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Orientation fluctuation-induced spinodal decomposition in polymerliquid-crystal mixtures

Akihiko Matsuyam&; R. M. L. Evans, and M. E. Cates
Department of Physics and Astronomy, The University of Edinburgh, JCMB King's Building,
Mayfield Road, Edinburgh EH9 3JZ, Scotland, United Kingdom
(Received 4 October 1999

We study the early stages of spinodal decompositi®D) in polymer-liquid-crystal mixtures by solving
linearized time-dependent Landau-Ginzburg equations for concent(atoserved order parametemd ori-
entation(nonconserved order parametéfrhe theory takes into account a cross term between concentration and
orientation gradients, which becomes an important factor for phase separation kinetics. We calculate structure
factors for concentration and for orientation, depending on a quench temperature and concentration. We find a
new SD process driven by instability of the orientational order parameter. In this case, the average domain size
initially grows as a nontrivial and evolving power of time, which startst%5in our minimal model. The
domain growth is advanced by the coupling between the two order parameters.

PACS numbeps): 64.75+g, 61.30.Gd, 61.25.Hq

[. INTRODUCTION orientation fluctuations during the spinodal decomposition,
we calculate the structure factor for concentration and for
A homogeneous binary mixture quenched from a stablerientation using time-dependent Landau-Ginzb(rpLG)
into a thermodynamically unstable state within a phase diaequations for concentration and orientational order param-
gram develops into an inhomogeneous one. Among the vareters [4,21-27. Some years ago, Dorgan expressed the
ous kinetic mechanisms, spinodal decompositi®b) is in-  structure factors for concentration and for orientation in mix-
duced by the instability of the order paramet@sually  tures containing nematogens in term of the linearized TDLG
concentration which describes the systef]. In the early  [24]. Recently Chiu and Kyu simulated the dynamics of
stages, the SD .iS inter_’preted within the framework of thephase Separations in po|ymer_|iquid_crysta| mmtu[‘ég]
Cahn theory for isotropic systerig—4]. On the other hand, However, these theories eliminate the cross term between the
in the late stages, the SD is limited by diffusionlike processegradients of the two order parameters. Some authors have
(or by hydrodynamics, which we do not trea@nd exhibits  spown that this cross term plays a significant role on phase
slow coarsening. In this diffusive coarsening regime, the dogeparation kinetics of solutions containing liquid crystals or
mains of the conserved order parameter growt'dswith  jiquid-crystalline polymerg26—28. In this paper we take
time t [3,5]. On the other hand, for the case of a noncon-inty account the cross term and calculate the structure factor
served order parameter such as the polarization of a ferrgyy concentration and for orientation using the linearized
electric solid, we may have the’* law [3,6]. In polymer—  TDLG. The aim of this paper is to study the early stages of
liquid-crystal mixtures, we can expect co-occurrenceéghe SD. Depending on the concentration of liquid crystal, we
between phase separation and liquid crystalline orderingnd two types of SD. We discuss the possible mechanisms
such as nematic and smectic phases. Such inhomogeneqggs formations of nematic droplets under the SD processes.
materials, described by one conserved order param@ier  \We also show simulations in one dimensidout without

centration and one nonconserved order paraméteienta-  |inearization to further understand our analytical results for
tional order parametgrare important for not only fundamen- the structure factors.

tal scientific reasons but also technological applications in
high modulus fiber and electro-optical devi¢&s8.

In polymer-liquid-crystal mixture$9-18), biphasic re- |, o ASE DIAGRAMS OF POLYMER —LIQUID-CRYSTAL

gions between an isotropic and a nematic phase appear be-
e . . MIXTURES
low the nematic-isotropic transitiofiNIT) temperature of the
pure liquid-crystal moleculémesogep When the system is In this section we introduce the free energy to describe the

thermally quenched from a stable isotropic phase into amstatic phase diagrams. There are many theories to describe
unstable part of the biphasic region, the fluctuations of conthe phase behaviors of polymer-liquid-crystal mixtUre3—
centration and of orientation take place and isotropic or nemi8]. We here focus on sufficiently flexible polymer chains
atic droplets appear with timgl9,20. The instability of and so we neglect the orientational ordering of the polymer
these systems is driven by the competition between phasehains. In this paper we use for simplicity the Landau expan-
separation and nematic ordering. sion form for the nematic free enerd$8,29. The dimen-
To elucidate the time evolution of the concentration andsionless equilibrium free energy densit),S) of polymer—
liquid-crystal mixtures is given by combining the Flory-
Huggins theon}30] for isotropic mixing of two components
*Permanent address: Department of Chemistry for Materials, Faswith the Maier-Saupe theory for nematic ordering
ulty of Engineering, Mie University, Tsu Mie 514, Japan. [29,31,3%:
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atic metastabléNm), and two unstable regions: an isotropic
unstable(lu; A) and a nematic unstabi@lu; B, C) [16-18.

On increasing the molecular weight, of the polymer, the
critical solution point shifts to higher temperatures and
higher concentrations of mesogens and the Nu and lu regions
also shift to higher temperatures and higher concentrations
with increasingn, [16-18.

