880 60 26 1650677 1485138 1204830 1803197 2292213 3132374 4617949 
    C1908 33 25 4215784 1967478 1525388 2764020 2215349 3105084 3127715 
    C2670 233 64 1138518 780551 711573 1439035 2235054 3029509 5519726 
    C3540 50 22 14950022 9175809 6560680 13534607 16934893 21338299 28577026 

    C5315 178 123 2381424 1710121 1568471 2690305 3772817 5824415 10451014 
    C7552 207 107 3210593 2599668 2082937 3603038 5073795 7167682 11404484 
   alu4 14 8 42730 20867 19967 40725 30992 45567 61168 

apexl 45 45 674496 263461 252108 708266 766385 833270 1475135 
    apex6 135 99 434681 368575 344280 587764 1065407 1879894 3018209 
    cps 24 102 844642 475959 441173 611840 947620 1498369 1758999 
    dalu 75 16 211905 60990 57976 184138 191568 348115 421705 
    des 256 245 10686720 6636635 6071313 8966884 13667221 16107606 30421083 

    frg2 143 139 1802850 1333541 1005363 2569241 3821905 6566790 10975884 
   i3 132 6 10597 5887 4994 6405 9062 8465 17384 

    i8 133 81 1157231 839045 793848 1766746 2452355 4353531 8091520 
i10 257 224 67242627 49499023 38084982 81311523 101968393 211634736 300040993 

    k2 45 45 674228 263525 252046 709723 775331 840241 1485118 
too_large 38 3 12556 7258 5957 9805 11362 15745 20762 

    vda 17 39 252348 88910 99025 153883 251900 211979 318856 
   Average of ratios1.00 0.59 0.51 0.96 1.27 1.85 2.96  
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Chapter 6 

Conclusion 

In this thesis, we discussed on the optimization of DDs that minimize the memory size, average 

path length (APL), or both of them. 

  In Chapter 3, we proposed APL minimization algorithms for DDs considering only variable 

orderings. The APL minimization algorithms proposed in Chapter 3 yielded an improvement 

over an existing algorithm in both APL and runtime. However, the APL minimization algo-

rithms considering only variable orderings often increase the number of nodes, since a variable 

order that minimizes the APL is often different from the variable order that minimizes the num-

ber of nodes. 

  Next, we used MDDs to reduce the memory sizes and APLs furthermore. MDDs are usually 

used to represent multi-valued logic functions. However, we used MDDs to represent binary 

logic functions. When MDDs are used to represent binary logic functions, we can use an 

additional optimization approach, which is a partition of binary variables. To represent binary 

logic functions using MDDs, we partition the binary variables into groups, and we treat each 

group as a multi-valued variable. In Chapter 4, we showed the relations between the values of k 

and the number of nodes, memory size, path length, and area-time complexity for QRMDD(k), 

and derived the optimum values of k for each application. For many benchmark functions, the 

numbers of nodes and path lengths for QRMDD(k)s were inversely proportional to the value of 

k. Therefore, the numbers of nodes for QRMDD(k)s can be reduced with increasing the value 

of k. However, the memory size of each node in QRMDD(k) increases with  2k. By experiments, 

we showed that the memory sizes for QRMDD(k)s take their minimum when k = 2. To obtain 

the optimum values of k considering both memory size and path length, we introduced the area-

time complexity. By experiments, we showed that when both the memory size and path length 

are equally important, the optimum value of k is 3 or 4. On the other hand, when the path length 

is more important than the memory size, the optimum value of k is 4, 5 or 6. 
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  In MDD(k)s representing binary logic functions, the binary variables are partitioned into 

the groups with k  binary variables. On the other hand , in heterogeneous MDDs, the binary 
variables can be partitioned into the groups with different numbers of binary variables. There-

fore, the memory sizes and APLs of heterogeneous MDDs depend on the partition of binary 

variables, as well as the order of binary variables. In Chapter 5, we proposed the memory size 

and APL minimization algorithms for heterogeneous MDDs that consider both orderings and 

partitions of binary variables. By considering both orderings and partitions of binary variables, 

heterogeneous MDDs can represent logic functions with smaller memory sizes than FBDDs 

and smaller APLs than OBDDs, and the APLs of heterogeneous MDDs can be reduced by a 

half of BDDs without increasing memory size. Heterogeneous MDDs have smaller area-time 

complexities than MDD(k)s, since heterogeneous MDDs allow more flexible partition of binary 

variables than MDD(k)s. 
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Appendix 

A. Proofs of Theorems in Chapter 3 

Lemma 3.1 [67] The node traversing probability of node v is the sum of the edge traversing 

probabilities of all incoming edges to v. Also, the node traversing probability of node v is the 
sum of the edge traversing probabilities of all outgoing edges from v. 

