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A Discussion on the History of Research in Arithmetic and
Reed–Muller Expressions

Radomir S. Stankovic´ and Tsutomu Sasao

Abstract—This paper discusses early work by Komamiya in
Reed–Muller and arithmetic expressions for switching functions.

Index Terms—Adder, arithmetic expression, Boolean expression, EXOR,
Reed–Muller expression, Reed–Muller transform.

I. INTRODUCTION

A recent discussion [3] shows the origins and earlier work on bit-
level and word-level polynomial expressions for switching and mul-
tiple-valued (MV) functions. It was motivated by the study in [17],
where the references are restricted mainly to Western research work.
These polynomial expressions are related to both spectral representa-
tions and differential operators for discrete functions. The coefficients
in such representations can be interpreted as some spectral transform
coefficients [4] or values of discrete differential or difference operators
for discrete functions [5], [19]. In this paper, we provide further infor-
mation on the earlier work in this area and some alternative points of
views.

In this paper, we will discuss the relation between logical expressions
and arithmetic expressions. In these expressions, we often use a symbol
xa. However, the interpretation of this symbol depends on the context.
When the symbolxa is used in an logical expression, it represents the
literal function

x
a =

�x; if a = 0

x; if a = 1:

However, whenxa is used in an arithmetic or in a Reed–Muller expres-
sion, it represents the exponentiation function

x
a =

1; if a = 0

x; if a = 1:

It is very confusing to use the same symbol to denote two different func-
tions in a paper. Therefore, we will use the symbol�(x�a) to represent
the literal function andxa to denote the exponentiation function, since
we will mainly talking about arithmetic expressions. Note that�(q) is
the delta function such that�(q) = 1, if q = 0, and�(q) = 0, if q 6= 0.

II. WORKS BY KOMAMIYA

Two theorems have been formulated in [11], [15] based on the work
of Komamiya (1922–1993) [7]–[9].

Theorem 1 (Arithmetic Expressions):Let x1; x2; . . . ; xn be binary
variables andr be an integer defined byr = x1+x2+ � � �+xn, where
+ is the integer addition [7]. Let the binary representation ofr be

(yk; yk�1; . . . ; y1; y0)2; yi 2 f0; 1g; (i = 0; 1; . . . ; k):
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In other words

x1 + x2 + � � �+ xn = 2kyk + 2k�1yk�1 + � � �+ 21y1 + y0:

(1)

Then

yi = SB(n; 2i)

whereSB(n; k) is ann-variable symmetric function represented by the
EXOR sum of all the products consisting ofk positive literals. Also, we
define asSB(n; 0) = 1 [12]

SB(n; 0) = 1

SB(n; 1) = xi

SB(n; 2) =
i<j

xixj

SB(n; 3) =
i<j<k

xixjxk

. . . . . .

SB(n; n) = x1x2 . . . xn:

For example, consider the network that represents the sum of eight in-
puts as a binary representation. The network hasx1; x2; . . . ; x8 as in-
puts andy3; y2; y1; y0 as outputs. Then

y3 = SB(8; 8) = x1x2 . . . x8

y2 = SB(8; 4) =
i<j<k<l

xixjxkxl

y1 = SB(8; 2) =
i<j

xixj

y0 = SB(8; 1) = x1 � x2 � � � � � x8:

Theorem 2 (Reed–Muller Transform):Let

f(x) =
aaa

f(aaa)�(x1 � a1)�(x2 � a2) . . . �(xn � an) (2)

be the minterm expansion off , wherexxx = (x1; x2; . . . xn); aaa =
(a1; a2; . . . an) andai 2 f0; 1g. Consider a function

f
T (xxx) =

aaa

f(aaa)xa
1

x
a
2

. . . xan : (3)

Then,(fT )T = f .
fT is called the Reed–Muller spectrum off and the operator(�)T :

f ! fT defined by (3) is called the Reed–Muller transform.
It should be noted that in [15], Theorem 2 is written by using lit-

eral functions, while in this paper, it is written by using exponentiation
functions. Therefore, they look different. Also, in [11], Nozaki intro-
duced the symbol

a

x

to denote the exponentiation function.
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III. D ISCUSSION

A. Arithmetic Expressions

Table I shows relations between operations in logical expressions
and arithmetic expressions.

