
Representations and Evaluations of Logic Functions

 using Multi-valued Decision Diagrams

 Shinobu Nagayama

Abstract

Binary decision diagrams (BDDs) and multi-valued decision diagrams (MDDs) are extensively

used in logic synthesis, formal verification, logic simulation, pass transistor logic (PTL), soft-

ware synthesis, etc.. In these applications using decision diagrams (DDs), proper optimizations

of DDs are required to reduce the memory sizes and runtimes. Particularly, in software syn-

thesis, intensive optimization of DDs is required to generate a compact and fact program code.

The purpose of most optimization algorithms for DDs is minimization of the number of nodes

in DDs. Minimization of the number of nodes results in reduction of memory size. However,

logic simulation and software synthesis require shorter evaluation time of logic functions, as

well as smaller memory size. In evaluation of logic functions using DDs, the evaluation time

depends on the path length of DDs. Therefore, in logic simulation and software synthesis, min-

imization of the path length is important, as well as minimization of the number of nodes. This

thesis proposes the optimization algorithms for DDs that minimize the memory size, average

path length (APL), or both of them.

 Since the graph structures of DDs depend on the variable order, the number of nodes and

APLs for DDs can be reduced by changing variable order. Chapter 3 proposes APL minimiza-

tion algorithms for DDs considering only variable orderings. The APL minimization algorithms

proposed in Chapter 3 yield an improvement over an existing algorithm in both APL and run-

time. However, the APL minimization algorithms considering only variable orderings often

increase the number of nodes, since a variable order that minimizes the APL is often different

from the variable order that minimizes the number of nodes.

 Next, we use MDDs to reduce the memory sizes and APLs furthermore. MDDs are usually

used to represent multi-valued logic functions. However, we use MDDs to represent binary

logic functions. When MDDs are used to represent binary logic functions, we can use an

additional optimization approach, which is a partition of binary variables. To represent binary

logic functions using MDDs, we partition the binary variables into groups, and we treat each

group as a multi-valued variable. Chapter 4 shows the relations between the values of k and

the number of nodes, memory size, path length, and area-time complexity for quasi-reduced

 i

MDD(k) (QRMDD(k)), and derives the optimum values of k for each application. For many

benchmark functions, the numbers of nodes and path lengths for QRMDD(k)s are inversely

proportional to the value of k. Therefore, the numbers of nodes for QRMDD(k)s can be reduced

with increasing the value of k. However, the memory size of each node in QRMDD(k) increases

with 2". By experiments, we show that the memory sizes for QRMDD(k)s take their minimum

when k = 2. To obtain the optimum values of k considering both memory size and path length,

we introduce the area-time complexity. By experiments, we show that when both the memory

size and path length are equally important, the optimum value of k is 3 or 4. On the other hand,

when the path length is more important than the memory size, the optimum value of k is 4, 5 or

6.

 In MDD(k)s representing binary logic functions, the binary variables are partitioned into the

groups with k binary variables. On the other hand, in heterogeneous MDDs, the binary vari-

ables can be partitioned into the groups with different numbers of binary variables. Therefore,

the memory sizes and APLs of heterogeneous MDDs depend on the partition of binary vari-

ables, as well as the order of binary variables. Chapter 5 proposes the memory size and APL

minimization algorithms for heterogeneous MDDs that consider both orderings and partitions

of binary variables. By considering both orderings and partitions of binary variables, heteroge-

neous MDDs can represent logic functions with smaller memory sizes than free BDDs (FBDDs)

and smaller APLs than ordered BDDs (OBDDs), and the APLs of heterogeneous MDDs can

be reduced by a half of BDDs without increasing memory size. Heterogeneous MDDs have

smaller area-time complexities than MDD(k)s, since heterogeneous MDDs allow more flexible

partition of binary variables than MDD(k)s.

ii

List of Publications by Author

Journal Papers

 1. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions us-

 ing heterogeneous MDDs," IEICE Transactions on Fundamentals of Electronics, Vol. E86-
 A, No. 12, pp. 3168-3175, December 2003.

 2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Area-

 time complexities of multi-valued decision diagrams," IEICE Transactions on Funda-
 mentals of Electronics, Vol. E87-A, No. 5, pp. 1020-1028, May 2004.

 3. Shinobu Nagayama, Alan Mishchenko, Tsutomu Sasao, and Jon T. Butler, "Exact and

 heuristic minimization of the average path length in decision diagrams," Journal of Multiple-
 Valued Logic and Soft Computing, (accepted for publication).

 4. Hui Qin, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura,

 and Yukihiro Iguchi, "A realization of multiple-output functions by a look-up table ring,"
IEICE Transactions on Fundamentals of Electronics, Vol. E87-A, No. 12, December

 2004, (accepted for publication).

International Conference and Workshop Papers

 1. Tsutomu Sasao, Munehiro Matsuura, Yukihiro Iguchi, and Shinobu Nagayama "Compact

 BDD representations for multiple-output functions and their applications to embedded

 system," IFIP VLSI-SOC'01, pp. 406-411, December 2001.

 2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Repre-

 sentations of logic functions using QRMDDs," 32nd IEEE International Symposium on

 Multiple-Valued Logic (ISMVL 2002), pp. 261-267, May 2002.

iii

 3. Shinobu Nagayama and Tsutomu Sasao, "Code generation for embedded systems using

 heterogeneous MDDs," The 11th Workshop on Synthesis And System Integration of Mixed

Information technologies (SASIMI 2003), pp. 258-264, April 2003.

 4. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions

 using heterogeneous MDDs," 33rd IEEE International Symposium on Multiple-Valued

 Logic (ISMVL 2003), pp. 247-255, May 2003.

 5. Shinobu Nagayama, Alan Mishchenko, Tsutomu Sasao, and Jon T. Butler, "Minimization

 of average path length in BDDs by variable reordering," 12th International Workshop on

 Logic and Synthesis (IWLS 2003), pp. 207-213, May 2003.

 6. Shinobu Nagayama and Tsutomu Sasao, "Minimization of memory size for heteroge-

 neous MDDs," Asia and South Pacific Design Automation Conference (ASP-DAC'2004),

 pp. 872-875, January 2004.

 7. Shinobu Nagayama and Tsutomu Sasao, "On the minimization of average path lengths for

 heterogeneous MDDs," 34th IEEE International Symposium on Multiple-Valued Logic

 (ISMVL 2004), pp. 216-222, May 2004.

 8. Shinobu Nagayama and Tsutomu Sasao, "On the minimization of longest path length for

 decision diagrams," 13th International Workshop on Logic and Synthesis (IWLS 2004),

 pp. 28-35, June 2004.

 Japanese Domestic Workshop Papers

 1. Munehiro Matsuura, Tsutomu Sasao, Yukihiro Iguchi, and Shinobu Nagayama, "Com-

 pact representations of BDDs for multiple-output functions and their optimization," (in

 Japanese) IEICE Technical Report, VLD2001-100, November 2001.

 2. Shinobu Nagayama, Tsutomu Sasao, Yukihiro Iguchi, and Munehiro Matsuura, "Repre-

 sentations of logic functions using QRMDDs," (in Japanese) IEICE Technical Report,

 VLD2001-142, January 2002.

 3. Shinobu Nagayama and Tsutomu Sasao, "Compact representations of logic functions us-

 ing heterogeneous MDDs," (in Japanese) IEICE Technical Report, VLD2002-98, pp. 97-

 102, November 2002.

 iv

4. Qin Hui, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura,

 and Yukihiro Iguchi, "On a sequential look-up table cascade," 7th System LSI workshop,

 pp. 311-314, November 2003.

5. Shinobu Nagayama and Tsutomu Sasao, "Minimization of average path lengths for het-

 erogeneous MDDs," (in Japanese) IEICE Technical Report, VLD2003-107, pp. 223-228,

 November 2003.

6. Qin Hui, Tsutomu Sasao, Munehiro Matsuura, Shinobu Nagayama, Kazuyuki Nakamura,

 and Yukihiro Iguchi, "Realization of multiple-output functions by sequential look-up ta-

 ble cascades," IEICE Technical Report, VLD2003-127, pp. 13-18, January 2004.

v

Contents

Abstract

List of Publications by Author iii

List of Abbreviations and Symbolsix

1 Introduction1

 1.1 Backgrounds and Purposes of Research1

 1.2 Organization of Thesis3

2 Preliminary4

2.1 Logic Functions4

 2.2 Partition of Binary Variables5

 2.3 Decision Diagrams (DDs).............................5

 2.4 Average Path Lengths (APLs) 7

3 Minimization of APL in DDs by Variable Ordering8

3.1 Introduction8

3.2 Definitions9

 3.3 Efficient Computation of APLs9

 3.4 Lower Bounds on APL11

 3.5 APL Minimization Algorithms13

 3.5.1 Change of the APL during Swapping Two Adjacent Variables13

 3.5.2 Symmetric Variables16

 3.5.3 Exact Minimization Algorithm17

 3.5.4 Heuristic Minimization Algorithm19

 3.5.5 Initial Ordering of the Binary Variables21

 3.6 Experimental Results22

 vi

 3.7 Conclusion and Comments25

4 Area-Time Complexities of QRMDD(k)s26

4.1 Introduction26

4.2 Definitions.....................................27

 4.3 Number of Nodes in QRMDD(k)28

 4.3.1 Number of Nodes for General Functions29

 4.3.2 Number of Nodes for Benchmark Functions30

 4.3.3 Number of Nodes for Randomly Generated Functions 33

 4.4 Area-Time Complexity of QRMDD(k)34

 4.4.1 Memory Size for QRMDD(k)34

 4.4.2 Area-Time Complexity of QRMDD(k)s36

 4.4.3 Experimental Results36

 4.4.4 Analysis for the Functions that Satisfy Property 4.1 37

 4.5 Conclusion and Comments38

5 Heterogeneous MDDs and Their Optimization Algorithms39

5.1 Introduction39

5.2 Definitions.....................................40

 5.3 Number of Heterogeneous MDDs42

 5.4 Memory Size Minimization Algorithms44

 5.4.1 Bounds on Memory Size of Heterogeneous MDDs44

 5.4.2 Partition Algorithm for Memory Size Minimization 45

 5.4.3 Exact Memory Size Minimization Algorithm47

 5.4.4 Heuristic Memory Size Minimization Algorithm48

 5.5 APL Minimization Algorithms48

 5.5.1 Partition Algorithm for APL Minimization50

 5.5.2 Exact APL Minimization Algorithm51

 5.5.3 Heuristic APL Minimization Algorithm52

 5.6 Experimental Results53

 5.6.1 Comparison with FBDDs.........................55

 5.6.2 Comparison with ROBDDs57

 5.6.3 Comparison of Computation Time for Algorithms............59

 5.6.4 Comparison with MDD(k)s59

 5.7 Conclusion and Comments62

 vii

6 Conclusion65

Acknowledgements67

References69

Appendix77

 A. Proofs of Theorems in Chapter 377

 B. Proofs of Theorems in Chapter 480

 C. Proofs of Theorems in Chapter 581

 viii

List of Abbreviations and Symbols

Abbreviations

APL Average Path Length

BDD Binary Decision Diagram

CPU Central Processing Unit

DAG Directed Acyclic Graph

DD Decision Diagram

ECFN Encoded Characteristic Function for Non-zero output

ETP Edge Traversing Probability

FBDD Free Binary Decision Diagram

FPGA Field Programmable Gate Array

LUT Look-Up Table

MDD Multi-valued Decision Diagram

NTP Node Traversing Probability

OBDD Ordered Binary Decision Diagram

PDA Personal Digital Assistance

PP Path Probability

PTL Pass Transistor Logic

ROBDD Reduced Ordered Binary Decision Diagram

ROMDD Reduced Ordered Multi-valued Decision Diagram

QRBDD Quasi-Reduced ordered Binary Decision Diagram

QRMDD Quasi-Reduced ordered Multi-valued Decision Diagram

SBDD Shared Binary Decision Diagram

SDD Shared Decision Diagram

SMDD Shared Multi-valued Decision Diagram

 ix

Symbols

fsingle-output logic function
Fmultiple-output logic function

mthe number of outputs

nthe number of inputs or the number of variables
xvariable

Xordered set of variables or super variable
kthe size of a X or the number of variables in a X

avector (al, a2i ... , an)

eedge in a DD

 ^non-terminal node in a DD

 ddensity for a logic function

rlnormalized difference

 a ^ b a and b are nearly equal

[al the smallest integer that is larger than a
N fixthe number of different fixed-order partitions

Nnon— fix the number of different non-fixed-order partitions

 Snthe number of different FBDDs

 0order notation showing the computational complexity

 x

Chapter 1

Introduction

1.1 Backgrounds and Purposes of Research

Binary decision diagrams (BDDs) [11] and multi-valued decision diagrams (MDDs) [3, 26, 37,
38] are extensively used for representations of logic functions in logic synthesis [5, 17, 32,
42, 80], formal verification [15, 56, 57], logic simulation [1, 22, 34, 35], pass transistor logic
(PTL) [4, 69, 70], software synthesis [2, 25, 27, 45], etc.. For example, in logic synthesis,
decision diagrams (DDs) are used for compact representation of a given logic function, for
efficient Boolean operations, and for functional decomposition [5, 11, 17, 32, 42, 80]. Since the
memory size and runtime needed for logic synthesis depend on the sizes of DDs, minimization
of the size of DDs is required to reduce them. In logic simulation [1, 22, 34, 35], DDs are
used to evaluate the logic functions quickly. Since the evaluation time for logic simulation
depends on the path length of DDs, minimization of path length of DDs is required to reduce
the design verification time. In software synthesis [2, 25, 27, 45], DDs are used to generate
a program code, such as branching program [78] that can be derived directly from DDs by
translating each node in DDs into a fragment of program code. Since the sizes and runtimes
for the generated codes depend on the sizes and path length of DDs, minimizations of size and

path length of DDs are required to generate compact and fast codes. Particularly, in software
synthesis for embedded systems (e.g. consumer electronics, vehicle control, personal digital
assistance (PDA), cellular phone, etc..), intensive optimization of DDs is required to generate a
code satisfying the memory size limitation and timing limitation for systems. Thus, in various
applications, the optimizations of DDs are key issue. This thesis focuses on the optimizations of
DDs that are useful for various applications. In optimizations of DDs, the following approaches
are well-known.

 • Variable ordering [14, 17, 18, 19, 24, 38, 39, 59, 74]

 1

 • Complemented edges [6, 40]

 • Assignment of values to don't cares [33, 54, 71]

Among them, the most widely used and effective approach is variable ordering approach. The

paper [11] shows that the size of BDDs can be varied from linear to exponential of the number

of input variables by changing variable order. Therefore, considering the variable orderings is

important and effective to optimize DDs.

 The purpose of most existing optimization algorithms for DDs is minimization of the num-

ber of nodes in DDs [14, 17, 18, 19, 20, 24, 38, 39, 59, 74]. Although minimization of the

number of nodes results in reduction of size for DDs, it is not directly related to the reduction

of the evaluation time of logic functions. Since the logic functions that are represented using

DDs are evaluated by traversing DDs from the root node to a terminal node, the evaluation time

depends on the path length in DDs. Thus, minimization of path length is important to reduce

the evaluation time of logic functions. For example, logic simulation requires shorter evaluation

time of logic functions, as well as smaller size of DDs. Therefore, in such applications, mini-

mization of the path length is important, as well as minimization of the number of nodes. Since

the graph structures of DDs depend on the variable order, the number of nodes and path length

in DDs can be reduced by changing the variable order. This thesis proposes the algorithms for

minimization of path length in DDs considering only the variable orderings.

 MDDs are usually used to represent multi-valued logic functions, and are usually optimized

by changing variable order [38, 39]. However, when MDDs are used to represent binary logic

functions, an additional optimization approach can be used. To represent binary logic functions

using MDDs, binary variables are partitioned into some groups, and each group is treated as a

multi-valued variables. In this case, the graph structures of MDDs depend on the size of groups

(i.e. the number of binary variables in a group) and the partition of binary variables, as well

 as the variable order. The papers [20, 62] present the optimization algorithm for pairing binary

variables. Since these papers focus on the logic design for the field programmable gate arrays

(FPGAs) with 6-input look-up tables (LUTs) as an application using MDDs, the size of groups
is set to two and MDDs are optimized. However, this thesis assumes that size of groups can be

changed, and discusses on the size of groups that optimizes MDDs. The paper [34] claims that

when the size of groups is five, the best performance for the logic simulator using MDDs can

be obtained. However, this paper does not show any theoretical or experimental justification.

This thesis shows the optimum size of groups by experimental results using many benchmark

functions.

 2

 When the binary variables are partitioned into groups, in many cases, groups have the same

number of binary variables. However, in a heterogeneous MDD proposed in this thesis, the

groups can have the different number of binary variables. Thus, heterogeneous MDDs allow

more flexible partition of binary variables than MDD(k)s that have groups with k binary vari-

ables, and in heterogeneous MDDs, both orderings and partitions of binary variables can be

optimized to minimize memory size and path length.

1.2 Organization of Thesis

This thesis consists of six chapters. Each chapter is organized as follows.

 Chapter 2 defines basic terminologies, assumptions, and computational model used in this

thesis.

 Chapter 3 proposes APL minimization algorithms for DDs considering only variable orders.

Experimental results in Chapter 3 show that the proposed APL minimization algorithms yield

an improvement over an existing algorithm in both APL and runtime, and the APL minimization

algorithms considering only variable orders often increase the number of nodes.

 Chapter 4 shows the relations between the values of k and the number of nodes, memory

size, path length, and area-time complexity [8, 76] for QRMDD(k), and derives the optimum

values of k for each application.

 Chapter 5 proposes the memory size and APL minimization algorithms for heterogeneous

MDDs that consider both orderings and partitions of binary variables. Experimental results in

Chapter 5 show that by considering both orderings and partitions of binary variables, heteroge-

neous MDDs can represent logic functions with smaller memory sizes than FBDDs and smaller

APLs than OBDDs, the APLs of heterogeneous MDDs can be reduced by a half of BDDs with-

out increasing memory size, and heterogeneous MDDs have smaller area-time complexities

than MDD(k)s.

 Chapter 6 concludes this thesis.

 3

Chapter 2

Preliminary

This chapter defines basic terminologies used in this thesis.

2.1 Logic Functions

Definition 2.1 A logic function, denoted by f (xi ,x2, ...,xn) or simply f, is a mapping:

f(xl,x2,...,xn) : {0,1,...,r- 1}n -+ {0,1,...,r-1},

where each xi is called a variable. When r = 2, a logic function is a binary logic function that

is a mapping:

_f (xi ,x2i...,xn) : {0,1}n -+ 10, 11,

where each xi is called a binary variable. When r > 2, a logic function is a multi-valued logic

function, and each xi is called a multi-valued variable.

Definition 2.2 A multiple-output logic function F = (fo, fi, • • • , fm-1) is a mapping:

F : {0,1,...,r- 1}n -* {0,1,...,r- 1}m.

Specially, when m = 1, it is called single-output logic function.

Definition 2.3 Let S C {0, 1, ... , r - 1}. Then, xs is a literal of variable x.

Definition 2.4 Shannon expansion of a logic function f with respect to a variable xi is:
 r-1

f(x1,x2,...,xn) = V Xi'.f(xl,x2,...,xi—l,.I,xi+l,...,xn),
j=o

and each f(xi,x2, ...,xi_1, j,xi+l,...,xn) is called a cofactor of f with respect to xi.

 In this thesis, we assume that a given logic function is completely specified and has no

redundant variables.

 4

2.2 Partition of Binary Variables

Definition 2.5 Let f (X) be a binary logic function, where X = (x1, x2, ... , xn) is an ordered

set of binary variables. Let {X} denote the unordered set of variables in X. Let Xi C X. If

{X}_{X1}U{X2}U...0{Xu},{Xi}04), and {Xi}n{xi}_ (i0j), then (xi ,X2,...,Xu)isa

partition of X. Xi is called a super variable. If AI = ki (i = 1, 2, ... , u) and k1 +k2+... + ku =
n, then a binary logic function f (X) can be represented by a multi-valued input two-valued

output logic function that is a mapping f (X1,X2, ...,Xu): R1 x R2 x R3 x ... x Ru -+ B, where
Ri = {0,1,2,...,2k; —1} and B = {0,1}.

Definition 2.6 A fixed-order partition of X = (x1,x2,...,xn) is a partition (Xi,X2,...,Xu),
where

Xi = (xi,x2,...,xk1),

 X2 = (xki+1,xki+2, • • •,xki+k2),

XU = (xkl+k2+...+ku-1+1,xk1+k2+...+ku-1+2,...,xn-1,xn),

and 1Xil = ki. That is, in the fixed-order partition of X, the order of variables (xi ix2, ... ,xn) is

fixed.

