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Stability Analyses of Information-Theoretic Blind
Separation Algorithms in the Case Where the Sources
‘Are Nonlinear Processes

Masashi Ohata and Kiyotoshi Matsuoka

Abstract—A basic approach to blind source separation is to de-
fine an index representing statistical dependency among the output
signals of the separator and minimize it with respect to the sepa-
rator’s parameters. The most natural index might be mutual in-
formation among the output signals of the separator. In the case of
convolutive mixture, however, since the signals must be treated as
time series, it becomes very complicated to concretely express the
mutual information as a function of the parameters. To cope with
this difficulty, in most of the conventional methods, the source sig-
nals are assumed to be independent identically distributed (i.i.d.)
or linear. Based on this assumption, some simpler indices are de-
fined, and their minimization is made by such an iterative calcu-
lation as the gradient method. In actual applications, however, the
sources are often not linear processes. This paper discusses what
will happen when those algorithms postulating the linearity of the
sources are applied to the case of nonlinear sources. An analysis
of local stability derives a couple of conditions guaranteeing that
the separator stably tends toward a desired one with iteration. The
obtained results reveal that those methods, which are based on the
minimization of some indices related to mutual information, do not
work well when the sources signals are far from linear.

Index Terms—Blind source separation, convolutive mixture, gra-
dient-type algorithm, mutual information, stability analysis.

[. INTRODUCTION

LIND source separation (BSS) is a method for recovering
a set of source signals from their mixtures without any
knowledge about the mixing process. It has been receiving a
great deal of attention from various fields as a new signal pro-
cessing technique. In view of the level of complexity, the mixing
process can be classified into two types: instantaneous mixture
and convolutive mixture. While early works for BSS dealt with
the former type [1], [2], [6], recent works are mainly concerned
with the latter type [3], [71, [8], [10], [11], [13], which is much
more difficult from the theoretical and computational points of
view. This paper deals with a class of BSS algorithms for con-
volutive mixture of sources.
A basic approach to BSS is to define an index representing
statistical dependency among the output signals of the separator
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and minimize it with respect to the parameters of the separator.
The most natural index might be mutual information among the
output signals [11], [13]. In the case of convolutive mixture,
however, since the signals must be treated as time series, it is
very complicated to concretely express the mutual information
as a function of the separator’s parameters. To cope with this dif-
ficulty, in some conventional methods based on the minimiza-
tion of mutual information, the source signals are assumed to be
i.i.d. or linear processes. A time series is called linear if it can be
transformed to an i.i.d. signal with a linear filter. Based on this
assumption, some simpler indices are introduced, and the mini-
mization is made by such an iterative calculation as the gradient
method.

In actual applications of BSS, however, the sources are not
necessarily linear. The question dealt with in this paper is: “Do
those algorithms work well even if the sources are not linear?”
As far as we know, there is no report that discusses this issue.
The problem is equivalent to discussing stability of the algo-
rithms as described in [2], [4], [6]. and [9]. This paper shows
some conditions guaranteeing that the separator stably tends to
a desired one with the iteration. The obtained result will reveal
that some conventional algorithms (based on the minimization
of some indices related to mutual information) do not work well
when the sources signals are far from linear.

This paper is structured as follows. Section Il gives a for-
mulation of BSS problems. Section III introduces two evalua-
tion functions for BSS. Section IV shows a stability analysis
for a finite-dimensional process, and Section V extends it to an
infinite-dimensional process. Section VI shows an example to
demonstrate the validity of the analyses. Section VII discusses
the relation between our results and the conventional results [2],
[11]. Section VIII is devoted to the conclusion.

1I. MIXING PROCESS AND THE DEMIXING PROCESS

Let us consider a situation where statistically independent
random signals s;(t) (i = 1,...,N) are generated by N
sources and their mixtures are observed through N sensors.
It is assumed that every source signal s;(f) is a stationary
random process with zero mean, and the sensors’ outputs

x;(t) (i = 1,...,N) are given by a linear mixing process
x(t) = A(r)s(t — ) = A(2)s(t) (1)
=0

where s(t) = [.ﬂr(a),.__,.q,\-(r)]"',x(:._) 2 [51(t), .., an(t)]",
and A(z) = 307, A(7)z 7. Here, z represents the time-shift
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operator (2~ 's(t) = s(t — 1)) and will also be used as a com-
plex variable. It is known that at most one source signal is al-
lowed to be Gaussian to realize BSS.

