
October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA

AKIHIRO FUJIWARA SATOSHI KAMIO AKIKO TAKEHARA

Department of Computer Science and Electronics,
Kyushu Institute of Technology,

680-4 Kawazu, Iizuka, Fukuoka 820-8502, JAPAN
fujiwara@cse.kyutech.ac.jp

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In recent works for high performance computing, computation with DNA strands,
that is, DNA computing, has considerable attention as one of non-silicon based comput-
ing. In this paper, we propose three procedures for computing the maximum of n binary
numbers of m bits, which are represented with O(mn) DNA strands. The first procedure
computes the maximum of the binary numbers in O(m) steps using O(n) kinds of DNA
strands. The second and third procedures also compute the maximum in O(log n) and
O(1) steps using O(mn) and O(mn2) kinds of DNA strands, respectively.

Keywords: DNA computing, the maximum

1. Introduction

In recent works for high performance computing, computation with DNA strands,
that is, DNA computing, has considerable attention as one of non-silicon based
computing. The DNA has two important features, which are Watson-Crick comple-
mentarity and massive parallelism. Using the features, we can solve an NP-complete
problem, which usually needs exponential time on a silicon based computer, in a
polynomial number of steps with DNA strands. As the first experimental work for
DNA computing, Adleman presented an idea of solving the Hamiltonian path prob-
lem of size n in O(n) steps using DNA strands. There are a number of other works
with DNA strands for combinatorial NP -complete problems [2, 3, 11, 13, 20].

However, the procedures for primitive operations, such as logic or arithmetic
operations, are needed to apply DNA computing on a wide range of problems. A
number of procedures have been proposed for the primitive operations with DNA
strands [5, 7, 8, 9, 10, 15]. Guarnieri et al. [8] has proposed the first procedure for
addition using DNA strands. The procedure works in O(n) steps using O(n) dif-
ferent DNA strands for an addition of two n-bit binary numbers. Hug et al. [10]
has proposed a procedure for logic operations and addition on the DNA chip. The
procedure works in O(1) steps using O(n) different DNA strands for the operation

1



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

2 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

for n-bit binary numbers. Recently, Fujiwara et al. [7] have proposed addressable
procedures for the primitive operations. They showed a data structure which rep-
resents n binary numbers of m bits using DNA strands, and proposed a procedure
which computes logic operations for any pair of the binary numbers in parallel.
The procedure works in O(1) steps using O(mn) kinds of DNA strands. They also
proposed a procedure for additions of pairs of two binary numbers. The procedure
works in O(1) steps using O(mn) different kinds of DNA strands for additions of
O(n) pairs of two binary numbers.

In this paper, we consider three procedures for computing the maximum using
DNA strands. We assume that an input of the operation is a set of n binary numbers
of m bits, which are represented with O(mn) DNA strands. The first procedure
computes the maximum of the binary numbers in O(m) steps using O(m + n)
kinds of DNA strands. The procedure consists of a repetition of checking on m bit
positions. The second procedure computes the maximum in O(log n) steps using
O(mn) kinds of DNA strands. The procedure consists of a repetition of parallel
comparisons of two numbers. The third procedure computes the maximum in O(1)
steps using O(mn2) kinds of DNA strands. The procedure mainly consists of O(n2)
parallel comparisons.

This paper is organized as follows. In Section 2, we give the brief description of
the model for DNA computing and data structure for binary numbers represented
with DNA strands. In Section 3, we show three kinds of procedures for computing
the maximum. Section 4 concludes the paper.

2. Preliminaries

2.1. Computational model for DNA computing

A number of theoretical or practical computational models have been proposed for
DNA computing [2, 9, 10, 11, 15, 16, 17]. A computational model used in this paper
is the same model as [7]. The model is a theoretical model among the proposed
models, and biological operations are restricted. Therefore, the model allows the
algorithm designer to focus on the structural properties of each problem in DNA
computing.

We briefly introduce the model in the following. A single strand of DNA is
defined as a string of symbols over a finite alphabet Σ. We define the alphabet
Σ = {σ0, σ1, . . . , σm−1, σ0, σ1, . . . , σm−1}, where the symbol σ, σi (0 ≤ i ≤ m − 1)
are complementarity to each other. Two single strands form a double strand if and
only if the single strands are complementarity to each other. A double strand with

σi, σi is denoted by
[

σi

σi

]
.

The single or double strands are stored in a test tube. For example, T1 =
{σ0σ1, σ1σ0} denotes a test tube in which the single strands σ0σ1, σ1σ0 are stored.

Using the DNA strands, the following eight DNA operations are allowed on the
computational model. Since the eight operations are implemented with a constant



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 3

number of biological steps for DNA strands [14], we assume that the complexity of
each operation is O(1). (See [7] for details of the operations.)

(1) Merge: Given two test tubes T1, T2, Merge(T1, T2) stores the union T1 ∪ T2 in
T1.

(2) Copy: Given a test tube T1, Copy(T1, T2) produces a test tube T2 with the
same contents as T1.

(3) Detect: Given a test tube T , Detect(T ) outputs “yes” if T contains at least one
strand, otherwise, Detect(T ) outputs “no”.

(4) Separation: Given a test tube T1 and a set of strings X , Separation(T1, X, T2)
removes all single strands containing one of strings in X from T1, and
produces a test tube T2 with the removed strands.