Theorem 1 shows that Komamiya worked with arithmetic expres-
sions of switching functions. A justification for this remark is in the
following. In the left-hand side of (1), Komamiya assumed(0; 1)C
coding of logical variables, while in the right-hand side of (1), he as-
sumed(0; 1)GF(2) coding, whereC is the field of complex numbers
andGF(2) is the Galois field of order 2. Thus, he implicitly used

(x ^ y)GF(2) = (x � y)C :

Similarly, he also used

y � z = y + z � 2yz: (4)

We will consider the casen = 3 to make it clear. In this case, (1) is
written as

x1 + x2 + x3 = 2y1 + y0

where

y0 = SB(3; 1) = x1 � x2 � x3

y1 = SB(3; 2) = x1x2 � x1x3 � x2x3:

In this case, (1) is reduced to

x1 + x2 + x3 = 2(x1x2 � x1x3 � x2x3) + (x1 � x2 � x3):

(5)

We use (4) to prove (5). We also use the propertyxixi = xi, if xi 2
f0; 1g in any of two codings(0; 1)GF(2) and(0; 1)C . The calculations
are given in full details to make the presentation easy to follow

y0 = x1 � x2 � x3

= (x1 + x2 � 2x1x2)� x3

= x1 + x2 � 2x1x2 + x3

� 2(x1 + x2 � 2x1x2)x3

= x1 + x2 � 2x1x2 + x3

� 2x1x3 � 2x2x3 + 4x1x2x3:

y1 = x1x2 � x1x3 � x2x3

= (x1x2 + x1x3 � 2x1x2x3)� x2x3

= x1x2 + x1x3 � 2x1x2x3 + x2x3

� 2(x1x2 + x1x3 � 2x1x2x3)x2x3

= x1x2 + x1x3 � 2x1x2x3 + x2x3

� 2x1x2x3 � 2x1x2x3 + 4x1x2x3

= x1x2 + x1x3 � 2x1x2x3 + x2x3:

From these relations, we have

2y1 + y0 = 2(x1x2 + x1x3 � 2x1x2x3 + x2x3)

+ (x1 + x2 � 2x1x2 + x3

� 2x1x3 � 2x2x3 + 4x1x2x3)

= 2x1x2 + 2x1x3 � 4x1x2x3 + 2x2x3

+ x1 + x2 � 2x1x2 + x3

TABLE I
RELATIONS BETWEENLOGICAL AND ARITHMETIC EXPRESSIONS

� 2x1x3 � 2x2x3 + 4x1x2x3

= x1 + x2 + x3:

Thus, we have verified the correctness of (1) forn = 3.
It is interesting to note that Aiken’s team used arithmetic operations

in expressions describing arithmetic circuits of the Harvard Mark 3 and
4 computers [1]. They preferred the factored form rather than the ex-
panded form of arithmetic expressions. Aiken mentioned in the preface
of [1] that arithmetic expressions may be useful to design arithmetic
circuits. Komamiya used arithmetic expressions to design adders [9].
In October 1952, Komamiya completed a pilot model of a relay com-
puter at a research center of Japanese Government [6].

Theorem 1 is also used to realize symmetric functions by lookup
table-type field programmable gate arrays [16]. A system of switching
functions, e.g., outputs of an arithmetic circuit, can be represented by
a single arithmetic expression instead of a set of logical expressions.
In [10], multiple-output functions are efficiently represented by arith-
metic expressions. Recently, decision diagrams are used to represent
arithmetic expressions compactly. The relationships between decision
diagrams and arithmetic expressions are discussed in [20].