The word “mixing” means that A(z) is not a diagonal matrix
or, more precisely, A(z) cannot be diagonalized by multiplying
any permutation matrix. In what follows, we will not refer to the
matter of permutation to avoid immaterial discussion. For the
mixing process, we assume two conditions: >~ o [|A(7)|| <
oo and det A(z) # 0 for [z| = 1, where || - || denotes the
Frobenius norm of a matrix. The first condition states that the
mixing process is stable, and the second one implies that A(z)
is invertible, although the inverse A ~'(z) may not be a causal
system.

To recover the source signals from the sensor signals, we con-
sider a demixing process (which will be referred to as the sepa-
rator) of the form

Z W(r)x(t—71) =

T=—00

y(t) = W(z)x(t) (2)

where y(£) 2 [n(),...,yn(®)]", and W(z) 2
3% W(r) 2z 7. If the mixing process A(z) is known
beforehand, the source signals can be recovered or separated by
setting W (z) = A~1(z), of course. The essential difficulty of
BSS is that we are placed in a restricted condition where A(z)
or A~'(z) must be estimated from the observed data x(¢) only.
Besides, the impulse response { W(7)} might need to take a
noncausal form in general, i.e., W(7) # O (7 < 0). This
causes the design of adaptive BSS algorithms to be somewhat
complicated, but this issue is of no concern in this paper.

In BSS of a convolutive mixture, the definition of the source
signals has an indeterminacy. Namely, if s;(t),...,sy(f)
are source signals, their arbitrarily linear-filtered signals
by(z)si(t),...,by(2)sn(t) can also be considered to be
source signals because they are also mutually independent;
the mixing process is then A(z)diag {bl_l(z), . o b‘,_\,l(z)}.
There is no way to distinguish between them because the only
information we are given a priori is the fact that the sources are
mutually independent and that the mixing process is a linear
one.

A source signal s;(t) is called linear if it can be expressed as
si(t) = ei(2)ei(t), where ¢;(2) is a linear filter and ¢;(#) is an
i.i.d. signal. Conventional methods usually assume this linearity
of the sources, and the separator is designed to provide e;(#). In
the context of blind separation of linearly mixed signals, there
is no substantial difference between “i.i.d. sources” and “linear
sources.” As opposed to most of the conventional works, this
paper deals with the generic case that the sources are not neces-
sarily linear.

ITII. COUPLE OF INDICES EVALUATING MUTUAL INDEPENDENCE
AMONG THE SEPARATOR’S OUTPUTS

In what follows, we write a time series {... ,y(—1),
y(0),y(L),...} as y(-) to discriminate it from y(t) at an
instant of time ¢{. Moreover, we will sometimes use such words
as “mutual independence of y(-)” and “mutual information of

v
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v(-)" instead of using the lengthy words “mutual independence
among yi(-),...,y~(-)” and “mutual information among
T} ) IR 71 )

A basic strategy of BSS is to determine W(z) so that the
separator’s output ¥ (-) will be mutually independent. The most
natural index representing the independence may be the mutual
information defined by

I(W(z

Z h[yi(-

—hy()] (3)

where A[y;(+)] and h[y(-)] are marginal and joint entropy rates
of y(-). The entropy rate is defined as an average entropy per
unit time Ay ()] £ limg, oo H [y(1),...,¥(T0)] /To, where
H|...] denotes the joint entropy of [...].

The output y(-) of the separator is independent iff [ (W(z))
takes the minimum, which is zero. Therefore, it might seem that
a desired separator could be obtained by minimizing I (W(z)),
utilizing such an iterative optimization as the gradient method

AW(T) = — (t%‘%f}—))
-  Oh[yi()]  oh[y()]
S (; OW(r)  OW(r) ) “

Actually, however, this approach has a serious difficulty. In
order to express Jh[y;(-)] /OW(r) concretely, we need to
introduce a parametric model M) (y;(+), ©,) for 7;(-) and to
estimate the parameter set ©; from a sample data of y;(-) (or
x(-)). However, since y;(-) is neither Gaussian nor white, the
model would be very complicated to build. [On the other hand,
itis simple to calculate 9h [y (-)] /OW (1), at least formally. Ac-
cording to [13], the entropy rate h [y(-)] is given by h [y ()] =
3g|_.|:1l"g|(10t W( ) z='dz + h[x(-)]. Therefore, we have
ohly(:)] JOW(r) = ()j’ =L log |det W(z)| z~tdz/OW(7),
requiring no statlstlcal estlmatlon ]