(5) Selection: Given a test tube T1 and an integer L, Selection(T1, L, T2) removes
all single strands, whose length is L, from T1, and produces a test tube T2

with the removed strands. (The length of a strand is the number of symbols
in the strand.)

(6) Cleavage: Given a test tube T and a string of two symbols σ0σ1,

Cleavage(T, σ0σ1) cuts each double strand containing
[

σ0σ1

σ0σ1

]
in T into

two double strands as follows.[
α0σ0σ1β0

α1σ0σ1β1

]
⇒

[
α0σ0

α1σ0

]
,

[
σ1β0

σ1β1

]

(We assume that Cleavage cut only double strands at a specific set of
sequences. )

(7) Annealing: Given a test tube T , Annealing(T ) produces all feasible double
strands from single strands in T . (The produced double strands are still
stored in T after Annealing.)

(8) Denaturation: Given a test tube T , Denaturation(T ) dissociates each double
strand in T into two single strands.

In addition to the above, we add the following operation in order to clarify
description of this paper. The complexity of the operation is also O(1).

(9) Empty: Given a test tube T , Empty(T ) sets T = φ.

2.2. Representation of binary numbers with DNA strands

In this subsection, we explain a data structure for storing a set of n binary numbers
using DNA strands. Let us consider a number x such that x =

∑m−1
j=0 xj ∗ 2j, where

xm−1, xm−2, . . . , x0 are binary bits. We assume that the most significant bit xm−1

is a sign bit, and a negative number is denoted using two’s complement notation.
The representation of each bit is the same as that in [7], and is briefly described in
the following.



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

4 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

We first define the alphabet Σ as follows.

Σ = {A0, A1, . . . , An, B0, B1, . . . , Bm−1, C0, C1, D0, D1, 1, 0, �,

A0, A1, . . . , An, B0, B1, . . . , Bm−1, C1, C2, D1, D2, 1, 0, �}
In the above alphabet, A0, A1, . . . , An denote addresses of numbers, and

B0, B1, . . . , Bm−1 denote bit positions. In addition, C0, C1 and D0, D1 are speci-
fied symbols cut by Cleavage. Symbols “0” and “1” are used to denote values of
bits, and “�” is a special symbol for Separation.

Using the above alphabet, a value of a bit, whose address and bit position are i

and j, is represented by a single strand Si,j such that

Si,j = D1AiBjC0C1Vi,jD0,

where Vi,j = 0 if a value of the bit is 0, otherwise, Vi,j = 1. We call each Si,j a
memory strand, and assume that Si,j(0) and Si,j(1) denote memory strands whose
values are 0 and 1 as follows.

Si,j(0) = D1AiBjC0C10D0, Si,j(1) = D1AiBjC0C11D0

We use a set of O(mn) different memory strands to denote n binary numbers of
m bits, that is, a number x stored in address i is represented by a set of memory
strands {Si,m−1, Si,m−2, . . . , Si,0}, which denote binary bits xm−1, xm−2, . . . , x0, re-
spectively. We assume that Vi denotes a value stored in address i as follows.

Vi =
m−1∑
j=0

Vi,j ∗ 2j

2.3. Primitive operations

In this paper, the three operations, V alueAssignment, Logic and Subtraction, are
used as primitive operations.

The V alueAssignment V (Tinput, Toutput) is an operation which assigns the same
value V (∈ {0, 1}) to all memory strands in the test tube Tinput and store the result
in the test tube Toutput.

The Logic(Tinput, L, Toutput) is an operation which executes logic operations.
Inputs of the operation is the test tubes Tinput and L. Tinput stores memory strands,
and L stores some single strands which define pairs of memory strands and kinds of
logic operations. Outputs of the logic operations are stored in the test tube Toutput.

The Subtraction(Tinput, R, Toutput) is an operation which executes subtractions.
Inputs of the operation are the test tubes, Tinput and R. Tinput stores memory
strands, and R stores some single strands which indicate pairs of memory strands
for which subtractions are executed. Outputs of the subtractions are stored in the
test tube Toutput.

For these three primitive operations, the following lemmas are obtained in [7].



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 5

Lemma 1. The V alueAssignment V (Tinput, Toutput) can be executed in O(1) steps
using O(1) kinds of different additional DNA strands. �

Lemma 2. The Logic(Tinput, L, Toutput), which is for O(n) pairs of m-bit binary
numbers, can be executed in O(1) steps using O(mn) kinds of different additional
DNA strands. �

Lemma 3. The Subtraction(Tinput, R, Toutput), which is for O(n) pairs of m-bit
binary numbers, can be executed in O(1) steps using O(mn) kinds of different ad-
ditional DNA strands. �

3. Procedures for computing the maximum

In this section, we propose three procedures for computing the maximum. We as-
sume that an input of the operation is a set of n binary numbers of m bits. The
first procedure consists of a repetition of checking on m bit positions. The second
procedure consists of a repetition of parallel comparisons of two numbers. The tech-
nique is known as a balanced binary tree [4], which is used in parallel algorithms.
The third procedure mainly consists of O(n2) parallel comparisons, and is inspired
from a parallel algorithm for computing the maximum in a constant time [18].