Filled circles indicate temperature quenches from the
stable isotropic phase into the isotropic unstalle A) and
nematic unstabléNu;B, C) regions. The regionA), lying

1 below the isotropic spinodal curve and above the NIT line,
corresponds to a system which is initially unstable with re-
spect to concentration fluctuations, but metastable to orien-

FIG. 1. Phase diagram of a polymer—liquid-crystal mixture with tation fluctuations. The regionB{, between the isotropic
n,=n;=2 andwv/y=1.4. The solid curve refers to the binodal and spinodal curve and the NIT line, is initially unstable to both
the dotted line shows the first-order NIT line. The dash-dotted lineconcentration and orientation fluctuations. In the redich
shows the spinodal. Filled circles indicate temperature quenchdsetween the isotropic spinodal curve and the nematic spin-
from the stable isotropic phase into the isotropic unstéhieA)  odal curve, the system is initially unstable with respect to

and nematic unstabiNu; B, C) regions. orientation fluctuations, but metastable to concentration fluc-
tuations. Thus if we thermally quench from an isotropic
1-¢ b phase to these different regions, we can expect a variety of
f(¢,5)= n In(1-¢)+ n_,ln ¢+ xp(1-¢) SD processes even in the early stages. In the next section we
P consider the phase separation dynamics for two order param-
e % l_g s gs3+ gsﬂ (2.1 eters appropriate to this problem.

whereg is the volume fraction of the liquid crystals ag&ds Il KINETIC EQUATIONS

the “scalar” orientational order parameter of the liquid crys-  We consider polymer-mesogen mixtures described by one

tals discussed further below,p is the number of segments conserved order parametemolume fractiong of mesogehn

on the polymern, is axis ratio of the liquid crystal molecule, and one nonconserved order paraméterentational order

and7=nyv¢. The valuey(=U,/kgT) is the Flory-Huggins  parameterS;;). Since the orientational order parameter is a

interaction parameter related to isotropic interactions betraceless symmetric tensor, its components can be expressed

tween unlike molecular species and=U,/kgT) param- as[33,34

etrizes the orientation-dependdiMaier-Saupg interactions

between the mesogef32]. The coexistencéinoda) curve 3 1

of the phase equilibrium is derived by a double tangent S;=5S(| ni(nn;(r)— 33|,

method where the equilibrium volume fractions fall on the 2 3

same tangent line to the free energy curve. The spinodal line,

which separates metastable from unstable compositions, ighere i,j=x,y,z denote the components along three or-

given by the inflection point of the free energy’t/d$?)+  thogonal coordinate axes(r) is a local director, an&(r) is

=0. the scalar orientational order parameter referred to previ-
A typical phase diagram on the temperature-concentratiopusly. The dynamics of the mixture is described by the

plane is shown in Fig. 1 which is calculated withy=n, coupled time-dependent Ginzburg-Landau equatifi2&—

=2 and v/xy=1.4 [18]. The reduced temperature 28] for the two order parameters. In the inhomogeneous sys-

(=T/Ty,°) is normalized by the nematic-isotropic transition tem under nonequilibrium conditions, spatial variations oc-

(NIT) temperaturel,° of the pure liquid crystalat ¢=1). cur in the two order parameters. The total free enéFjycan

According to Eq.(2.1), this temperature is given byy,° be expressed in terms of a local bulk free energy density

=3n,U,/8kg where the nematic phase has 0.25[29]. The  f(¢,S;;) and the gradients of the two order parameters

critical solution point in the isotropic phase is@t=0.5 and [26,28,33:

7=0.95. The solid curve refers to the binodal and the dotted

line shows the first-order NIT of a hypothetical homoge- Ko

neous phase. The dash-dotted line shows the spinodal. Note|:[¢,51j]:f dr[f(¢,sj)+ ?(V¢)2+L0(ai $)(3;S;)

that the origin is suppressed on tkeaxis. Whenr=0.831,

we have a triple point where two isotropic liquid phases L, L,

(L4+L,) and a nematic phag®l) can simultaneously coex- + 7(aksj)2+ 7(aisik)(ajsjk) , (3.2

ist. Below the triple point, we have the two-phase coexist-

ence between an isotropic and a nematic phase. Such phase

diagrams are observed in mixturesmefetracosane and nem- where the free energlf andf are dimensionless quantities

atic liquid crystal[11]. In the biphasic region between the (divided by kgT), T is the absolute temperaturkg is the

nematic and the isotropic phases, we have two differenBoltzmann constant, andy, Lo, Ly, L, are phenomeno-

metastable regions: an isotropic metastdbie®) and a nem- logical coefficients derived from a mean field thef2$,27.

(3.9
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In this paper we take these coefficients as constant. Equatie@ntational order parameter evolves in such a way as to lower
(2.1) is recovered from the following expression for the bulk the free energy, but it must do so subject to the constraint

free energy density: that it remains traceless. The Lagrange multipiieiin Eq.
(3.8) will be chosen to ensure conservation of the tracg pf
1-¢ 4 [35].