Proof We prove only the first statement; the proof for the second statement is similar. Consider 
a node v. Any path that includes an incoming edge to v includes v. Conversely, any path that 
includes v includes an incoming edge to v. It follows that any assignment of values to the 
variables that corresponds to a path through v contributes to the node traversing probability of 
v an amount that is identical to the amount contributed to the edge traversing probability of an 
incoming edge to v. It follows that the node traversing probability of v is equal to the sum of 
edge traversing probabilities of all incoming edges to v. • 

Theorem 3.1 [67] The APL is equal to the sum of the edge traversing probabilities of all edges. 
Also, the APL is equal to the sum of the node traversing probabilities of all the non-terminal 
nodes. 

Proof We prove only the first statement; the proof for the second statement is similar. From 
Definition 3.2, we have 

 ETP(e) = PP(p),(3.1) 
pESP(e) 

where SP(e) is a set of paths including the edge e. We prove the following 
Are 

            APL = ETP(ei),(3.2) 
                                        i=1 

where Ne denotes the number of edges in a DD. From formula (3.1), formula (3.2) can be 

transformed as follows: 
                                         Ne 

                   APL = ETP(ei) 
                                         i=1 
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                                           Ne 

            = y ,  PP(P) (3.3) 
                                  i=1 pESP(ei) 

  From Definition 2.17, we have 

N 

                   APL = E PP(pi) x 
i=1 

N l; 

            = E PP(pi) (3.4) 
i=1 j=1 

Although formula (3.3) and formula (3.4) use different computational approaches, they obvi-

ously compute the same value. 

Lemma 3.2 Suppose an SDD represents a multiple-output logic function F. Then, 

ETP(Cut(i)) = mu, 

where mu is the number of the root nodes of the multiple-output function F above or in level i. 

Proof An SDD for F = (fo,f1,...,fm_1) is traversed from a root node to a terminal node m 

times to evaluate multiple-output function F. Since mu root nodes are located above or in level 

i, mu traversals via edges in Cut(i) are performed while evaluating the multiple-output function. 

Therefore, we have ETP(Cut(i)) = mu. 

Lemma 3.3 Let 

Cut'(i) _ {e le E Cut(i), such that e is incident to only non-terminal nodes}. 

Then, for every permutation of Xupper, 

ETP(Cut'(i)) = ci, 

where ci < MU. 

Proof From Lemma 3.1, the following relation holds: 

ETP(Cut'(i)) = E NTP(v), 
vEVc 

where Vc denotes a set of non-terminal nodes representing the cofactors with respect to Xupper • 

The probability of the occurrence of the cofactor depends only on the function and not the order 

of Xupper. Since Cut'(i) does not include the edges to terminal nodes, the upper bound of mu 
on ci follows from Lemma 3.2. 
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Theorem 3.2 Consider an SDD for multiple-output function  F . Let L be the sum of the node 

traversing probabilities of the non-terminal nodes below or in level i + 1. Let mL be the num-

ber of root nodes for F below or in level i + 1. Then, for any permutation of Xiower and any 

permutation of Xupper, 

ETP(Cut'(i)) +mL < L. 

Proof All nodes representing cofactors with respect to the variables in Xupper and mL root nodes 

are situated below or in level i + 1. Thus, L includes the node traversing probabilities of these 

nodes.i 

Theorem 3.3 Consider an SDD for multiple-output function F_ Let U be the sum of the node 

traversing probabilities of the non-terminal nodes above or in level i. When the order of Xupper 

is fixed, 

                   U +ETP(Cut'(i)) +mL < APL. 

Proof Let L be the sum of the node traversing probabilities of the non-terminal nodes below or 

in level i + 1. From Theorem 3.1, we have 

APL = U + L. 

Then, from Theorem 3.2, for any permutation of Xiower, 

APL > U +ETP(Cut'(i)) +mL. 

I Theorem 3.4 Let U be the sum of the node traversing probabilities of non-terminal nodes above 

or in level i — 1, and let L be the sum of the node traversing probabilities of non-terminal nodes 

below or in level i + 2. Then, after the variable swap of level i with level i + 1, U and L remain 

unchanged. 

Proof The variable swap of level i and level i + 1 does not influence the graph structure except 

for levels i and i+ 1 because of the locality of the swap operation. Thus, it is clear that U remains 

unchanged. From Lemma 3.1, L is obtained by the sum of ETP(Cut'(i + 1)) and ETP(Eiower), 

where 

Cut'(i+ 1) = {e e E Cut(i+ 1), e is incident to a non-terminal node}, 

Eiower = {eI e is an edge situated below or in level i+2}, 

ETP(Cut'(i+ 1)) = I ETP(e), 
eECut' (i+1) 

ETP(Eiower) _ , ETP(e). 
eEEiower 
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 X1 
n - r 

            X2 NEW r 

0 0 

                      Figure B.1: Partition of BDD. 