3.1. Input of procedures

We assume that an input is given by the test tube Tinput such that

Tinput = {Si,j | 0 ≤ i ≤ n, 0 ≤ j ≤ m − 1},
where {Si,j | 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1} is a set of memory strands which denote
n input binary numbers and {Sn,j | 0 ≤ j ≤ m − 1} is a set of memory strands in
which an output of the procedure is stored. We assume that all input numbers are
positive and distinct to simplify the following description.

3.2. An O(m) step procedure

3.2.1. The outline of procedure

The first procedure consists of a repetition of checking on m bit positions, and
works in O(m) steps. For example, we assume that an input of the procedure
is {00101, 01111, 11011, 10100, 00011, 11001, 01010, 11000}. In the first step of the
procedure, we check the left-most bit for all binary numbers. Since there are four
numbers whose left-most bit is 1, we can determine that the left-most bit of the
maximum is 1, and remove every binary number such that a value of its left-most
bit is 0. In the second step, we check the next bit for the remaining binary numbers,
11011, 10100, 11001, 11000, and determine that a value of the next bit is also 1.
We repeat the above steps for all bit positions, and determine that the maximum
is 11011.



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

6 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

We describe an idea of the procedure more precisely. We assume that
{x0, x1, . . . , xn−1} is a set of n input binary numbers such that xi =

∑m−1
j=0 xi,j ∗2j,

where each xi,j is a binary value, and xn is a variable in which the maximum of the
input is stored. At the beginning, we assume that all input numbers are “winners”.
In the procedure, we first check the m-th bits of all binary numbers, which are
{xi,m−1 | 0 ≤ i ≤ n − 1}. If there exists at least one xi,m−1 such that xi,m−1 = 1,
then we set xn,m−1 = 1, otherwise, we set xn,m−1 = 0. We identify all numbers
xj such that xj,m−1 = xn,m−1 as winners, and also identify the other numbers as
“losers”. (The winner is identified by a specified single strand.) We repeat the above
check from the m − 1-th bit to the first bit. After the repetition, there exists an
unique winner, which is the maximum of the input, and the number is stored in xn.

In the procedure, we mainly use the following test tubes.

Twin: Single strands which denote winners are stored in Twin.
Tn: Memory strands which denote an output binary value, that is, {Sn,j | 0 ≤ j ≤

m − 1}, are stored in Tn.
T0, T1: Single strands, which denote all numbers whose checked bits are 0 and 1,

are stored in T0 and T1, respectively.

We now describe an overview of the procedure MaxOperation1, which computes
the maximum of n binary numbers of m bits in O(m) steps.

Procedure MaxOperation1
Step 1: Repeat the following substeps from j = m − 1 to j = 0.
(1-1) Remove memory strands which denote the j-th bit of each number from

Tinput, and store the removed memory strands to Twin. Then, remove mem-
ory strands which denote j-th bit of an output number from Twin, and store
the removed memory strands in Tn.

(1-2) Move all memory strands, which are identified as winners, from Twin to T0,
and return the other memory strands, which are identified as losers, from
Twin to Tinput.

(1-3) Remove all memory strands, whose j-th bit is 1, from T0, and store the
removed strands to T1.

(1-4) Detect memory strands in T1. If there exists at least one memory strand
in T1, identify all memory strands in T1 as winners and assign “1” to all
memory strands in Tn. Otherwise, identify all memory strands in T0 as
winners and assign “0” to all memory strands in Tn. Then, return memory
strands in Tn to Tinput.

(1-5) Return all memory strands in T0 and T1 to Tinput.
(End of the procedure)



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 7

3.2.2. Detail of the procedure

We now describe details of the procedure step by step. In the following description,
the following two test tubes are used.

Ttmp: DNA strands are temporarily stored in Ttmp.
Ttrash: Unnecessary strands are discarded into Ttrash.
Taddress: A role of Taddress is explained in the following.

First of all, we set a test tube Twin as follows.

Twin = {#D0D1Ai | 0 ≤ i ≤ n − 1}
The single strand #D0D1Ai in Twin means that the value Vi is a candidate for
the maximum. In other words, #D0D1Ai is in Twin if and only if a set of memory
strands {Si,j | 0 ≤ j ≤ m − 1} is a winner.

Substep (1-1) consists of the following operations.
Substep (1-1)

Empty(Ttmp), Empty(Tn)

Separation(Tinput, {Bj}, Ttmp)
Merge(Twin, Ttmp)
Separation(Ttmp, {An}, Tn)

In Substep (1-2), we first merge a set of single strands {#D0} to Twin, and
execute Annealing and Denaturation for Twin. Then, using Separation with the
symbol #D0D1 for Twin, we select memory strands which are identified as winners.
All of the selected memory strands are moved to T0, and the others are returned
into Tinput. This substep consists of the following operations, and is illustrated in
Figure 1 (a).

Substep (1-2)

Empty(Ttmp), Empty(T0)
Merge(Twin, {#D0})
Annealing(Twin)
Denaturation(Twin)
Separation(Twin, {#D0D1}, T0)
Separation(Twin, {D1}, Ttmp)
Merge(Tinput, Ttmp)

Substep (1-3) consists of the following two operations.
Substep (1-3)

Empty(T1)
Separation(T0, {C11D0}, T1)

In Substep (1-4), we first judge whether there exists a DNA strand in a test
tube T1 by Detect. If the output is “yes”, a value of the j-th bit of the maximum
is set to 1, otherwise the value is set to 0. This operation is performed by the



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

8 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

primitive operation, V alueAssignment, which is described in Section 2. Then, using
an additional test tube Taddress given below, each single strand #D0D1Ai is moved
to Twin according to the value of j-th bit of the maximum.

