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FIXED POINT THEOREMS AND CONVERGENCE THEOREMS
FOR SOME GENERALIZED NONEXPANSIVE MAPPINGS

TOMONARI SUZUKI

Abstract. We introduce some condition on mappings. The condition is weaker than
nonexpansiveness and stronger than quasinonexpansiveness. We present fixed point
theorems and convergence theorems for mappings satisfying the condition.

1. Introduction

A mapping T on a subset C of a Banach space E is called a nonexpansive mapping
if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. We denote by F (T ) the set of fixed points of
T . We know that F (T ) is nonempty in the case when E is uniformly convex and C is
bounded, closed and convex; see Browder [3]. See also [1, 2, 10, 13] and others.

Very recently, in order to characterize the completeness of underlying metric spaces,
Suzuki introduced a weaker notion of contractions and proved the following theorem.

Theorem 1 ([21]). Define a nonincreasing function θ from [0, 1) onto (1/2, 1] by

θ(r) =





1 if 0 ≤ r ≤ (
√

5− 1)/2,

(1− r) r−2 if (
√

5− 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.

Then for a metric space (X, d), the following are equivalent:

(i) X is complete.
(ii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following

has a fixed point:
• θ(r) d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ r d(x, y) for all x, y ∈ X.

Theorem 1 is meaningful because contractions do not characterize the metric com-
pleteness while Caristi and Kannan mappings do; see [4, 14, 17]. Since limr→1−0 θ(r) =
1/2, it is very natural to consider the following condition.

Definition. Let T be a mapping on a subset C of a Banach space E. Then T is said
to satisfy Condition (C) if

(C)
1

2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖

for all x, y ∈ C.
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2 T. SUZUKI

The condition is weaker than nonexpansiveness and stronger than quasinonexpansive-
ness (see Propositions 1 and 2 below). In this paper, we present fixed point theorems
and convergence theorems for mappings satisfying Condition (C).

2. Preliminaries

In this section, we give some preliminaries.
Throughout this paper we denote by N the set of all positive integers and by R the

set of all real numbers.
Let E be a Banach space. E is said to have the Opial property [15] if for each weakly

convergent sequence {xn} in E with weak limit z,

lim inf
n→∞

‖xn − z‖ < lim inf
n→∞

‖xn − y‖
for all y ∈ E with y 6= z. All Hilbert spaces, all finite dimensional Banach spaces and
`p(1 ≤ p < ∞) have the Opial property. See also [6, 11]. E is said to be strictly convex
if

‖x + y‖ < 2

for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y. We recall that E is said to be uniformly
convex in every direction (UCED, for short) if for ε ∈ (0, 2] and z ∈ E with ‖z‖ = 1,
there exists δ(ε, z) > 0 such that

‖x + y‖ ≤ 2
(
1− δ(ε, z)

)

for all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1 and x− y ∈ {
t z : t ∈ [−2,−ε] ∪ [+ε, +2]

}
. E is

said to be uniformly convex if E is UCED and

inf
{
δ(ε, z) : ‖z‖ = 1

}
> 0

for all ε ∈ (0, 2]. It is obvious that uniform convexity implies UCED, and UCED implies
strictly convexity. We know that every separable Banach space can be equivalently
renormed so that it is UCED. See [9, 16] and others.

UCED is characterized as follows:

Lemma 1 ([16]). For a Banach space E, the following are equivalent :

(i) E is UCED.
(ii) If sequences {un} and {vn} in E satisfies limn ‖un‖ = 1, limn ‖vn‖ = 1,

limn ‖un + vn‖ = 2 and {un − vn} ⊂ {t w : t ∈ R} for some w ∈ E with
‖w‖ = 1, then limn ‖un − vn‖ = 0 holds.

Using Lemma 1, we can prove the following.

Lemma 2. For a Banach space E, the following are equivalent :

(i) E is UCED.
(ii) If {xn} is a bounded sequence in E, then a function f on E defined by f(x) =

lim supn ‖xn − x‖ is strictly quasiconvex, that is,

(1) f
(
λx + (1− λ) y

)
< max

{
f(x), f(y)

}

for all λ ∈ (0, 1) and x, y ∈ E with x 6= y.