 When the order of variables is not fixed, we call the partition non-fixed-order partition. In

this thesis, a partition means fixed-order partition unless stated otherwise.

Example 2.1 Consider (Xi,X2), which is a fixed-order partition of X, where X = (xi, x2, x3 , x4,
xs) and each xi is a binary variable. When X1 = (xi ,x2) and X2 = (x3,x4,x5), we have k1 = 2,
k2 = 3, P1 ={O,1,2,3}, and P2 = 10, 1, ... , 7}. Note that X1 takes 4 values, and X2 takes 8
values. So, a 5-variable binary logic function f (X) can be represented by the multi-valued
input two-valued output function f(Xi,X2): R1 x R2 -* B. (End of Example)

2.3 Decision Diagrams (DDs)

Definition 2.7 A decision diagram (DD) is a rooted directed acyclic graph (DAG) G(V, E)
representing a logic function f, where V and E denote sets of vertices and edges in G, respec-
tively. Specially, vertices in G are called nodes in the DD, nodes without outgoing edges are
terminal nodes, and nodes with outgoing edges are non-terminal nodes. Each terminal node
is labeled with a value of f, and each non-terminal node is labeled with a variable.

 5

Definition 2.8 In a DD, the number of nodes in the DD, denoted by nodes(DD), is the sum

of all non-terminal nodes.

Definition 2.9 A DD can be obtained by applying Shannon expansion repeatedly to a logic

function f, and in such case, each non-terminal node labeled with a variable x; has some outgo-

ing edges which refer to succeeding nodes representing cofactors of f with respect to xi. When

all non-terminal nodes in the DD have two outgoing edges, the DD is called binary decision

diagram (BDD). On the other hand, when all non-terminal nodes have more than two outgoing

edges, the DD is called multi-valued decision diagram (MDD).

 In this thesis, DD means either BDD or MDD.

Definition 2.10 A variable order of DD is the order of variables that were used for Shannon

expansion.

Definition 2.11 In a DD, a sequence of edges and non-terminal nodes leading from a root node

to a terminal node is a path.

Definition 2.12 An ordered BDD (OBDD) has the same variable order on any path. On the

other hand, a free BDD (FBDD) allows the different variable orders along each path.

Definition 2.13 A reduced ordered BDD (ROBDD) is derived by applying the following two

reduction rules to an OBDD:

 1. Share equivalent sub-graphs.

 2. If all the outgoing edges of a non-terminal node v refer to the same succeeding node u,

 then delete v and connect the incoming edges of v to u.

A quasi-reduced ordered BDD (QRBDD) is derived by applying only the above reduction

rule 1.

 A reduced ordered MDD (ROMDD) and a quasi-reduced ordered MDD (QRMDD) can

be defined similarly.

 In this thesis, BDD and MDD means ROBDD and ROMDD, unless stated otherwise.

 6

2.4 Average Path Lengths (APLs)

Definition 2.14 A path length is the number of edges in the path.

 The sequence of edges in a path pi of a DD corresponds to an assignment of values ai to

the specific variables associated with those edges in the DD. We say that such an assignment

ai selects path pi. Similarly, if an assignment of values ci to all variables agrees with ai for all

variables assigned in ai, we also say ci selects path pi.

Definition 2.15 Let x be an r-valued variable, and c E {0, 1, ... , r — 11. Then, P(x = c) denotes
the probability that x has value c.

Definition 2.16 In a DD for an n-variable function, the path probability of a path pi, denoted

by PP(pi), is the probability that the path pi is selected in all assignments of values to the

r-valued variables. PP(pi) is given by

PP(pi) = P(xi = ci) x P(x2 = c2) x ... x P(xn = Cn),
CEC1

where Ci denotes a set of assignments of values to the variables selecting the path pi, c =

(cl, c2, ... , cn), each ci E {0, 1, ... , r— 11, and P(xi = ci) is the probability xi has value ci.

Definition 2.17 The average path length, or APL, of a DD is given by:

N
APL = PP(pi) x li,

i=1

where i indexes the paths, N denotes the number of paths, and li denotes the path length of path

Pi.

 In this thesis, we assume the following computation model:

 1. The logic functions are evaluated by traversing DDs from the root node to a terminal node

 according to values of variables.

 2. Encoded input values are available, and their access time is negligible. For example,

 when Xi = (xl,x2ix3,x4) = (1, 0,0, 1), Xl = 9 is immediately available as an input to the

 super variable.

 3. Most of computation time is devoted to accessing nodes.

 4. The evaluation time for all DD nodes are the same.

In this case, the average evaluation time of a DD is proportional to the APL of the DD. Thus, in

this model, we can use the APL to compare the evaluation times of different types of DDs.

 7

Chapter 3

Minimization of APL in DDs by Variable Ordering

This chapter proposes APL minimization algorithms for DDs considering only variable orders.

3.1 Introduction

In applications using DDs to evaluate logic functions, the average evaluation time is propor-

tional to the APL in the DD. Therefore, minimization of the APL leads to faster evaluation of

the logic function. Particularly, in logic simulation using DDs [1, 22, 34, 35], minimization of

the APL reduces the simulation time substantially because logic functions are evaluated many

times with different test vectors.

 Minimization of the APL can also be applied to logic synthesis. A method for functional

decomposition [80] uses BDDs to detect Boolean divisors. The quality of a divisor is measured

by the number of don't-cares it provides for the minimization of the quotient. The don't-cares

are generated by the paths in the BDD that lead to the terminal nodes. The shorter the paths, the

more don't-care minterms they contain. Therefore, minimizing the APL in BDDs can improve

the quality of decomposition.

 In PTL synthesis, the circuits are derived directly from BDDs representing logic functions .

In this case, the longer paths in BDDs cause larger voltage drop and larger delay. This problem

can be solved by inserting buffers in long paths [4]. Obviously, minimizing the APL in the BDD

can reduce the number of buffers that must be inserted.

 In this chapter, we propose an exact APL minimization algorithm based on the branch-

and-bound algorithm. This algorithm finds an optimum variable order much faster than ex-

haustive search, which enumerates all possible variable orders. However, the exact method is

time-consuming for functions with many inputs. To minimize the APL of such functions in a

reasonable time, we propose a heuristic algorithm based on dynamic variable reordering.

 8

 This chapter is organized as follow. Section 3.2 contains the necessary terminology and

definitions. Section 3.3 shows the efficient computation method of the APLs. Section 3.4

introduces lower bounds on the APL. Section 3.5 proposes an exact and a heuristic minimization

algorithm for the APL. Section 3.6 shows the efficiency of the algorithms using benchmark

functions.

3.2 Definitions

This section provides definitions used in this chapter.

Definition 3.1 The node traversing probability of a node v, denoted by NTP(v), is the prob-

ability that an assignment of values to the variables selects a path that includes the node v.

Definition 3.2 The edge traversing probability of an edge e, denoted by ETP(e), is the prob-

ability that an assignment of values to the variables selects a path that includes the edge e.

 Note that the node traversing probability of the root node in a DD for a single-output func-
tion is 1.0, since all paths start from the root node.

 In this chapter, we use shared DD (SDD) to represent a multiple-output function F =

(fo, .. • , fm—i) [40]. For reasons that will be clear later, we view the APL of an SDD as
the sum of the APLs of the individual DDs or for each component logic function f.

3.3 Efficient Computation of APLs

This section provides the efficient computation method of APLs. This computation method

plays an important part of APL minimization algorithms proposed in this chapter.

Lemma 3.1 [67] The node traversing probability of node v is the sum of the edge traversing

probabilities of all incoming edges to v. Also, the node traversing probability of node v is the

sum of the edge traversing probabilities of all outgoing edges from v.

Proof See Appendix.

 From Lemma 3.1, the following relation holds:

ETP(e) = P(x = c) x NTP(v),

where P(x = c) is the probability x has a value c, v is a node representing a variable x, and e is
an outgoing edge corresponding to a value c of v.

 9

 fPath pi PP(pi) Path length ii
v1 el1.00P1 0.252

 e' e2P2 0 .1253

 v2 0.50 v3 elk 0.50 p3 0.06254
 e4e5-e6P4 0 .06254

 e3 v4 co 0.50 v5 0.25 P5 0.125 3
e,; e8 e9•'

 en, 0.0625 4 v60'39510p7 0.0625 4
e11

e1zP8 0.0625 4

 1-6-1"P9 0.0625 4 pio 0.125 3

 (a) BDD(b) PPs and path lengths

 Figure 3.1: Example of node traversing probability in a BDD.

Theorem 3.1 [67] The APL is equal to the sum of the edge traversing probabilities of all edges.

Also, the APL is equal to the sum of the node traversing probabilities of all the non-terminal

nodes.

Proof See Appendix.

 From Theorem 3.1, we have the following:

 NeNv
APL = E ETP(ei) = E NTP(v.i),

 i=1j=1

where Ne and N,, denote the number of edges and non-terminal nodes, respectively.

Example 3.1 Consider the BDD in Fig. 3.1(a), where solid lines and dotted lines denote l-
edges and 0-edges, respectively. For simplicity, assume that P(xi = 0) = P(xi = 1) = 0.50 (i =

1, 2, 3, 4). This BDD has 10 different paths: path pi is (vl, el, v2, e3), path P2 is (vl, el, v2, e4, v4,

e7), ..., and path pio is (vl, e2, v3, e5, v5, elo). The PP(pi) and path length ii of each path pi are
listed in Fig. 3.1(b). Therefore, by Definition 2.17,

10

APL =EPP(pi)xli=3.125.
 i=1

By using node traversing probabilities, we can compute this APL as follows: First, we have

NTP(vl) = 1.00 for root node vi. Then, NTP(v2) = ETP(el) = P(xi = 0) x NTP(vl) = 0.50

 10

 Xupper
 level i

 :::•Cut(i)
 level i+1 Xl

ower

 o©'.'.' r- 1

 Figure 3.2: Partition of DD.

and NTP(v3) = ETP(e2) = P(xi = 1) x NTP(vl) = 0.50. Similarly,

NTP(v4) = P(x2 = 1) x NTP(v2) +P(x2 = 0) x NTP(v3) = 0.50,

NTP(v5) = P(x2 = 1) x NTP(v3) = 0.25, and

NTP(v6) = P(x3 = 1) x NTP(v4) +P(x3 = 0) x NTP(v5) = 0.375.

Thus, we obtain
 6

APL = I NTP(vi) = 3.125.
 i=1

Similarly, we can compute the APL using the edge traversing probabilities. (End of Example)

3.4 Lower Bounds on APL

In this section, we derive lower bounds on the APL. Such bounds result in a reduction of the

computation time in the algorithm, as discussed later.

Definition 3.3 Suppose a DD is partitioned into two parts as shown in Fig. 3.2. Here, Xupper

denotes the variables above or in level i, Xlower denotes the variables below or in level i+ 1, and

Cut(i) denotes a set of edges connecting the nodes above or in level i with the nodes below or

in level i + 1.

Note that the nodes are indexed by i starting with the root node at level 1. The nodes just below

have i= 2, etc..

 11

Definition 3.4 ETP(Cut(i)) denotes the sum of edge traversing probabilities of edges in Cut(i),

and is given by

ETP(Cut(i)) = ETP(e).
eECut(i)

Lemma 3.2 Suppose an SDD represents a multiple-output logic function F. Then,

ETP(Cut(i)) = mu,

where mu is the number of the root nodes of the multiple-output function F above or in level i.

Proof See Appendix.

Corollary 3.1 Suppose a DD represents a single-output function f. Then,

ETP(Cut(i)) = 1.0.

Lemma 3.3 Let

Cut'(i) = {e e E Cut(i), such that e is incident to only non-terminal nodes}.

Then, for every permutation of Xupper,

ETP(Cut'(i)) = ci,

where ci < mu.

Proof See Appendix.

Theorem 3.2 Consider an SDD for multiple-output function F. Let L be the sum of the node

traversing probabilities of the non-terminal nodes below or in level i + 1. Let mL be the num-

ber of root nodes for F below or in level i + 1. Then, for any permutation of Xiower and any

permutation of Xupper,

ETP(Cut'(i)) +mL < L.

Proof See Appendix.

Theorem 3.3 Consider an SDD for multiple-output function F. Let U be the sum of the node

traversing probabilities of the non-terminal nodes above or in level i. When the order of Xupper

is fixed,

 U +ETP(Cut'(i)) +mL < APL.

Proof See Appendix.

Corollary 3.2 Consider an SDD of multiple-output function F. Let U and L be the sums of the

node traversing probabilities of the non-terminal nodes above and below or in level i , respec-

tively. If the variable order of the SDD is fixed,

max{L, U} < APL.

 12

 f f

 e .e

 e

 e ;' ,•'•

 Fa]
(a) APL = 2.875 (b) APL = 1.875

 Figure 3.3: Relation between the variable orders and the APLs.

3.5 APL Minimization Algorithms

Example 3.2 Consider a binary logic function f = x4(x3 V x2x1), and assume that P(xi = 0) =

P(xi = 1) = 0.50 (i = 1,2,3,4). When the variable order of BDD for f is (xi ,x2,x3ix4), we
have the BDD shown in Fig. 3.3(a). For the BDD in Fig. 3.3(a), nodes(BDD) = 4, APL =
2.875. When the variable order is (x4, x3, x2, xi), we have the BDD in Fig. 3.3(b), where

nodes(BDD) = 4, APL = 1.875. Note that the the numbers of nodes of two BDDs are min-
imum.(End of Example)

As shown in Fig. 3.3, since the APL in a DD depends on the variable order, the APL minimiza-

tion problem can be formulated as follows:

Problem 3.1 Given a DD for a logic function f, find a variable order that produces a DD with

the minimum APL.

3.5.1 Change of the APL during Swapping Two Adjacent Variables

Our APL minimization algorithms go from one variable order to another variable order by a

sequence of steps that swap pairs of adjacent variables. A part of the algorithms that has a

significant effect on computation time is updating the APL after swapping each pair of adjacent

variables. This section describes a fast method to update the APL after the swap of two adjacent

variables.

 13

 ---U1® ------------U1 ---- ----U1®------------U1®---- x,+,

112V3 U2V3UU3 U2

X1+1 ---- Xi+1 ---- Xl ----® -— XI+1 — X"XI

Fo Fi F2 3 F0 2 F1 3Fo F1 F2 Fi Fo 2 F1

 beforeafterbeforeafter

 (a)(b)
U1U/UIU1

 ----X, +] -------- ®------------X1+1 ----
 U2U2U3U2U2 - •------------ Xi ----®-,„ 1:Ci___----
 i

Fo 12 FO 2 FI2FO 1 1 FO1 1

 beforeafterbeforeafter

(c)(d)
-----U1

®---------------------UI--- Xt+~ -

 .UIUI
 ----~Xi----X ,+1/ ----

FO1F'0 1co 161
 beforeafterbeforeafter

 (e)(f)

 Figure 3.4: Six cases of exchanging two adjacent variables.

Theorem 3.4 Let U be the sum of the node traversing probabilities of non-terminal nodes above

or in level i — 1, and let L be the sum of the node traversing probabilities of non-terminal nodes

below or in level i + 2. Then, after the variable swap of level i with level i + 1, U and L remain

unchanged.

Proof See Appendix.

 Theorem 3.4 shows that the previously computed node traversing probabilities need not be

repeated in computing the new APL caused by the swap of two adjacent variables . Fig. 3.4

illustrates a subgraph of level i and level i + 1 in the BDD when two adjacent variables are

interchanged. Since the principles of variable swap for the binary case and the multi-valued

case are the same, we describe only the binary case. The details of variable swaps for the multi-

valued case are discussed in [38]. A subgraph composed of BDD nodes involved in the variable

swap belongs to one of the six classes shown in Fig. 3.4. For each class, the figure on the left

occurs before the swap, while the figure on the right occurs as a result of the swap. In Fig . 3.4,

 14

only cases (e) and (f) do not change the APL, while other cases change the APL. For example,

in case (a), the node traversing probabilities of nodes v2 and v3 are changed as a result of the

swap. Before the swap, the node traversing probabilities of v2 and v3 are given by:

NTP(v2) = ETP(eo) = P(xi = 0) x NTP(vi)

NTP(v3) = ETP(ei) = P(xi = 1) x NTP(vi),

where eo and el denote the edges from vi to v2 and from vi to v3, respectively. On the other

hand, after the swap, the node traversing probabilities of v2 and v3 are:

NTP(v2) = P(x1+i = 0) x NTP(vi)

NTP(v3) = P(x1+i = 1) x NTP(vi).

When P(xi = 0) = P(xi+i = 0) and P(xi = 1) = P(xi+i = 1), the node traversing probabilities

of v2 and v3 do not change after the swap. Therefore, in case (a), the APL is changed by the
edge traversing probabilities of outgoing edges from vi. Similarly, in other cases except for (e)

and (f), the APL is changed by the edge traversing probabilities of outgoing edges from the root
node of a subgraph. Note that from Theorem 3.4, we consider only the edges from the root node
to nodes in level i+ 1 to update the APL.

 We summarize the strategy for updating the APL as follows:

 1. Before the swap, for each subgraph involved in the swap, the edge traversing probabilities

 of edges from the root node of a subgraph to nodes in level i+ 1 are subtracted from 1) the
 APL and from 2) the node traversing probabilities of nodes in level i + 1.

 2. After the swap, for each subgraph, the edge traversing probabilities of edges from the root

 node of a subgraph to nodes in level i + 1 are re-calculated.

 3. The calculated edge traversing probabilities are added to 1) the APL and to 2) the node

 traversing probabilities of nodes in level i + 1.

Example 3.3 Fig. 3.5 shows BDDs for a binary logic function f = xix4 V x2x4 V x3. Fig. 3.5(a)

shows the BDD with the variable order (xi ,x2,x3,x4), top to bottom. For simplicity, assume
that P(x1 = 0) = P(xi = 1) = 0.50 (i = 1,2,3,4). Then, the APL of the BDD in Fig. 3.5(a) is

2.875. In this BDD, we consider the swap of variables x2 and x3. During such a swap, case

(b) applies to node v2 and case (f) applies to node v4. Performing the swap leads to the BDD

shown in Fig. 3.5(b). Note that the swap decreases the APL by 0.25 because the node v4 after

the swap does not have the incoming edge from node v2. The node traversing probabilities

 15

 .f .f
(b 010 1.00 p 1.00
v2a0.50(~U2 j0.50 v 0.50

 ~ v3!r!70.25j!1!~~45
..U3l~11,0. ti_..~aY~

 `

 116 a 0. ' 5t;40.3

0 ©10 U
APL=2.875APL=2.625

 (a)(b)

 Figure 3.5: Example of the update of the APL

associated with nodes v2 and v3 do not change. The overall APL decreases from 2.875 to 2.625.

 (End of Example)

Example 3.4 Fig. 3.6(a) shows the BDD with the variable order (x2,x3,xl) for logic function

f = xl (x2 V x3). Assume that

P(xl = 0) = 0.6, P(xi = 1) = 0.4,

P(x2 = 0) = 0.3, P(x2 = 1) = 0.7,

 P(x3 = 0) = 0.8, P(x3 = 1) = 0.2.

The APL of the BDD in Fig. 3.6(a) is 2.06. For the swap of variables x3 and xi, case (d) applies

to node v2 and case (f) applies to node v3. Performing this swap yields the BDD shown in
Fig. 3.6(b). It changes the node traversing probabilities of v3 and v4 (a new node). Before the

swap, the edge traversing probability of edge from v2 to v3, 0.06, is subtracted from the APL

and from the node traversing probabilities of v3. After the swap, the edge traversing probability
of edge from v2 to v4, 0.12, is added to the APL and to v4. The overall APL increases from 2.06

to 2.12.(End of Example)

3.5.2 Symmetric Variables

Definition 3.5 A logic function f (xi , x2i ... , xi, ... , Xi, ... , xn) is symmetric with respect to

Xi and xi if the interchange of xi and xi does not change f. xi and xi are called symmetric

variables.

 16

 f f

 (d u1 ok 1.00 v 0 1.00

v2 01130 (0 112 0.30 6 0370

00.76 I•U 113 ''

~fl!i0.12

•

 no n o
 APL=2.06APL=2.12

 (a)(b)

 Figure 3.6: Another example of the update of the APL

 In a DD, swapping symmetric variables xi and xi does not change the graph structure.

Definition 3.6 Let Ttl and n2 be permutations of the variables. If the positions of variables in itl

are the same as in Tt2 except for symmetric variables, Ttl and Tt2 are called symmetric orders.

 Since symmetric orders produce DDs with the same graph structure, the DDs have the same

APL when P(x1= 0) = P(xi = 0), P(xe = 1) = P(xf = 1), ..., and P(x1= r-1) = P(xi = r-1)
for symmetric variables x; and xi. Therefore, in such a case, detection of symmetric orders can
reduce the computation time for an APL minimization algorithm.