Taddress = {#D0, D1Ai | 0 ≤ i ≤ n − 1}

This substep mainly consists of operations Annealing, Denaturation, and
Separation. After Substep (1-4), the single strand #D0D1Ai is stored in Twin if
and only if Vi is still a candidate for the maximum. This substep is illustrated in
Figure 1 (b).

Substep (1-4)

Empty(Twin), Empty(Ttmp)
if (Detect(T1) is“yes′′) {

V alueAssignment 1(Tn, Ttmp)

Merge(T1, Taddress)
Annealing(T1)
Denaturation(T1)
Separation(T1, {#D0D1}, Twin)

}
else {

V alueAssignment 0(Tn, Ttmp)

Merge(T0, Taddress)
Annealing(T0)
Denaturation(T0)
Separation(T0, {#D0D1}, Twin)

}
Merge(Tinput, Ttmp)

In Substep (1-5), we return all memory strands in T0 and T1 to Tinput. The
substep consists of the following operations, and is illustrated in Figure 1 (c).

Substep (1-5)

Empty(Ttmp)
Merge(T0, T1)
Merge(T0, {D0D1})
Annealing(T0)
Cleavage(T0, D0D1)
Denaturation(T0)
Separation(T0, {#D0, D0, D1}, Ttrash)
Merge(Tinput, T0)



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 9

[
#D0D1AiBjC0C1Vi,jD0

#D0D1Ai

]
⇒ #D0Si,j

(a)

[
#D0D1AiBjC0C1Vi,jD0

#D0D1Ai

]
⇒ #D0D1Ai

(b)

[
#D0D1AiBjC0C1Vi,jD0

D0D1

]

⇒
[

#D0

D0

]
,
[

D1AiBjC0C1Vi,jD0

D1

]

⇒Si,j

(c)

Fig. 1. DNA strands in each step: (a) Substep (1-2), (b) Substep (1-4), and (c) Substep (1-5).

We now consider complexity of the above procedure. Each substep consists of
a constant number of operations, which are described in Section 2. In addition,
O(m + n) kinds of DNA strands are used in the procedure. Then, we obtain the
following theorem.

Theorem 4. Procedure MaxOperation1, which computes the maximum of n num-
bers of m bits, runs in O(m) steps using O(m+n) different additional DNA strands.

�

3.3. An O(log n) step procedure

3.3.1. The outline of procedure

The second procedure consists of a repetition of parallel comparisons of two num-
bers, and works in O(log n) steps. For example, we assume that an input of the
procedure is {5, 3, 15, 25, 27, 10, 20, 24}. In the first step of the procedure, we com-
pare four pairs of numbers (5, 3), (15, 25), (27, 10), (20, 24). In the first comparisons,
the numbers 5, 25, 27, and 24 win the comparisons. Next, we compare two pairs of
numbers (5, 25), (27, 24). Then, the numbers 25 and 27 win the comparisons. In the
last step, we compare (27, 25), and then, 27 is a winner, and is also the maximum
in the input.

The technique is known as a balanced binary tree [4]. To simplify the description,
we assume that {x0, x1, . . . , xn−1} is a set of input numbers and n = 2k for a positive



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

10 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

integer ka. In the first step of the procedure, we compare each pair of (xi, xi+ n
2
)

for 0 ≤ i ≤ n
2 − 1, and set xi = max{xi, xi+ n

2
}. To compare a pair of two numbers,

we use the procedure for subtraction, which is described in Section 2. Next, we
compare each pair of (xi, xi+ n

4
) for 0 ≤ i ≤ n

4 − 1, and set xi = max{xi, xi+ n
4
}. We

repeat the above comparison log2 n times, and then, the maximum is set to x0.
In the procedure, we mainly use the following test tubes.

Ttmp: DNA strands are temporarily stored in Ttmp.
Tsub: Memory strands which denote results of subtractions are stored in Tsub.
Tsign: Single strands which denote sign bits are stored in Tsign.

We now describe an overview of the procedure MaxOperation2, which computes
the maximum of n binary numbers of m bits in O(log n) steps.

Procedure MaxOperation2
Step 1: Copy Tinput to Ttmp.
Step 2: Set k = n, and repeat the following substeps until k = 1.
(2-1) Compute subtraction of each pair of numbers (Vi, Vi+ k

2
) for 0 ≤ i ≤ k

2 − 1.
The results of the subtraction are stored in Tsub using additional single
strands.

(2-2) Remove single strands which denote m-th bits of the results from Tsub, and
store the removed strands to Tsign. Then, generate single strands which
denote losers of comparisons using Tsign.

(2-3) Using the generated strands, remove memory strands which denote losers
from Ttmp, and store memory strands which denote winners in Ttmp. (In
other words, this substep sets Vi = max{Vi, Vi+ k

2
} for 0 ≤ i ≤ k

2 −1.) Then,
set k = k

2 .
Step 3: Copy V0 to Vn.
(End of the procedure)

3.3.2. Detail of the procedure

We now describe details of the procedure. In the following description, the following
test tubes are also used.