Proof. We first show that (i) implies (ii). We assume (i). Fix λ ∈ (0, 1) and x, y ∈ E
with x 6= y. We have

(2) f
(
λx + (1− λ) y

) ≤ λ f(x) + (1− λ) f(y)

because f is convex. We consider the following three cases:
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• f(x) 6= f(y)
• f(x) = f(y) and λ = 1/2
• f(x) = f(y) and λ 6= 1/2

In the first case, we have

λ f(x) + (1− λ) f(y) < max
{

f(x), f(y)
}
.

(1) follows from this and (2). In the second case, arguing by contradiction, we assume
that (1) does not hold. Then from (2), we have

f
(
(1/2) x + (1/2) y

)
= f(x) = f(y) =: α.

We choose a subsequence {xnj
} of {xn} satisfying limj ‖xnj

− (1/2) x − (1/2) y‖ = α.
Since

α = lim
j→∞

‖xnj
− (1/2) x− (1/2) y‖

≤ lim inf
j→∞

(
(1/2) ‖xnj

− x‖+ (1/2) ‖xnj
− y‖)

≤ (1/2) lim inf
j→∞

‖xnj
− x‖+ (1/2) lim sup

j→∞
‖xnj

− y‖

≤ (1/2) lim sup
j→∞

‖xnj
− x‖+ (1/2) lim sup

j→∞
‖xnj

− y‖

≤ (1/2) f(x) + (1/2) f(y) = α,

we have limj ‖xnj
− x‖ = α. Similarly we can prove limj ‖xnj

− y‖ = α. It follows
from x 6= y that α > 0. Put uj = (xnj

− x)/α and vj = (xnj
− y)/α. Then we have

limj ‖uj‖ = 1, limj ‖vj‖ = 1, limj ‖uj + vj‖ = 2 and uj − vj = (y − x)/α for j ∈ N.
However, limn ‖un − vn‖ = (y − x)/α 6= 0, which contradicts Lemma 1. Therefore (1)
holds. In the third case, if 0 < λ < 1/2, then we have

f
(
λx + (1− λ) y

)
= f

(
2 λ

(
(1/2) x + (1/2) y

)
+

(
1− 2 λ

)
y
)

≤ 2 λ f
(
(1/2) x + (1/2) y

)
+ (1− 2 λ) f(y)

< 2 λ max
{

f(x), f(y)
}

+ (1− 2 λ) f(y)

= max
{

f(x), f(y)
}
.

Similarly we can prove (1) in the case of 1/2 < λ < 1. We next show that (ii) implies
(i). We assume (ii). We suppose {un} and {vn} are sequences in E, w ∈ E and
{tn} is a sequence in R such that limn ‖un‖ = 1, limn ‖vn‖ = 1, limn ‖un + vn‖ = 2,
‖w‖ = 1 and un − vn = tn w for n ∈ N. Arguing by contradiction, we assume that
lim supn ‖un − vn‖ > 0 holds. Then since {tn} is bounded, there exists a subsequence
{tnj

} of {tn} such that {tnj
} converges to some τ 6= 0. Define a continuous convex

function f on E by

f(x) = lim sup
j→∞

‖vnj
− x‖.

It is obvious that

f(0) = 1,

f(−τ w) = lim sup
j→∞

‖vnj
+ τ w‖ = lim sup

j→∞
‖unj

− tnj
w + τ w‖ = 1 and
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f
(
(1/2) 0 + (1/2) (−τ w)

)
= (1/2) lim sup

j→∞
‖vnj

+ vnj
+ τ w‖

= (1/2) lim sup
j→∞

‖unj
− tnj

w + vnj
+ τ w‖ = 1.

Thus, f is not strictly quasiconvex, which contradicts (ii). Therefore we obtain limn

‖un − vn‖ = 0. By Lemma 1, E is UCED. ¤
The following lemma is proved by Goebel and Kirk. See also [18–20].

Lemma 3 (Goebel and Kirk [8]). Let {zn} and {wn} be bounded sequences in a Banach
space E and let λ belong to (0, 1). Suppose that zn+1 = λwn + (1− λ) zn and ‖wn+1 −
wn‖ ≤ ‖zn+1 − zn‖ for all n ∈ N. Then limn ‖wn − zn‖ = 0.

3. Basic Properties

In this section, we discuss basic properties on Condition (C).
We recall that a mapping T on a subset C of a Banach space E is called quasinon-

expansive [5] if ‖Tx − z‖ ≤ ‖x − z‖ for all x ∈ C and z ∈ F (T ). All nonexpansive
mappings with a fixed point are quasinonexpansive.