We study here a linearized analysis of the phase separa-
tion kinetics and define variable®p(r,t) = ¢(r,t) — ¢ and

1 1 _
= _= 8S;i (r,t)=S(r,t)—S;; o, where¢y andS;; o are the values
+ =A(9)S;;S;i B(¢)S;i; SikSxi i i j.0 0 i.0
2 ()35 3 (#)S53S of concentration and orientation in the initial homogeneous

f(.S)= n—pln(1—¢)+ n_||n ¢+ xp(1- )

system, respectively. The equilibrium free energy can be ex-

+ }C(QS)Sjs'kSkISIi , (3.3  Panded about the initial homogeneous state of the uniform
4 concentration ¢,) and orientational orderg;; o) in the early
stage:
where
2 (8.5 = 100,50+ 25| 30+ 2| 55, 39
A(¢)=§(1_g) ve?, (3.9 e g 7S/

When this expansion is substituted into E(&7) and(3.8),
B 2 linear equations of motion are obtained féy and JS;,
B(¢)= 1_5’7V¢’ ' (3-9  \ith coefficients that depend on first and second derivatives
of the bulk free energy densitf(,S;;)o, which we shall
1 now evaluate.
C(¢)=2—777V¢2- (3.6 In this paper we consider thermal quenches from the
stable isotropic phase into the nematic unstable re@ian

In considering the nonequilibrium equations of motion for@nd the isotropic unstable regigtu) in Fig. 1. When the

our system, we adopt a thermodynamic point of view. Thehitial homogeneous state is isotropic, we can Sgp=0.

phenomenological equation of motion for the concentratiorf FoM Ed.(3.3), the required derivatives dfare then given
¢, which ensures local conservation of material, is given b)Py (91/0S;j)0=0, and by

[3,4] 1
fyo=(*f1d?) o= + —2x, (31
a(r,t) [ OF s0=( %o No(1=do)  Mdy X 319
. LeVise
f 4s=(*f1$3S;j)0=0, (3.11)
of
=r,v? ﬁ_KOVZ(ﬁ_LOaiajSij , (387  and the matrix of second derivatives with respecgjobe-
comes diagonal, with components
where the thermodynamic force which drives the flux is 2
given by the gradjgant of the chemical potentiak 6F/ ¢ fssaijz(azf/asﬁ)oz §v¢§(1—n|v¢0/3) Sij -
andI’ , is the mobility, assumed constant. On the other hand, 31
for the nonconserved order parame$gr, we take the local (3.12

rate of change to be linearly proportional to the local ther—ne first derivative 4f13), is nonzero but, being constant,

mogiynamic _force?F/aSj [3,4]. The equation of motion for i is removed by thev2 operator in Eq(3.7). Thus, substi-

S;j is then given by tuting Eq. (3.9) into the kinetic equation$3.7) and (3.8)
75, ( 1) yields the coupled partial differential equations

SF
ot :_FS g‘f’/\(r,t)a] P
: 1 0b(r 1) =T [ 4,28~ KoV*6p— LoV?4,0; 55,1,

of
=—F5&—S”—Loﬁi&j¢—L1VZS” (313
d
L — 58S =— - 0S: —Lndidi Sb— 253
—f(aiakskﬁa,-akski)+A(r,t)5i,}, 0 08(r.)= =T fss8y 6S;—Lodid; 0= L, V23S,

L
(39 ~ S (30SG+ 4 hIS) T A S|, (3.14

where the transport coefficienks, andI's are taken as con-

stant. The kinetic equations could in principle be made morevhere the indiceg of the first Kronecke® are not summed
general, by writing the Onsager coefficiehitas a matrix. over. Note that, for a quench from the isotropic phase as
This would allow one order parameter to be driven by gra-considered here, the only coupling betwegmandS;; enters
dients in the chemical potential of the otH&6]. However, through the cross-gradient coefficidry.

as this is not the phenomenon under investigation, we set the In the Fourier representation, the differential equations
off-diagonal matrix elements to zero for simplicity. The ori- (3.13 and(3.14 become
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J
E&i’(qat): —F¢q2[(f¢¢+ Kod?) d(a,t)
+L00di0;6S;(q,t) ], (3.15
J
55511‘((1"(): —T's} (fssdij +L19%) 8S;(a,t)
L
+ ?z[qukgskj(qvt) + 00k 0Si(a,t)]

+Lo0igj04(q,t) +A(q,t) ;1.  (3.16

The above equations are valid at early times, when the lin-
earization about the initialuniform, unorienteg state is
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Note that off-diagonal components &f; are decoupled,
and simply decay exponentially, with rate constBat ;q2,
or I'g(L;+L,)qg? if one coordinate index ig.

Adding Egs.(3.20, (3.21), and (3.22 and demanding
tracelessnessS(;=0) yields

L L
Ala.)=-5a%66(q.1) ~ 5 0?6S,4q.1). (3.29

Substituting this expression for the Lagrange multiplier into
Eq. (3.20, the equation of motion for the compone®y, of
the orientational order parameter becomes

]
21 95:40,1)=—¢(a) 6S,40,t) —d(q) 54(a,1),

valid. Since the initial state is isotropic, the response must be

independent of the directiog and so, following Ref[26],
we can define & axis to be oriented along, g;=q6;,. At

linear order, the concentration only couples to the component
S,, of the orientational order paramet8y . As a result, we

find

d
Eéqﬁ(q,t): —a(q) d¢(q,t)—b(q)dS,(q,t),

(3.17
a(q)=T y(f 44+ Koa*)d?, (3.18
b(a)=T4Loq", (3.19
for the concentration and
J
51 95Aa )=~ d fsst(Ly+ L2)a?18S,4q,t)
—Tslog®sp(q,t)—TsA(aq,t)  (3.20

for 8S,,. The other diagonal components of the orientationa

order parameter obey

J
Eésxx(qvt) = —T's(fsstL10%) 8Sx(a,H) —TsA (1),
(3.21)