Example 3.5 Consider the logic function f = xlx4 V x2x4 V x3 (Fig. 3.5). Let variable orders
Ttl and 7t2 be (xl,x2,x3,x4) and (x2,xl,x3,x4), respectively. Since x1 and x2 are symmetric

variables, Ttl and 1t2 are symmetric orders. The BDDs for the two orders are the same except

the labels x1 and x2 are interchanged, and have the same APL and the same number of nodes.

 (End of Example)

3.5.3 Exact Minimization Algorithm

Fig. 3.7 shows a pseudo-code to solve Problem 3.1. This algorithm finds an optimum solu-

tion using a branch-and-bound method, similar to the top-down algorithm (JANUS) in [16].

JANUS [16] uses the number of nodes in a BDD as the cost function, while our algorithm uses

the APL of a DD (BDD or MDD) as the cost function. By using the node traversing probability

(NTP), the changes in APL can be calculated at each node locally. This locality of computation

 17

Figure 3.7: Exact APL minimization algorithm by variable ordering .

 18

allows a top-down algorithm. To our knowledge, this is the first time an APL minimization

algorithm based on branch-and-bound has been proposed. This algorithm finds an optimum

variable order much faster than the exhaustive search method, which enumerates all possible

variable orders.

 In lines 11 and 31 of Fig. 3.7, procedure ordering changes the variable order of the DD into

the given order from the top to the specified level. For example, let the current variable order

be (xl,x2,x3,x4,xs). We seek the order (x5,x4) at level two. That is, we seek (x5,x4, *, *, *),
where "*, *, *" represents xi, x2, and x3 in some order. Then, procedure ordering(DD, (x5,x4),
2) obtains the order (x5i x4, xl , x2, x3) in 7 swaps from the order (xi , x2, x3, x4, x5). Procedure

symmetry_check in line 15 checks symmetry of adjacent variables [53]. When the variable
order of XS , which has already been stored in array "order[X Ub]" as a candidate, and the
current variable order of the DD are symmetric, and all P(x = c) s are same for the symmetric

variables, the current order is excluded from candidates. In line 19, Theorem 3.3 is used to

eliminate the unneeded variable exchanges to reduce computation time. In line 21, NTP(level)

denotes the sum of the node traversing probabilities of the nodes on the given level (level). The

initial values of array cost in Fig. 3.7 are set to infinity.

3.5.4 Heuristic Minimization Algorithm

The algorithm in Fig. 3.7 obtains an optimum solution for Problem 3.1. However, when the

number of input variables is large, finding the optimum variable order may require much com-

putation time.
 In this section, we show a heuristic minimization method using variable sifting [59]. The

sifting algorithm repeatedly performs the following basic steps:

 1. Change the variable order.

 2. Compute a cost.

The proposed sifting algorithm uses APL as the cost function. It was shown in Section 3.5.1 that

the APL can be efficiently updated after the swap of two adjacent variables. As a result, the time

needed to compute the cost in our sifting algorithm is comparable to the time needed to update

the number of nodes in the classical sifting algorithm, which minimizes the number of nodes.

Fig. 3.8 shows the pseudo-code of the heuristic minimization algorithm. In this algorithm, each

variable xi is sifted across all possible positions to determine its best position. First, xi is sifted

in one direction to the closer extreme (top or bottom). Then, xi is sifted in the opposite direction

to the other extreme. In lines 10 and 20 of Fig. 3.8, Corollary 3.2 is used to eliminate unneeded

 19

Figure 3.8: Heuristic APL minimization algorithm by variable ordering .

 20

sifting of xi. When variable xi moves down to the bottom, we use U equal to the sum of the

node traversing probabilities of the nodes above xi. If cost < U, sifting of xi further down to

the bottom cannot lead to a smaller APL than cost. In such cases, there is no need to continue

sifting to the bottom. Similarly, when variable xi moves up to the top, we use L equal to the

sum of the node traversing probabilities of the nodes below xi. This lower bound for the APL is

similar to the one introduced for the number of nodes during the classical sifting [14].

3.5.5 Initial Ordering of the Binary Variables

The initial ordering of variables influences the effectiveness of the heuristic minimization algo-

rithm described in the previous section. An analysis of variable orders that produces the mini-

mal APL in several known classes of functions [12, 68] leads to a heuristic to find a good initial

variable order. In this section, we propose an initial variable order using Walsh spectrum [21]

for binary logic functions.

 The value of a first-order Walsh spectral coefficient expresses the correlation between the

variable value with the function value. For n-variable logic function f(X), the first-order Walsh

spectral coefficient can be computed as follows [13]:

 R—Ix`®fl-1
2n-1,

where 1.77i ® fl denotes the number of assignments of values to the variables X that the values of

xi and f (X) are equal. The initial variable order is found by placing the variables in descending
order of the absolute value of Ri. For variables with identical absolute values of R1, we arbitrarily
choose the order.

 All spectral coefficients can be computed by scanning the nodes beginning at the root node
and ending on the terminal nodes using a fast algorithm [77]. The first-order coefficients can be

computed by a simplified version of the general algorithm.

Example 3.6 Consider the binary logic function f = x1x4 V x2x4 V x3 in Example 3.3. For each

binary variable xi, the value of I xi ® f i is given by:

Ix1®fl= 9, 1x2®fI=9, Ix3®fI=13, 114®f1=11.

The value of each Ri corresponding to xi is as follows:

1 1 5 3
R1=g, R2=g,R3 =R4 R4=g.

Therefore, we have an initial variable order x3, x4, x1, x2, and APL = 1.875. This is the minimum

APL for f .(End of Example)

 21

 Table 3.1: Minimization of APL for individual BDDs

 Name In Out (a) Min_Nodes(b) Min_APL (c) Liu [31] (d) sifting
 Nodes APL lime Nodes APL Time Nodes APL Nodes APL Time

5xpl 7 10 66 34.13 0.01 81 31.28 0.01 91 31.31 79 31.28 0.01
 alu4 14 8 448 41.75 22.76 547 39.69 28.71 899 47.54 516 39.97 0.01
 b12 15 9 64 23.86 0.03 68 21.84 0.01 81 22.22 71 21.88 0.01

conl 7 2 14 6.06 0.01 16 5.94 0.01 16 6.06 16 5.94 0.01
 cordic 23 2 73 13.74 416.57 89 9.43 1006.08 259 11.82 88 9.47 0.01
 sao2 10 4 99 10.90 0.26 116 10.59 0.06 128 10.71 121 10.59 0.01
 vg2 25 8 202 31.00 6431.83 222 29.91 376.78 230 30.37 204 30.16 0.01

misexl 8 7 54 23.22 0.01 57 21.97 0.02 68 22.16 64 21.97 0.01
cm150a 21 1 32 3.50 1106.23 32 3.50 1510.58 33 3.50 32 3.50 0.01
cm151a 12 2 32 6.00 0.38 32 6.00 0.28 36 6.50 32 6.00 0.01
cm162a 14 5 41 11.76 0.06 52 11.70 0.05 59 11.70 48 11.71 0.01
cm163a 16 5 35 11.70 0.01 38 11.70 0.01 42 11.70 36 11.70 0.01

 cm85a 11 3 38 7.72 0.05 38 7.72 0.01 47 8.28 38 7.72 0.01
 mux 21 1 32 3.50 1098.72 32 3.50 1410.57 33 3.50 32 3.50 0.01

z4m1 7 4 28 18.25 0.01 30 16.38 0.02 32 17.13 28 16.38 0.01
f51m 8 8 51 28.08 0.01 65 27.33 0.02 76 27.45 64 27.45 0.01

 pcle 19 9 79 22.50 0.11 84 22.50 0.03 89 22.50 79 22.50 0.01
 Average of ratios 1.00 1.00 1.00 1.12 0.95 0.93 1.40 0.99 1.10 0.95 0.40

3.6 Experimental Results

Experiments using MCNC benchmarks were conducted in the following environment:

 • CPU: Pentium4 Xeon 2.8GHz

 • L1 Cache: 32KB

 • L2 Cache: 512KB

 • Main Memory: 4GB

 • Operating System: redhat (Linux 7.3)

 • C-Compiler: gcc -02

In this section, we assume that P(xi = 0) = P(xi = 1) = 0.5 for binary logic functions.
 Table 3.1 compares the number of nodes and APL of BDDs optimized using four different

methods: (a) exact minimization of the number of nodes; (b) exact minimization of the APL;

(c) the algorithm in [31]; and (d) the heuristic APL minimization algorithm presented in this

chapter. In the table, Name lists the names of benchmark functions. In and Out lists the numbers

of input variables and single-output functions, respectively. Columns Nodes contain the number

of non-terminal nodes. Columns Time contain the CPU time of three algorithms coded by us,

 22

 Table 3.2: Minimization of APL for shared BDDs for larger functions

 Name In Out classical sifting Coef. Without Walsh spectrum With Walsh spectrum

 NodesAPL Time Nodes APL Time Nodes APL Time

 C432 36 7 106386.58 0.01 1081 86.24 0.15 1899 82.09 0.83

 C499 41 32 25873 782.66 0.02 32105 641.16 7.12 32105 641.16 7.11

 C880 60 26 4122140.42 0.01 41701 123.85 4.48 91767 122.22 52.12

 C1908 33 25 5532254.65 0.01 16634 179.20 0.96 13868 171.96 2.73

 C2670 233 140 1882303.34 0.05 2755 278.17 1.30

 C3540 50 22 24231 209.15 0.10 25162 208.44 7.44 56898 212.73 75.21

 C5315 178 123 1728 460.78 0.05 1820 446.26 0.26

 C7552 207 108 2212 485.03 0.05 2207 471.54 0.87*

 apex3 54 50 931 188.58 0.01 900 158.82 0.04 905 158.73 0.03

apex7 49 37 242 113.88 0.01 277 82.44 0.01 280 82.45 0.02

 b9 41 21 10861.16 0.01 131 55.25 0.01 129 55.39 0.01

 dalu 75 16 688 102.67 0.01 990 78.81 0.08 1069 78.81 35.31

 des 256 245 3297 1209.50 0.18 3343 1081.13 0.47 3886 1077.63 2.15

 duke2 22 29 360 87.89 0.01 386 77.52 0.01 392 77.52 0.02

 e64 65 65 128 128.00 0.01 128 128.00 0.01 573 128.00 0.05

 ex4 128 28 497 51.38 0.01 629 47.26 0.02 630 47.26 0.03

 frg2 143 139 1379 607.00 0.04 1580 322.89 0.15 2189 321.75 0.23

 k2 45 45 1257 181.80 0.01 1426 177.52 0.07 1418 177.50 0.10

 rot 135 107 7891 446.47 0.05 16164 312.08 5.61 18503 308.68 30.34

 Average1.00 1.00 0.03 1.87 0.85 1.53 3.01 0.84 12.89
 * Memory overflow precluded computation of these values .

in seconds. Unfortunately, the CPU time of the algorithm in [31] is unavailable. Columns "(a)

Min_Nodes", "(b) Min_APL", "(c) Liu [31]", and "(d) sifting" show the exact nodes minimiza-

tion algorithm in [16], the exact APL minimization algorithm in Section 3.5.3, the heuristic

APL minimization in [31], and the heuristic APL minimization in Section 3.5.4, respectively.

Initial variable order for "(d) sifting" was obtained using Walsh spectrum described in Sec-

tion 3.5.5. The BDDs in this table use complemented edges [6, 40]. Table 3.1 includes the same

benchmark functions as the experiment in [31] except for incompletely specified functions.

 We omitted incompletely specified functions because the number of nodes and the APL in

BDDs for incompletely specified functions depend on the assignment of values to don't cares, as

well as the variable order. To make our results compatible with the results in [31], we optimized

each output of the multiple-output benchmark functions independently, and obtained the sum of

the values over all outputs. Thus, the number of nodes and APL in Table 3.1 are different from

those of the shared BDD (SBDD). Two rounds of sifting are performed in all experiments. The

row labeled Average of ratios represents the normalized averages for Nodes, APL, and Time as-

 23

suming the values of "(a) MinJNodes" to be 1.00. The columns "(b) Min_APL", "(c) Liu [31]",

and "(d) sifting" of this row contains the relative values to the results of "(a) Min_ Nodes".

 The heuristic method in [31] obtained BDDs with the exact minimum APLs in 5 out of

17 benchmark functions. However, for alu4, cm151 a, and cm85a, the algorithm in [31] ob-

tained BDDs with much larger APLs than the exact minimum APLs. On the other hand, our

heuristic method in Section 3.5.4 obtained BDDs with the exact minimum APLs in 11 out of 17

benchmark functions.

 For five of the remaining functions, the APLs in the column labeled "(d) sifting" are smaller

than or equal to the APLs in "(c) Liu [31]". For cm162a, our sifting algorithm obtained BDDs

with slightly larger APLs than the exact minimum APLs.

 An exhaustive search algorithm finds the minimum APLs for the functions with up to 14

inputs within a reasonable computation time. Meanwhile, our exact minimization algorithm in

Section 3.5.3 found the minimum APL for functions with 25 inputs (vg2) within a reasonable

computation time.

 Table 3.2 shows the results for larger MCNC benchmarks and the effectiveness of the initial

variable order using the Walsh spectrum. In this table, we used SBDDs with complemented

edges for multiple-output functions. In Table 3.2, the column "classical sifting" shows the

number of nodes and APL for BDDs obtained by the sifting algorithm [59] which minimizes

the number of nodes in BDD. The column "Without Walsh spectrum" shows the results of our

sifting algorithm, which minimizes the APL, where the initial variable orders are the variable

orders of BDDs obtained by "classical sifting". And, the column "With Walsh spectrum" shows

the results of our sifting algorithm, where the initial variable orders were obtained using Walsh

spectrum shown in Section 3.5.5. The column "Coef. Time" denotes the CPU time needed

to calculate the values of first-order Walsh spectral coefficients R1, in seconds. Unfortunately,

for C2670, C5315, and C7552, BDDs with the initial variable orders could not be constructed

due to memory overflow. The row labeled Average represents average of Time and normalized

averages of Nodes and APL assuming the values of "classical sifting" to be 1.00. The columns
"Without Walsh spectrum" and "With Walsh spectrum" show the relati ve values to the results

of "classical sifting".

 For some benchmark functions, for example, C1908, frg2, and rot, the APLs are reduced

drastically. For C7552, the number of nodes is reduced as a byproduct of the APL minimization .

However, for most functions, the number of nodes is increased by the APL minimization . The
comparison of "Without Walsh spectrum" and "With Walsh spectrum" shows the effectiveness

of the initial variable order using Walsh spectrum. For 8 out of 19 benchmark functions , the
APLs in the column "With Walsh spectrum" are smaller than the APLs in "Without Walsh

 24

spectrum". The computation time to calculate the values of R1 is short.

 However, for most functions, the computation times of sifting for "With Walsh spectrum"

are significantly longer than that for "Without Walsh spectrum" because the number of nodes in

BDD with initial variable order computed using Walsh spectrum is large. When the number of

nodes in the BDD is large, swapping one pair of adjacent variables takes a longer time because

the time needed for the swap is roughly proportional to the number of nodes present on the

given levels in the BDD.

 Tables 3.1 and 3.2 show that the proposed heuristic minimization minimizes the APL in

short computation time. For small benchmark functions in Table 3.1, the heuristic minimization

could obtain BDDs with near-minimum APLs. For large benchmark functions in Table 3.2, the

heuristic algorithm reduces APLs to 84% on the average.

3.7 Conclusion and Comments

In this chapter, we have proposed an exact and a heuristic APL minimization algorithm for

BDDs and MDDs by variable ordering. The experimental results using MCNC benchmark

functions show that: 1) The exact minimization algorithm finds BDDs with the minimum APL

for the function with up to 25 input variables within a reasonable computation time. 2) Using

the node and edge traversing probabilities to compute and update the APLs after the swap of

two adjacent variables, the proposed sifting algorithm can heuristically minimize the APLs as

fast as the classical sifting, which minimizes the number of nodes. 3) Using an initial variable

order computed using Walsh spectral coefficients increases the quality of the results of APL

minimization algorithms. However, in some cases the initial variable order leads to BDDs

with a large number of nodes, which slows down APL minimization. 4) For many benchmark

functions, APL minimization by variable ordering increases the number of nodes.

 25

Chapter 4

Area-Time Complexities of QRMDD(k)s

This chapter shows the relations between the values of k and the number of nodes, memory size,

path length, and area-time complexity [8, 76] for QRMDD(k), and derives the optimum values
of k for each application.

4.1 Introduction

Since modem computer systems have the memory hierarchical structure, suitable DDs for the

memory hierarchy can shorten the runtimes of applications using DDs [34, 35, 78]. QRBDDs

and QRMDDs are suitable for the memory hierarchy [52], parallel process [23, 51], and design

of LUT cascades [65]. However, in general, QRBDDs and QRMDDs require more nodes than

corresponding ROBDDs and ROMDDs to represent logic functions. Hence, the minimizations

of QRBDDs and QRMDDs are very important. In many cases, the minimizations of DDs use

the variable reordering [14, 17, 18, 19, 24, 39, 59, 74]. In the minimization of MDDs, a partition

of binary variables [20, 62] is important, as well as the variable ordering.

 To represent a binary logic function using an MDD, binary variables are partitioned into

groups. The papers [20, 62] present the optimization algorithm of partition of input binary

variables into groups of binary variables. However, the size of groups (i.e. the number of binary

variables in a group) is fixed in these algorithms. In this chapter, we assume that the size of

groups, that is the value of k for QRMDD(k)s, can be changed, and we find the optimum sizes

of groups experimentally by showing the relations of the values of k and the numbers of nodes,

the memory sizes, and the path length. To show these relations, we assume that the order of

binary variable is fixed. Our statistical results are useful for minimizations of MDDs , software

synthesis [2], and logic simulation[1, 22, 34, 35].

 The rest of this chapter is organized as follows: Section 4.2 defines MDD(k)s, QRMDD(k)s ,

 26

computation model for MDDs, and a method to represent multiple-output functions. Section 4.3

considers the number of nodes in QRMDD(k)s for general functions, benchmark functions, and

randomly generated functions. Section 4.4 introduces the measure called area-time complex-

ity [8, 76] to find the optimum value of k for QRMDD(k)s, and derives the optimum values of k

by experiments.

4.2 Definitions

This section provides definitions used in this chapter.

Definition 4.1 When = (xl,x2i...,xn) is partitioned into (Xi ,X2, ...,Xu), where IX' = k (i =

1, 2, ... , u), an ROMDD representing a multi-valued input two-valued output logic function

f(X1,X2,...,Xu) is called an MDD(k). Similarly, a QRMDD representing f(X1,X2,...,Xu) is
called a QRMDD(k). An MDD(k) and a QRMDD(k) represent a mapping f : Ru -+ B, where
R = {0, 1, ... , 2k — 1} and B = {0, 1 }. In an MDD(k) and a QRMDD(k), non-terminal nodes
have 2k outgoing edges.

 For n-variable logic functions f, if n < ku (i.e. n is indivisible by k), we use additional

redundant binary variables, which are called dummy variables, to construct MDD(k). The set
of binary variables with dummy variables is denoted by {X'} = {xi , x2, • . • , xn, xn+1, . - - , xn+t },

where = n + t, and t denotes the number of dummy variables. Note that f is independent
of xn+1, Xn+2, - - - and xn+t.

 The path length of an arbitrary path in a QRMDD(k) is equal to the number of super vari-

ables. Thus, APL of a QRMDD(k) is also equal to the number of supper variables. An MDD(k)
has no redundant nodes, while a QRMDD(k) usually has redundant nodes. Therefore, we
have the following relation between the number of nodes in an MDD(k) and its correspond-

ing QRMDD(k):
 nodes(MDD(k)) < nodes(QRMDD(k)).

Example 4.1 Consider the logic function f = xlx2x3 V x2x3x4 V x3x4x1 V x4xlx2 in Example 3.1.

The BDD, the MDD(2), and the QRMDD(2) for f are shown in Fig. 4.1(a), (b), and (c), respec-

tively. In Fig. 4.1(a), the solid lines and the broken lines denote 1-edges and 0-edges, respec-
tively. In Fig. 4.1(b) and (c), the input variables X = (xi , x2, x3, x4) are partitioned into (Xi,X2),

where X1 = (xl,x2) and X2 = (x3,x4). We have nodes(ROBDD) = 6, nodes(ROMDD(2)) = 3,

and nodes(QRMDD(2)) = 4.(End of Example)

 27

 3 0 0 3
 0redundant node

 01`~"C4 0,1,
 01,2,30 ,1,201,2,3

 d o 0 p 0 p
 (a) BDD. (b) MDD(2).(c) QRMDD(2).

 Figure 4.1: BDD, MDD(2), and QRMDD(2).