The following propositions are obvious.

Proposition 1. Every nonexpansive mapping satisfies Condition (C).

Proposition 2. Assume that a mapping T satisfies Condition (C) and has a fixed point.
Then T is a quasinonexpansive mapping.

Proof. Fix z ∈ F (T ) and x ∈ C. Since (1/2) ‖z − Tz‖ = 0 ≤ ‖z − x‖, we have
‖z − Tx‖ = ‖Tz − Tx‖ ≤ ‖z − x‖. ¤
Example 1. Define a mapping T on [0, 3] by

Tx =

{
0 if x 6= 3,

1 if x = 3.

Then T satisfies Condition (C), but T is not nonexpansive.

Proof. If x < y and (x, y) ∈ (
[0, 3]× [0, 3]

) \ (
(2, 3)× {3}), then ‖Tx− Ty‖ ≤ ‖x− y‖

holds. If x ∈ (2, 3) and y = 3, then

(1/2) ‖x− Tx‖ = x/2 > 1 > ‖x− y‖ and (1/2) ‖y − Ty‖ = 1 > ‖x− y‖
hold. Thus, T satisfies Condition (C). However, since T is not continuous, T is not
nonexpansive. ¤
Example 2. Define a mapping T on [0, 3] by

Tx =

{
0 if x 6= 3,

2 if x = 3.

Then F (T ) 6= ∅ and T is quasinonexpansive, but T does not satisfy Condition (C).

Proof. It is obvious that F (T ) = {0} 6= ∅ and T is quasinonexpansive. However, since

(1/2) ‖3− T3‖ = 1/2 ≤ 1 = ‖3− 2‖ and ‖T3− T2‖ = 2 > 1 = ‖3− 2‖
hold. Thus, T does not satisfy Condition (C). ¤

From the definition, we can prove the following lemmas.
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Lemma 4. Let T be a mapping on a closed subset C of a Banach space E. Assume
that T satisfies Condition (C). Then F (T ) is closed. Moreover, if E is strictly convex
and C is convex, then F (T ) is also convex.

Proof. Let {zn} be a sequence in F (T ) converging to some point z ∈ C. Since (1/2) ‖zn−
Tzn‖ = 0 ≤ ‖zn − z‖ for n ∈ N, we have

lim sup
n→∞

‖zn − Tz‖ = lim sup
n→∞

‖Tzn − Tz‖
≤ lim sup

n→∞
‖zn − z‖ = 0.

That is, {zn} converges to Tz. This implies Tz = z. Therefore F (T ) is closed. Next,
we assume that E is strictly convex and C is convex. We fix λ ∈ (0, 1) and x, y ∈ F (T )
with x 6= y, and put z := λx + (1− λ) y ∈ C. Then we have

‖x− y‖ ≤ ‖x− Tz‖+ ‖y − Tz‖ = ‖Tx− Tz‖+ ‖Ty − Tz‖
≤ ‖x− z‖+ ‖y − z‖ = ‖x− y‖.

From the strict convexity of E, there exists µ ∈ [0, 1] such that Tz = µx + (1 − µ) y.
Since

(1− µ) ‖x− y‖ = ‖Tx− Tz‖ ≤ ‖x− z‖ = (1− λ) ‖x− y‖
and

µ ‖x− y‖ = ‖Ty − Tz‖ ≤ ‖y − z‖ = λ ‖x− y‖,
we have 1−µ ≤ 1−λ and µ ≤ λ. These imply λ = µ. Therefore we obtain z ∈ F (T ). ¤
Lemma 5. Let T be a mapping on a subset C of a Banach space E. Assume that T
satisfies Condition (C). Then for x, y ∈ C, the following hold:

(i) ‖Tx− T 2x‖ ≤ ‖x− Tx‖.
(ii) Either (1/2) ‖x− Tx‖ ≤ ‖x− y‖ or (1/2) ‖Tx− T 2x‖ ≤ ‖Tx− y‖ holds.
(iii) Either ‖Tx− Ty‖ ≤ ‖x− y‖ or ‖T 2x− Ty‖ ≤ ‖Tx− y‖ holds.