If the sources are iid. or linear, we can replace the
entropy rate h | J,( )] in (3) with the entropy H [y:(t)]
(= —F [log pi(yi(t))], where p;(u) is the pdf of y;(t))

IV (W(z) Z H [yi(t)

= hiy(")]

(%)

Function g (y;(-)) £ H [:(t)] — h [y:(+)] is, so to say, the mu-
tual information of y;(-); it is non-negative and takes zero only
when ;(+) is i.i.d. Obviously, if the source signals are linear,
minimization of /™) (W(z)) will give a desired separator, for
which y(-) is mutually independent and y,(-) (i = 1,...,N)
becomes i.i.d. In this case, we have only to consider a parametric
model M) (y,(t),8;) for y;(t) and not for g, ().

If the pdf ¢;(u) of the i.i.d. source signal s;(t) is known be-
forehand, we can consider a further simpler index [5]. We re-
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place H [yi(t)] (= —E [log p; (:(t))]) with —E [log q; (i(t))]
as

1 (W(z)

%Z (—E[log gi (v:(1))])

Wi+ 3 (st 5[ 20).

In this equation, FE[logp; (vi(t)) /q: (vi(t))] is the di-
vergence of ¢;(u) with respect to p;(u). It is obvious
that /* (W(z)) takes the minimum, which is zero, for
W(2), yielding y(t) = s(t). Term E[log g (3i(t))] can
easily be estimated, u&.mg a set of sample data of y,;(t) as
Eflogqi (yi(t)] = Y5, logq: (y:(t))/L. In this case, no
parameter estimation is required (other than W(z)). Since
the pdf of each source signal is unknown in actual situations,
the pdf ¢;(u) is just a roughly conjectured model of a source.
However, it is known that a desired separator can be obtained
by minimizing I®) (W(2)), even if ¢;(u) are not exactly
identical to the real pdf of the sources [2].

Thus, for linear sources, we can obtain a desired sepa-
rator by minimizing ™ (W(z)) (m = 1,2) with respect
to W(z). In other words, adopting the gradient algorithm
AW(7) = —adI™ (W(z)) /OW(7), the separator W (z)
converges stably to a desired solution if the modification rate
« is sufficiently small and the initial value of the separator is
appropriately chosen. In the case that the sources are nonlinear,
however, we might have to perform minimization of I (W(z)),
but this is cumbersome for the reason mentioned above. Now,
we encounter a question: “Does minimization of (™) (W(z))
give a desired separator even if the sources are not linear?” This
paper will answer this question.

As shown before, the definition of source signals has a certain
indeterminacy, and hence, so does the definition of a desired
separator. In the following, we will eliminate the indeterminacy.
Let D be the set of all the separators that make y/(-) mutually
independent. Then, for W(z) € D, indices I()) (W(z)) and
I (W(2)) reduce to

N
)= gwi() ()

= MD 8)

N
qi U:(’ J

1O W) =3 (o) + 2 o

i=1

~h[y()]

'Y (W(z)

We define the desired sepammr W) () (m = 1,2) as a
Minimum point of /'™ (W(z)) in D and denote the output of
the desired separator by y*(™)(t ). ie.,
Y = [, 0] 2 W Ex()
(9
Signal 4*™)(¢) or 4 "™ () cin be considered to be a source
Signal normalized in accordance with an index with which
We are concerned. Note that this definition of the normalized
Sources depends only on a property of the sources [and qi(u)
for 1) (wy( (2))] and not on the mixing process A (z).

Now, the aforementioned question has become more specific:
“Under what condition is the desired separator W*(™)(z) a
minimum point of /™) (W(z))?” The condition will be ex-
pressed in terms of the normalized source signals defined above.
It should, however, be noted that we will only discuss local min-
imality of the desired separator in the following.

IV. ANALYSIS FOR A FINITE-DIMENSIONAL PROCESS
A. Matrix Representation of the Process

The sensor signal x(-) is nonperiodic, in general, of course.
In this section, however, to simplify mathematical treatment, we
consider the case that x(-) is a stationary but periodic random
signal (with a very long period 7}). Here, the word “stationary”
means that x(-) is stationary in the sense of ensemble. On the
other hand, the word “periodic” means that any sample of x(-)
is periodic with a fixed period Ty, i.e., x(t+7T,) = x(t) forevery
t. Since the set of periodic functions forms a finite-dimensional
(Ty-dimensional) vector space, the separator can be expressed
in a matrix form as follows. It should be noted that this section
is just a preliminary step to derive our main result in Section V,
where the source signals are nonperiodic.