 In this chapter, we use an encoded characteristic function for non-zero output (ECFN) [64,
66] to represent multiple-output logic functions F = (fo, f1, ... , fii_1). An ECFN uses u =

ilog2 ml auxiliary variables to represent the outputs, and represents a mapping:

ECFN : Bn+u B,

where n is the number of binary variables and B = {0, 1 }.

Definition 4.2 The density for an n-variable logic function f is defined as

 I2 I x 100,
where f l denotes the number of a such that f (a) = 1.
 The density for a multiple-output function F is the density for an ECFN representing F .

4.3 Number of Nodes in QRMDD(k)

In this section, we first obtain an upper bound on the number of nodes in a QRMDD(k) . Then,

we obtain the numbers of nodes in QRMDD(k)s for benchmark functions , and show that an
interesting property holds for many benchmark functions. Finally, we obtain the numbers of

nodes in QRMDD(k)s for randomly generated functions, and show that they have quite different

property from the benchmark functions.

 28

 Table 4.1: Upper bounds on the number of nodes in QRMDD(k).

 k

 n 1 2 3 4 5

 10 275 101 77 33 33
 11 531 345 89 273 37

 12 787 357 329 273 49

 13 1299 601 589 277 289

 14 2323 1381 601 289 1057
 15 4371 1625 841 529 1057

 16 8467 5477 4685 4369 1061

 17 16659 5721 4697 4373 1073

 18 33043 21861 4937 4385 1313
 19 65811 22105 37453 4625 33825

 20 131347 87397 37465 69905 33825

4.3.1 Number of Nodes for General Functions

Theorem 4.1 An arbitrary n-variable logic function can be represented by a QRBDD with at

 most
r

 2n—r —1 +122'
 i=1

non-terminal nodes, where r is the largest integer that satisfies relation n — r> 2r [29).

Proof See Appendix.

Theorem 4.2 An arbitrary n-variable logic function can be represented by a QRMDD(k) with

at most sk — 1
+~; +122"

2k 2k —1 i=1

non-terminal nodes, where u is the number of super variables, t is the number of dummy vari-

ables, and s is the smallest integer that satisfies relation

 n—r
 s> , k •

Proof See Appendix.

 Table 4.1 shows the upper bounds on the number of nodes in QRMDD(k)s for n-variable

logic functions. We can see that the upper bounds are non-monotone functions of k.

 29

4.3.2 Number of Nodes for Benchmark Functions

We used 157 benchmark functions [9, 63, 81] shown in Table 4.2, where n and m denote the

number of input and output variables , respectively. In this table, the benchmark functions under

sequential originally represented sequential circuits. We removed flip-flops (FFs) from these

sequential circuits to make them combinational. Such functions are renamed by appending a

subscript 'c' to the original names. In this chapter, encodings for ECFNs and binary variable

orders of BDDs are obtained by the heuristic algorithm in [66]. In the following experiments,

we use these variable orders, and we consider only the partition of binary variables. For each

benchmark function, we counted the number of nodes in the corresponding QRMDD(k)s for

various k. In Table 4.3, avg denotes the arithmetic average of the relative numbers of nodes,

where the number of nodes in QRBDD is set to 1.00, and stdv denotes the standard deviation.

Definition 4.3 The relation ' is defined as follows:

a b4 11<0.1,

where a and b are positive integers, and the normalized difference rl is given by:

 11= ~a—bI
min(a, b)

If a ^ b, then a and b are nearly equal.

For 133 functions in Table 4.2, the following property holds.

Property 4.1

 nodes(QRMDD(k))^~knodes(QRBDD)
For the remaining 24 functions, 11 > 0.1 holds. Table 4.4 lists these 24 functions. In Table 4.4,
"# nodes"

, "dens.", and "cater' denote the numbers of nodes in QRBDDs, the densities, and the

categories of functions described below, respectively. Fig. 4.2 shows the relation between the

normalized difference 11 and the densities for benchmark functions. The symbols +, x ,O, and

A correspond to the values for k = 2, 3, 4, and 5, respectively. For each function, we assume

that Property 4.1 holds when all the symbols are below the border line of 11 = 0.1 (i.e., B < 0.1

holds for k = 2 , 5). From Fig. 4.2, we categorized 24 functions in Table 4.4 into three sets.

 1. The densities of functions are between 40% and 60%, and the number of nodes for QRB-

 DDs are large relative to the number of inputs.

 2. The functions have iterative properties (i.e., adder and comparator).

 3. The numbers of nodes, inputs, and outputs are small. Property 4.1 does not hold for k = 4

or 5.

 30

Table 4.2: List of benchmark functions.

 n m Name n m Name

18 12 i5 133 66 signet
36 7 i6 138 67 soar
41 32 i7 199 67 spla
60 26 i8 133 81 sgr16
41 32 i988 63 tl
33 25 i10 257 224 t2

233 140 ibm 48 17 table5
50 22 inl 16 17 tcon

178 123 in2 19 10 terml
207 108 in3 35 29 ti

 50 69 in4 32 20 too_large
16 9 in5 24 14 ts10
18 10 in6 33 23 ttt2
16 47 in7 26 10 unreg

 15 38 inc16 16 17 vda
45 45 inc17 17 18 vg2
39 3 inc18 18 19 vtxl
54 50 jbp 36 57 wgt17

117 88 k2 45 45 wgt18
135 99 lal 26 19 xl
49 37 Iog16 16 16 x3

 16 17 Iog17 17 17 x4
32 20 log18 18 18 xldn

 33 23 mainpla 27 54 x2dn
41 21 markl 20 31 x6dn

 26 11 misex2 25 18 x7dn
26 46 misg 56 23 x9dn
26 39 mish 94 43 xparc
26 45 misj 35 14segue

 26 38 mlp8 16 16 s2088.
28 18 mlp9 18 18 s2988

 21 20 m1p10 20 20 s344r
29 7 mux 21 1 s349,

 47 36 my_adder 33 17 s382.,
21 1 nrm8 16 9 s4000
32 3 nrm9 18 10 s4200
23 2 opa 17 69 s444r

 35 16 pair 173 137 s5 10c
 24 109 pcle 19 9 s5266

 75 16 pcler8 27 17 s641c
256 245 pdc 16 40 s713c

 15 17 pml 16 13 s820c
22 29 rckl 32 7 s832,

 65 65 rdm16 16 16 s838c.
128 28 rdm17 17 17 s119k

 85 66 rdml8 18 18 s1423,
 30 63 rot 135 107 s5378r

28 3 rot16 16 9 s923k
143 139 rot17 17 9 s13207,

 25 16 rot18 18 10 s 15850
201 1 sct 19 15 s384177
132 6 seq 41 35 s38584,
192 6 shift 19 16

 31

Table 4.3: Relation of nodes in QRMDD(k) and k for benchmark functions.

 k

 1 2 3 4 5

 avg 1.000 0.498 0.333 0.248 0.202

 stdv 0.000 0.013 0.009 0.016 0.016

 Table 4.4: Benchmark functions with r1 > 0.1.

 Name # in # out # nodes dens. cate.

 C499 41 32 24476 50.0 1

C1355 41 32 30156 50.0 1

C1908 33 25 9292 45.8 1

 adr8 16 9 153 50.0 2
 adr9 18 10 180 50.0 2

 comp 32 3 114 37.5 2

incl7 17 18 236 48.4 3
log16 16 16 11216 59.9 1

log 17 17 17 23054 55.1 1

log18 18 18 31458 55.2 1
mlp8 16 16 10112 41.5 1

mlp9 18 18 28332 37.5 1

m1p10 20 20 82077 38.5 1

 my_adder 33 17 450 50.0 2

 nrm8 16 9 8689 49.1 1
 nrm9 18 10 23152 49.0 1

 pcle 19 9 221 29.3 3
rot16 16 9 1021 60.8 3
rot17 17 9 1429 49.3 3
sgr16 16 32 18366 42.9 1

 tcon 17 16 183 50.0 3
 vg2 25 8 217 22.9 3

vtxl 27 6 326 12.5 3
 xldn 27 6 332 12.5 3

 32

 TI
 0.6

 k=2 +
k=3 x
k=4 0

0k=5 A
0.5 --

 A

 d 0.4 - m- U

A
A

A
• 0.3 -- N
NA

0

 0
0.2 -°A-

 0

Y °A° 0.1 ---AA e eA- -A-Me.—~---- A A°°A OOpAptl~A QAxgA c0
 A^~:.AA °~i, ' x A(Se.A0

ticY~J7777744444+~+ e

 010 20 30 40 5060 70 80 90 100
 Density (%)

Figure 4.2: Relation between the normalized difference ri and density for benchmark functions.

4.3.3 Number of Nodes for Randomly Generated Functions

For d = 1, 2, ... , 99, we randomly generated one 25-variable function with density d to obtain

99 functions. Fig. 4.3 shows the relation between the normalized difference rl and the densities

for randomly generated functions. In this case, no randomly generated functions of 25 variables

satisfied Property 4.1. This fact shows that randomly generated functions have quite different

property from the benchmark functions in Table 4.2.

 For many benchmark functions, the numbers of nodes in QRMDD(k)s decrease as k in-

crease. However, for randomly generated functions, the number of nodes is a non-monotone

function of k. For example, for many randomly generated functions of 25 variables, the numbers

of nodes in QRMDD(5)s were larger than those in QRMDD(3)s.

 For n = 10, 11, ... , 20, we also randomly generated ten n-variable functions with density

50%. Table 4.5 shows the average numbers of nodes in QRMDD(k)s for randomly generated

functions. The deviations were within +2% of the averages. From Table 4.1 and Table 4.5,

we can see that the numbers of nodes in QRMDD(k)s for randomly generated functions with

density 50% are nearly equal to the upper bounds.

 33

 11
 1.6 --' r I r I I' k=2 +

k=3 x

 AAAAk=4 0 1
.4 -AAk= 5 A - A

 AA
 AA

A a 0 ® 1
.2 --

 AA

 A A.........A A

0 1 -

Q,AA

g 43 AA
0.8 -mox-

 N AXoA
 [V0XX0

 E oon xooxBoo

 Z0.6 -oQooQ-
 a Xx

 AXAOo AXA

0.4-O®XX 9 o- 00

 AX X

 ac o ++++++o x0
 0.2 -X oA0++++++++0AoxX-

 0 ~±++xi I IIiIIx+++,4--
 0 10 20 30 40 50 60 70 80 90100

 Density (%)

Figure 4.3: Relation between the normalized difference i and density for randomly generated

functions.

4.4 Area-Time Complexity of QRMDD(k)

4.4.1 Memory Size for QRMDD(k)

Definition 4.4 The memory size for a QRMDD(k) is the number of bits needed to store the

QRMDD(k) in memory.

 In memory, a non-terminal node in an MDD(k) requires an index and a set of pointers that
refer the succeeding nodes. However, in a QRMDD(k), each non-terminal node has no index
because X1, X2,.. - ,Xu are evaluated always in this order, and the index of the super variable to
evaluate can be obtained by a counter, where the super variable order is Xi ,X2, ...,Xu.

Example 4.2 Fig. 4.4 illustrates data structures of a non-terminal node in an MDD(2) and a

QRMDD(2).(End of Example)

 Because each non-terminal node in a QRMDD(k) has 2k outgoing edges, we need

2knodes(QRMDD(k))

 34

 Table 4.5: Number of nodes in QRMDD(k) for randomly generated functions.

 k

 n 1 2 3 4 5

 10 247.4 101.0 77.0 33.0 33.0

 11 437.1 251.2 89.0 179.2 37.0

 12 754.0 356.5 296.5 272.5 49.0

 13 1292.8 596.6 587.2 277.0 284.6
 14 2316.0 1374.1 601.0 289.0 1050.1

 15 4341.1 1625.0 841.0 529.0 1057.0

 16 8336.5 5346.5 4554.5 4238.5 1061.0

 17 16165.3 5721.0 4697.0 4373.0 1073.0
 18 31155.9 19973.9 4937.0 4385.0 1313.0

 19 58836.4 22105.0 30478.4 4625.0 26850.4

 20 107220.3 63270.3 37465.0 45778.3 33825.0

 Memory Memory

 0index 0- edge 0- edge

 1- edge 1- edge
 0 1 2 3 2- edge 2- edge

 (a) A non-terminal node 3- edge 3- edge

 in MDDs. (b) MDD(2). (c) QRMDD(2).

 Figure 4.4: Data structure of a non-terminal node in DDs.

words to store all nodes in a QRMDD(k). Since each node in a memory requires a unique

address, each pointer requires

[loge (nodes (QRMDD(k)))1

bits to specify the address. Therefore, the memory size for a QRMDD(k) is

2knodes(QRMDD(k)) Flo g2 (nodes (QRMDD(k)))1.

 As shown in Section 4.3.2, for many benchmark functions, nodes(QRMDD(k)) can be re-

duced with increasing k. On the other hand, the memory sizes for QRMDD(k)s increase with

 35

 2k. This fact shows that in QRMDD(k), there exists optimum value of k that minimizes the

memory size.

4.4.2 Area-Time Complexity of QRMDD(k)s

Because a QRMDD(k) evaluates k binary variables at a time, the path length of a QRMDD(k)

is k of the corresponding QRBDD. On the other hand, the memory size for a QRMDD(k)
increases with 2k. In this section, we consider the area-time complexity [8, 76] for QRMDD(k)

and obtain the k that minimizes the area-time complexity.

Definition 4.5 The area-time complexity is the measure of computational cost considering

both area and time. It is defined by

 AT = (area) x (time), AT2 = (area) x (time)2.

 In this chapter, the area A corresponds to the necessary memory size for QRMDD(k), and
the time T corresponds to the number of memory accesses to evaluate logic function (i.e. path
length of QRMDD(k)).

 The measure AT is used when both the memory size and the path length are equally impor-
tant. The measure AT2 is used when the path length is more important than the memory size.
For example, AT can be used for software synthesis, while AT2 can be used for logic simulators.

In the software synthesis for embedded systems [2, 25, 27, 45], compact and fast program codes
are required because of the memory limitations and the time limitations for systems. Thus, in

the software synthesis using DDs, the optimization of DDs considering both the memory size
and the number of memory accesses is important. In logic simulators [1, 22, 34, 35], fast evalu-

ation of logic functions is more important to reduce the design verification time. Thus, in logic
simulators, minimizing the number of memory accesses using a reasonable amount of memory
is important.

4.4.3 Experimental Results

For each benchmark function in Table 4.2, we obtained three measures A, AT, and AT2. Ta-

ble 4.6, Table 4.7, and Table 4.8 show the relations of k and A, AT, and AT2, respectively. In

these tables, avg denotes the arithmetic average, and stdv denotes the standard deviation for

benchmark functions.
 For each benchmark function in Table 4.2, A takes its minimum when k = 2; AT takes its

minimum when k = 3 or k = 4; and AT2 takes its minimum when k = 4 — 6.

 36

 Table 4.6: Relation of k and A for QRMDD(k) for benchmark functions.

 k

 1 2 3 4 5

 avg 1.00 0.90 1.14 1.61 2.54

 stdv 0.000 0.035 0.079 0.144 0.292

 Table 4.7: Relation of k and AT for QRMDD(k) for benchmark functions.

 k

 1 2 3 4 5

 avg 1.00 0.46 0.39 0.42 0.54

 stdv 0.000 0.019 0.030 0.039 0.070

4.4.4 Analysis for the Functions that Satisfy Property 4.1

In Section 4.4.3, for QRMDD(k)s, we found the values of k that make A, AT, and AT2 minimum,

experimentally. In this section, we assume that Property 4.1 holds, and will find the values k that

make A, AT, and AT2 minimum, analytically. Let A and T be the memory size for a QRMDD(k)

and the number of memory accesses necessary to evaluate a QRMDD(k), respectively. Then,

we have the following:

 A = 2k nodes (QRMDD(k)) [log2 (nodes (QRMDD(k)))1,

T=[k1.
Let nodes(QRMDD(1)) = N and assume that Property 4.1 holds. Then we have:

 k

 A^'-Nrlog2(k)1,

 k

 AT,--k2NFlog2(k)1,
 k2 AT2,.,2nNFlog2(k)1

Note that N is usually greater than 200, while k is usually at most 7. Thus, we can use the

following approximation:

[loge (N) — log2 (41 r„ [loge (N)] .

 37

 Table 4.8: Relation of k and AT2 for QRMDD(k) for benchmark functions.

 k

 1 2 3 4 5 6 7

 avg 1.000 0.232 0.133 0.110 0.114 0.128 0.167

 stdv 0.000 0.011 0.012 0.012 0.019 0.023 0.046

Therefore, A, AT, and AT2 can be simplified to

 2k2k2k A^kCo, ATk2C1,and AT2k3C2,

respectively, where the constants Co, Cl and C2 are independent of k. From the above formulas,

we can see that A, AT, and AT2 take their minimum when k = 2, k = 3, and k = 4, respectively.

4.5 Conclusion and Comments

In this chapter, we considered representations of binary logic functions using QRMDD(k)s.
Experimental results showed that: 1) For many benchmark functions, the numbers of nodes
in QRMDD(k)s are nearly equal to k of the corresponding QRBDDs. On the other hand, for
randomly generated functions, the number of nodes is a non-monotone function of k. 2) For

many benchmark functions, the memory sizes and the area-time complexities for QRMDD(k)s

take their minimum when k = 2 and k = 3 — 6, respectively.

 In commercial LUT-based FPGAs, the numbers of inputs k for LUT cells are usually be-

tween 4 and, 6 [10]. The studies in [28, 58] show that when k = 4 , 6, the architectures of

FPGAs are optimum. The cost of k-LUT cell increases with k, while the level of network re-

duces with k. Thus, in logic synthesis with FPGAs, we can do a similar discussion. However,

the optimum value of k for FPGAs depends on interconnection delay, logic synthesis tools, and

process technology as well as the cost of k-LUT cell and the level of networks [79]. It is in-

teresting that in both cases, the optimum values of k are 4 — 6 even if they have different cost

functions.

 38

Chapter 5

Heterogeneous MDDs and Their Optimization

Algorithms

This chapter proposes the representations of binary logic functions using heterogeneous MDDs

and the optimization algorithms for heterogeneous MDDs that consider both orderings and

partitions of binary variables.

5.1 Introduction

As shown in Chapter 4, when MDDs are used to represent binary logic functions, we can use an

additional optimization approach, which is a partition of binary variables, as well as the variable

ordering. To represent a binary logic function using an MDD, binary variables are partitioned

into groups. In an MDD(k), the groups have the same number of binary variables. On the

other hand, in a heterogeneous MDD proposed in this chapter, the groups can have different

numbers of binary variables. Thus, heterogeneous MDDs allow more flexible partition of binary

variables than MDD(k)s, and in heterogeneous MDDs, both orderings and partitions of binary

variables can be optimized to minimize the memory sizes or APLs.

 As shown in Chapters 3 and 4, APL minimization approaches using variable reordering

and QRMDD(k)s often increases the memory sizes of DDs. In fact, Table 3.2 shows that for

benchmark function C880, APL minimization by variable ordering increases the number of

nodes in the BDD by 10 times of original one. In QRMDD(k)s, although path length can be

reduced by increasing the value of k, it increases the memory size. However, in heterogeneous

MDDs proposed in this chapter, APLs can be reduced without increasing the memory size by

considering both orderings and partitions of binary variables.

 The rest of this chapter is organized as follows: Section 5.2 defines heterogeneous MDDs.

 39

Section 5.3 shows the number of different heterogeneous MDDs. Section 5.4 proposes memory

size minimization algorithms for heterogeneous MDDs. Section 5.5 proposes APL minimiza-

tion algorithms for heterogeneous MDDs. Section 5.6 compares memory sizes and APLs of

heterogeneous MDDs for many benchmark functions.

5.2 Definitions

This section provides definitions used in this chapter.

Definition 5.1 When X = (xl , x2, ... , xn) is partitioned into (Xi, X2, . . . , Xu), an ROMDD rep-
resenting a multi-valued input two-valued output function f 0(11X2, ... , Xu) is called a hetero-

geneous MDD. Specially, when k = IXlI = IX2I = ... = IXu1, an ROMDD for f (Xi ,X2,...,Xu)
is called an MDD(k). A heterogeneous MDD represents a mapping f : R1 x R2 x ... x Ru -+

B, while an MDD(k) represents a mapping f : Ru -+ B, where Ri = {0, 1, ... ,2k1 — 1}, R =

{0, 1, ... , 2k — 1}, and B = {0, 1 }. In a heterogeneous MDD, non-terminal nodes representing a
super variable Xi have 2ki outgoing edges, where ki denotes the number of binary variables in

Xi. Similarly, in an MDD(k), non-terminal nodes have 2k outgoing edges.
 For n-variable logic functions f, if n < ku (i.e. n is indivisible by k), we use additional redun-

dant binary variables to construct MDD(k). The set of binary variables with dummy variables
is denoted by {X'} = {xl ,x2, ... , xn, xn+1 , - - - , xku }, where IX' I = ku. Note that f is independent
of xn+l , xn+2 ,... and xku.