By Lemma 3.3, ETP(Cut'(i + 1)) is an invariant. ETP(Eiower) remains unchanged because of 

the invariance of ETP(Cut'(i + 1)) and the locality of the swap operation. Therefore, L also 

remains unchanged.1 

B. Proofs of Theorems in Chapter 4 

Definition B.1 Suppose that a QRBDD for an n-variable logic function is partitioned into two 

parts as shown in Fig B.1. It is partitioned into the upper part which has the variables X1 = 

(x1, x2, ... , xn—r), and the lower part which has the variables X2=(xn_r+1, ... , x, ). In this case, 
the BDD represents the logic function as follows: 

f(Xi,X2) = V Xl'f(ai,X2), 
                                                at EB"-r 

where 

                     X~`1 (X1 = di) 
                             0 (otherwise). 

The upper part realizes 4, and the lower part realizes f (ai, X2). 

Theorem 4.1 An arbitrary n-variable logic function can be represented by a QRBDD with at 

most 
r 

                              2n-r_1+22' 

                                              i-1 

non-terminal nodes, where r is the largest integer that satisfies relation n — r > 27 [29] . 
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Proof When the upper part of the QRBDD (see Fig.  B.1) has 2n-r - 1 nodes (i.e., a complete 

binary tree), it is the maximum. Because f (di, X2) is an r-variable logic function, the number of 

different f i,X2) is 22r. When 22i logic functions are realized for each level i (i = 1, 2, ... , r) 

from the terminal node to the r, the lower part is the maximum. Therefore, the number of 

non-terminal nodes in a QRBDD is at most 

r 2n—r — 1 + 221 
                                                                                                                                                            . i=1 

This upper bound becomes the tightest when r is the maximum integer satisfying n — r> 2 r [29]: 

1 Theorem 4.2 An arbitrary n-variable logic function can be represented by a QRMDD(k) with 

at most 

2Sk — 1 
+r;1(ki—t) 2k-1 

i1 
non-terminal nodes, where u is the number of super variables, t is the number of dummy vari-

ables, and s is the smallest integer that satisfies relation 

n—r 
s> 

Proof Since each node in a QRMDD(k) has 2k outgoing edges, the upper part of QRMDD(k) 

is maximum when it is equivalent to a complete 2k-valued tree. Therefore, the upper part has at 

most 
2sk —1 

2k-1 

nodes, where s denotes the number of super variables in upper part. The lower part is maximum 

when all i-variable functions are realized for each level i (i = 1, 2, ... , u — s), which have 2k-
valued inputs and binary outputs. Note that Xu may include dummy variables. Therefore, the 

number of non-terminal nodes in a QRMDD(k) is at most 

2Sk  
+22(ki—t). 2k —1 

i==1 

C. Proofs of Theorems in Chapter 5 

Lemma 5.1 Let Nfix(n) be the number of different fixed-order partitions of X. Then, 

Nfix(n) = 2n-1 
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Proof X =  (xl,x2i...,xn) has n — 1 partition points, the positions that can be partitioned. At 
each partition point, we can choose whether to partition at this point or not. Thus, 2n-1 different 

partitions exist.1 
  The following lemma is used for proof of Theorem 5.1. 

Lemma C.1 [30] The number of different distributions of n objects into r distinct cells is 

calculated by the following formula, where each cell has at least one object and order of objects 

within a cell is not important. 

                      a(n,r) = rCi(r—l)n(-1)i 
i=0 

Example C.1 The number of different distributions of 5 objects into 2 distinct cells is 

a(5,2) = 25 — 2 = 30. 

                                                (End of Example) 

Theorem 5.1 Let Nnon- fix(n) be the number of different non-fixed-order partitions of X = 

(xi,x2, ... ,xn). Then, 
n r 

N non- fix(n) = rCi(r—i)n(-1)`. 
r=1 i=0 

Proof From Lemma C.1, the number of different non-fixed-order partitions of n binary variables 

into r super variables is calculated by the following: 

a(n,r) = rCi(r—i)n(-1)i. 
i=0 

Since Nnon- fix(n) is the summation of a(n, r) for r = 1, 2, ... , n, we have the theorem. 

Theorem 5.2 In a fixed-order minimum heterogeneous MDD, the following relation holds for 

any super variable Xi = (xi ,xj+l, •. •,xj+k,-1): 

k,-1 

        (2" + 1)width(heterogeneous MDD, i) < 3 x width(BDD, j + t), 
t=0 

where the heterogeneous MDD and the BDD represent the same logic function, the variable 

order is fixed. 
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Proof In a fixed-order minimum heterogeneous MDD, partition  Xi into (Xi°,X~1...Xiki-), 
where Xio = (xj), Xi, = (xj+1),..., and Xiki_l = (xj+ki-1). The memory size of the heteroge-
neous MDD with respect to Xi, (t = 0, 1, ... , ki — 1) becomes 

ki-1k;-1 

E (2 + 1)width(heterogeneous MDD, it) = 3 x width(BDD, j+t). 
t=ot=o 

Note that each node in the BDD requires three words (see the formula (5.1)). If the theorem 

does not hold, then the original heterogeneous MDD was not fixed-order minimum, which is 

contradiction. 

