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Scaling of Current-Voltage Curves of Bi-2212 Tape Wire
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Abstract— The current-voltage curves are measured
for a dip-coated Bi-2212 tape wire at various tempera-
tures under the magnetic field parallel to the c-axis. It
is found that the current-voltage curves are approxi-
mately scaled on two master curves by normalizing
as predicted in the vortex glass-liquid transition the-
ory. However, the obtained dynamic critical index was
about 3 and too small in spite of the two-dimensional
flux line system. These results are compared with the
theorical analysis based on the flux creep-flow model
taking account of the distribution of pinning strength.
1t is found that the theorical result approximately ex-
plains the experimental result on the scaling behavior,
the critical indices and the transition line.

I. INTRODUCTION

It is known that the current-voltage curves of high
temperature superconductors meet on two master curves
when those are normalized by proper functions of temper-
ature predicted by the vortex glass-liquid transition the-
ory [1],[2]. However, a similar scaling can also be derived
from the mechanism of flux creep and flow [3]-{5]. Espe-
cially, when the effect of distributed flux pinning strength
is taken into account, the critical indices obtained from
the mechanism of flux creep and flow are close to exper-
imental results. A satisfactory agreement was obtained
between the theoretical and experimental results for a Bi-
2223 tape wire [6]. In addition, it was reported [6]-[8]
that the critical indices changed with the magnetic field,
while it is predicted to be constant if the transformation
is really the phase transition. Therefore, it seems to be
realistic that such a behavior of the current-voltage curves
is different from the phase transition of the second order
predicted from the vortex glass-liquid transition theory.

In this paper the scaling of the current-voltage curves
is investigated for a Bi-2212 tape wire and the results are
compared with the theoretical analysis based on the flux
creep-flow model.

II. EXPERIMENTAL

The measured specimen was a Bi-2212 tape wire pre-
pared by a dip-coat process. Its size was about 40 mm
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Fig. 1. Scaled current-voltage curves at B = 0.7 T. Obtained pa-
rameters are Ty = 36 K, v = 2.6 and z = 3.2.

long, 4.7 mm wide and 0.11 mm thick and the thickness
of the superconducting region was approximately 10 pm.
The c-axis of the specimen was oriented normal to the
flat surface of the tape. The critical temperature, T, was
93.0 K. The current-voltage curves were measured by the
four probe method under the magnetic field parallel to
the c-axis. The pulse transport current with the period
of 3 s was applied to the specimen to reduce the joule
heat at the current leads and the voltage was measured
across the voltage terminals separated by 1.0 cm. Af
ter the measurement of the current-voltage curves of the
specimen, the superconducting layer was broken and the
resistivity of the silver layer only was measured. This was
needed for the evaluation of the current-voltage charac-
teristics only of the superconducting region. The criti-
cal current density at sufficiently low temperatures was
also measured, since the information on the flux pinning
strength is necessary for the theoretical analysis based on
the flux creep-flow model. For this purpose the Campbell
method [9] was used for the cumulated chips of specimens
put in the perpendicular magnetic field. Such a geometry
was employed to reduce the effect of demagnetization.

According to the vortex glass-liquid transition the-
ory [1], [2], the current-voltage characteristics at various
temperatures collapse on two master curves when plotted
as (E/J)/IT = Tg|"=+2-D) vs J/|T — T, |*(P~1), where
z and v are the dynamic and static critical indices and
D represents the dimension of the fluxoids. In Bi-2223
epitaxial films and tape wires under the magnetic field
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Fig. 2. Static critical index, v: Solid and open symbols represent
experimental and theoretical results, respectively.
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Fig. 3. Dynamic critical index, z: Solid and open symbols represent
experimental and theoretical results, respectively.

parallel to the c-axis the fluxoids were assumed as quasi-
two-dimensional and D = 2 was used in the analysis of the
current-voltage characteristics [7], [8], [10], [11]. However,
the behavior of fluxoids in Bi-2223 tape wires was found to
be three-dimensional for both the magnetic fields normal
and parallel to the c-axis from the scaled pinning force
density and the irreversibility field [12]. Hence, D = 3 is
assumed in this paper. Figure 1 shows the results of scaled
current-voltage curves at B = 0.7 T. In this case the ob-
tained scaling parameters are T, = 36 K, » = 2.6 and
z = 3.2. The static and dynamic critical indices at vari-
ous magnetic fields are represented in Fig. 2 and Fig. 3,
respectively. It is found that these indices are not exactly
constants but vary slightly with magnetic field.