Due to the periodicity of the sensor signal, (2) can be written
as

To—1 oo
Z Z W(r + nTo)x(t — 7 — nTy)
=0 n=-c0
To—1 o0
= Z Z W(r + nTy)x(t —7)
7=0 n=—oc¢
Ty—1

=) Wi
=0
where W(7) £ 3°°° W (7 + nTp). Obviously, the sepa-
rator’s output y(1) is also stationary and periodic. Define the
following vectors and matrices:

x(t — 1) (10)

[ i1 [ &:(1)
Xn = %
LT3y Hz"a(]h}
[ vi1 [ (1)
yVi = : 2 :
L yiT, | %i(To)
[ x) Yi
A 2 Fay
X = i ] y - -
L XN ¥n
w;;(0) w;(Ty — 1) w;5(1)
- w;;(1) w;;(0) w;;(2)
iy = . B 3
L3 (To — 1) w;(To — 2) w;;(0)
Wi Win
W 2 : :
LWy, Wan

Vectors x; and y; are finite-dimensional representations of
x;(-) and y;(-), and note that matrix W;; is a circulant ma-
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trix. Then, the input-output relation of the separator can be
expressed simply as
y = Wx. (11)

Corresponding to T (W(2)), IV (W (z)), and I®) (W (z)),
we define

N
I(W) :ZH[y,-] — Hly] (12)
z;l -
1O(W) =33 Hlyal - H] (13)
'l.:].ht;:lﬂ]
IOW) =-3"%" Eflogai(y)] - Hlyl. (14
=1 t=1

The desired separator W*(™) (m = 1,2) can be defined in
a similar way to W*("™)(z); it is the separator that minimizes
I(™) (W) with I(W) = 0. Corresponding to (9), the normal-

ized source signals y. ™) are defined as
*(m)
e § o | 2w, (15)
e{m)
N

Later, we will give the condition for W*(M) to (locally) mini-
mize function 1™ (W). For simplicity of notation, superscript
(m) will often be omitted.

Finally, we note that due the stationarity of ;(-), the pdf of
;¢ is equivalent for every t; therefore, we can write it as pi(u).
Similarly, the pdf of variable 4, is denoted as p; (u). From this
stationarity, we have such trivial equations as H[y;1| = - =
H [yiz,] and E [log g; (yir)] = -~ = Eflog g (yir,)]-

B. Analysis of IV (W)

Let us define two kinds of parameters that specify certain
statistical properties of the normalized source signal y;. One
set of parameters is the covariance matrix R; of y;':

R: £E [y!y;T]

T‘;(O) T‘i(l) T'-,:(T(] = 1)
B ‘I‘i(TU - l) ‘i".i(U) T‘i(TU — 2)
”‘:‘.(Il) ?"s@) Ti(-o)

where r;(7) is the correlation function of y; (-). Due to the peri-
odicity of 37 (-), the correlation function is not only symmetric
but also periodic; 7;(7) = r;(—7) = 7:(To — 7).

As another parameter, we introduce an index representing the
degree of non-Gaussianity of y7,:

d* log pi(yt,)
. . © \Jit
[ du?

- /m (ﬂ(“))zriu
oo Pi(0)

= — / pr(u)log p; (u)du

2

T

(16)
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where () £ d( )/du. In the above equation, we have assumed
that p?(u) — 0 and p;(u)logp](u) — 0 (u — Foo); such
regularity conditions are assumed to hold throughout the paper.
According to Schwarz’s inequality, we have

i 0 (u ’
LCRINCEOR
x \//00 (upj‘(u)[/"z)2 du

> / Pr (u)udu
—o0

= / pi(u)du
=1

where o? is the variance of y,. Thus, we have

nios > 1. (17)

The equality in (17) holds only when p}(u)/p;(u)'/? o
upt(u)'/? or dlogp}(u)/du oc wu, ie., when pi(u) is a
Gaussian distribution [6].