Theorem 5.3 Consider a BDD and a heterogeneous MDD for an n-variable logic function that 

is not a constant function. When an order of binary variables is fixed, for the number of nodes 

in the BDD and the memory size of heterogeneous MDD obtained by considering only the 

fixed-order partitions, the following relation holds: 

               Mem(heterogeneous MDD) > nodes(BDD) +2. 

Proof Consider a partition of X: X = (X1, X2i ... ,X). For arbitrary super variable Xi = (x j, x j+1, 

,xj+ki_1), the following relation holds: 

width(heterogeneous MDD, i) > width(BDD, j). 

From this, we have: 

(2ki + 1)width(heterogeneous MDD, i) > (2ki + 1)width(BDD, j). 

Also, in a BDD, the following relation holds: 

ki-1 

(2ki — 1)width(BDD, j) > E width(BDD, j+t). 
t=o 

Then, we have: 

ki-1 

(2ki + 1 )width(heterogeneous MDD, i) > y width(BDD, j +t)+2width(BDD, j), 
t=o 

and 

uu ki-1u 

E (2ki + 1)width(heterogeneous MDD, i) > width(BDD, j + t) + 2 width(BDD, j) . 
i=1i=1 t=0i=1 

Since width(BDD, j) > 1, we have: 
un 

(2k1 + 1)width(heterogeneous MDD, i) > width(BDD, i) + 2u = nodes(BDD : f) + 2u. 
i=1i=1 

Since u > 1, we have the theorem. 

  The following lemma is used for proof of Theorem 5.4. 
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Lemma C.2 Suppose a BDD for an n-variable logic function is partitioned into two parts as 

shown in Fig.  B.1, and let Xupper = (xi ,X2, • • •,xn—r) and Xiower = (xn—r+1, • • •,xn)• When the 
variable order (xi, X2, ... ,xn) is fixed, and the widths of the BDD for the upper part Xupper are 

given by 

width (BDD, j) = (j = 1, 2, ... , n — r), 

the partition of Xupper that produces the fixed-order minimum heterogeneous MDD is a trivial 

partition into single group (i.e., Xupper = X1 and 14 = n — r), and the memory size of the 
fixed-order minimum heterogeneous MDD for the upper part is given by 2n—r+ 1. 

Proof Consider a partition of Xupper = (X1,X2, ...,XS), where s > 1. The memory size of a 

heterogeneous MDD obtained by this partition is 

               A = (2ki + 1)width(heterogeneous MDD, i). 
i=1 

When width(BDD, j) = (j = 1, 2, ... ,n — r), the BDD forms a complete binary decision 

tree. Therefore, we have the following: 

A = (2k1 + 1) X 1 + (2k2 + 1) X 2k1 + (2k3 + 1) X 2k1+42 + ... + (2ks + 1) X 2k1+k2+...+ks-1 

And, we have: 

A _ 2k1+k2+...+ks + 2k1+k2+...+ks_1  B, 

where 
s-1 

                B = (2ki + 1)width(heterogeneous MDD, i). 
i=1 

Since El  ki = n — r, we have 

                           A = 2n—r + 2kl +k2+...+ks_ 1 +B. 

From the relation 2k1+k2+...+ks_1 +B > 1, A takes its minimum when s = 1. 

Theorem 5.4 An arbitrary n-variable logic function can be represented by a heterogeneous 

MDD with at most the following memory size: 

2n—r +3 22r  _ 5, 

where r is the largest integer satisfying the relation 

n—r> 2r+1og23. 
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Proof An arbitrary n-variable logic function can be represented by an ROBDD with at most 

 2n—r  — 1 + 22` - 2 

non-terminal nodes [29], where the numbers of nodes in the upper part and the lower part 

are 2"—r — 1 and 22` — 2, respectively. From Lemma C.2, the memory size of the fixed-order 

minimum heterogeneous MDD for the upper part is 

2n—r + 1. 

Also, from Theorem 5.2, the memory size of the fixed-order minimum heterogeneous MDD for 

the lower part is at most 

3 x (22` -2). 

Therefore, the memory size of this heterogeneous MDD is 

(2'+1)+{3 x (22`-2)} =2n—r+3.22`-5. 

This formula has its minimum value when r is the largest integer that satisfies the relation 

n—r> 2r+1og23. 

That is, the memory size of the heterogeneous MDD is minimum when r satisfies this condition. 

I 
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