T ′
tmp, T ′′

tmp: DNA strands are temporarily stored in T ′
tmp and T ′′

tmp

Tlose, T ′
lose: Single strands which denote losers of the comparisons are stored in
Tlose and T ′

lose.
Ttrash: Unnecessary strands are discarded into Ttrash.

Step 1 simply consists of the following operations.
Step 1

aIn cast of n �= 2k , we add dummy input numbers, whose values are −∞, so that n = 2k .



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 11

Empty(Ttmp)
Copy(Tinput, Ttmp)

We next consider Step 2. In Substep (2-1), we compute subtraction Vi − Vi+ n
2

for each i such that 0 ≤ i ≤ n
2 − 1. The result of the subtraction is stored in a

test tube Tsub. This subtraction is performed by SubtractionOperation, which is
described in Section 2, in O(1) steps using O(mn) kinds of DNA strands. All pairs
of the subtraction are indicated by a test tube R, which stores some single strands
indicating pairs (Vi, Vi+ n

2
) for 0 ≤ i ≤ n

2 − 1. (We assume that the test tube R is
prepared in advance of the procedure.)

Substep (2-1)

SubtractionOperation(Ttmp, R, Tsub)

After this substep, Tsub contains the following memory strands.

Tsub = {Si,j | 0 ≤ i ≤ n

2
− 1, 0 ≤ j ≤ m − 1, Vi = Vi − Vi+ n

2
}

In the first step of Substep (2-2), we move memory strands Si,m−1 (0 ≤ i ≤
n
2 −1), which denote the sign bits, from Tsub to Tsign using Separation. Then, if Vi <

Vi+ k
2
, a memory strand Si,m−1(1) = D1AiBm−1C0C11D0 is in Tsign, otherwise, a

memory strand Si,m−1(0) = D1AiBm−1C0C10D0 is in Tsign. To distinguish the
above cases, we merge the following test tube Tlose with Tsign.

Tlose = {D1, Si,m−1(1)D1#D0D1Ai | 0 ≤ i ≤ n − 1}
We execute operations, Annealing, Cleavage, Denaturation and Separation for
the above Tlose. We describe details of Substep (2-2) below. (This substep is illus-
trated in Fig. 2 (a).)

Substep (2-2)

Separation(Tsub, Bm−1, Tsign)

Merge(Tlose, Tsign)
Annealing(Tlose)
Cleavage(Tlose, D0D1)
Denaturation(Tlose)
Separation(Tlose, {D1, C0C1, C0C1}, Ttrash)

After the above substep, Tlose contains the single strand D1#D0D1Ai if and
only if Vi is a loser of the comparison (Vi, Vi+ n

2
), that is, Tlose becomes as follows.

Tlose = {D1#D0D1Ai | Vi < Vi+ n
2
, 0 ≤ i ≤ n

2
− 1}

We finally describe Substep (2-3) and Step 3. In Substep (2-3), we first copy
test tubes Ttmp and Tlose to T ′

tmp and T ′
lose, respectively. Then, we execute the

primitive operation Logic defined by a truth table in Fig. 3 for T ′
tmp. (A test tube L

is used to define the truth table in Logic.) This Logic means assignments Vi = Vi+ n
2

for 0 ≤ i ≤ n
2 − 1. Next, we remove memory strands which denote losers of the



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

12 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

comparisons from Ttmp, and move memory strand which denote winners of the
comparisons from T ′

tmp to Ttmp. The removal and the movement are realized using
the single strand D1#D0D1Ai, which are stored in Tlose and T ′

lose, and is illustrated
in Fig. 2 (b). Finally, we cut the single strand and remove unnecessary single strands
to obtain memory strands using Cleavage.

We summarize operations in Substep (2-3) below.
Substep (2-3)

Empty(T ′
tmp), Copy(Ttmp, T

′
tmp)

Merge(Tlose, {D1#D0})
Empty(T ′

lose), Copy(Tlose, T
′
lose)

Logic(T ′
tmp, L, T ′

tmp)

Merge(Ttmp, Tlose)
Annealing(Ttmp)
Denaturation(Ttmp)
Separation(Ttmp, {#, #}, Ttrash)

Merge(T ′
tmp, T

′
lose)

Annealing(T ′
tmp)

Denaturation(T ′
tmp)

Empty(T ′′
tmp)

Separation(T ′
tmp, {D1#D0}, T ′′

tmp)
Merge(T ′′

tmp, {D0D1})
Annealing(T ′′

tmp)
Cleavage(T ′′

tmp, D0D1)
Denaturation(T ′′

tmp)
Separation(T ′′

tmp, {#, D0, D1}, Ttrash)
Merge(Ttmp, T

′′
tmp)

In Step 3, V0 is copied to Vn using Logic. The copy is indicated by a test tube
L′. The L′ defines a pair (V0, Vn) of memory strands, and a kind of logic operations
such that Vn = V0. (We omit details of strands in L′.)
Step 3

Empty(Tinput)
Logic(Ttmp, L′, Tinput)

We now consider complexity of the above procedure. Each substep consists of
a constant number of operations, which are described in Section 2. In addition,
O(mn) kinds of strands are used in the procedure. Therefore, we obtain the following
theorem.