J
Eésyy(qrt): —Ts(fsstL10%) 8S,(q,t) —TsA(q,t).
(3.22
The solution of Egs(3.21) and(3.22 for 8S,, and 8S, is
0S:(0,t) = 8S,(q,t)
= 0Sx(q,0)exp — e(q)t]
t
+1s Adanent - @ttt
(3.23
where

e(q)=Tg(fsstL107). (3.249

(3.26
where
2 2
c(q)=Ig fsst |—1+§L2 qc|, (3.27
2 2
d(Q)EgrsLoq : (3.28

Finally, the linearized coupled equations fé% and
8S,,, Egs.(3.17), (3.26), are solved, giving

0¢(q,t) =uy(g)exd w1 (q)t]+ux(q)exd w,(q)t],
(3.29

0S,(q,t) =uz(q)exd w1 (q)t]+ us(aq)exd w,(q)t],
(3.30

where the growth rates, and w, are given by

1
@U@ =5[-a@-c(@)+ V(c(g)—a(q))?+4b(q)d(a)],
(3.30)

1
wy(q)= 5[—a(q)—c(q)— Vlc(g)—a(g)]*+4b(q)d(a)],
(3.32

and the four coefficients in Eq€3.29 and(3.30 are given,
as a function of wave numbey, by

ui(q)= m{—[a’z(QHa(Q)WMQQ)
+b(0q)8S,4q,0)}, (3.33
Up(q)= m{[wl(Q)+a(Q)]5¢(q,0)
—b(q)S,4q,0)}, (3.39
us(q)= m{—[wz(Q)+C(Q)]53zz(q,0)
+d(q)d¢(q,0)}, (3.39
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0.2

055 0.15

Uy(q) = H{lexa)+c(@)]05;4a.0 o3

o
01(q)—wy(q
—d(q)d¢(q,0)}. (3.39 025

These results can be used to study the time evolution of 7>
various structure factors. The structure factor for concentra- o

005

"""" ﬁ'.5~~-._,_]\ 15 2 q2.5 0.05 0.5 1 1. . 2
-0.1
-0.15 y

. . . . 0.2
tion is defined by 32 o °3i ore
Sy(a,H)=(|664(q,1)[?), (3.37 ot~ 005, ..
) . 01 057 1 1.5 2 005 05 5 1 > 2
and that for the componerg,, of the orientational order g5 9 01 g
parameter is given by 0.3 -0.15 |
-0.4 N -0.2 '
Ss(a,1)=(|8S,4a,1)[%). (333 o3 03
0.2 0.75 0.2 0.85
Before the quench, the structure fact@gand Sg have the Ot 0.1
Ornstein-Zernike form:
o 05 1 1.5\\2 ol 0% 1 1‘5\2
S4(0,0)=[us(@) +ux(9)1°=(]5¢(0.0)|?)
-0.3 N -0.3
1 FIG. 2. Two growth ratew,(q) (solid line) and w,(q) (dotted

(3.39

line) are shown against the wave numieConcentrationp, of the

=0 2’
fystKod o . . o
liquid crystal is varied with fixed temperature=0.6.

S«(9,0)=[us(q)+u 2=(| s 0)|?
5(0.0)=[us(@) + ua(@)]°=([ 05,49, 0% term between concentration and orientation. The equation

1 (3.17 results in the Cahn theory of SD for isotropic solutions
=— , (3.40 [2]. The structure factor for concentration is given by
fast (Li+2L,/3)g? (|6¢(a,1)]?)=(|8¢(q,0)|?)exd —2a(g)t]. When f,;>0,

0 o o the amplitude of any concentration fluctuation decreases with
wheref,,, fsgare the second derivatives bfoefore the time because(q)>0 and so the system is stable. flf,
quench, when we are somewhere above the two-phase regieno, concentration fluctuations are unstable for the wave
in Fig. 1. We shall take the prequench _tgmperat.ulre ta-be vector in the range@q<q0:(_f¢¢/|(o)l/2 and the ampli-
=1. So Egs«(3.39 and (3.40 set the initial conditionst(  tude of the corresponding modes grows exponentially with
=0). _ time. The structure factor for concentration has a maximum

Equat|0n3(3.29) and (33@ allow the calculation of the at q:qm(zqo/\/i) and vanishes at all times fmr:O be-
structure factor for concentration as measured by small angleause the concentration is consenfgdé(r)dr=0]. On
light scattering or x-ray scattering. Experimentally, for singlethe other hand, the structure factor f&, is given by
component nematics, orientational fluctuations dominate the| ss, (q,t)|2)=(| 5S,q,0)|2)exd —2c(g)t]. The eigenvalue
scattering, although this need not be true for the binary mixq) is nonzero agj=0 because the orientational order pa-
tures considered here. For simplicity, we consider only th§ameterS is not conserved. Whefisg>0, the amplitude of
zzorientational structure fact@s(q,t) [Eq.(3.38] although  any orientation fluctuation decreases with time because
in principle, Eq.(3.23 and the remarks following it could be ¢(¢)>0 and the system is stable.flE<<0, orientation fluc-

used to find that of other components&f. tuations are unstable for the wave number in the range 0
<q<q;={—fss/[L;+(2/3)L,]}*? and the amplitudes of
IV. RESULTS AND DISCUSSION the corresponding modes grow exponentially with time. The