Now, we show a theorem that states local minimality of
TO(W) at W = W*(1), which is expressed in terms of the
two kinds of parameters. :

Theorem 1: Matrix W*() (locally) minimizes I (W) if
and only if the following matrix is positive definite for every
pair of 2 and j (i # Jj):

My e [r8 1]

I ;R (18}

where I is the identity matrix.

Proof: We consider a small perturbation dW from
W (= W) ie, W = W* + dW is in the vicinity of
W*. Then, the output y of the separator becomes

y=(W"'+dW)x=y" +dy (19)

where dy £ JWx. In order to prove the theorem, we show that
under the premise in the theorem, the function

FAW) 21D (W* + dW) — T'D(W™)
N Ty
= Z Z (Hyie] = H [y3))
i=1 t=1

— (Hly] - H[y"])

is a positive definite (precisely speaking, positive semi-definite)
quadratic form with respect to dW. ;
Following [2], we put dV = dWW "', which is of the form

(20)

an dV;'_z dVlN
dV = ‘N‘“ .
: dV (n-1)n
(N{\“ dVN(N—l) dVNN

and whose block element dV; is a circulant matrix becaus¢
every block element of dW and W* is circulant. Then, (19)
reads

y=(I+dV)y" =y +dy (21)
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where L is the NTy x NTj identity matrix, and dy = dV v
Hereafter, we treat f(dW) as a function with respect to dV;
f(dV) = f(dW).

It can be shown that f(dV) can be decomposed as
f(dV) ' ({dVi;}) + f7({dVi;}); the first term and
the second one contain only {dV;} and {dV,;; i # j},
respectively. According to the definition of the normalized
sources, f'({dV;;}) is positive (semi-)definite. Therefore,
we have only to show that f”({dV,;}), or f(dV) with
dVii = O (i = 1,...,N), is positive definite. Hereafter, we
assume dV;; = O. Then, dy; induced by dV is

N
dy; = Z dVi;y;.

J=lj#e

(22)

Notice that y is independent of y; (j # i) and, hence, inde-
pendent of dy;. The covariance matrix of dy; is F [rjy,:dyf"] =
Ej\’:l!#; dV;;R;dV, and we have

FE [dy;-zt] :Ltr (E {dyiriy:r])
T

N
:,If > tr(dVyR;dVE). (23)
O =1

The followmg proof has three steps: In Step 1, we calculate
fi(dV) £ Z;il 2o (Hlyi) — H[y)); in Step 2, we calcu-
late f>(dV) = H[y] — H[y*]; in Step 3, we examine positive
definiteness of f(dV) = f1(dV) — fo(dV).

Step 1) In the beginning, let us express the pdf p;(u) of
Yir using the pdf p(u) of y,. The conditional probability
pi(uldy;:) of yi; when given dy;; is p! (v — dys;); there-
fore, p;(u) can be obtained by taking its expectation with
respect to dy;,:

pi(u) = E [p; (uldyi:)] = E [p} (u — dy,,)].

Expanding p! (u — dy;;) up to the second-order term of
dy;t, we have

(24)

* * « K 1 s
pi (u = dyie) = pi(u) = I (w)dyie + 557 (wdyfy.  (25)
Taking expectation with respect to dy;,, we find
. L sz o
pi(u) = p}(u) + §pi('ra)b [du?] - (26)

Here, we have used the assumption that dy;, has zero mean.
From (26), we have

pi(w) (o 1pi(u) s
log ] log (1 5 felas) E [dyi,] 27)
or
= log p;(u) + log p! (u) = AL (u) E [r}f?,r?'] . (28)
2 2 pl(“’) st

Multiplying both the sides with p;(u) and performing in-
tegration, we have

/ i(w) log p; (u)du + /.p.i(u)Iog;)f.(u)du
%/ H(u)duFE [dt/t] =

. (29)

Using (26) again, the second term in the left side is given
by

fp,‘(u} log p (w)du = /pl (u)log p; (u)du
1 2
+§ fﬁr(u) log p! (u)du E {dy,;]]. (30$)
Combining (29) and (30), we obtain
- fpi(u) log p; (u)du + fpf(u) log p7 (u)du
1 Lok * 2 )
=3 | ¥ (u) log p! (u)du F [dyit]. (31)