Theorem 5. Procedure MaxOperation2, which computes the maximum of n num-



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 13

[
Si,m−1(1)D1

Si,m−1(1)D1#D0D1Ai

]

⇒
[

Si,m−1(1)
Si,m−1(1)

]
,

[
D1

D1#D0D1Ai

]

⇒D1#D0D1Ai

(a)

[
D1#D0D1AiBjC0C1Vi,jD0

D1#D0D1Ai

]
⇒ D1#D0Si,j

(b)

Fig. 2. DNA strands in MaxOperation2: (a) Substep (2-2), (b) Substep (2-3).

input output
Vi,j Vi+ n

2 ,j Vi,j Vi+ n
2 ,j

0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 1

Fig. 3. A truth table for Logic in Substep (2-3).

bers of m bits, runs in O(log n) steps using O(mn) different additional DNA strands.
�

3.4. An O(1) step procedure

3.4.1. The outline of procedure

The third procedure consists of O(n2) parallel comparisons of two numbers, and
works in O(1) steps. For example, we assume that an input of the procedure is
{5, 15, 27, 20}. In the first step of the procedure, we compare all pairs of two numbers
in the set, that is, (5,5), (5,15), (5,27), (5,20), (15,5), (15,15), (15,27), (15,20), (27,5),
(27,15), (27,20), (27,27), (20,5), (20,15), (20,20), (20,27). In these comparisons, the
number 27 wins all comparisons, and the winner is the maximum of the input.

We describe an idea of the procedure more precisely. Let {x0, x1, . . . , xn−1} be
a set of input numbers. In the procedure, we concurrently compare n2 pairs such
that (xp, xq) for 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1. Each comparison is executed by



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

14 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

subtraction, which is described in the second procedure. In the comparisons, the
maximum of input numbers is an unique number which wins all comparisons. (We
assume that both numbers win if two values are the same.) We execute the Boolean
AND operation for the result of the comparisons, and select the number whose
result of the AND operation is “win”. The AND operation is realized using a long
single strand whose length is in proportion to n.

In the procedure, we mainly use the following test tubes.

Tsub, Tsign: Tsub and Tsign play the same roles as in MaxOperation2.
Twin: Single strands which denote winners of the comparisons are stored in Twin.
Tmax: Memory strands which win all comparisons are stored in Tmax.

Procedure MaxOperation3
Step 1: Compute subtraction of each pair of numbers (Vp, Vq) for 0 ≤ p ≤ n − 1,

0 ≤ q ≤ n − 1. The results of the subtraction Vp − Vq is stored in memory
strands which denote Vp∗n+j in a test tube Tsub.

Step 2: Remove single strands which denote the sign bits of the numbers from
Tsub, and store the removed strands to Tsign. Then, generate single strands
αp,q if Vp ≥ Vq for 0 ≤ p ≤ n− 1, 0 ≤ q ≤ n− 1, using Tsign, and store the
single strands to Twin.

Step 3: For each address i (0 ≤ i ≤ n − 1), concatenate single strands αi,j (0 ≤
j ≤ m − 1) in Twin. (We obtain the single strand αi,0αi,1 . . . αi,n−1, whose
length is in proportion to n, if and only if Vi is the maximum of the input.)
Then, move the single strand, whose length is in proportion to n, from Twin

to Tmax.
Step 4: Using a single strand in Tmax, separate memory strands, whose value is

the maximum, from Tinput. Then, copy a value of the memory strands to
Vn.

(End of the procedure)

3.4.2. Detail of the procedure

We now describe details of the procedure. The following three test tubes are also
used in the description.

Ttrash: Unnecessary strands are discarded into Ttrash.
Tconnect, Taddress: Roles of Tconnect and Taddress are explained in the following.

In Step 1, we execute subtractions for n2 pairs of numbers in parallel, and store
the results in the test tube Tsub given below.

Tsub = {S(p,q),j | 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1, 0 ≤ j ≤ m − 1, V(p,q) = Vp − Vq}
The address A(p,q) of the memory strands S(p,q),j (0 ≤ j ≤ m−1), which stores the
result of the subtraction Vp − Vq, is given by (p, q) = p ∗ n + j. In other words, the
result of Vp−Vq is stored in Vi such that i = p∗n+j. This subtraction is performed



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 15

in O(1) steps using O(mn2) kinds of DNA strands by Subtraction described in
Section 2. All pairs of the subtraction are indicated by a test tube R, which stores
some single strands which indicate pairs (Vp, Vq) for 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1.
(We assume that the test tube R is prepared in advance of the procedure.)
Step 1

Subtraction(Tinput, R, Tsub)

Step 2 is similar to Substep (2-2) in MaxOperation2. We move memory strands
S(p,q),m−1 (0 ≤ p ≤ n−1, 0 ≤ q ≤ n−1), which denote sign bits, from Tsub to Tsign

using Separation. Then, we merge the following test tube Twin with Tsign.