. : structure factor for orientation decreases with increasing
In this section we plot some results of the structure factor

calculations for the concentration and for the orientatipn wave numbex [23] because the amplitude(q) monotoni-

in the case of the thermal quench from the stable isotropiga"y increases with increasing The orientation fluctuation

phase ¢=1) into the nematic unstabléNu) and isotropic \(/avr:ttgt(i]o_ngl (znorgeersgg?gri;?e? mfgdgﬁgzﬁlfhgusc;:gﬁn of & ori-
unstable regionglu) in Fig. 1. We here sef y=1, I's=1, o
Ko=0.4,L,=0.2, andL,=L,=0.1 for a typical example. In Whenl, has Nonzero values>(0)., we have.a cogpllng
usoing .di,mgnsit-)n,less ulnitszwe.are measuring Iength. iimd2etween fluctuations of concentration and orientation. The
and energy in the charactéristic molecular units of thé Sysgtruqture factprs will be affecteq by this cross term even in
tem. the linear regime of the SD stpdled here. Figure 2 shpws the
two growth ratesw;(q) (solid line) and w,(q) (dotted ling
) o of Egs.(3.3) and(3.32. The initial concentratiorp, of the
A. Spinodal decomposition induced liquid crystal is varied, withr=0.6 after the quench. When
by concentration fluctuations ¢o="0.55 in the lu region, the growth raie,(q) has positive
It is informative first to consider the behavior of the SD values in the range€€g<qy(=2.21) and has a maximum at
with Lo=0. WhenLy=0, we obtainb(q)=d(gq)=0 and ¢,=1.3. This maximum is driven by the instability of the
then the kinetic equatione3.17 and (3.26 have no cross concentration fluctuationf,,<0. The other eigenvalue
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FIG. 3. Temporal evolution of the compositional structure factor
(@) Sy and of the orientational structure factdm Ss, for the tem-
perature quench into the lu regidh) (7=0.6,¢$=0.55) in Fig. 1.

w,(q) has negative values for ajj because 5s>0. On in-
creasing the concentration, the growth ratg(gq) has two
peaks. One is the peak gt=0, which is induced by the
instability of the orientation fluctuatiofiss<0 and the other
is the peak aty,,,, which is driven by the instability of the
concentration fluctuatiorf ,,<<0. The hybridization of ei-

genvalues appears at aroug=0.72. At$=0.77, the am-

plitude of these two peaks becomes equal. Further increasir}g

the concentration of the mesogen, the value of the peak at
g=0 becomes larger than that gt,. In the Nu region
(C)(¢o=0.85), in which the system is outside the isotropic
spinodal curve {ss<0, f,,>0), the growth ratev,(q) de-
creases with increasing

Figures 3a) and 3b) show the temporal evolution of the
compositional structure factd8, and of the orientational
structure factoiSg, respectively, for the temperature quench
into the lu region ¢=0.6,¢=0.55) in Fig. 1. The structure
factor for concentration has a maximumcgt which corre-
sponds to the peak wave number ©f(q). With time the
corresponding mode grows exponentially and the peak posi-
tion g, is invariant. The time evolution of the structure fac-
tor S, is the same as that of the Cahn theory for isotropic SD
[2,3]. The structure factoBg decreases with increasirmgat
very early times. The amplitude of the peak g0 de-
creases with time becausgs>0. With time another peak
appears in thé&g curve, corresponding to the peakagt in
w1(q), and the orientation fluctuation grows exponentially.
In this quench, the concentration fluctuation initially induces
the SD and the orientational ordering within the domains
subsequently takes place due to the coupling between the
two order parameters as time progresses.

Figure 4 shows the structure factors for the temperature
guench into the Nu regiorB) (7=0.6,¢=0.72) in Fig. 1. In
the Nu region B), the system is unstable with respect to
both orientational orderfgs<0) and concentrationf(,,

40
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FIG. 4. Temporal evolution of the compositional structure factor
(@) S, and of the orientational structure factdy Ss, for the tem-
perature quench into the Nu regi¢B) (7=0.6,$=0.72) in Fig. 1.

sponding mode grows exponentially with time. As shown in
Fig. 4(b), the structure factoBg decreases with increasirng

at very early stages. The amplitude of the peaf-aD in Sg
increases with time becau$gs<0. As time increases, an-
other peak appears in ti8 curve atq,,, which corresponds

to the maximum ofw;(q). The orientation fluctuations are
induced by the concentration fluctuations. The corresponding
ode grows exponentially with time, so at later times the
stest growing modéat q,,,) is dominant.
Figure 5 shows the structure factors for the temperature
quench withr=0.6, ¢=0.78, which is also in the Nu region
(B) of Fig. 1. The structure factd®, [Fig. 5a] has a maxi-
mum and the corresponding mode grows exponentially.
However, the peak positiog, slightly shifts to lower values

of q with time (see Fig. 8 The structure factaBs [Fig. 5(b)]