From (16) and (23) and the definition of entropy, we have

N
1
Hly:] — H [y}, = T > w(dVyR;dvEh). (32
1=1j#1
Thus, we find
N T
- Z (Hlyie] = H [y])
i=1 t=1
LA
= Z Z mtr (dVi;R;dVE).  (33)
i=1 j=1;j#i
Step 2) It is easy to show that
fa(dV) =H[y] - H [y*]
=logdet (I+dV)
LA
g Z Z r(dV;:dVy;). (34)
Step 3) Function f( )= [1(dV) — f2(dV) becomes

+n]dV R, dvT +dVydVji+dV V). (35)

Since dV;; and R; are both circulant matrices, the
multiplication of them is commutative. Accordingly
dVURJOJrV:{; = (RJIIV,J)dV;‘; = dV,T;RJ(),rV,J holds,
and we have

1 N N
F(dv) :52 ¥ tr(de,?;Rjr[Vij

i=1 j=1,j>i
01z 'l’]j(‘[Vj.,jR,‘_dVﬁ
+dVIPTAVT, + dV;dV; J-)

dV;
tr ([Jv_?; dVj; | MY [de D

1 N N
SIS
i=1 j=1,j>i

(36)

It follows from this equation that f (dV 1s a positive def-
inite function if and only if matrices M (i # 7) are all
positive definite.

]
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C. Analysis of I'®)(W)

In this case, the positive definiteness of I(*)(W) around
W* (= W*?) is given in terms of the covariance matrices
R.;; and parameters #; delined by

& [M] ) (37)
du?
Usually, ¢;(1) is chosen such that d log ¢; (1) /du is a monoton-
ically decreasing function, and then «; is positive.

Theorem 2: Matrix W*) (locally) minimizes I(*)(W) if
and only if the following matrix is positive definite for every
pairof 2 and 7 (2 # j):

) a BRI
Mij a |: 1 K-jR,j ’

Proof: [Most of the variables are used without explanation
because they are given in Section IV-B or can be defined simi-
larly.] What we have to do is to show that the following function
is a positive definite function:

f(dV) =I®D(W* + dW)

N Ty

Y3

i=1 =1

— (Hly]-Hly"]).

In this equation, ¥ [log q; ()] —
lated as follows:

/ (pi(uw) — p;(u))log qg;(u)du

(38)

_ 7@ (W*)

log ¢i(yie)] — E [log ¢ (v},)])

(39)

FE log q;(y},)] can be calcu-

1
== /p:(u) log q;(u)du & [dy.m [from (26)]

1 dlogg; - .
—= /g)’,;‘(u} 08 i(t) du k2 [dy?,] (partial integration)

2, du
1 [ .. .d*loggi(u) 5 o .
. 5 / P (“)Tdu E [d?!irJ (partial integration)
L N
= 72—T0r.¢1 Z tr ((iV,-,-R.jdVE) [from (23) and (37)].
J=1,7#1

Here, we have assumed that p!(u — 0 and
pi(u)log gi(u)/du — 0 (u — +00).

Thus, we have

)og q; ('“'_)

tr(n dVi;R;dVT

+ £;dV;; RidV 7,
+dV;dV ;i + dv,,;dvij). (40)

In the same way as Theorem 1, we can show that this function
is positive definite if and only if matrices MEJ-) (i # 7) are all
positive definite. ]

1
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V. ANALYSIS OF AN INFINITE-DIMENSIONAL PROCESS

In Section 1V, we derived a stability condition of the iterative
algorithm for the case that the source signals are periodic, sta-
tionary processes. Letting the period Ty tend to infinity, we can
obtain a stability condition for a nonperiodic, stationary process.
To perform that, we first express the condition M ™ > 0inan-
other form using the eigenvenvalues of the covarlance matrix
Ri. i

Since covariance matrix R; is a circulant matrix, its eigen-
values \;(n) (n = 1,...,Ty) can explicitly be expressed, using
the elements r;(7) of R;, as

Tp—1

> rilr)wy

7=0

Ai(n) = (41)
where w,, 2 exp (—j2nn/Tp), and j is the imaginary unit. Note
that \;(n) is a non-negative real number. The corresponding
(unit) eigenvectors are h,, = 1//Tp [w?, ..., wlP "1]T (12].
Let H be a matrix defined by '

sy
H=[h hr, |
0 0 0
wll w% e “"’{u
1 Wi Wa Yy
e — : (42)
VT e :
Toy—1 Ty—1 Ty—1
Wy Wa Wi

It can easily be shown that this is a unitary matrix; HHJ[ =
I, where Hf
matrix R; can be written as R; =
diag {Ai(1), ..., A(To) }-