Example 5.1 Consider the logic function f = x1x2x3 V x2x3x4 V x3x4x1 V x4x1x2 in Example 3.1.

Fig. 5.1 shows the heterogeneous MDDs for f. In Fig. 5.1(a), the binary variables X = (xi, x2,x3,
x4) are partitioned into (Xi,X2), where Xi = (xl,x2,x3) and X2 = (x4). In Fig. 5.1(b),Xl = (xl)

and X2 = (x2ix3,x4).(End of Example)

Definition 5.2 The width of a DD with respect to xi1, denoted by width(DD, i), is the number

of nodes in the DD corresponding to the variable xi. The number of nodes in the DD is given by

 nodes(DD) = I width(DD, i),
 i=1

where n denotes the number of variables.

 1Note that this definition differs from that of "width of BDDs" in [41] .

 40

 ff

 0 0 0 1
 0,1,2,4 70

 3 0
,1,2,3, 0

 4,5,63,5,6,7

 0'

o© o p
 (a) Minimum heterogeneous MDD (b) Maximum heterogeneous MDD

 Figure 5.1: Heterogeneous MDDs

Definition 5.3 The memory size of a DD, denoted by Mem(DD), is the number of words

needed to store all non-terminal nodes in the DD into a memory, where we assume that a word

is large enough to store a variable index or an edge pointer.2

 In memory, each non-terminal node in a DD requires an index and a set of pointers that refer

the succeeding nodes. Since each non-terminal node in a BDD has two pointers, the memory

size of a BDD is given by

 Mem(BDD) = (2+ 1) x nodes(BDD).(5.1)

Similarly, since each non-terminal node in an MDD(k) has 2k pointers, the memory size of an
MDD(k) is given by

 Mem(MDD(k)) = (2k+ 1) x nodes(MDD(k)).

In a heterogeneous MDD, each super variable can take different domain. Therefore, the memory

size of heterogeneous MDD is calculated by summation for every super variables:

u

 Mem(heterogeneous MDD) = I (2k' + 1) x width(heterogeneous MDD, i),
i=1

where u and ki denote the number of super variables and the number of binary variables in a

super variable Xi, respectively.

 2Note that this definition slightly differs from Definition 4 .4 in Chapter 4.

 41

Example 5.2 The memory sizes of BDD, MDD(2), and heterogeneous MDDs are as follows:

for the BDD in Fig. 4.1(a), it is 18; for the MDD(2) in Fig. 4.1(b), it is 15; for the heteroge-

neous MDD in Fig. 5.1(a), it is 12; and for the heterogeneous MDD in Fig. 5.1(b), it is 21.

 (End of Example)

Definition 5.4 Given a binary logic function f and the order of binary variables, the fixed-

order minimum heterogeneous MDD for the logic function f is the heterogeneous MDD

with the minimum memory size among the fixed-order partitions of the variables.

Definition 5.5 Given a binary logic function f, the minimum heterogeneous MDD for the

logic function _ f is the heterogeneous MDD with the minimum memory size among the non-

fixed-order partitions of the variables.

 In this chapter, we use SDDs to represent multiple-output logic functions F = (fo, • •

fm—i) [40]. APL of an SDD is the sum of the APLs of individual DDs for each logic function

.fi•

5.3 Number of Heterogeneous MDDs

This section shows the number of different heterogeneous MDDs to estimate complexity of

optimization for heterogeneous MDDs.

Lemma 5.1 Let N;x(n) be the number of different fixed-order partitions of X. Then,

Nfix(n) = 2'1.

Proof See Appendix.

 Therefore, when we fix the order of the binary variables X = (xi ,x2,...,xn) and consider

only partitions of binary variables for an optimization, the number of different heterogeneous

MDDs to consider is 2n-1

Theorem 5.1 Let Nnon- fix(n) be the number of different non-fixed-order partitions of X =

(xi,x2i...,xn). Then,
n r

Nnon-fix(n) = I I rCi(r- i)n(-1)`.
r=1 i=0

Proof See Appendix.

 42

 Table 5.1: Number of different DDs for n-variable logic function.

 ROBDD Heterogeneous MDDFBDD

 nn! Nfix(n) Nnon-fix(n)Sn

11111

22232

 3641312

 424875576

 512016 5411658880

 672032 468316511297126400

 75040 64 47293 1908360529573854283038720000

840230 128 545835—

 9 362880256 7087261—

 10 3628800512 102247563—

 11 399168001024 1622632573—

 12 4790016002048 28091567595—

 Therefore, when we consider both orderings and partitions of the binary variables for an

optimization of heterogeneous MDDs, the number of different heterogeneous MDDs for an

n-variable logic function is given by N non- fix(n).
 Table 5.1 compares the numbers of different ROBDDs, heterogeneous MDDs, and FBDDs

for n-variable logic functions, where the number of different ROBDDs is equal to the number

of different permutations of variables, that is n!, and the number of different FBDDs Sn is given

by [74]

n Sn =nsn-1=~k2n-k•
k=1

 When we fix the order of the binary variables and consider only partitions of binary variables

for an optimization of heterogeneous MDDs, the number of heterogeneous MDDs to consider

is smaller than that of ROBDDs. On the other hand, when we consider both orderings and

partitions of the binary variables for an optimization of heterogeneous MDDs, the number of

heterogeneous MDDs to consider is larger than that of ROBDDs. The number of different

FBDDs is much larger than those of ROBDDs and heterogeneous MDDs.

 When we assume a naive optimization method that finds an optimum solution by enumerat-

ing all possible ones, we have the followings:

 1. When we fix the order of the binary variables and consider only partitions of binary

 43

 variables, an optimization of heterogeneous MDDs is easier than that of ROBDDs;

 2. When we consider both orderings and partitions of the binary variables, an optimization

 of heterogeneous MDDs is more difficult than that of ROBDDs;

 3. Optimizations of heterogeneous MDDs and ROBDDs are much easier than that of FB-

 DDs.

5.4 Memory Size Minimization Algorithms

Since memory size of a heterogeneous MDD depends on the partition of binary variables, as

well as the order of binary variables, memory size of a heterogeneous MDD can be minimized

by considering both orderings and partitions of binary variables.

Example 5.3 Fig. 5.1(a) shows the minimum heterogeneous MDD for the function f, while

Fig. 5.1(b) shows the maximum heterogeneous MDD for the function f. (End of Example)

 In this section, we formulate the memory size minimization problem of heterogeneous

MDDs considering both orderings and partitions of binary variables, and we present an exact

minimization algorithm to solve it and a heuristic minimization algorithm.

 We formulate the memory size minimization problem of heterogeneous MDDs considering

both orderings and partitions of binary variables as follows:

Problem 5.1 Given a binary logic function f (X), find an order and a partition of X that pro-

duces the minimum heterogeneous MDD for f.

5.4.1 Bounds on Memory Size of Heterogeneous MDDs

In this section, we derive upper and lower bounds on memory size of heterogeneous MDDs.

Such bounds result in a reduction of the computation time in the algorithm, as discussed later.

Theorem 5.2 In a fixed-order minimum heterogeneous MDD, the following relation holds for

any super variable Xi = (xi , x j+1, - - - ,xj+kj-1)

k;-1

(24 1)width(heterogeneous MDD, i) < 3 x I width(BDD, j + t),
t=O

where the heterogeneous MDD and the BDD represent the same logic function, the variable

order is fixed.

 44

Proof See Appendix.

Theorem 5.3 Consider a BDD and a heterogeneous MDD for an n-variable logic function that

is not a constant function. When an order of binary variables is fixed, for the number of nodes

in the BDD and the memory size of heterogeneous MDD obtained by considering only the

fixed-order partitions, the following relation holds:

 Mem(heterogeneous MDD) > nodes(BDD) +2.

Proof See Appendix.

Theorem 5.4 An arbitrary n-variable logic function can be represented by a heterogeneous

MDD with at most the following memory size:

2n—r + 3.22T 5,

where r is the largest integer satisfying the relation

n — r> 2r+1og23.

Proof See Appendix.

Property 5.1 Consider a binary logic function f (X). Let Memmin(f) be the memory size of a

fixed-order minimum heterogeneous MDD for f. When f is decomposed into f = g(h(Xi),X2),
let Memmin (g) and Memmin (h) be the memory sizes of fixed-order minimum heterogeneous
MDDs for g and h, respectively. For many benchmark functions, the following two relations

hold:

Memmin(f) > Memmin(g)

Memmin(f) > Memmin(h)

5.4.2 Partition Algorithm for Memory Size Minimization

To solve Problem 5.1 efficiently, we use a partition algorithm that considers only the fixed-

order partition of binary variables. This section presents the partition algorithm for memory

size minimization.
 Fig. 5.2 shows a pseudo-code for the partition algorithm. This algorithm uses dynamic

programing. All sub-solutions are stored in the table. For simplicity, we assume that the variable
order is xi , x2, ... , xn•

 45

 Algorithm 5.1

 1: minimize_nemory (BDD) {

 2: table[n] = (2+ 1)width(BDD,n) ;

 3: for(i = n — 1; i > 1; i — —) {
 4: min_rnem = (memory size of BDD) ;

 5: for(/ = 0; l < n — i; l + +) {
 6: k = branch[i][l] ;

 7: mdd_nem = (2k+ 1)width(heterogeneous MDD, j) ;
 8: if (mdd_rnem > upper bound)

 9: break ;

 10: next index i' = i + k ;
 11: mdd_nem += table[i'] ;

 12: if (mininem > mddinem) {

 13:min_mem = mdd_mem ;

 14: register the partition k ;

 15: }
 16: }

 17: table[i] = min.inem ;

 18: }
 19: return table[1] ;

 20: }

 Figure 5.2: Partition algorithm for memory size minimization.

 This algorithm finds an optimum fixed-order partition. table[i] in Fig. 5.2 stores the fixed-

order minimum memory size for sub-graph from xi to xn. In the 6th line, branch[i][l] stores an

integer k that makes the following ratio the l-th smallest,

ratio = (2k+ 1)width(heterogeneous MDD, j)
 3 x E1 o width(BDD, i + t)

where j is the index of corresponding super variable Xj. And, the 8th line uses upper bound ,
which is obtained by Theorem 5.2. The j in the 7th line denotes the index of corresponding

super variable Xj.

 Let n and N be the numbers of binary variables and nodes for the BDD , respectively. Algo-

rithm 5.1 examines at most2z candidates, and calculates the following value per the examina-

 46

 Algorithm 5.2

 1: exhaustive_search_memory (BDD) {
 2: min_nmory = minimize_memory (BDD) ;

 3: for (all permutations of binary variables) {
 4: Change the variable order for BDD ;

 5: if (min.inemory < nodes(BDD) +2)

 6: continue ;
 7: current_nmory = minimize_memory (BDD) ;

 8: if (current_memory < min_memory) {

 9: min.Jnmory = current_memory ;

 10: Record the variable order for the BDD ;

 11: Record the partition of binary variables ;

 12: }
 13: }

 14: }

 Figure 5.3: Exact memory size minimization algorithm

tion:

(2k + 1) width (heterogeneous MDD, j).

The time complexity to calculate it is 0(N). Therefore, the time complexity for Algorithm 5.1

is 0(n2N). The space complexity for Algorithm 5.1 is 0(N).

5.4.3 Exact Memory Size Minimization Algorithm

When an order of binary variables is fixed, the memory size of a heterogeneous MDD depends
on only the partition of binary variables. Thus, we use the following strategy for memory size

minimization:

 1. Change the order of binary variables; and

 2. Fix the variable order, and change the partition of the binary variables.

 Fig. 5.3 shows a pseudo-code to solve Problem 5.1. It uses a BDD for the given logic

function as the internal representation. In the 2nd and 7th lines in Fig. 5.3, Algorithm 5.1 is used

to find an optimum fixed-order partition that produces the fixed-order minimum heterogeneous

 47

MDD. In the 5th line, Theorem 5.3 is used to reduce the computation time. This algorithm finds

the minimum heterogeneous MDD by exhaustive search.

5.4.4 Heuristic Memory Size Minimization Algorithm

Although Algorithm 5.2 can find the minimum heterogeneous MDD, enumerating all possible

permutations of binary variables is impractical when the number of binary variables is large,

as shown in Table 5.1. Thus, this section proposes a heuristic minimization for heterogeneous

MDDs using the sifting algorithm [59] and partition algorithm (Algorithm 5.1). The sifting

algorithm repeatedly performs the following basic steps:

 1. Change the variable order.

 2. Compute a cost.

Most sifting algorithms use the number of nodes in DD as the cost. In memory size minimiza-

tion, however, we use the memory size of heterogeneous MDD as the cost.

 Fig. 5.4 shows a pseudo-code for the heuristic minimization algorithm. In this algorithm,

each variable xi is sifted across all possible positions to determine its best position. First, xi

is sifted in one direction to the closer extreme (top or bottom). Then, x, is sifted in the op-

posite direction to the other extreme. In the 10th line in Fig. 5.4, Property 5.1 is used to find

useful siftings of xi. The Lmem in the 9th line denotes the memory size of fixed-order min-

imum heterogeneous MDD for logic function g or h obtained by functional decomposition

f(X) = g(h(Xl),X2). When x; moves down to the bottom of the BDD, we use h to compute
L111em, where X1 contains the binary variables which are above the level of x; in the variable
order, and X2 contains the remaining ones. If cost < Lmem, we stop the sifting of x; to the bot-

tom because sifting of x; further down to the bottom seldom reduces the memory size due to
Property 5.1. Similarly, when x, moves up to the top of the BDD, we use g to compute Lmem,

where X2 contains the binary variables which are below the level of x; in the variable order, and
Xi contains the remaining ones. This lower bound for the memory size is similar to the one

introduced for the number of nodes during the classical sifting [14].

5.5 APL Minimization Algorithms

Since APL of a heterogeneous MDD also depends on the partition of binary variables, as well as

the order of binary variables, APL of a heterogeneous MDD can be minimized by considering

both orderings and partitions of binary variables.

 48

 Algorithm 5.3

 1: sifting_nemory (BDD) {
 2: cost = minimize memory (BDD) ;

 3: do {
 4:for (Vx;EX){

 5:best _p = current position of x, ;

 6: for (all position p) {
 7: Move x1 to position p ;

 8: memory = minimizesnemory (BDD) ;

 9: Compute Lmem ;

 10: if (cost < Lmem)

 11:break ;

 12: if (memory < cost) {
 13:cost = memory ;

 14:best _p = p ;

 15:Record the partition of binary variables ;

 16: }
 17: }

 18: Move x1 to best _p ;

 19: }

 20: } while (cost is reduced) ;
 21: }

 Figure 5.4: Heuristic memory size minimization algorithm

Example 5.4 The APLs of BDD, MDD(2), and heterogeneous MDDs are as follows: for the

BDD in Fig. 4.1(a), it is 3.125; for the MDD(2) in Fig. 4.1(b), it is 1.75; for the heterogeneous
MDD in Fig. 5.1(a), it is 1.375; and for the heterogeneous MDD in Fig. 5.1(b), it is 2.0. Note

that P(x1 = 0) = P(x1 = 1) = 0.5.(End of Example)

 In this section, we formulate the APL minimization problem of heterogeneous MDDs con-

sidering both orderings and partitions of binary variables, and we present an exact minimization

algorithm to solve it and a heuristic minimization algorithm.

 For any n-variable logic function f (X), the trivial partition of X, where X = Xi and IX' I= n,

produces a heterogeneous MDD with the smallest APL (i.e., APL = 1.0), independently of the

 49

variable ordering. However, since the memory size of the heterogeneous MDD for the trivial

partition is nearly 2n, such a heterogeneous MDD is impractical in most cases. Therefore, we

seek an order and a partition of X that minimizes the APL within a given memory size limita-

tion. We formulate the APL minimization problem considering both orderings and partitions of

binary variables as follows:

Problem 5.2 Given a binary logic function f (X) and a memory size limitation L, find an order

and a partition of X that produces the heterogeneous MDD with the minimum APL and with

memory size equal to or smaller than L.

5.5.1 Partition Algorithm for APL Minimization

To solve Problem 5.2 efficiently, we use a partition algorithm that considers only the fixed-order

partition of binary variables. This section presents the partition algorithm for APL minimiza-

tion.

 Fig. 5.5 shows a pseudo-code for the partition algorithm for APL minimization. This al-

gorithm uses a branch-and-bound method and a cache to reduce computation time. The sub-

solutions are stored in the cache, but only a subset of sub-solutions is kept in it because the

number of sub-solutions is too large in many cases. In other words, this algorithm is similar

to the dynamic programing, except for that the cache is overwritten. In the case of cache miss,

the sub-solution is searched again. Since this algorithm is recursive procedure, the top level for

BDD (i.e. level = 1) and the memory size limitation L are required as the initial arguments.

 This algorithm produces an optimum fixed-order partition by calculating the APLs for dif-

ferent partitions of X. The calculation of the APL uses Theorem 3.1. To compute the node

traversing probability prob(heterogeneous MDD, v) of the 17th line, we used the computation
method in Section 3.3. The 13th line uses lower bounds on the memory size obtained by

Algorithm 5.1 to reduce computation time.

 Let n, N, and C be the number of binary variables, the number of nodes in the BDD , and

the cache size, respectively. Algorithm 5.4 examines at most 2n-1 candidates by exhaus-

tive search. The time complexities for the calculations of lower bounds and the value of

prob(heterogeneous MDD, v) are 0(n2N) and 0(N), respectively. Note that these values are
calculated before the exhaustive search and stored in tables. Therefore, the time complexity for

Algorithm 5.4 is 0(2n+n2N). The space complexity for Algorithm 5.4 is O(N+C) = 0(N) ,
where C is considered as a constant value.

 50

 Algorithm 5.4

 1: minimize_APL (level, mem_size 1, BDD) {

 2: if (level > n)
 3: return 0 ;

 4: check the cache ;
 5: if (cache.level == level && cache.mem == l) {

 6: register the partition cache.k ;

 7: return cache.APL ;

 8: }
 9: minAPL = (APL for BDD) ;

 10: for (k=n— level +1;k> 1;k--) {

 11: memory = (2" + 1) width(heterogeneous MDD, j) ;
 12: next level level' = level + k ;

 13: if ((1 — memory) < lower_bound[level'])

 14: continue ;

 15: current _APL = 0 ;

 16: for (all nodes v representing Xj)

 17: current _APL += prob(heterogeneous MDD, v) ;

 18: current APL += minimize_APL (level', 1 — memory, BDD) ;

 19: if (current .APL < minAPL) {

 20: register the partition k ;

 21: minAPL = current _APL ;

 22: }

 23: }
 24: store (overwrite) to the cache ;

 25: return minAPL ;

26: }

 Figure 5.5: Partition algorithm for APL minimization.

5.5.2 Exact APL Minimization Algorithm

When an order of binary variables is fixed, the APL of a heterogeneous MDD depends on

only the partition of binary variables. Thus, we use the same strategy as the memory size

minimization.

 51

 Figure 5.6: Exact APL minimization algorithm

 Fig. 5.6 shows a pseudo-code to solve Problem 5.2. In the 2nd and 10th lines in Fig. 5.6,

Algorithm 5.4 is used to find an optimum fixed-order partition that minimizes the APL of het-

erogeneous MDD within a memory size limitation L. Since it is recursive procedure, the top

level for BDD (i.e. level = 1) is required as the initial argument. This algorithm finds an

optimum solution for Problem 5.2 by exhaustive search.

5.5.3 Heuristic APL Minimization Algorithm

As well as the memory size minimization, Algorithm 5.5 is time-consuming for functions with

many inputs. Thus, this section proposes a heuristic APL minimization method for heteroge-

neous MDDs using a sifting algorithm and partition algorithm (Algorithm 5.4).

 Fig. 5.7 shows a pseudo-code for the heuristic APL minimization algorithm . In this algo-

rithm, the APL of a heterogeneous MDD is used as the cost.

 52

 Algorithm 5.6

 1: sifting_APL (BDD, L, #sifting rounds R) {
 2: cost = minimize.APL (1, L, BDD) ;

 3: for (r = 0; r < R; r++) {
 4: for (Vx1 E X) {

 5: best_p = current position of x; ;

 6: for (all positions p) {

 7:Move x1 to position p ;
 8:memory = minimize memory (BDD) ;

 9:Compute Lmem ;
 10: if (L < Lmem)

 11:break ;

 12: if (L < memory)
 13:continue ;

 14: APL = minimize_APL (1, L, BDD) ;
 15: if (APL < cost) {

 16:cost = APL ;

 17:best_p=p;

 18:Record the partition of binary variables ;

 19: }

 20: }
 21: Move x1 to best_p ;

 22: }

 23: }
 24: }

 Figure 5.7: Heuristic APL minimization algorithm

5.6 Experimental Results

To show the compactness of heterogeneous MDD and the efficiency of optimization algorithms,

we compare heterogeneous MDDs with the different types of DDs using benchmark functions.