[a] t=5
4
3
2
1
]
0 05 1 1.5 2
[b] t=5
4
3
2
1
0
0 0.5 1 1.5 2

q

FIG. 5. Temporal evolution of the compositional structure factor

<0). The structure factog,, Fig. 4a), has a maximum at (a) S, and of the orientational structure fact@ Ss, for the tem-
the wave numbeg,, at whichw,(q) has a peak. The corre- perature quench into the Nu regi¢®) (7=0.6,¢=0.78) in Fig. 1.
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FIG. 8. Temporal evolutions of the scattering wave nuntpgr
at which the compositional structure factor has a maximum. The
initial concentration is varied at fixed

examining the two coefficients,(q) andu,(q) as shown in
Fig. 7. With time, the termu,(q)exd wy(q)t] in Eqg. (3.29
tends towards zero becausg(q) is everywhere negative as

FIG. 6. Temporal evolution of the compositional structure factorshown in Fig. 2. However, the product of(q) and an ex-

(@) Sy and of the orientational structure factdm Ss, for the tem-
perature quench into the Nu regi@@) (7=0.6, $=0.85) in Fig. 1.

decreases with increasingy because the amplitude of the
growth ratew4(q) atq=0 is larger than that aj,,, as shown
in Fig. 2.

B. Spinodal decomposition induced by orientation fluctuations

Further increasing the initial concentration of mesogenggs. (3.29

ponential containingy1(q)t has a peak because the value of
u.(q) increases from zergsee Fig. 7, while w,(q) de-
creases from a positive value with increasiggAs time
increases, the factor e, (g)t] becomes large, but,(0)
=0, and so the peak in th®, shifts to the lower values of
the wave numbeq.

When the orientation fluctuation is dominafits<f,,,
we havewq(q)>w,(q) and —c(q)>—a(q) as shown in
Fig. 2. Then we can neglect the,(q) anda(q) terms in
and (3.31). The structure facto, can be ap-

the orientational fluctuation becomes dominant. Figure &oximated by
shows the temporal evolutions of the structure factors for a

temperature quench into the Nu regiq€) (7=0.6,p

=0.85), where the system is initially unstable with respect to

orientational order parametef{<<0) and metastable with
respect to concentratiorf {,>0). In the very early stages,

the concentration fluctuation becomes weak with time be-
causef ,,>0. However, the orientational fluctuations grow

exponentially with time becausk;<<0. Further increasing

time, a peak irS, appears and shifts to lower values of the
wave number. There is no longer any time stage in which the

peak position inS, is invariant, which was predicted by

Cahn’s linearized theory for isotropic SD in the early stages

[2,3]. The instability of the orientational ordering initially

induces the SD and the concentration fluctuation is induced
by the coupling between the two order parameters. The

change of the peak wave number3p can be understood by

0.8
07
0.6
0.5
0.4
0.3
0.2
0.1

0

.

FIG. 7. The coefficientsi;(q) andu,(q) in the structure factor
S, plotted as a function of the wave numberfor the quench ¢
=0.6,¢$=0.85).

Sy(a.H)~ui(a)exd 2w, (q)t], 4.0
where
1 2 ,
wl(Q)”E —Iglfsst| L1+ 5'—2 q
2 2 2 ‘ 8 2
+/T§ fss+(L1+§L2)q +§rsr¢|_0q6,
4.2
2 [ (@) ]?
Ul(Q){m Ss(q,0). (4.3

The peak wave numbery, is given by ¢S,/dq)q =0:

1 aul<q>) / (r?wl(Q))
T Uaw ( a /g aq /g 4
Substituting Eqs(4.2) and(4.3) into (4.4), we obtain
~ 1 M
~ oG &

At large g, the growth ratew,(q) is governed, in our mini-
mal model, by theLCZ)q6 term in the square root of Eg4.2)

and so we obtain the growth law
Nt_l/3-

Om (4.6
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This describes a regime where the growth of droplets is 1.0 - - - - 1
driven by the cross termh, between the local gradients of g'g: ]
the two order parameters. At intermediage the 'L, 04l ]
+(2/3)L,]q? term in Eq.(4.2) becomes dominant and so the o2l .
growth law is given by et S e 7
0.2 : L L !
At~ 12 47 0 20 40 60 80 100
At small g, we find ;-g [ ' ' ' : IE
41 I AVAVAVAVAVY AV 22V
Gm~t"2, (4.9 oot ]
because th& sfsd L+ (2/3)L,]g? term in the square root of g:i P .y PPN =
Eqg. (4.2 becomes dominant. When the peak wave number 0.2 . : : :
o] 20 40 60 80 100

dm is shifted to smaller values with time, the time depen-
dence of the average domain sRend of the wave number
dm iS given by

R=2m/q,~1, (4.9

where, in our model, the dynamical exponentchanges,
with increasing time, from 1/3 through 1/2 to 1. If a more
elaborate model were used, incorporating terms of higher
order inq or perhaps off-diagonal components of the On-
sager mobility matrix, then the values of the exponent

1.0

might be modified. Nevertheless, we have demonstrated 2;2

what we expect to be generic qualitative behavior: that the 04
scattering peak of the orientation-induced SD evolves con- 02
tinuously to lower wave numbers. Hence the average domain g'g W
size is time dependent in the Nu regioB)( in spite of the o 20

linearized analysis of the TDLG. : . - -

This means that the SD is advanced by the instability of _FIG._9. Time evol_utlon of the compositiongolid line) and