Using H, matnx MEJ

represents the conjugate transpose of H. Then,

HA,HT, where A; =

is represented as

M(_J_)[mHAJHT I ]
U I HA,HT
n; HA,

[H O Hl o

_[0 H]UU[O HT] (43)
where

- T],'Aj I

U'Lj _[ I Tfin} ¥ (44)

Since MS) is thus unitarily equivalent to U;;, the positive def-
initeness of ME:) is equivalent to that of U;;. This leads to an-
other form of condition for W*(1) to give a local minimum of
IV (W). Namely, the condition is U;; > 0 or
min; Ai(n)Aj(n) > 1

forevery n (= 1,...,Tp).

Since 7;(7) is a periodic function with period T}, the eigen-
value \;(n) can be rewritten as

(45)

To—1

Ai{?t) — Z ‘f'.‘(T)t: ~32mnT /Ty
=0

iTuZ/?J

T=[-Ty/2|

’.L_(T)rfijTm.r/Tn

(46)

where [u] denotes the maximum integer not greater than u.
Thus far, we have assumed that y*(-) is a periodic (hence fi-
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nite-dimensional) random process. Now, we regard the periodic
process as an approximation of a nonperiodic (infinite-dimen-
sional) random process whose correlation function 7;(7) is
equivalent to r;(7) for [=Ty /2] < 7 < [Ty/?2] and is otherwise
zero for a sufficiently large Ty. Fixing f £ n/T} and letting 7},
and n tend to infinity, we obtain from (46)

(= =}

Ailn) = Y Fl(r)e T £ @y(f).

T=—00

lim

i (47)
Function ®; ( f) is nothing but the power spectrum of the original
(nonperiodic) process. Thus, we obtain the following theorem.

Theorem 3: The desired separator W*1)(2) (locally) mini-
mizes [ (W(z)) if and only if the following inequality holds
for every pair of 7 and j (i # j) and for every frequency f:

nin; P (F)P;(f) > 1. (48)

In addition, for I*) (W(z)), we can obtain a similar theorem.
Theorem 4: The desired separator W*(E)(z) (locally) mini-
mizes [?) (W(z)) if and only if k; > 0 (i = 1,...,N), and
the following inequality holds for every pair of ¢ and j (i # j)
and for every frequency f:
rik i(f)®;(f) > 1. (49)
It should be noted that the conditions in these theorems do
not depend on the mixing process A(z). Local minimality of

W*(m)(2) is relevant only to certain statistical properties of
the source signals.

VI. EXAMPLE

Here, we show how Theorem 4 can be used in an actual im-

plementation of BSS. For the minimization of [(?) (W(z)) A
N

Yoim (—E[log g (wi(t))]) — h [y(-)], Amari et al. [3] proposes
the following on-line algorithm:

AW(r) = a {wm ~o(y(H) Yyt~ T+ )W ()

(50)
where o (y(t) = [p1 (), on (yn(t)]", and
@i(u) = —dlogg;i(u)/du. When some samples of the source

signals s;(t) have been given, we can determine whether or not
those signals can be separated from their mixtures by the above
iterative calculation, as follows.

Procedure:

Step [: Consider a (temporal) decorrelator w,(t) =
w(z)s;(t), which is a special case of (2) (N = 1).
Minimize 152) (w(z)) £ —E[ogaq (yi()] — hwi()).
using the algorithm (50) with N = 1. Then, the resultant
output y; () gives the normalized source 7 (t) associated
with 7(2) (W (z)).
Step 2. For the obtained normalized sources, calculate x;
and @, ( f), and check the stability condition (49).
(The reader might think that the samples of the source signals
tannot be obtained before source separation is made, but the
Same situation also occurs when the source signals are linear.)

A== C=0.70

ot ; ; ; i i |
0 005 0.1 0.15 02 025 03 0.35 04 045 0.5
frequency f
Fig. 1. Value of k ko ®, (f)P( f) for C = 0.70, 0.75, and 0.8.

Here, we show an example. The mixing process is a
two-input, two-output system, and for the two sources, we
consider binary-valued random signals generated by a Markov
chain given by

(1+0C)
2
(1-0)

&

Pr{si(t) =+1

si(t—1)=+1} =

Pr{si(t) =F ls;(t - 1) = £} =

(51)

where parameter (' takes a value between 0 and 1. When O
is equal to 0, source s;(t) is linear (i.i.d.). As the parameter
C' increases, nonlinearity of s;(t) is enhanced. For ¢;(u), we
use ¢; (1) o e~*'/% (or p;(u) = u3), which is a sub-Gaussian
distribution. Performing Step 1, we find (a couple of samples
of) the normalized source signals. Using these, we can estimate
ki and ;( f).