Twin = {D1, S(p,q),m−1(0)D1ApAq#ApAqD0 | 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1}
We execute operations, Annealing, Cleavage, Denaturation and Separation for
Tsign. We describe details of Step 2 below. (The step is illustrated in Fig. 4 (a).)
Step 2

Empty(Tsign)
Separation(Tsub, {Bm−1}, Tsign)
Merge(Twin, Tsign)
Annealing(Twin)

Cleavage(Twin, D0D1)
Denaturation(Twin)
Separation(Twin, {D1, C0C1, C0C1}, Ttrash)

After the above step, Twin contains a single strand D1ApAq#ApAqD0 if and
only if Vp is a winner of the comparison (Vp, Vq), that is, Twin becomes as follows.

Twin = {D1ApAq#ApAqD0 | 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 1, Vp ≥ Vq}
In Step 3, we first merge the following test tube Tconnect with a test tube Twin.

Tconnect = {D1ApA0#, ApAn−1D0, | 0 ≤ p ≤ n − 1}
∪{ApAqD0D1ApAq+1# | 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 2}

The role of single strands in Tconnect is as follows. If Vp is the maximum,
Twin contains single strands {D1ApAq#ApAqD0 | (0 ≤ q ≤ n − 1)}. We exe-
cute Annealing for Twin. Then, the following double strand, whose length is in
proportion to n, is obtained if and only if Vi is the maximum. (We assume that
αp,q = D1ApAq#ApAqD0.)

[
D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0

D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0

]

=
[
αi,0αi,1 · · ·αi,n−1

αi,0αi,1 · · ·αi,n−1

]



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

16 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

[
S(p,q),m−1(0)D1

S(p,q),m−1(0)D1ApAq#ApAqD0

]

⇒
[

S(p,q),m−1(0)
S(p,q),m−1(0)

]
,

[
D1

D1ApAq#ApAqD0

]

⇒ D1ApAq#ApAqD0

(a)

D1AiA0#AiA0D0, D1AiA1#AiA1D0, · · · , D1AiAn−1#AiAn−1D0

⇒
[
D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0

D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0

]

⇒ D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0,

D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0

(b)

Fig. 4. DNA strands in MaxOperation3: (a) Step 2 and (b) Step 3.

We execute an operation Denaturation, and then, separate single strands, whose
length are kn, from Twin to Tmax, where k is a length of a single strand αp,q. Step
3 consists of the following operations. (The step is illustrated in Fig. 4 (b).)
Step 3

Merge(Twin, Tconnect)
Annealing(Twin)
Denaturation(Twin)
Selection(Twin, kn, Tmax)

In Step 4, we first separate two sets of memory strands to a test tube Tmax.
The one is a set of memory strands whose values denote the maximum, and the
other is a set of memory strands whose addresses are An. (Recall that an output
value is stored in the latter set of memory strands.) The separation of the former
set of memory strands is executed using the following test tube Taddress. (The step
is illustrated in Fig. 5 (a).)

Taddress = {#D0D1, Ai | 0 ≤ i ≤ n − 1}

The single strands in Taddress are used to detect an address in which the maximum
is stored. We merge Taddress with Twin, and execute Annealing and Denaturation.
After the operations, the single strand #D0D1Ai is stored in Tmax if and only if
Ai is the address in which the maximum is stored. The following operations for



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 17

[
D1AiA0#AiA0D0D1AiA1#AiA1D0 · · ·D1AiAn−1#AiAn−1D0,

#D0D1Ai

]

⇒ #D0D1Ai

(a)

· · · ,
[

#D0D1AiBjC0C1Vi,jD0

#D0D1Ai

]
, · · · ,

[
#D0D1AnBjC0C1Vn,jD0

#D0D1An

]

⇒ #D0D1AiBjC0C1Vi,jD0, #D0D1AnBjC0C1Vn,jD0

⇒
[

#D0D1AiBjC0C1Vi,jD0

#D0D1Ai

]
,

[
#D0D1AnBjC0C1Vn,jD0

#D0D1An

]

⇒
[

#D0

#D0

]
,

[
D1AiBjC0C1Vi,jD0

D1Ai

]
,

[
#D0

#D0

]
,

[
D1AnBjC0C1Vn,jD0

D1An

]

⇒ D1AiBjC0C1Vi,jD0, D1AnBjC0C1Vn,jD0

(b)

Fig. 5. DNA strands in MaxOperation3 in Step 4.

the separation are executed using a constant number of operations. (The step is
illustrated in Fig. 5 (b).)

Next, we execute Logic for the separated memory strands. In this case, Logic

copies the maximum value to Vn. We notice that parallel assignments may occurs in
the test tube because the address in which the maximum is stored is not determined
before the procedure. However, parallel assignments to Vn do not occur since there
exist only the above two sets of memory strands in the test tube. We assume that
the assignments are indicated by a test tube L. The L defines a pair (Vi, Vn) of
memory strands for 0 ≤ i ≤ n−1, and a kind of logic operations such that Vn = Vi.
(We omit details of strands in L.)

We now summarize Step 4 in the following.