. . . ,_orientational (dotted line order parameters for the temperature
the orientational ordering and no longer follows Cahn’s _ - -
. . - . quench ¢=0.6,4$=0.55) in Fig. 1.

theory which predicts no shift in the peak 8§ in the early
stages. Recent simulations indeed suggest that the coupli
of phase separation and ordering leads to a faster onset
phase separatiof28]. Nakai et al. have experimentally ob- s
served the phase separations of polyethylene
terephthalate-liquid-crystal mixtures and reported the char-

Ik free energy density of Eq2.1) with square gradient
rms for the concentratiot and thescalarorder parameter
We then evolve the order parameters according to the
nonlinear equations of motion

acteristic length initially follows the power law 1/3, then . SF
crosses over to the 1 reginj@0]. If we thermally quench ¢=T¢V2%
into the Nu region C), the growth of domains takes place

sooner than in the usual SD of the isotropic phase separa- . SE
tions. S=- FSE’

To summarize these results of our linearized analysis, we

show in Fig. 8 the values ofy, for the density structure which havethe same linear regimgegs.(3.17, 3.26] as the

f?gaor(,%ﬁ ft(;];vag;)lg ?Ng'\'/téalnﬁ(r)nn; entrigtli(r)nr;g)r(;érl]rt] (tjr:ﬁirI]u rtf]'e three-dimensional, tensorial equations of moti8v), (3.8).
9 ' ¥ &l 9 The time step and grid spacing aké=0.001 andAz=0.5,

early stages of the SD. On increasing the initial concentra- . ; . L i
tion, we find that the scattering peak shifts to the lower Val_respectwely, and 100 grid points were used. The initial con

ues with time. Whengy,=0.85 (region C), the scattering cﬂﬂons for the concentratiom(z) an(_d the §calar o_rlenta-
13 7~ 2 tional order paramete®(z) at each lattice point are given by
peak forS, changes as (the average domain size in-

creases as’® even in the early stagesThe instability of the random numbers distributed uniformly #(z)= ¢ *0.02

. . . T .
orientational ordering induces the concentration fluctuationands(z) +0.02, respectively.This choice is computation

through the counling between two order parameters ally expedient, and leads to a white-noise power spectrum,
9 piing P ' somewhat different from the Ornstein-Zernike form of Egs.

(3.39 and (3.40.] Initially, the system is in an isotropic

phase. Figures 9, 10, and 11 show the results of simulations
To further understand our analytical results, nonlinearfor temperature quenches from the isotropic state+®.6

coupled differential equations were simulated in one spatiaith ¢,=0.55, ¢¢=0.77, and¢$,=0.85, respectively. The

dimension with periodic boundary conditions. A tracelesssolid (dotted line shows the concentratigecalar orientation

tensor order parameter cannot be defined in one dimensionrder parametgmprofile. In the case of regionA(), with ¢,

but a reasonable extension of the model to 1D is to use the 0.55[Fig. 9], we first observe the concentration fluctuation

C. Simulations in one dimension
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FIG. 11. Time evolution of the composition&olid line) and
FIG. 10. Time evolution of the compositionéolid line) and  orientational (dotted ling order parameters for the temperature
scalar orientationaldotted ling order parameters for the tempera- quench ¢=0.6,4$=0.85) in Fig. 1.
ture quench £=0.6,$¢=0.77) in Fig. 1.

V. CONCLUSION

in the early stagetE&1) and the isotropic domains appear.  We have studied the early stages of spinodal decomposi-
With time the concentration fluctuation and the orientationattion (SD) in polymer—liquid-crystal mixtures by solving lin-
fluctuation within the domains grovi € 3). At the late stage earized time-dependent Landau-Ginzburg equations for con-
(t=50), we observe the coarsening process. In regd)nét  centration (conserved order parameteland orientation
¢o=0.77[Fig. 10], fluctuations in both order parameters be- (nonconserved order parametefhe theory takes into ac-
gin to grow from about the same time={5). The size of the count a cross term between concentration and orientation
domains becomes large earlier than in regid.(in the case  9gradients. This term plays a significant role in the early
of ¢o=0.85[region (C), Fig. 11], we first observe the ori- Stages of the SD. We calculated the structure factor for con-

entation fluctuations in the early stage=(), but the system centration and for orientation in the thermal quenches from
is still isotropic. As time increases, the orientation fluctua-IN€ Stable isotropic phase into the lu or Nu region. We find

tions become large and induce concentration fluctuationdVO d|§t|nct growth m<_achamsm In Fhe SD. One.|s the con-
centration fluctuation-induced SD in the Iu region. In this

._case the behavior of the SD follows Cahn'’s linearized theory
: - @hich means no shift in the peak of the compositional struc-
the concentranon of I|_qU|d crystal, the growth of drOpImsture factor is observed in the early stage. The other growth
takes place in the earlier stages of the SD. mechanism is a SD driven by the instability with respect to