Experiments were conducted in the following environment:

 • CPU: Pentium4 Xeon 2.8GHz

 53

Table 5.2: Memory sizes of OBDDs, FBDDs, and heterogeneous MDDs for all 4-variable logic

functions

 GroupOBDDFBDDHeterogeneous MDD
 No. Mem #class #function Mem #class #function Mem #class #function

 0 0 12 0 12 0 1 2
 1 3 18 3 18 3 1 8
 2 6 148 6 148 5 1 48

 3 9 4364 9 4364 5 1 12
 8 3 352

 4 12 143168 12 143168 8 3 320
 9 1 96
 10 6 1216

 11 4 1536
 5 15 3812440 15 3812440 9 3 104
 10 7 1056

 11 13 4400
 12 12 6528
 14 3 352
 6 18 7022488 18 7022488 10 3 168
 12 41 12064

 14 13 4928
 15 13 5328
 7 21 6820346 18 31536 12 11 3520
 21 6518810 15 57 16826

 8 24 256672 21 104032 15 25 6672
 24 15 • 2640

 Avg. 1.00 —— 0.99—— 0.72 — —

 • L1 Cache: 32KB

 • L2 Cache: 512KB

 • Main Memory: 4GB •

 • Operating System: redhat (Linux 7.3)

 • C-Compiler: gcc -02

 In this section, we assume that P(xi = 0) = P(xi = 1) = 0.5 for binary logic functions.

 54

5.6.1 Comparison with FBDDs

In this section, we compare heterogeneous MDDs with FBDDs to show the compactness of

heterogeneous MDDs. FBDDs allow the different variable orders along each path, and are well

known as more compact DDs than OBDDs.

 We implemented Algorithm 5.2 and compared the minimum heterogeneous MDDs with

the minimum OBDDs and the minimum FBDDs for all 4 and 5-variable logic functions. To

compare them, we classified all the logic functions into NPN-equivalence classes [43, 63].

For the 4-variable case, 65,536 functions are classified into 222 NPN-equivalence classes, and

for the 5-variable case, 4, 294, 967,296 functions are classified into 616,126 NPN-equivalence

classes. Table 5.2 compares minimum DD sizes for the 4-variable case. In Table 5.2, 222 NPN-

representative functions are grouped into 9 rows according to the memory size of the minimum

OBDD. The column "Mem" denotes the memory size of each DD. The columns "#class" and
"#function" in Table 5.2 denote the number of NPN-equivalence classes and the number of

functions included in the classes, respectively. The bottom row "Avg." denotes the arithmetic

average of the relative memory sizes for all functions, where the memory size of OBDD is set

to 1.00. In this experiment, no complemented edges [6, 40] are used in OBDDs, FBDDs, or

heterogeneous MDDs.

 For the 4-variable case, FBDDs are smaller than OBDDs for 5, 568 functions, 8.5% of all

functions, while heterogeneous MDDs are smaller than OBDDs and FBDDs for all functions

except for 10 degenerate functions (0, 1, x;, and xl where i = 1, 2, 3, 4). For these 10 functions,

the memory sizes of OBDDs, FBDDs, and heterogeneous MDDs are equal. On average over

all functions, minimum FBDDs require 99% of the memory size of minimum OBDDs, while

minimum heterogeneous MDDs require 72% of the memory size for minimum OBDDs.

 For the 5-variable case, FBDDs are smaller than OBDDs for 1, 938, 548, 576 functions,

45% of all functions, while heterogeneous MDDs are smaller than OBDDs for 4, 294, 967, 284

functions, 99% of all functions. Also, heterogeneous MDDs are smaller than FBDDs for

4,294, 921, 204 functions, 99% of all functions, and for the others, heterogeneous MDDs are

equal in size to FBDDs. There was no function whose FBDD is smaller than the heterogeneous

MDD. On average over all functions, minimum FBDDs require 96% of the memory size for

minimum OBDDs, while minimum heterogeneous MDDs require 67% of the memory size for

minimum OBDDs.

 Algorithm 5.2 could obtain exact minimum heterogeneous MDDs for the functions with up

to 12 inputs within a reasonable computation time, while the exact FBDD minimization [18]

can find the minimum one for the functions with up to 8 inputs.

 55

Table 5.3: Memory sizes of OBDDs, FBDDs, and heterogeneous MDDs for MCNC benchmark

functions

 Memory Size

 Name In Out OBDD FBDD MDD

 C432 36 7 3189 3171 2824

 C499 41 32 77595 77595 59739

 C880 60 26 12156 8394 11812
 C1908 33 25 16575 15141 13493

 C2670 233 64 5319 3186 4649

 C3540 50 22 71481 62997 65029

 C5315 178 123 5154 4434 4582
 C7552 207 107 6633 4782 6119

 alu4 14 8 1047 900 855

 apexl 45 45 3735 3531 3016

 apex6 135 99 1491 1365 1414

 cps 24 102 2910 2706 2533
 dalu 75 16 2064 1947 1548

 des 256 245 8832 8706 7288

 frg2 143 139 2886 2760 2671
 i3 132 6 396 396 330

 i8 133 81 3825 3570 3662

i10 257 224 61977 56439 55766
 k2 45 45 3735 3408 3018

toolarge 38 3 954 858 857

 vda 17 39 1431 1401 1088

 Average of ratios 1.00 0.90 0.86

 Table 5.3 compares heterogeneous MDDs with OBDDs and FBDDs for selected MCNC

benchmark functions. The OBDDs are obtained by the best known variable orders [72], and the

numbers of nodes for FBDDs are taken from [18, 19]. The memory sizes of OBDDs and FBDDs

are calculated by the formula (5.1) in Section 5.2. The columns "In" and "Out" in Table 5.3

denote the number of inputs and outputs for each benchmark function, respectively. Column
"MDD" denotes the heterogeneous MDDs obtained by Algorithm 5 .3, where the OBDDs [72]

are used as initial solutions. The DDs in this table may not be the exact minimum since the

algorithms are heuristic methods. The bottom row "Average of ratios" denotes the arithmetic

average of the relative memory size, where the memory size of OBDD is set to 1.00. In this

 56

Table 5.4: Memory sizes and APLs of ROBDDs and heterogeneous MDDs for n-variable logic

functions

 Memory sizeAPL
 BDDHeterogeneous MDD BDDHeterogeneous MDD

 n MinNodes MinAPLB MinMem MinAPLM MinNodes MinAPLB MinMem MinAPLM #samples
 4 1.001.07 0.72 0.86 1.00 0.99 0.52 0.37 216

 5 1.001.07 0.67 0.91 1.00 0.98 0.39 0.27 232
 6 1.001.08 0.68 0.80 1.00 0.97 0.45 0.32 1,000

 7 1.001.08 0.64 0.79 1.00 0.97 0.40 0.27 1,000
 8 1.001.08 0.58 0.81 1.00 0.97 0.33 0.22 1,000
 9 1.001.07 0.55 0.83 1.00 0.98 0.29 0.19 1,000
 10 1.001.06 0.54 0.84 1.00 0.98 0.26 0.17 1,000

experiment, OBDDs, FBDDs, and heterogeneous MDDs use complemented edges.

 Heterogeneous MDDs require smaller memory size than FBDDs for 14 out of 21 benchmark

functions in Table 5.3. Especially, for C499, dalu, and vda, heterogeneous MDDs require at

most 80% of the memory sizes for the FBDDs.

5.6.2 Comparison with ROBDDs

Table 5.4 compares the memory sizes and the APLs of BDDs and heterogeneous MDDs for

n-variable logic functions. The BDDs and heterogeneous MDDs are optimized using four dif-

ferent algorithms: (1) exact nodes minimization algorithm for a BDD considering only the

orderings (column "MinNodes"); (2) exact APL minimization algorithm for a BDD (Algo-

rithm 3.1) considering only the orderings of binary variables (column "MinAPLB"); (3) exact

memory size minimization algorithm for a heterogeneous MDD (Algorithm 5.2) considering

both orderings and partitions of binary variables (column "MinMem"); and (4) exact APL min-

imization algorithm for a heterogeneous MDD (Algorithm 5.5) considering both orderings and

partitions of binary variables (column "MinAPLM"). The memory size limitations L for Algo-

rithm 5.5 are set to the memory sizes of the BDDs in "MinNodes". The values in this table

are the normalized averages of n-variable logic functions, where the memory sizes and APLs

of "MinNodes" are set to 1.00. Columns "MinAPLB", "MinMem", and "MinAPLM" show the

relative values of the memory sizes and APLs to "MinNodes". Columns "#samples" denotes

the number of sample functions used for each n-variable function. Note that the BDDs and

heterogeneous MDDs in this table do not use complemented edges.

 For 4 and 5-variable logic functions, we calculated the exact averages over all functions.

We did this by recognizing that the minimum memory size and APL for a function in one

NPN-equivalence class [43, 63] are identical to the minimum memory sizes and APLs for other

 57

Table 5.5: Memory sizes and APLs of ROBDDs and heterogeneous MDDs for MCNC bench-

mark functions

 Memory sizeAPL
 BDDHeterogeneous MDDBDDHeterogeneous MDD

 Name In Out MinNodes MinAPLB MinMem MinAPLM MinNodes MinAPLB MinMem MinAPLM
C432 36 7 31893243 2824 317986.58 86.24 55.74 45.45

 C499 41 32 77595 96315 59739 77589 813.64 641.16 381.14 192.52
 C880 60 26 12156 54810 11812 12154 135.79 121.03 125.73 99.13
 C1908 33 25 16575 56328 13493 16564 254.35 183.61 145.81 92.09
 C2670 233 64 53198286 4649 5319214.05 202.08 167.90 133.78

 C3540 50 22 71481 74292 65029 71480 209.15 208.06 141.10 91.78
 C5315 178 123 51545460 4582 5153462.05 446.26 373.23 304.38

 C7552 207 107 66336585 6119 6633484.03 469.54 424.85 314.03
 alu4 14 8 10471080 855 101940.81 40.70 24.41 19.59

apexl 45 45 37354254 3016 3728180.59 177.69 87.35 67.63
 apex6 135 99 14911887 1414 1490291.54 230.91 260.66 231.06

 cps 24 102 29104656 2533 2906290.25 235.39 187.90 151.81
 dalu 75 16 20642970 1548 2064102.67 78.81 39.40 28.09
 des 256 245 88329177 7288 88311210.00 1080.38 910.63 687.50

 frg2 143 139 28865070 2671 2884624.69 322.17 499.27 348.60
 i3 132 6 396396 330 39626.76 26.76 17.84 12.61
 i8 133 81 38256954 3662 3825302.54 270.82 229.12 207.54

il0 257 224 61977 685215 55766 61974 1084.96 776.10 887.62 614.53
 k2 45 45 37354254 3018 3728180.52 177.69 87.32 67.61

toolarge 38 3 9542361 857 95413.16 11.52 8.47 6.24
 vda 17 39 14311515 1088 1424176.34 171.54 81.72 69.54

 Average of ratios1.002.03 0.86 1.001.00 0.88 0.67 0.51

functions in the same class. Thus, it is sufficient to consider only one function from each

class and form a sum weighted by the size of each class. For larger n, there are too many

NPN-equivalence classes. For 6 < n < 10, we generated 1,000 pseudo-random n-variable logic

functions with different number of minterms, and calculated the normalized averages for them.

 For BDDs, APLs can be reduced up to 97% of BDDs with the minimum nodes, but the

memory sizes increases to 108%. On the other hand, for heterogeneous MDDs, the APLs can

be reduced up to 17% of BDDs with the minimum nodes without increasing memory sizes,

and both the memory sizes and APLs can be reduced up to 54% and 26% of minimum BDDs,

respectively. Table 5.4 shows that the relative values of memory sizes and APLs for hetero-

geneous MDDs decreases as the number of binary variables n increases. Algorithm 5.5 finds

exact minimum APLs of heterogeneous MDDs for the functions with up to 11 variables within

a reasonable computation time.

 Table 5.5 compares memory sizes and APLs of BDDs and heterogeneous MDDs for same

MCNC benchmark functions as Table 5.3. Columns labeled "MinNodes" denote the BDDs

obtained by the best known variable orders [72]. These are used as the initial BDDs for the

algorithms in this experiment. Columns "MinAPLB" denote the BDDs obtained by Algo-

 58

 rithm 3.2. Columns "MinMem" denote the heterogeneous MDDs obtained by Algorithm 5.3.

And, columns "MinAPLM" denote the heterogeneous MDDs obtained by Algorithm 5.6. The

memory size limitations L for Algorithm 5.6 are set to the memory sizes of the BDD in "MinN-

odes". In Algorithm 3.2 and Algorithm 5.6, the number of rounds of sifting is set to two. Note

that the BDDs and heterogeneous MDDs in this table use complemented edges. The memory

sizes and APLs in this table may not be exact minimum since the algorithms are heuristic meth-

ods. The row labeled Average of ratios represents the normalized averages of memory size and

APL, where the memory size and the APL of "MinNodes" are set to 1.00.

 Algorithm 3.2 that considers only variable orderings reduced APLs to 88% of "MinNodes",

on average, but increased the memory sizes by twice. Especially, for C880, C1908, i10, and

toolarge, Algorithm 3.2 increased the memory sizes significantly. On the other hand, by con-

sidering both orderings and partitions of binary variables, Algorithm 5.3 reduced both memory

sizes and APLs to 86% and 67% of "MinNodes", respectively. Algorithm 5.6 reduced APLs to

51% of "MinNodes" without increasing the memory size.

5.6.3 Comparison of Computation Time for Algorithms

Table 5.6 compares the computation times for Algorithm 3.2, Algorithm 5.3, and Algorithm 5.6.

The values in Table 5.6 show the CPU times needed to obtain the BDDs and heterogeneous

MDDs in Table 5.5, in seconds.

 Although Algorithm 5.3 considers both orderings and partitions of binary variables for

memory size minimization, its computation time is as short as that of Algorithm 3.2 that consid-

ers only variable orderings for APL minimization. Algorithm 5.6 requires longer computation

time than other two algorithms, since Algorithm 5.6 considers memory size to keep a memory

size limitation, as well as APL.

5.6.4 Comparison with MDD(k)s

Similarly, we compared heterogeneous MDDs with MDD(k)s.

 Table 5.7 and Table 5.8 compare the memory sizes and APLs of BDDs, heterogeneous
MDDs, and MDD(k)s for n-variable logic functions, respectively. In these tables, MDD(k)s

have the exact fewest nodes. The values in these tables are the normalized averages of n-

variable logic functions, where the memory sizes and APLs of BDD with the fewest nodes

(column ̀BDD") are set to 1.00. Columns "MinMem", "MinAPLM", "MDD(2)s", "MDD(3)",
"MDD(4)", and "MDD(5)" show the relative values of the memory sizes and APLs to ̀ BDD".

 59

 Table 5.6: CPU times [sec] for memory size and APL minimization algorithms

 Name MinAPLB MinMem MinAPLM

 C432 0.23 0.23 1.04

 C499 10.76 5.12 698.31
 C880 4.54 1.23 22.09

 C1908 1.44 0.67 27.38

 C2670 2.21 1.99 1957.51

 C3540 12.74 36.96 523.45
 C5315 0.43 1.31 3663.57

 C7552 1.35 4.76 2258.88

 alu40.02 0.02 0.05
apex l 0.11 0.29 36.07

 apex6 0.05 0.33 79.47

 cps0.09 0.12 0.80

 dalu0.15 0.25 132.41

 des0.91 3.59 60144
 frg20.29 0.89 218.46

 i30.01 0.23 95.69

 i80.31 0.59 30.15

i 10 160.91 69.27 71464
 k20.11 0.29 33.99

 toolarge 0.07 0.07 0.31

 vda0.02 0.01 0.15

 From Table 5.7 and Table 5.8, we can see that for n-variable logic functions, heterogeneous

MDDs obtained by Algorithm 5.5 have the APLs as small as MDD(5)s. The memory sizes of

MDD(5)s are twice the memory sizes of BDDs. On the other hand, heterogeneous MDDs have

smaller memory sizes than the BDDs.

 Table 5.9 and Table 5.10 compare the memory sizes and APLs of BDDs, heterogeneous

MDDs, and MDD(k)s for MCNC benchmark functions, respectively. MDD(k)s in these tables

are obtained by the minimization algorithm in [62]. BDDs and heterogeneous MDDs are the

same as those in Table 5.5.

 Table 5.9 and Table 5.10 show that in heterogeneous MDDs, APLs can be reduced to a

half of the BDDs without increasing memory sizes. On the other hand, in MDD(k)s , to re-
duce the APLs to a half of the BDDs, we need to increase the memory sizes to 488% of the

BDDs. The APLs of heterogeneous MDDs obtained by memory size minimization algorithm

 60

Table 5.7: Memory sizes of BDDs, heterogeneous MDDs, and MDD(k)s for n-variable logic

functions

n BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) #samples

 MinMem MinAPLM

4 1.00 0.72 0.86 0.96 1.22 0.94 1.83 216

5 1.00 0.67 0.91 0.93 1.24 1.47 0.99 232

6 1.00 0.68 0.80 0.92 1.10 1.50 2.02 1,000

7 1.00 0.64 0.79 0.90 0.98 1.45 1.87 1,000

8 1.00 0.58 0.81 0.85 0.98 1.49 1.79 1,000
9 1.00 0.55 0.83 0.83 1.24 1.07 1.87 1,000

10 1.00 0.54 0.84 0.81 0.82 0.96 2.01 1,000

Table 5.8: APLs of BDDs, heterogeneous MDDs, and MDD(k)s for n-variable logic functions

n BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5) #samples

 MinMem MinAPLM

4 1.00 0.52 0.37 0.59 0.47 0.34 0.34 216

5 1.00 0.39 0.27 0.60 0.47 0.36 0.25 232

6 1.00 0.45 0.32 0.59 0.43 0.43 0.33 1,000

7 1.00 0.40 0.27 0.58 0.42 0.36 0.36 1,000
8 1.00 0.33 0.22 0.55 0.41 0.30 0.31 1,000

9 1.00 0.29 0.19 0.59 0.38 0.32 0.26 1,000

10 1.00 0.26 0.17 0.53 0.43 0.31 0.23 1,000

(Algorithm 5.3) are as small as the APLs of MDD(3)s.

 Finally, Table 5.11 compares the area-time complexities [8, 76] of BDDs, heterogeneous

MDDs, and MDD(k)s for MCNC benchmark functions. In this section, we used AT, where the

area A corresponds to the memory size and the time T corresponds to APL.

 Table 5.11 shows that for these benchmark functions, area-time complexities of heteroge-

neous MDDs are a half of the BDDs, and are much smaller than MDD(k)s.