Proof. (i) follows from (1/2) ‖x− Tx‖ ≤ ‖x− Tx‖. (iii) follows from (ii). Let us prove
(ii). Arguing by contradiction, we assume that

(1/2) ‖x− Tx‖ > ‖x− y‖ and (1/2) ‖Tx− T 2x‖ > ‖Tx− y‖.
Then we have by (i)

‖x− Tx‖ ≤ ‖x− y‖+ ‖Tx− y‖
< (1/2) ‖x− Tx‖+ (1/2) ‖Tx− T 2x‖
≤ ‖x− Tx‖.

This is a contradiction. Therefore we obtain the desired result. ¤

4. Convergence Theorems

In this section, we give two convergence theorems for mappings with Condition (C).
We first prove the following lemmas, which play very important roles in this paper.

Lemma 6. Let T be a mapping on a bounded convex subset C of a Banach space E.
Assume that T satisfies Condition (C). Define a sequence {xn} in C by x1 ∈ C and

xn+1 = λ Txn + (1− λ) xn
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for n ∈ N, where λ is a real number belonging to [1/2, 1). Then

lim
n→∞

‖Txn − xn‖ = 0

holds.

Proof. From the assumption, we have

1

2
‖xn − Txn‖ ≤ λ ‖xn − Txn‖ = ‖xn − xn+1‖

for n ∈ N. Hence
‖Txn − Txn+1‖ ≤ ‖xn − xn+1‖

holds for n ∈ N. So, by Lemma 3, we obtain the desired result. ¤
Lemma 7. Let T be a mapping on a subset C of a Banach space E. Assume that T
satisfies Condition (C). Then

‖x− Ty‖ ≤ 3 ‖Tx− x‖+ ‖x− y‖
holds for all x, y ∈ C.

Proof. By Lemma 5, either

‖Tx− Ty‖ ≤ ‖x− y‖ or ‖T 2x− Ty‖ ≤ ‖Tx− y‖
holds. In the first case, we have

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− Ty‖ ≤ ‖x− Tx‖+ ‖x− y‖.
In the second case, we have by Lemma 5

‖x− Ty‖ ≤ ‖x− Tx‖+ ‖Tx− T 2x‖+ ‖T 2x− Ty‖
≤ 2 ‖x− Tx‖+ ‖Tx− y‖
≤ 3 ‖x− Tx‖+ ‖x− y‖.

Therefore we obtain the desired result in both cases. ¤
Using the above two lemmas, we can prove the following, which is connected with

Ishikawa’s convergence theorem [12].

Theorem 2. Let T be a mapping on a compact convex subset C of a Banach space E.
Assume that T satisfies Condition (C). Define a sequence {xn} in C by x1 ∈ C and

xn+1 = λ Txn + (1− λ) xn

for n ∈ N, where λ is a real number belonging to [1/2, 1). Then {xn} converges strongly
to a fixed point of T .

Proof. By Lemma 6, we have limn ‖Txn − xn‖ = 0. Since C is compact, there exist a
subsequence {xnj

} of {xn} and z ∈ C such that {xnj
} converges to z. By Lemma 7, we

have
‖xnj

− Tz‖ ≤ 3 ‖Txnj
− xnj

‖+ ‖xnj
− z‖

for all j ∈ N. Therefore {xnj
} converges to Tz. This implies Tz = z. That is, z is a

fixed point of T . By Proposition 2, we have

‖xn+1 − z‖ ≤ λ ‖Txn − z‖+ (1− λ) ‖xn − z‖ ≤ ‖xn − z‖
for n ∈ N. Therefore {xn} converges to z. ¤
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We next prove a convergence theorem connected with Edelstein and O’Brien’s [7].
Before proving it, we give the following.

Proposition 3. Let T be a mapping on a subset C of a Banach space E with the Opial
property. Assume that T satisfies Condition (C). If {xn} converges weakly to z and
limn ‖Txn − xn‖ = 0, then Tz = z. That is, I − T is demiclosed at zero.

Proof. By Lemma 7, we have

‖xn − Tz‖ ≤ 3 ‖Txn − xn‖+ ‖xn − z‖
for n ∈ N and hence

lim inf
n→∞

‖xn − Tz‖ ≤ lim inf
n→∞

‖xn − z‖.
From the Opial property, we obtain Tz = z. ¤
Theorem 3. Let T be a mapping on a weakly compact convex subset C of a Banach
space E with the Opial property. Assume that T satisfies Condition (C). Define a
sequence {xn} in C by x1 ∈ C and

xn+1 = λ Txn + (1− λ) xn

for n ∈ N, where λ is a real number belonging to [1/2, 1). Then {xn} converges weakly
to a fixed point of T .