B. Reed–Muller Transform

In Theorem 2, Komamiya converted a logical expression (2) into a
Reed–Muller expression (3). Between (2) and (3), he used the relation

f(xxx) =
aaa

f(aaa); �(x1 � a1); �(x2 � a2); . . . ; �(xn � an): (6)

Note that the products

�(x1 � a1); �(x2 � a2); . . . ; �(xn � an)

represent the minterm functions and they are pairwise disjoint for
different a = (a1; a2; . . . ; an). On the other hand, the products
x
a

1 ; x
a

2 ; . . . ; xan represent the Reed–Muller functions.
Example 1: For n = 3, the productsxa1 ; x

a

2 ; x
a

3 represent the
Reed–Muller functionsrm(�) in the Hadamard ordering defined by

rm(0; 0; 0) = 1; rm(0;0; 1) = x3;

rm(0; 1; 0) = x2; rm(0; 1; 1) = x2x3;

rm(1; 0; 0) = x1; rm(1; 0; 1) = x1x3;

rm(1; 1; 0) = x1x2; rm(1; 1; 1) = x1x2x3:

Between (2) and (6), Komamiya replaced the literal functions with ex-
ponentiation functions to obtain the Reed–Muller transform.

In classical approaches of switching theory, logical expressions are
considered as analytic representations of switching functions, where
the addition is the logicOR. The Reed–Muller expressions are related
to the Boolean ring in which the addition isEXOR. Komamiya dis-
cussed the relationship between the coefficients in the Reed–Muller
expressions and the binomial coefficients, similarly to other authors
attempting to establish a relation between the functions on the real
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field R and the discrete functions [4], [5]. In this case, preserving the
basic group structure in terms ofEXOR relates to the interpretation of
Reed–Muller expressions as analogues of Taylor series expansions and
interprets Reed–Muller coefficients as Boolean differences.

The equation(fT )T = f shows that the Reed–Muller transforms
are self-inverse. This can be easily proved in the matrix notation for
the Reed–Muller functions by using the properties of the Kronecker
product.

IV. CLOSING REMARKS

Komamiya’s equation

A1 + A2 + � � �+ An = dm2
m + dm�12

m�1 + � � �+ d12 + d0

whereAi; di 2 f0; 1g is fundamental to the design of adders. Various
kind of adders can be derived as its special cases. Whenn = 2, it
corresponds to a half adder and whenn = 3, it corresponds to a full
adder.

In addition to the design theory of adders, his design methods
involved a new approach to switching theory. The arithmetic and
Reed–Muller expressions are particular examples of Fourier series-like
expressions over different fields: the complex fieldC and the Galois
field GF(2). Thus, Komamiya was among founders of switching
theory as a particular area of applied mathematics.

Komamiya did not publish his work in an English journal, but pub-
lished it as an internal report. (His paper is 40 pages long and requires
considerable effort to understand it.) Therefore, his work was not well
known except by Nozaki [11]. From January 1957, he spent a year at
the Computation Laboratory, Harvard University, and from September
1962, he stayed at the Digital Computation Laboratory, University of
Illinois.

Later, Komamiya noticed Sasao’s work [12] and sent him related
papers. Unfortunately, Sasao had not enough time to read them at that
time. Later, when Sasao was writing a history of switching theory [15],
he rediscovered Komamiya’s pioneering work. Unfortunately, it was
many years after Prof. Komamiya had passed away.
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[3] B. J. Falkowski, “A note on the polynomial form of Boolean functions
and related topics,”IEEE Trans. Comput., vol. 48, pp. 860–864, Aug.
1999.

[4] M. U. Garaev and R. G. Faradzhev, “On an analog of Fourier expres-
sions over Galois fields and its applications to problems of generalized
sequential machines,”Izv. Akad. Nauk Aizerb. SSR, ser. Fiz.-Techn, i
Mat. Nauk, no. 6, pp. 69–75, 1968.

[5] J. E. Gibbs, “Local and Global Views of Differentiation,” inTheory and
Applications of Gibbs Derivatives, P. L. Butzer and R. S. Stankovíc,
Eds. Beograd, Yugoslavia: Matematički Institut, 1990, pp. 1–19.
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