 61

Table 5.9: Memory sizes of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC benchmark

functions

 Name In Out BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5)
MinMem MinAPLM

 C432 36 7 3189 2824 3179 3075 4833 5508 12441
 C499 41 32 77595 59739 77589 62660 76248 100810 174669

 C880 60 26 12156 11812 12154 15610 21933 32742 53526
 C1908 33 25 16575 13493 16564 16415 18720 30039 36135
 C2670 233 64 5319 4649 5319 7600 12483 19584 36102
 C3540 50 22 71481 65029 71480 84315 127809 194650 307197

 C5315 178 123 5154 4582 5153 6725 9981 17000 30789
 C7552 207 107 6633 6119 6633 8615 13338 21301 36828
 alu414 8 1047 855 1019 1290 1431 2295 3927

apexl 45 45 3735 3016 3728 4575 6138 8840 15411
 apex6 135 99 1491 1414 1490 2190 3924 7123 12210
 cps24 102 2910 2533 2906 3000 4482 7786 11748
 dalu75 16 2064 1548 2064 2610 3690 6749 10263
 des256 245 8832 7288 8831 9630 16299 21488 41712
 frg2143 139 2886 2671 2884 4395 7191 12818 21879
 i3132 6 396 330 396 340 603 646 1452

 i8133 81 3825 3662 3825 6035 9855 17884 33924
i10257 224 61977 55766 61974 85535 124065 234260 380655

 k245 45 3735 3018 3728 4570 6165 8823 15345
toolarge 38 3 954 857 954 1090 1521 2465 3696

 vda17 39 1431 1088 1424 1375 2286 2788 4290
 Average of ratios1.00 0.86 1.00 1.20 1.80 2.84 4.88

5.7 Conclusion and Comments

This chapter proposed the representations of binary logic functions using heterogeneous MDDs

and the optimization algorithms for heterogeneous MDDs that consider both orderings and

partitions of binary variables. Our experimental results show that: 1) Heterogeneous MDDs

represent logic functions more compactly than ROBDDs and Free BDDs. Especially, for all

4-variable and 5-variable logic functions, the minimum heterogeneous MDDs require 72% and

67% of the memory sizes for the minimum ROBDDs, on average, respectively. Algorithm 5.2

can find exact minimum heterogeneous MDDs for the functions with up to 12 inputs in a rea-

sonable computation time, and Algorithm 5.3 can reduce heterogeneous MDDs as fast as the

sifting algorithm (Algorithm 3.2). 2) In heterogeneous MDDs, APLs can be reduced by a half

of corresponding BDDs, on average, without increasing the memory size. And, both memory

sizes and APLs can be reduced to 86% and 67% of BDDs, respectively. Algorithm 5.5 con-

 62

Table 5.10: APLs of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC benchmark func-

tions

 NameIn Out BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5)
 MinMem MinAPLM

 C43236 7 86.58 55.74 45.45 59.84 48.58 40.92 35.52
 C49941 32 813.64 381.14 192.52 422.28 282.65 225.88 189.23

 C88060 26 135.79 125.73 99.13 115.52 104.51 95.67 86.27
 C1908 33 25 254.35 145.81 92.09 168.38 118.34 103.37 86.56

C2670 233 64 214.05 167.90 133.78 189.35 179.05 154.69 152.89
 C3540 50 22 209.15 141.10 91.78 160.52 132.50 109.62 93.03
 C5315 178 123 462.05 373.23 304.38 400.05 378.00 342.61 339.44

 C7552 207 107 484.03 424.85 314.03 418.23 380.40 336.50 309.67
alu414 8 40.81 24.41 19.59 31.57 21.66 19.85 15.58
apexl 45 45 180.59 87.35 67.63 154.81 124.86 94.26 95.72

 apex6 135 99 291.54 260.66 231.06 268.39 271.51 263.92 247.19
 cps24 102 290.25 187.90 151.81 203.95 211.43 192.44 149.73
 dalu75 16 102.67 39.40 28.09 70.55 51.92 51.58 41.09
 des256 245 1210.00 910.63 687.50 931.14 838.53 749.61 729.31

 frg2143 139 624.69 499.27 348.60 584.58 531.48 512.31 501.66
 i3132 6 26.76 17.84 12.61 18.84 15.03 13.10 11.97

 i8133 81 302.54 229.12 207.54 292.75 248.84 243.43 238.52
i10257 224 1084.96 887.62 614.53 950.62 821.89 903.42 788.22

 k245 45 180.52 87.32 67.61 155.30 125.76 95.23 96.78
toolarge 38 3 13.16 8.47 6.24 9.00 7.47 6.39 5.62

 vda17 39 176.34 81.72 69.54 111.91 110.19 76.03 74.33
 Average of ratios1.00 0.67 0.51 0.78 0.68 0.60 0.55

sidering both partitions and orderings of binary variables finds heterogeneous MDDs with the

minimum APLs for functions with up to 11 variables within a reasonable time. 3) In MDD(k)s,

to reduce the APLs to a half of the BDDs, we need to increase the memory sizes to 488% of the

BDDs. Area-time complexities of heterogeneous MDDs are a half of the BDDs, and are much

smaller than MDD(k)s.

 63

Table 5.11: Area-time complexities of BDDs, heterogeneous MDDs, and MDD(k)s for MCNC

benchmark functions

 Name In Out BDD Heterogeneous MDD MDD(2) MDD(3) MDD(4) MDD(5)
 MinMem MinAPLM

 C432 36 7 276118 157399 144476 184002 234806 225380 441951
 C499 41 32 63134444 22768960 14937095 26460143 21551378 22771246 33053379

 C880 60 26 1650677 1485138 1204830 1803197 2292213 3132374 4617949
 C1908 33 25 4215784 1967478 1525388 2764020 2215349 3105084 3127715
 C2670 233 64 1138518 780551 711573 1439035 2235054 3029509 5519726
 C3540 50 22 14950022 9175809 6560680 13534607 16934893 21338299 28577026

 C5315 178 123 2381424 1710121 1568471 2690305 3772817 5824415 10451014
 C7552 207 107 3210593 2599668 2082937 3603038 5073795 7167682 11404484
 alu4 14 8 42730 20867 19967 40725 30992 45567 61168

apexl 45 45 674496 263461 252108 708266 766385 833270 1475135
 apex6 135 99 434681 368575 344280 587764 1065407 1879894 3018209
 cps 24 102 844642 475959 441173 611840 947620 1498369 1758999
 dalu 75 16 211905 60990 57976 184138 191568 348115 421705
 des 256 245 10686720 6636635 6071313 8966884 13667221 16107606 30421083

 frg2 143 139 1802850 1333541 1005363 2569241 3821905 6566790 10975884
 i3 132 6 10597 5887 4994 6405 9062 8465 17384

 i8 133 81 1157231 839045 793848 1766746 2452355 4353531 8091520
i10 257 224 67242627 49499023 38084982 81311523 101968393 211634736 300040993

 k2 45 45 674228 263525 252046 709723 775331 840241 1485118
too_large 38 3 12556 7258 5957 9805 11362 15745 20762

 vda 17 39 252348 88910 99025 153883 251900 211979 318856
 Average of ratios1.00 0.59 0.51 0.96 1.27 1.85 2.96

 64

Chapter 6

Conclusion

In this thesis, we discussed on the optimization of DDs that minimize the memory size, average

path length (APL), or both of them.

 In Chapter 3, we proposed APL minimization algorithms for DDs considering only variable

orderings. The APL minimization algorithms proposed in Chapter 3 yielded an improvement

over an existing algorithm in both APL and runtime. However, the APL minimization algo-

rithms considering only variable orderings often increase the number of nodes, since a variable

order that minimizes the APL is often different from the variable order that minimizes the num-

ber of nodes.

 Next, we used MDDs to reduce the memory sizes and APLs furthermore. MDDs are usually

used to represent multi-valued logic functions. However, we used MDDs to represent binary

logic functions. When MDDs are used to represent binary logic functions, we can use an

additional optimization approach, which is a partition of binary variables. To represent binary

logic functions using MDDs, we partition the binary variables into groups, and we treat each

group as a multi-valued variable. In Chapter 4, we showed the relations between the values of k

and the number of nodes, memory size, path length, and area-time complexity for QRMDD(k),

and derived the optimum values of k for each application. For many benchmark functions, the

numbers of nodes and path lengths for QRMDD(k)s were inversely proportional to the value of

k. Therefore, the numbers of nodes for QRMDD(k)s can be reduced with increasing the value

of k. However, the memory size of each node in QRMDD(k) increases with 2k. By experiments,

we showed that the memory sizes for QRMDD(k)s take their minimum when k = 2. To obtain

the optimum values of k considering both memory size and path length, we introduced the area-

time complexity. By experiments, we showed that when both the memory size and path length

are equally important, the optimum value of k is 3 or 4. On the other hand, when the path length

is more important than the memory size, the optimum value of k is 4, 5 or 6.

 65

 In MDD(k)s representing binary logic functions, the binary variables are partitioned into

the groups with k binary variables. On the other hand , in heterogeneous MDDs, the binary
variables can be partitioned into the groups with different numbers of binary variables. There-

fore, the memory sizes and APLs of heterogeneous MDDs depend on the partition of binary

variables, as well as the order of binary variables. In Chapter 5, we proposed the memory size

and APL minimization algorithms for heterogeneous MDDs that consider both orderings and

partitions of binary variables. By considering both orderings and partitions of binary variables,

heterogeneous MDDs can represent logic functions with smaller memory sizes than FBDDs

and smaller APLs than OBDDs, and the APLs of heterogeneous MDDs can be reduced by a

half of BDDs without increasing memory size. Heterogeneous MDDs have smaller area-time

complexities than MDD(k)s, since heterogeneous MDDs allow more flexible partition of binary

variables than MDD(k)s.

 66

Acknowledgements

Many people supported me in various ways during the time I spent at the Kyushu Institute of

Technology in Japan. Without the help and encouragement, my aim to graduate might have

faded away in an early stage of the Ph.D. program, and this thesis would not exist. I sincerely

express gratitude to all of them, especially to the following people.

 My adviser, Professor Tsutomu Sasao. I owe all of my accomplishments to Professor Sasao.

Professor Sasao provided me all the technical skills that I currently have; how to set up the

research goal, how to formulate and attack a problem, how to write a paper, and how to organize

a technical presentation. I admired Professor Sasao so much that I simply mimicked his style.

It was always fun when I felt that my technical abilities improved, and most pleasant when I

realized that once a research has been accomplished, it is often the case that the result can be

stated in a simple statement. This has been an useful check to see whether I have fully reached

the end of the trail. I will treasure what I learned from Professor Sasao for the rest of my life.

 It is my great pleasure to thank Professor Kyoki Imamura, Professor Takaichi Yoshida, and

Professor Seiji Kajihara who kindly agreed to be members of both the qualification and the

thesis committees.

 I am sincerely grateful to Professor Yukihiro Iguchi of Meiji University in Japan who gave

me a lot of technical skills and cooperations. He motivated my researches on decision diagrams

(DDs), and introduced me to Professor Sasao and Kyushu Institute of Technology when I was

his student. Without his support, my researches would not accomplish. I would like to thank

Professor Iguchi sincerely for his support and introducing me to Professor Sasao.

 I am grateful to Professor Jon T. Butler of Naval Postgraduate School in USA who gave me

a great deal of encouragement. Many times he also spent his valuable time for reviewing my

papers, even though his name was not included in the list of authors. I thankfully acknowledge

his continuous support and encouragement over the years.

 Dr. Alan Mishchenko of UC Berkeley in USA encouraged me to set up my researches on

average path length (APL) of DDs, and greatly contributed to my paper on APL of DDs. I wish

to thank him for his cooperation and encouragement.

 67

 I would like to thank Professor Randal E. Bryant, Professor Rolf Drechsler, Professor

D. Michael Miller, Professor Shuzo Yajima , Professor Nagisa Ishiura, Professor Fabio Somenzi,

Professor Yusuke Matsunaga, Dr. Wolfgang Guenther, and many other people who originally

started the research works on DDs. I referred their papers many times and sometimes had

helpful discussion with them. Especially, the BDD package of Fabio Somenzi of University of

Colorado at Boulder in USA was very helpful during my experiments.

 I am indebted to Dr. Wolfgang Guenther of Infineon Technologies in Germany who provided

me his data for free binary decision diagrams (FBDDs).

 I owe the precious memory and experience to those who stayed at the Kyushu Institute

of Technology as visitors or students, as well as those who worked with Professor Sasao or

often visited the Professor Sasao's laboratory. They are Professor Jon T. Butler, Professor

Marek A. Perkowski, Dr. Alan Mishchenko, Professor D. Michael Miller, Professor Bogdan

J. Falkowski, Dr. Marc Riedel, Professor Yukihiro Iguchi, Professor Seiji Kajihara, Mr. Mune-

hiro Matsuura, Dr. Atsumu Iseno, and many other people.

 All research works of my thesis were partly supported by the Grand in Aid for Scientific

Research of the Japan Society for the Promotion of Science (JSPS) and the funds from Ministry

of Education, Culture, Sports, Science, and Technology (MEXT) via Kitakyushu innovative

cluster project.

 68

References

[1] P. Ashar and S. Malik, "Fast functional simulation using branching programs," Interna-

 tional Conference on Computer-Aided Design (ICCAD'95), pp. 408-412, Nov. 1995.

 [2] E Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, A. Sangiovanni-

 Vincentelli, E. M. Sentovich, and K. Suzuki, "Synthesis of software programs for embed-

 ded control applications," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 18,

 No. 6, pp. 834-849, June 1999.

 [3] B. Becker and R. Drechsler, "Efficient graph based representation of multi-valued func-

 tions with an application to genetic algorithms," 24th International Symposium on Multiple

 Valued Logic, pp. 40-45, May 1994.

 [4] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli, "Decision diagrams

 and pass transistor logic synthesis," International Workshop on Logic and Synthesis, s. 3-3,

 Lake Tahoe, May 1997.

[5] V. Bertacco and M. Damiani, "The disjunctive decomposition of logic functions;' Inter-

 national Conference on Computer Aided Design (ICCAD'97), pp. 78-82, San Jose, Nov.

 1997.

[6] K. Brace, R. Rudell, and R. E. Bryant, "Efficient implementation of a BDD package,"

 Design Automation Conference, pp. 40-45, June 1990.

[7] R. K. Brayton, "The future of logic synthesis and verification," in S. Hassoun and T. Sasao

 (eds.) Logic Synthesis and Verification, Kluwer Academic Publisher, 2001.

[8] R. P. Brent and H. T. Kung, "The area-time complexity of binary multiplication," Journal

 of the ACM, Vol. 28, No. 3, pp. 521-534, July 1981.

[9] F. Brglez and H. Fujiwara, "Neutral netlist of ten combinational benchmark circuits and

 a target translator in FORTRAN," Special session on ATPG and fault simulation, Proc.

 IEEE Int. Symp. Circuits and Systems, pp. 663-698, June 1985.

 69

 [10] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer

 Academic Publishers 1992.

[11] R. E. Bryant, "Graph-based algorithms for boolean function manipulation," IEEE Trans.

 Comput., Vol. C-35, No. 8, pp. 677-691, Aug. 1986.

[12] J. T. Butler and T. Sasao, "On the average path length in decision diagrams of multiple-

 valued functions," 33rd International Symposium on Multiple-Valued Logic, pp. 383-390,

 Tokyo, Japan, May 2003.

[13] M. L. Dertouzos, Threshold Logic: A Synthesis Approach, Mass. Inst. Tech., Cambridge,

 Res. Monograph 32. Cambridge, Mass.: M. I. Press, 1965.

[14] R. Drechsler, W. Gunther, and F. Somenzi, "Using lower bounds during dynamic BDD

 minimization," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Vol. 20 No. 1,

 pp. 51-57, Jan. 2001.

[15] R. Drechsler and M. Thornton, "Fast and efficient equivalence checking based on NAND-

 BDDs," IFIP VLSI'01, pp. 401-405, Montpellier, 2001.

[16] R. Ebendt, W. Guenther, and R. Drechsler, "Combination of lower bounds in exact

 BDD minimization," Design, Automation and Test in Europe conference and exhibition

 (DATE'03), pp. 758-763, Munich, Germany, Mar. 2003.

[17] M. Fujita, Y. Matsunaga, and T. Kakuda, "On variable ordering of binary decision dia-

 grams for the application of multi-level logic synthesis," EDAC, pp. 50-54, Mar. 1991.

[18] W. Guenther and R. Drechsler, "Minimization of free BDDs," Asia and South Pacific

 Design Automation Conference (ASP-DAC'99), pp. 323-326, Wanchai, Hong Kong, Jan.

 1999.

[19] W. Guenther, "Minimization of free BDDs using evolutionary techniques," International

 Workshop on Logic Synthesis 2000 (IWLS-2000), pp. 167-172, Loguna Cliffs Marriott ,
 Dana Point, CA, May 2000.

[20] Hafiz Md. Hasan Babu and T. Sasao, "Heuristics to minimize multiple-valued decision

 diagrams," IEICE Trans. on fundamentals, Vol. E83-A, No. 12, pp. 2498-2504 , Dec. 2000.

[21] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral techniques in digital logic, Academic

 Press., London, 1985.

 70

[22] Y. Iguchi, T. Sasao, M. Matsuura, and A. Iseno "A hardware simulation engine based

 on decision diagrams," Asia and South Pacific Design Automation Conference (ASP-

 DAC'2000), pp. 73-76, Yokohama, Japan, Jan. 2000.

[23] Y. Iguchi, T. Sasao, and M. Matsuura, "Implementation of multiple-output functions using

 PQMDDs," 30th International Symposium on Multiple-Valued Logic, pp. 199-205, May

 2000.

[24] N. Ishiura, H. Sawada, and S. Yajima, "Minimization of binary decision diagrams based

 on exchanges of variables," International Conference on Computer-Aided Design (IC-

 CAD'91), pp. 472-475, Nov. 1991.

[25] Y. Jiang and R. K. Brayton, "Software synthesis from synchronous specifications using

 logic simulation techniques," Design Automation Conference, pp. 319-324, New Orleans,

 LA, U.S.A, June 2002.

[26] T. Kam, T. Villa, R. K. Brayton, and A. L. Sagiovanni-Vincentelli, "Multi-valued decision

 diagrams: Theory and applications," Multiple-Valued Logic: An International Journal,

 Vol. 4, No. 1-2, pp. 9-62, 1998.

[27] C. Kim, L. Lavagno, and A. S-Vincentelli, "Free MDD-based software optimization tech-

 niques for embedded systems," Design, Automation and Test in Europe (DATE2000),

 Paris, pp. 14-19, March 2000.

[28] Kouloheris and A. El Gamal, "FPGA area versus cell granularity — lookup tables and

 PLA cells," Proc. ACM First Int. Workshop on Field Programmable Gate Arrays, pp. 9-

 14, Feb. 1992.

[29] H.-T. Liaw and C.-S. Lin. "On the OBDD-representation of general Boolean function,"

 IEEE Transactions on Computers, Vol. 4, No. 6, pp. 661-664, June 1992.

[30] C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, Inc., 1968.

[31] Y. Y. Liu, K. H. Wang, T. T. Hwang, and C. L. Liu, "Binary decision diagrams with

 minimum expected path length," Design, Automation and Test in Europe (DATE2001),

 pp. 708-712, Mar. 2001.

[32] Y. Matsunaga, "An exact and efficient algorithm for disjunctive decomposition," the

 7th workshop on Synthesis And System Integration of Mixed Information technologies

 (SASIMI 1998), pp. 44-50, Sendai, Japan, Oct. 1998.

 71

[33] M. Matsuura, and T. Sasao, "Representation of incompletely specified switching functions

 using pseudo-Kroneker decision diagrams," International Workshop on Applications of

 the Reed Muller Expansion in Circuit Design (Reed-Muller 2001), pp. 27-33, Starkville,

 U.S.A, Aug. 2001.

[34] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-Vincentelli, and P. Scaglia,
 "Fast discrete function evaluation using decision diagrams," International Workshop on

 Logic and Synthesis, pp. 6_1-69, Lake Thahoe, May 1995.

[35] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-Vincentelli, and P. Scaglia,
 "Fast discrete function evaluation using decision diagrams

," International Conference on

Computer Aided Design (ICCAD'95), pp. 402-407, Nov. 1995.

[36] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI Design, Springer,

 1998.

[37] D. M. Miller, "Multiple-valued logic design tools," 23rd International Symposium on Mul-

 tiple Valued Logic, pp. 2-11, May 1993.

[38] D. M. Miller and R. Drechsler, "Implementing a multiple-valued decision diagram pack-

 age," 28th International Symposium on Multiple-Valued Logic, pp. 52-57, May 1998.

[39] D. M. Miller and R. Drechsler, "Augmented sifting of multiple-valued decision diagrams,"

 33rd International Symposium on Multiple-Valued Logic, pp. 375-382, Tokyo, Japan, May

 2003.

[40] S. Minato, N. Ishiura, and S. Yajima, "Shared binary decision diagram with attributed

 edges for efficient Boolean function manipulation," Design Automation Conference ,

 pp. 52-57, June 1990.

[41] S. Minato, "Minimum-width method of variable ordering for binary decision diagrams,"

IEICE Trans. on fundamentals, Vol. E75-A, No. 3, pp. 392-399, Mar. 1992.

[42] A. Mishchenko, B. Steinbach, and M. Perkowski, "An algorithm for bi-decomposition of

 logic functions," Design Automation Conference, pp. 103-108, June 2001.

[43] S. Muroga, Logic Design and Switching Theory, Wiley-Interscience Publication, 1979.

[44] S. Nagayama, T. Sasao, Y. Iguchi, and M. Matsuura, "Representations of logic functions

 using QRMDDs," 32nd International Symposium on Multiple-Valued Logic, pp. 261-267 ,
 Boston, Massachusetts, U.S.A, May 2002.

 72

[45] S. Nagayama and T. Sasao, "Code generation for embedded systems using heterogeneous

 MDDs," the 12th workshop on Synthesis And System Integration of Mixed Information

 technologies (SASIMI 2003), pp. 258-264, Hiroshima, Japan, April 2003.

[46] S. Nagayama and T. Sasao, "Compact representations of logic functions using heteroge-

 neous MDDs," 33rd International Symposium on Multiple-Valued Logic, pp. 247-252,

 Tokyo, Japan, May 2003.

[47] S. Nagayama, A. Mishchenko, T. Sasao, and J. T. Butler, "Minimization of average path

 length in BDDs by variable reordering," International Workshop on Logic and Synthesis,

 pp. 207-213, Laguna Beach, California, U.S.A, May 2003.

[48] S. Nagayama and T. Sasao, "Compact representations of logic functions using heteroge-

 neous MDDs," IEICE Trans. on fundamentals, Vol. E86-A, No. 12, pp. 3168-3175, Dec.