II1. FLUX CREEP-FLOW MODEL

According to the flux creep model [5], the induced elec-
tric field due to the thermally activated fluxoid motion is

described as .
U@y )}

Em- = BG[VQEX[) [—E‘T
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X [l—exp (—1::(;{)]; 7151,

= Baryy [1 — exp (—%)] :
B

where j = J/J. is the normalized current density by the
virtual critical current density, Jg, in the creep-free case
and ay is the fluxoid spacing, v is the oscillation frequency
of the flux bundle, U is the activation energy and Uj is
the pinning potential. It is known that the pinning po-
tential depends not only on the the pinning strength but
also on the size of the superconductor [13]. The longitu-
dinal flux bundle size in a superconductor is considered
to be given by the longitudinal elastic correlation length,
144 = (C44/0:|_)1/2 = (Baf/21rpoJco)”2, where C44 is the
tilt modulus and ay is the Labusch parameter. If the
thickness of the superconducting region, d, is smaller than
lyg, Up is given by [13]

1>1 (1)

4.23g2kgjcod
Uy = —————, 2
"= TenB2 @)
where g? is the number of fluxoids in the flux bundle and is
determined by the condition of maximum critical current
density [14]. In the case of d larger than ly4, Up is given
by
o o 0.835¢2kpJ >
LA (2m)3/2B1/4

(3)

Within the ranges of magnetic field and temperature for
the analysis, g° is calculated to be smaller than 1. Hence,
we use the minimum value, g> = 1, in the analysis.

On the other hand, the contribution from the flux flow
is

Ex = 0
pr(J — Jeo);

where pr is the flux flow resistivity. Here we approximate
that the total electric field is given by

<1,
i>1, (4)

E = (E., + E3)'/. (5)

This leads to F, for j < 1 and Eg for j > 1. Since Uy
and U are expressed using J g, the current-voltage curve
can be calculated when Jg is given [5]. We assume the
following temperature and magnetic field dependences of

Jeo:
@] -2) 0

where A, m, v and 6 are the pinning parameters.

It is considered that the flux pinning strength is dis-
tributed in practical superconductors [5]. For simplicity,
we assume that only A in (6) is distributed in the form:

_ (logA —logAp,)*
202 '

(7)

f(A) = Kexp [
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Fig. 4. Experimental (open symbols) and theoretical (lines) results
of critical current density.
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Fig. 5. Two distributions of A. Solid and dashed lines are the
distributions given by (7) and (9), respectively.

where A, is the most probable value, I is a constant
determined by the condition of normalization and o2 is a
constant representing the degree of deviation. Then, the
electric field is given by

E(J) = /om Ef(A)dA. (8)

The parameters used in the numerical calculation are
shown in Table I. g? is estimated at 40 K and 1.5 T and as-
sumed to be constant for simplicity. The pinning param-
eters and o2 are determined so that a good fit is obtained
between the experimental and theoretical values of the
critical current density. The critical current density was
defined using the electric field criterion of 1.0x 10~* V/m.
Figure 4 shows the results of critical current density. Its
dependences on temperature and magnetic field seem to
be approximately explained. However, the value of J. cor-
responding to A, amounts to 2.9x 107 A/m2 atB=15T
and T' = 26 K and is larger than the experimental result.
It is well known that the distribution of the flux pinning
strength can be described by the Weibull function [15].

TABLE 1 X :
Superconducting and pinning parameters used in the numerical

calculation.