Theorem 4 states that the value of 1 ro® (f)®2(f) gives an
index evaluating the stability of the process. If the value of this
index is greater (smaller) than unity for every (some) f, then
the desired separator will be stable (unstable). Fig. 1 shows the
value of k1 ko P (f)P2( f) as a function of frequency f; only the
cases of C' = 0.70, 0.75, and 0.80 are shown. From this, we can
predict that the algorithm (50) will not give a desired solution
when C exceeds around 0.75.

Next, we see what actually happens when BSS is performed
using the algorithm (with N = 2). Since the stability does not
depend on the mixing process, we here set A(z) = I and use
the normalized source signals for the sources. Then, the desired
separator is I. We define the (square) distance between the actual
separating matrix W (z) and the desired separator I as

D(W(2),I) £ [W(O) - I + > _[W()II*.  (52)
T#0

Fig. 2 shows the final distance D(W(z),I) after a sufficiently
large number of iterations; the initial value of W{(z) is L. This
figure shows that the desired separator W*(z) = I becomes
suddenly unstable when €' exceeds around 0.75. This coincides
well with the prediction obtained from the stability condition.
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1 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
Parameter C of the Markov chain

0 . s

Fig. 2. Final distance between the desired separator I and the actual separator
D (W (=), 1) after a sufficiently large number of iterations.

VII. DISCUSSION

When a desired separator is sought by the calculation
AW (1) = —adl® (W(z)) /OW(7), Theorem 3 gives the
stability condition of the iterative process. If the sources are
linear, their normalized source signals y!(-) become white,
ie., ®;(f) = ri(0) = o7 for every f. Therefore, the stability
condition (48) reads

mnjoio; > 1 (i # j). (53)
This inequality always holds as long as the sources are
non-Gaussian because then, ;07 > 1. In the nonlinear
case, however, ®;(f) is not constant with f; therefore,
7:n;P:(f)®;(f) < 1 can occur for some f.

Let us see what is happening in IV (W(z)) =
I(W(z)) +E£\;1 g (y:(-)) (= 0). If the sources are linear, both
of the first and second terms become null for W (z) = W*(z),
implying that 1Y) (W (z)) never decreases for any perturbation
from W*(z). In the nonlinear case, however, Zfil g(yi(-))is
strictly positive. Therefore, Ef’;l g (y¥(-)) can possibly take a
smaller value by perturbing W(z) from W*(z) in a direction
toward the outside of D (which was defined in Section III),
although I (W(z)) becomes larger. As a result, there is a
possibility that in total, I") (W(z)) takes a smaller value
than IY) (W*(z)). In this situation, W*(z) cannot be a local
minimum point of (1) (W (z)).

As for I?) (W/(z)), the situation is a little more complicated.
When ¢, (u) has not been appropriately chosen, the source sig-
nals normalized in our sense are not necessarily i.i.d., even in
the linear case. If the normalized source signal y:(m(t) happen
to be i.i.d., then the following inequality holds:

5i®i(f) = kio? > L. (54)
This inequality comes from the stability condition given by
Douglas ef al. [11] and the fact that the normalization of the
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source signals is made to be stable with respect to “scale.”
In this case, inequality (49) is automatically satisfied. Such a
condition can be seen in [11], which deals with linear sources.
If the normalized sources are not i.i.d., the expression of the
stability condition contains the power spectra, and not just the
variances, as given in (49). Thus, including the case that the
sources are linear, Theorem 4 can be regarded a generalization
of the conventional result [2], [11].

VIII. CONCLUSION

The conventional BSS algorithms for convolutive mixture are
usually designed to whiten the separator’s output not only spa-
tially but also temporally (in the sense of non-Gaussian statis-
tics) and for the very reason they do not work well when the
source signals are far from i.i.d. (or linear). In this paper, we
have presented some conditions guaranteeing that certain gra-
dient-type algorithms based on mutual information are stable
in the vicinity of a desired solution. We also have shown an ex-
ample to show its applicability. The result suggests that it is very
important and challenging to design an algorithm that performs
BSS without the temporal whitening.
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