Proof. By Lemma 6, we have limn ‖Txn − xn‖ = 0. Since C is weakly compact, there
exist a subsequence {xnj

} of {xn} and z ∈ C such that {xnj
} converges weakly to z.

By Proposition 3, we have z is a fixed point of T . As in the proof of Theorem 2, we can
prove {‖xn − z‖} is a nonincreasing sequence. Arguing by contradiction, assume that
{xn} does not converge to z. Then there exist a subsequence {xnk

} of {xn} and w ∈ C
such that {xnk

} converges weakly to w and z 6= w. We note Tw = w. From the Opial
property,

lim
n→∞

‖xn − z‖ = lim
j→∞

‖xnj
− z‖ < lim

j→∞
‖xnj

− w‖ = lim
n→∞

‖xn − w‖
= lim

k→∞
‖xnk

− w‖ < lim
k→∞

‖xnk
− z‖ = lim

n→∞
‖xn − z‖.

This is a contradiction. We obtain the desired result. ¤

5. Existence Theorems

In this section, we prove existence theorems of fixed points of mappings with Condi-
tion (C). The following theorem directly follows from Theorems 2 and 3.

Theorem 4. Let T be a mapping on a convex subset C of a Banach space E. Assume
that T satisfies Condition (C). Assume also that either of the following holds:

• C is compact;
• C is weakly compact and E has the Opial property.

Then T has a fixed point.

We generalize a fixed point theorem due to Browder [3] and Göhde [10].

Theorem 5. Let C be a weakly compact convex subset of a UCED Banach space E.
Let T be a mapping on C. Assume that T satisfies Condition (C). Then T has a fixed
point.
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Proof. Define a sequence {xn} in C by x1 ∈ C and xn+1 = (1/2) Txn + (1/2) xn for
n ∈ N. Then by Lemma 6, lim supn ‖Txn − xn‖ = 0 holds. Define a continuous convex
function f from C into [0,∞) by

f(x) = lim sup
n→∞

‖xn − x‖

for all x ∈ C. Since C is weakly compact and f is weakly lower semicontinuous, there
exists z ∈ C such that

f(z) = min
{
f(x) : x ∈ C}.

Since

‖xn − Tz‖ ≤ 3 ‖Txn − xn‖+ ‖xn − z‖
by Lemma 7, we have f(Tz) ≤ f(z). Since f(z) is the minimum, f(Tz) = f(z) holds.
If Tz 6= z, then since f is strictly quasiconvex, we have

f(z) ≤ f

(
z + Tz

2

)
< max

{
f(z), f(Tz)

}
= f(z).

This is a contradiction. Hence Tz = z. ¤
We finally prove the existence of common fixed points for families of mappings.

Theorem 6. Let C be a weakly compact convex subset of a UCED Banach space E.
Let S be a family of commuting mappings on C satisfying Condition (C). Then S has
a common fixed point.

Proof. Let T1, T2, · · · , T` ∈ S. By Theorem 5, T1 has a fixed point in C, that is,
F (T1) 6= ∅. By Lemma 4, F (T1) is closed and convex. We assume that A :=

⋂k−1
j=1 F (Tj)

is nonempty, closed and convex for some k ∈ N with 1 < k ≤ `. For x ∈ A and j ∈ N
with 1 ≤ j < k, since Tk ◦ Tj = Tj ◦ Tk, we have

Tkx = Tk ◦ Tjx = Tj ◦ Tkx,

thus Tkx is a fixed point of Tj, which implies Tkx ∈ A. Therefore we obtain Tk(A) ⊂ A.
By Theorem 5, Tk has a fixed point in A, that is,

A ∩ F (Tk) =
k⋂

j=1

F (Tj) 6= ∅.

Also, the set is closed and convex by Lemma 4. By induction, we obtain
⋂`

j=1 F (Tj) 6= ∅.

In other words,
{
F (T ) : T ∈ S

}
has the finite intersection property. Since C is weakly

compact and F (T ) is weakly closed for every T ∈ S, we have
⋂

T∈S F (T ) 6= ∅. ¤
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