Te (K)  Beg(0) (T)  pn(Te) (p2m) Am
93.0 34.5 100 3.82 x 10°
m 5 ) ' o?
8.0 0.8 2.0 1.0 0.70

According to the theory, the distribution of the flux pin-
ning strength is given by

m' (A— A, =1 A- o

=5 (55%) e [—( =) } (9
where m' is the parameter determining the shape of the
distribution, A is a scaling factor roughly representing
the width of the distribution and A. is the minimum value
of A. These parameters are chosen so as to get a good fit
between the two distributions. Here, the two distributions
of A are compared in Fig. 5. It turns out that J. =
7.6x 10° A/m? estimated at B = 1.5 T and T = 26 K
from A, is close to the critical current density shown in
Fig. 4. Thus, the value of A, assumed here seems to be
reasonable. Hence, the numerical analysis on the current-
voltage curves at higher temperatures is carried out using
the above parameters. The magnetic field above which
ly4 becomes longer than d = 10 pm is B = 11.9 T at
T=20 Kand B=44T atT =40 K.

IV. Discussion

Figure 6 shows the scaled result of numerically calcu-
lated curves at B = 0.7 T. The scaling parameters ob-
tained from the numerical analysis are Ty, = 30 K, » = 2.0
and z = 4.1. Comparing the results with the data in
Fig. 1, it is found that the scalings are similar although
the scaling parameters are slightly different. The obtained
static and dynamic critical indices are compared with the
experimental results in Figs. 2 and 3, respectively. The
present theoretical analysis explains approximately the
small z values and the relatively large v values. These
results do not agree with the prediction of the glass-liquid
transition theory for two-dimensional fluxoid system. Es-
pecially the too small z is speculated to be caused by
the large deviation in the pinning strength. In Fig. 7
the transition line is compared between the experimental
and theoretical results. This also shows that the agree-
ment is rather good. It is to be noted, that the scaling
of the current-voltage curves is not perfect for both the
experimental and theoretical results. For this reason, it is
considered that the flux pinning strength is very widely
distributed in this specimen. This speculation seems to be
associated with a broad transition curve of susceptibility.

However, the approximate scaling of the current-voltage
curves obtained from the mechanism of flux creep and flow
seems to be attributed to the divergence of some correla-
tion length at the transition temperature, Ty. The cor-
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Fig. 6. Calculated scaled characteristics at B=0.7 T
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Fig. 7. Experimental (open symbols) and theoretical (solid symbols)
results of transition line.

responding correlation length will be I;; = (C“/arl,)”2
along the direction of the Lorentz force, where Cj; is
the uniaxial compression modulus. Since aj, is propor-
tional to the pinning force density, F,, if we assume the
scaling law as F, o (1 — B/Bs)‘s' in the vicinity of the
transition line, we have [;; o (1 - B/Bs)“ﬁ'ﬁ. This
means that the temperature dependence of I;; is given
by Iy o (1 =T/Tg)~%/? near T,. Thus, §'/2 corresponds
to the static critical index, v. The scaling of the pin-
ning force density is shown in Fig. 8. From this result we
obtain 6’ = 5.4 and v = 2.7 is expected. The static crit-
ical index, v, takes about 2.7 in the range of 38 K-50 K
(B < 0.7 T) for the measurement in Fig. 8. It is found,
therefore, that the static critical index can be explained
by the mechanism of flux pinning.

V. SUMMARY

The scaling of the current-voltage curves is investigated
for a dip-coated Bi-2212 tape wire and the following re-
sults are obtained:
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Fig. 8. Pinning force density normalized by the maximum value vs
magnetic field normalized by Bg.

. The current-voltage curves are approximately scaled

on two master curves. However, the scaling is not
perfect. This seems to be ascribed to be the widely
distributed inhomogeneity of the specimen.

. The scaling of the current-voltage curves, the two

critical indices and the transition line are approxi-
mately explained by the flux creep-flow model. Es-
pecially, the dynamic critical index is too small in
spite of two-dimensional flux lines. This is caused by
the inhomogeneous distribution of pinning strength.
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