These simulations are consistent with the analytical "®brientational order in the Nu regiorCj. In this case, the

sults. They show how the phase separation dynamics iBeak positior,, in the compositional structure factor shifts
polymer—liquid-crystal mixtures is driven by the competition g |ower values of the wave number with time. Our reason-
between phase separation and nematic ordering. On increaghle minimal model predicts that the mean radius of domains
ing the concentration of liquid crystal, the instability of the jnitially grows ast'3 though this power may be nonuniver-
orientational ordering becomes dominant and the mechanisggl. There is no longer the time stage predicted by the Cahn
of the SD is changed from concentration fluctuation-inducedinearized theory. On increasing the concentration of the me-
SD to orientation fluctuation-induced SD. The cross termsogens, the behavior of the SD is changed from the concen-
between gradients plays a significant role in the early stag@ration fluctuation- to orientation fluctuation-induced SD.
SD. Though we have performed a linear analysis of the phase
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separation in polymer—liquid-crystal mixtures, these results ACKNOWLEDGMENTS

will also be useful to understand other nematic systems in-

cluding semiflexible polymers, liquid-crystalline polymers,

and rodlike colloids. The main conclusions were confirmed We are grateful to Professor Alan Bray for helpful discus-
by a numerical solution of appropriate nonlinear equations oions. R.M.L.E. acknowledges The Royal Society of Edin-

motion in one dimension.

burgh for financial support.

[1] J. D. Gunton, M. S. Miguel, and P. S. Sahni,Rhase Tran-
sitions and Critical Phenomenadited by C. Domb and J. L.
Lebowitz (Academic, London, 1983

[2] J.W. Cahn, Trans. Metall. Soc. AIME42, 166 (1968.

[3] Solids Far from Equilibrium edited by J. S. LangefCam-
bridge University Press, New York, 199Zhap. 13.

[4] P. M. Chaikin and T. C. Lubenskrinciples of Condensed
Matter Physics (Cambridge University Press, New York,
1995.

[5] .M. Lifshitz and V.V. Slyozov, J. Phys. Chem. Solid8, 35
(1962.

[6] A.N. Kolmogorov, Bull. Acad. Sci. USSR, Phys. S&.355
(1939.

[7] Liquid Crystalline and Mesomorphic Polymeeslited by V. P.
Shibaev and L. LaniSpringer-Verlag, New York, 1993

[8] Liquid Crystals in Complex Geometriesdited by G. P. Craw-
ford and S. ZumefTaylor & Francis, London, 1996

[9] B. Kronberg, I. Bassignana, and D. Patterson, J. Phys. Chem.

82, 1714(1978.

[10] A. Dubaut, C. Casagrande, M. Veyssie, and B. Deloche, Phys.

Rev. Lett.45, 1645(1980.

[11] H. Orendi and M. Ballauff, Liq. Cryst6, 497 (1989.

[12] W. Ahn, C.Y. Kim, H. Kim, and S.C. Kim, Macromolecules
25, 5002(1992.

[13] F. Brochard, J. Jouffroy, and P. Levinson, J. Phys. Fraice
1125(1984.

[14] M. Ballauff, Mol. Cryst. Lig. Cryst.136, 175 (1986.

[15] R. Holyst and M. Schick, J. Chem. Phy@6, 721 (1992.

[16] C. Shen and T. Kyu, J. Chem. Phyi€2 556 (1995.

[17] T. Kyu and H.W. Chiu, Phys. Rev. &3, 3618(1996.

[18] A. Matsuyama and T. Kato, J. Chem. Phy65, 1654(1996);
108 2067(1998; Phys. Rev. B59, 763(1999.

[19] C. Casagrande, M. Veyssie, and C.M. Knobler, Phys. Rev.
Lett. 58, 2079(1987).

[20] A. Nakai, T. Shiwaku, W. Wang, H. Hasegawa, and T. Hash-
imoto, Macromolecule9, 5990 (1996; Polymer 37, 2259
(1996.

[21] T. Shimada, M. Doi, and K. Okano, J. Chem. Ph§8, 7181
(1988.

[22] A. Ten Bosch, J. Phys. 1, 949(1991).

[23] K.R. Elder, F. Drolet, J.M. Kosterlitz, and M. Grant, Phys.
Rev. Lett.72, 677 (1994).

[24] J.R. Dorgan, J. Chem. Phy38, 9094(1993.

[25] H.W. Chiu and T. Kyu, J. Chem. Phy$10, 5998(1999.

[26] AJ. Liu and G.H. Fredrickson, Macromolecul@®, 8000
(1996); 26, 2817(1993.

[27] J. Fukuda, Phys. Rev. B8, R6939(1998; 59, 3275(1999.

[28] A.M. Lapena, S.C. Glotzer, A.S. Langer, and A.J. Liu, Phys.
Rev. E60, R29(1999.

[29] M. Doi and S. F. Edwards heory of Polymer Dynamid#\.ca-

demic, New York, 198%

[30] P. J. Flory,Principles of Polymer Chemistr§Cornell Univer-

sity, Ithaca, 1958

[31] W. Maier and A. Saupe, Z. Naturforsch. g 882 (1959.

[32] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals
2nd ed.(Oxford Science, London, 1993

[33] P. Sheng and E. B. Priestley, introduction to Liquid Crys-
tals, edited by E. B. Priestley, P. J. Wojtowicz, and O. Sheng
(Plenum Press, New York, 19¥%Chap. 10.

[34] Y. Lansac, F. Fried, and P. Maissa, Phys. RebZ: 6227
(1995.

[35] In Ref.[26], tracelessness was achieved by explicitly removing
the associated degree of freedom from the equations of motion,
rather than by the Lagrange multiplier method, which we find
more convenient.