 2003.

[49] S. Nagayama and T. Sasao, "Minimization of memory size for heterogeneous MDDs,"

 Asia and South Pacific Design Automation Conference (ASP-DAC'2004), pp. 872-875,

 Yokohama, Japan, Jan. 2004.

[50] S. Nagayama and T. Sasao, "On the minimization of average path lengths for heteroge-

 neous MDDs," 34th International Symposium on Multiple-Valued Logic, pp. 216-222,

 Toronto, Canada, May 2004.

[51] H. Ochi, N. Ishiura and S. Yajima, "Breadth-first manipulation of SBDD of Boolean func-

 tion for vector processing," Design Automation Conference, pp. 413-416, 1991.

[52] H. Ochi, K. Yasuoka and S. Yajima, "Breadth-first manipulation of very large binary-

 decision diagrams," International Conference on Computer-Aided Design (ICCAD'93),

 pp. 48-55, Nov. 1993.

[53] S. Panda, F. Somenzi, and B. F. Plessier, "Symmetry detection and dynamic variable or-

 dering of decision diagrams," International Conference on Computer-Aided Design (IC-

 CAD'94), pp. 628-631, San Jose, CA, Nov, 1994.

[54] D. V. Popel and R. Drechsler, "Efficient minimization of multiple-valued decision dia-

 grams for incompletely specified functions," 33rd International Symposium on Multiple-

 Valued Logic, pp. 241-246, Tokyo, Japan, May 2003.

 73

[55] A. Prakash, R. Kotla, T. Mandal, and A. Aziz, "A high-performance architecture and BDD-

 based synthesis methodology for packet classification," IEEE Trans. Comput.-Aided Des.

Integr. Circuits Syst., Vol. 22, No. 6, pp. 698-709, June 2003.

[56] S. Reda and A. Salem, "Combinational equivalence checking using boolean satisfiabil-

 ity and binary decision diagrams;' Design, Automation and Test in Europe conference

(DATE'01), pp. 122-126, 2001.

[57] S. Reda, A. Orailoglu, and R. Drechsler, "On the relation between SAT and BDDs for

 equivalence checking," International Symposium on Quality Electronics Design, pp. 394-

 399, Mar. 2002.

[58] J. Rose, R. J. Francis, D. Lewis, and P. Chow, "Architecture of field-programmable gate

 arrays: the effect of logic block functionality on area efficiency," IEEE Journal of Solid-

 State Circuits, Vol. 25, pp. 1217-1225, Oct. 1990.

[59] R. Rudell, "Dynamic variable ordering for ordered binary decision diagrams," Interna-

 tional Conference on Computer-Aided Design (ICCAD'93), pp. 42-47, Nov. 1993.

[60] T. Sasao, "FPGA design by generalized functional decomposition," (Sasao ed.) Logic Syn-

 thesis and Optimization, Kluwer Academic Publishers, 1993.

[61] T. Sasao and M. Fujita (eds.), Representations of Discrete Functions, Kluwer Academic

 Publishers 1996.

[62] T. Sasao and J. T. Butler, "A method to represent multiple-output switching functions by

 using multi-valued decision diagrams;' 26th International Symposium on Multiple-Valued

 Logic, pp. 248-254, Santiago de Compostela, Spain, May 1996.

[63] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, 1999.

[64] T. Sasao, "Compact SOP representations for multiple-output functions: An encoding

 method using multiple-valued logic," 31 th International Symposium on Multiple-Valued

 Logic, pp. 207-211, Warsaw, Poland, May 2001.

[65] T. Sasao, M. Matsuura, and Y. Iguchi, "Cascade realization of multiple-output function and

 its application to reconfigurable hardware;' International Workshop on Logic and Synthe-

 sis, pp. 225-230, Lake Tahoe, June 2001.

 74

[66] T. Sasao, M. Matsuura, Y. Iguchi, and S. Nagayama, "Compact BDD representations for

 multiple-output functions and their application:' IFIP VLSI-SOC'01, pp. 406-411 , Mont-

 pellier, France, Dec. 2001.

[67] T. Sasao, Y.Iguchi, and M. Matsuura, "Comparison of decision diagrams for multiple-

 output logic functions," International Workshop on Logic and Synthesis, pp. 379-384,

 New Orleans, Louisiana, June 2002.

[68] T. Sasao, J. T. Butler, and M. Matsuura, "Average path length as a paradigm for the fast

 evaluation of functions represented by binary decision diagrams," International Sympo-

 sium on New Paradigm VLSI Computing, pp. 31-36, Sendai, Japan, Dec. 2002.

[69] R. S. Shelar and S. S. Sapatnekar, "Efficient layout synthesis algorithm for pass transistor

 logic circuits:' Asia and South Pacific Design Automation Conference (ASP-DAC'2002),

 pp. 87-92, Bangalore, India, Jan. 2002.

[70] R. S. Shelar and S. S. Sapatnekar, "Efficient layout synthesis algorithm for pass transistor

 logic circuits:' International Workshop on Logic and Synthesis, pp. 209-214, New Orleans,

 Louisiana, June 2002.

[71] T. R. Shiple, R. Hojati, A. L. Sangiovannni-Vincentelli, and R. K. Brayton, "Heuristic

 minimization of BDDs using don't cares:' Design Automation Conference, pp. 225-231,

 June 1994.

[72] E Somenzi, "CUDD: CU Decision Diagram Package Release 2.3.1," University of Col-

 orado at Boulder, 2001.

[73] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton, "Algorithms for discrete function

 manipulation:' International Conference on Computer-Aided Design (ICCAD'90), pp. 92-

 95, Nov. 1990.

[74] K. Takagi, H. Hatakeda, S. Kimura, and K. Watanabe, "Exact minimization of Free BDDs

 and its application to pass-transistor logic optimization," IEICE Trans. on fundamentals,

 Vol. E82-A, No. 11, pp. 2407-2413, Nov. 1999.

[75] A. Thayse, M. Davio, and J.-P. Deschamps, "Optimization of multiple-valued decision

 algorithms," 8th International Symposium on Multiple-Valued Logic, pp. 171-177, Rose-

 mont, IL., May 1978.

 75

[76] C. D. Thompson, "Area-Time complexity for VLSI," 11th Annual ACM Symposium on

 Theory of Computing, pp. 81-88, May 1979.

[77] M. Thornton, D. M. Miller, and R. Drechsler, "Transformations amongst the Walsh, Haar,

 arithmetic and Reed-Muller spectral domains," Intl. Workshop on Applications of the

 Reed-Muller Expansion in Circuit Design, pp. 215-225, August 2001.

[78] I. Wegener, Branching Programs and Binary Decision Diagrams: Theory and Applica-

 tions, SIAM, 2000.

[79] A. Yan, R. Cheng, and S. J. E. Wilton, "On the sensitivity of FPGA architectural conclu-

 sions to the experimental assumptions, tools, and techniques," the ACM/SIGDA Interna-

 tional Symposium on Field-Programmable Gate Arrays, pp. 147-156, Monterey, CA, Feb.

 2002.

[80] C. Yang and M. Ciesielski, "BDS: A BDD-based logic optimization system," IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., Vol. 21, No. 7, pp. 866-876, July 2002.

[81] S. Yang, Logic synthesis and optimization benchmark user guide version 3.0, MCNC, Jan.

 1991.

 76

Appendix

A. Proofs of Theorems in Chapter 3

Lemma 3.1 [67] The node traversing probability of node v is the sum of the edge traversing

probabilities of all incoming edges to v. Also, the node traversing probability of node v is the
sum of the edge traversing probabilities of all outgoing edges from v.

Proof We prove only the first statement; the proof for the second statement is similar. Consider
a node v. Any path that includes an incoming edge to v includes v. Conversely, any path that
includes v includes an incoming edge to v. It follows that any assignment of values to the
variables that corresponds to a path through v contributes to the node traversing probability of
v an amount that is identical to the amount contributed to the edge traversing probability of an
incoming edge to v. It follows that the node traversing probability of v is equal to the sum of
edge traversing probabilities of all incoming edges to v. •

Theorem 3.1 [67] The APL is equal to the sum of the edge traversing probabilities of all edges.
Also, the APL is equal to the sum of the node traversing probabilities of all the non-terminal
nodes.

Proof We prove only the first statement; the proof for the second statement is similar. From
Definition 3.2, we have

 ETP(e) = PP(p),(3.1)
pESP(e)

where SP(e) is a set of paths including the edge e. We prove the following
Are

 APL = ETP(ei),(3.2)
 i=1

where Ne denotes the number of edges in a DD. From formula (3.1), formula (3.2) can be

transformed as follows:
 Ne

 APL = ETP(ei)
 i=1

 77

 Ne

 = y , PP(P) (3.3)
 i=1 pESP(ei)

 From Definition 2.17, we have

N

 APL = E PP(pi) x
i=1

N l;

 = E PP(pi) (3.4)
i=1 j=1

Although formula (3.3) and formula (3.4) use different computational approaches, they obvi-

ously compute the same value.

Lemma 3.2 Suppose an SDD represents a multiple-output logic function F. Then,

ETP(Cut(i)) = mu,

where mu is the number of the root nodes of the multiple-output function F above or in level i.

Proof An SDD for F = (fo,f1,...,fm_1) is traversed from a root node to a terminal node m

times to evaluate multiple-output function F. Since mu root nodes are located above or in level

i, mu traversals via edges in Cut(i) are performed while evaluating the multiple-output function.

Therefore, we have ETP(Cut(i)) = mu.

Lemma 3.3 Let

Cut'(i) _ {e le E Cut(i), such that e is incident to only non-terminal nodes}.

Then, for every permutation of Xupper,

ETP(Cut'(i)) = ci,

where ci < MU.

Proof From Lemma 3.1, the following relation holds:

ETP(Cut'(i)) = E NTP(v),
vEVc

where Vc denotes a set of non-terminal nodes representing the cofactors with respect to Xupper •

The probability of the occurrence of the cofactor depends only on the function and not the order

of Xupper. Since Cut'(i) does not include the edges to terminal nodes, the upper bound of mu
on ci follows from Lemma 3.2.

78

Theorem 3.2 Consider an SDD for multiple-output function F . Let L be the sum of the node

traversing probabilities of the non-terminal nodes below or in level i + 1. Let mL be the num-

ber of root nodes for F below or in level i + 1. Then, for any permutation of Xiower and any

permutation of Xupper,

ETP(Cut'(i)) +mL < L.

Proof All nodes representing cofactors with respect to the variables in Xupper and mL root nodes

are situated below or in level i + 1. Thus, L includes the node traversing probabilities of these

nodes.i

Theorem 3.3 Consider an SDD for multiple-output function F_ Let U be the sum of the node

traversing probabilities of the non-terminal nodes above or in level i. When the order of Xupper

is fixed,

 U +ETP(Cut'(i)) +mL < APL.

Proof Let L be the sum of the node traversing probabilities of the non-terminal nodes below or

in level i + 1. From Theorem 3.1, we have

APL = U + L.

Then, from Theorem 3.2, for any permutation of Xiower,

APL > U +ETP(Cut'(i)) +mL.

I Theorem 3.4 Let U be the sum of the node traversing probabilities of non-terminal nodes above

or in level i — 1, and let L be the sum of the node traversing probabilities of non-terminal nodes

below or in level i + 2. Then, after the variable swap of level i with level i + 1, U and L remain

unchanged.

Proof The variable swap of level i and level i + 1 does not influence the graph structure except

for levels i and i+ 1 because of the locality of the swap operation. Thus, it is clear that U remains

unchanged. From Lemma 3.1, L is obtained by the sum of ETP(Cut'(i + 1)) and ETP(Eiower),

where

Cut'(i+ 1) = {e e E Cut(i+ 1), e is incident to a non-terminal node},

Eiower = {eI e is an edge situated below or in level i+2},

ETP(Cut'(i+ 1)) = I ETP(e),
eECut' (i+1)

ETP(Eiower) _ , ETP(e).
eEEiower

 79

 X1
n - r

 X2 NEW r

0 0

 Figure B.1: Partition of BDD.

By Lemma 3.3, ETP(Cut'(i + 1)) is an invariant. ETP(Eiower) remains unchanged because of

the invariance of ETP(Cut'(i + 1)) and the locality of the swap operation. Therefore, L also

remains unchanged.1

B. Proofs of Theorems in Chapter 4

Definition B.1 Suppose that a QRBDD for an n-variable logic function is partitioned into two

parts as shown in Fig B.1. It is partitioned into the upper part which has the variables X1 =

(x1, x2, ... , xn—r), and the lower part which has the variables X2=(xn_r+1, ... , x,). In this case,
the BDD represents the logic function as follows:

f(Xi,X2) = V Xl'f(ai,X2),
 at EB"-r

where

 X~`1 (X1 = di)
 0 (otherwise).

The upper part realizes 4, and the lower part realizes f (ai, X2).

Theorem 4.1 An arbitrary n-variable logic function can be represented by a QRBDD with at

most
r

 2n-r_1+22'

 i-1

non-terminal nodes, where r is the largest integer that satisfies relation n — r > 27 [29] .

 80

Proof When the upper part of the QRBDD (see Fig. B.1) has 2n-r - 1 nodes (i.e., a complete

binary tree), it is the maximum. Because f (di, X2) is an r-variable logic function, the number of

different f i,X2) is 22r. When 22i logic functions are realized for each level i (i = 1, 2, ... , r)

from the terminal node to the r, the lower part is the maximum. Therefore, the number of

non-terminal nodes in a QRBDD is at most

r 2n—r — 1 + 221
 . i=1

This upper bound becomes the tightest when r is the maximum integer satisfying n — r> 2 r [29]:

1 Theorem 4.2 An arbitrary n-variable logic function can be represented by a QRMDD(k) with

at most

2Sk — 1
+r;1(ki—t) 2k-1

i1
non-terminal nodes, where u is the number of super variables, t is the number of dummy vari-

ables, and s is the smallest integer that satisfies relation

n—r
s>

Proof Since each node in a QRMDD(k) has 2k outgoing edges, the upper part of QRMDD(k)

is maximum when it is equivalent to a complete 2k-valued tree. Therefore, the upper part has at

most
2sk —1

2k-1

nodes, where s denotes the number of super variables in upper part. The lower part is maximum

when all i-variable functions are realized for each level i (i = 1, 2, ... , u — s), which have 2k-
valued inputs and binary outputs. Note that Xu may include dummy variables. Therefore, the

number of non-terminal nodes in a QRMDD(k) is at most

2Sk
+22(ki—t). 2k —1

i==1

C. Proofs of Theorems in Chapter 5

Lemma 5.1 Let Nfix(n) be the number of different fixed-order partitions of X. Then,

Nfix(n) = 2n-1

81

Proof X = (xl,x2i...,xn) has n — 1 partition points, the positions that can be partitioned. At
each partition point, we can choose whether to partition at this point or not. Thus, 2n-1 different

partitions exist.1
 The following lemma is used for proof of Theorem 5.1.

Lemma C.1 [30] The number of different distributions of n objects into r distinct cells is

calculated by the following formula, where each cell has at least one object and order of objects

within a cell is not important.

 a(n,r) = rCi(r—l)n(-1)i
i=0

Example C.1 The number of different distributions of 5 objects into 2 distinct cells is

a(5,2) = 25 — 2 = 30.

 (End of Example)

Theorem 5.1 Let Nnon- fix(n) be the number of different non-fixed-order partitions of X =

(xi,x2, ... ,xn). Then,
n r

N non- fix(n) = rCi(r—i)n(-1)`.
r=1 i=0

Proof From Lemma C.1, the number of different non-fixed-order partitions of n binary variables

into r super variables is calculated by the following:

a(n,r) = rCi(r—i)n(-1)i.
i=0

Since Nnon- fix(n) is the summation of a(n, r) for r = 1, 2, ... , n, we have the theorem.

Theorem 5.2 In a fixed-order minimum heterogeneous MDD, the following relation holds for

any super variable Xi = (xi ,xj+l, •. •,xj+k,-1):

k,-1

 (2" + 1)width(heterogeneous MDD, i) < 3 x width(BDD, j + t),
t=0

where the heterogeneous MDD and the BDD represent the same logic function, the variable

order is fixed.

 82

Proof In a fixed-order minimum heterogeneous MDD, partition Xi into (Xi°,X~1...Xiki-),
where Xio = (xj), Xi, = (xj+1),..., and Xiki_l = (xj+ki-1). The memory size of the heteroge-
neous MDD with respect to Xi, (t = 0, 1, ... , ki — 1) becomes

ki-1k;-1

E (2 + 1)width(heterogeneous MDD, it) = 3 x width(BDD, j+t).
t=ot=o

Note that each node in the BDD requires three words (see the formula (5.1)). If the theorem

does not hold, then the original heterogeneous MDD was not fixed-order minimum, which is

contradiction.

Theorem 5.3 Consider a BDD and a heterogeneous MDD for an n-variable logic function that

is not a constant function. When an order of binary variables is fixed, for the number of nodes

in the BDD and the memory size of heterogeneous MDD obtained by considering only the

fixed-order partitions, the following relation holds:

 Mem(heterogeneous MDD) > nodes(BDD) +2.

Proof Consider a partition of X: X = (X1, X2i ... ,X). For arbitrary super variable Xi = (x j, x j+1,

,xj+ki_1), the following relation holds:

width(heterogeneous MDD, i) > width(BDD, j).

From this, we have:

(2ki + 1)width(heterogeneous MDD, i) > (2ki + 1)width(BDD, j).

Also, in a BDD, the following relation holds:

ki-1

(2ki — 1)width(BDD, j) > E width(BDD, j+t).
t=o

Then, we have:

ki-1

(2ki + 1)width(heterogeneous MDD, i) > y width(BDD, j +t)+2width(BDD, j),
t=o

and

uu ki-1u

E (2ki + 1)width(heterogeneous MDD, i) > width(BDD, j + t) + 2 width(BDD, j) .
i=1i=1 t=0i=1

Since width(BDD, j) > 1, we have:
un

(2k1 + 1)width(heterogeneous MDD, i) > width(BDD, i) + 2u = nodes(BDD : f) + 2u.
i=1i=1

Since u > 1, we have the theorem.

 The following lemma is used for proof of Theorem 5.4.

 83

Lemma C.2 Suppose a BDD for an n-variable logic function is partitioned into two parts as

shown in Fig. B.1, and let Xupper = (xi ,X2, • • •,xn—r) and Xiower = (xn—r+1, • • •,xn)• When the
variable order (xi, X2, ... ,xn) is fixed, and the widths of the BDD for the upper part Xupper are

given by

width (BDD, j) = (j = 1, 2, ... , n — r),

the partition of Xupper that produces the fixed-order minimum heterogeneous MDD is a trivial

partition into single group (i.e., Xupper = X1 and 14 = n — r), and the memory size of the
fixed-order minimum heterogeneous MDD for the upper part is given by 2n—r+ 1.

Proof Consider a partition of Xupper = (X1,X2, ...,XS), where s > 1. The memory size of a

heterogeneous MDD obtained by this partition is

 A = (2ki + 1)width(heterogeneous MDD, i).
i=1

When width(BDD, j) = (j = 1, 2, ... ,n — r), the BDD forms a complete binary decision

tree. Therefore, we have the following:

A = (2k1 + 1) X 1 + (2k2 + 1) X 2k1 + (2k3 + 1) X 2k1+42 + ... + (2ks + 1) X 2k1+k2+...+ks-1

And, we have:

A _ 2k1+k2+...+ks + 2k1+k2+...+ks_1 B,

where
s-1

 B = (2ki + 1)width(heterogeneous MDD, i).
i=1

Since El ki = n — r, we have

 A = 2n—r + 2kl +k2+...+ks_ 1 +B.

From the relation 2k1+k2+...+ks_1 +B > 1, A takes its minimum when s = 1.

Theorem 5.4 An arbitrary n-variable logic function can be represented by a heterogeneous

MDD with at most the following memory size:

2n—r +3 22r _ 5,

where r is the largest integer satisfying the relation

n—r> 2r+1og23.

 84

Proof An arbitrary n-variable logic function can be represented by an ROBDD with at most

 2n—r — 1 + 22` - 2

non-terminal nodes [29], where the numbers of nodes in the upper part and the lower part

are 2"—r — 1 and 22` — 2, respectively. From Lemma C.2, the memory size of the fixed-order

minimum heterogeneous MDD for the upper part is

2n—r + 1.

Also, from Theorem 5.2, the memory size of the fixed-order minimum heterogeneous MDD for

the lower part is at most

3 x (22` -2).

Therefore, the memory size of this heterogeneous MDD is

(2'+1)+{3 x (22`-2)} =2n—r+3.22`-5.

This formula has its minimum value when r is the largest integer that satisfies the relation

n—r> 2r+1og23.

That is, the memory size of the heterogeneous MDD is minimum when r satisfies this condition.

I

85