Step 4

Separation(Tmax, {#}, Ttrash)
Merge(Tmax, Taddress)
Annealing(Tmax)
Denaturation(Tmax)



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

18 AKIHIRO FUJIWARA, SATOSHI KAMIO, AKIKO TAKEHARA

Empty(Ttmp)
Separation(Tmax, {#D0D1}, Ttmp)
Merge(Tinput, Ttmp)
Merge(Tinput, {#D0})
Annealing(Tinput)
Denaturation(Tinput)
Separation(Tinput, {#, #, An}, Tmax)

Annealing(Tmax)
Cleavage(Tmax, D0D1)
Denaturation(Tmax)
Separation(Tmax, {#, #, D1}, Ttrash)

Empty(Ttmp)
Logic(Tmax, L, Ttmp)
Merge(Tinput, Ttmp)

We finally consider complexity of the above procedure. All steps consist of a
constant number of the operations. In addition, O(mn2) kinds of DNA strands are
used in the procedure. Then, we obtain the following theorem.

Theorem 6. Procedure MaxOperation3, which computes the maximum of n num-
bers of m bits, runs in O(1) steps using O(mn2) different additional DNA strands.

�

4. Conclusions

In this paper, we proposed three procedures for computing the maximum. The first
procedure consists of a repetition of checking on m bit positions, and runs in O(m)
steps using O(m + n) kinds of DNA strands. The second procedure consists of a
repetition of comparisons of two numbers, and runs in O(log n) steps using O(mn)
kinds of DNA strands. The third procedure computes consists of O(n2) parallel
comparisons, and runs in O(1) steps using O(mn2) kinds of DNA strands.

Although our results are based on a theoretical model, the proposed procedures
can be implemented practically since every DNA operation used in the model has
been already realized in lab level. Therefore, we believe that our results will play
an important role in the future DNA computing.

Acknowledgements

This research was partially supported by the Ministry of Education, Culture, Sports,
Science and Technology, Grant-in-Aid for Young Scientists (B), 17700021, 2006.



October 30, 2007 17:31 WSPC/INSTRUCTION FILE main

PROCEDURES FOR COMPUTING THE MAXIMUM WITH DNA 19

References

[1] L.M. Adleman. Molecular computation of solutions to combinatorial problems. Sci-
ence, Vol. 266, pp. 1021–1024, 1994.

[2] L.M. Adleman. Computing with DNA. Scientific American, Vol. 279, No. 2, pp. 54–
61, 1998.

[3] E.B. Baum and D. Boneh. Running dynamic programming algorithms on a DNA
computer. Proceedings of the Second Annual Meeting on DNA Based Computers,
1996.

[4] E. Dekel and S. Sahni. Parallel scheduling algorithms. Operations Research, 31(1):24–
49, 1983.

[5] P. Frisco. Parallel arithmetic with splicing. Romanian Journal of Information Science
and Technology(ROMJIST), Vol. 2, No. 3, pp. 113–128, 2000.

[6] A.G. Frutos, Q. Liu, A.J. Thiel, A.M.W. Sanner, A.E. Condon, L.M. Smith, and
R.M. Corn. Demonstration of a word design strategy for DNA computing on surfaces.
Nucleic Acids Research, Vol. 25(23), pp. 4748–4757, 1997.

[7] A. Fujiwara, K. Matsumoto, and W. Chen. Procedures for Logic and Arithmetic
Operations with DNA Molecules. International Journal of Foundations of Computer
Science, Vol. 15, No. 3, pp. 461–476, 2004.

[8] F. Guarnieri, M. Fliss, and C. Bancroft. Making DNA add. Science, Vol. 273(5272),
pp. 220–223, 1996.

[9] V. Gupta, S. Parthasarathy, and M.J. Zaki. Arithmetic and logic operations with
DNA. Proceedings of the 3rd DIMACS Workshop on DNA Based Computers, pp.
212–220, 1997.

[10] H. Hug and R. Schuler. DNA-based parallel computation of simple arithmetic. Pro-
ceedings of the 7th International Meeting on DNA Based Computers(DNA7), pp.
159–166, 2001.

[11] R.J. Lipton. DNA solution of hard computational problems. Science, Vol. 268, pp.
542–545, 1995.

[12] R.B. Merrifield. Solid phase peptide synthesis. I. the synthesis of a tetrapeptide.
Journal of the American Chemical Society, Vol. 85, pp. 2149–2154, 1963.

[13] Q. Ouyang, P.D. Kaplan, S.Liu, and A. Libchaber. DNA solution of the maximal
clique problem. Science, Vol. 278, pp. 446–449, 1997.

[14] G. Pǎun, G. Rozeberg, and A. Salomaa. DNA computing. Springer-Verlag, 1998.
[15] Z.F. Qiu and M. Lu. Arithmetic and logic operations for DNA computers. Proceedings

of the Second IASTED International conference on Parallel and Distributed Comput-
ing and Networks, pp. 481–486, 1998.

[16] Z.F. Qiu and M. Lu. Take advantage of the computing power of DNA computers. In
Proceedings of the Third Workshop on Bio-Inspired Solutions to Parallel Processing
Problems, IPDPS 2000 Workshops, pp. 570–577, 2000.

[17] J.H. Reif. Parallel biomolecular computation: Models and simulations. Algorithmica,
Vol. 25, No. 2-3, pp. 142–175, 1995.

[18] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. Journal of Algorithms, 2(1):88–102, 1981.

[19] A. Suyama, N. Nishida, K. Kurata, and K. Omagari. Gene expression analysis by
DNA computing. Computational Molecular Biology, pp. 12–13, 2000.

[20] H. Yoshida and A. Suyama. Solution to 3-SAT by breadth first search. American
Mathematical Society, pp. 9–22, 2000.


