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Splitting between the field-cooled dielectric constant and the zero-field-cooled dielectric constant
was observed for a diluted system of LiTaO3 nanoparticles~diameter '30 Å! embedded in
amorphous SiO2 . At the applied field frequency of 100 kHz, the real part of the field-cooled
dielectric constant diverged from that of the zero-field-cooled one at'380 °C. The bifurcation point
of the history-dependent dielectric constant rose from'310 to'540 °C upon increasing the field
frequency from 10 to 1000 kHz. Bulk LiTaO3 powders showed no splitting in the history-dependent
dielectric constant and the maximum at 645 °C in the real part of the dielectric constant, despite the
variation of frequency. Both the splitting of the history-dependent dielectric constant and the
frequency dependence of the bifurcation point suggest that the LiTaO3 nanoparticles with a
single-domain structure were in the superparaelectric state as a consequence of insignificant
cooperative interactions among the nanoparticles in the diluted system. The energy barrier of'0.9
eV separating two (1p and 2p) polarization states corroborated the potential of the LiTaO3

nanoparticle for ultrahigh-density recording media applications. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1715147#

Properties of nanominiaturized ferroelectric materials
are of fundamental and technological interest.1–6 Efforts to
understand the physical properties of nanoparticles have
been paralleled by attempts to exploit their beneficial prop-
erties. Nanoparticles with a long-lived remanent polarization
are promising for development of low-power and nonvolatile
memory devices that can be in operation above room tem-
perature.

We have reported that the maximum temperature in the
real part of temperature-dependent complex dielectric con-
stantsTm(«8) of BaTiO3 ~BTO!, SrBa2Ta2O9 ~SBTO!, and
LiTaO3 ~LTO! nanoparticles embedded in amorphous SiO2

were 60, 180, and 365 °C, respectively, at the applied field
frequency~f ! of 100 kHz.7–10 The ferroelectric–paraelectric
transition temperaturesTc(«8) of the bulk BTO, SBTO, and
LTO, powders were 130, 310, and 645 °C, respectively. For
BTO, SBTO, LTO, theTm values were lower than theTc

values by 70, 130, and 280 °C, respectively. The nanominia-
turization of the ferroelectric materials brought about larger
lowering of the characteristic temperature for the material
with higherTc . With the increase off from 10 to 1000 kHz,
the maximum temperature in the imaginary part of
temperature-dependent complex dielectric constantTm(«9)
for the diluted system of LTO nanoparticles rose from 285 to
420 °C.10 Despite the variation off, Tc(«9) of the bulk LTO

powders remained at 615 °C. A rise ofTm with increasingf is
similar to that reported for dipolar glasses,11 and is an indi-
cation of slow relaxation processes that characterize the
glassy behavior.12

Ferroelectric nanoparticles smaller than the ferroelectric
domain size have a single-domain structure.10,13 In addition,
there is no long-range ferroelectric order in a diluted system
of the nanoparticles. All energies as a function of polariza-
tion for nanoparticles with insignificant cooperative interac-
tions depend on their size, thus, the energy barrier separating
alternative polarization states (1p and2p) of the nanopar-
ticle decreases as the size decreases, and the polarization
state of the nanoparticle becomes unstable against thermal
agitation. As a consequence of random distribution of the
polarization direction of individual nanoparticles, the system
is in the superparaelectric state belowTc and exhibits
paraelectriclike behavior aboveTm . The dipole moment of
each nanoparticle disappears atTc and the system reaches
intrinsic paraelectric state.7–10 In diluted systems of ferro-
electric nanoparticles, the local ordering is due to electric
dipoles. The spin representing a magnetic moment of mag-
netic spin glasses turns into a pseudospin representing the
electric moment of dipolar glasses. Here, we treat the dielec-
tric constant instead of magnetic susceptibility, otherwise,
the situation for diluted systems of ferroelectric nanoparticles
is similar to that for magnetic spin glasses. A spin glass is
modeled as a system of interacting superparamagnetic
particles.11 The shift of Tm with f for superparamagnets is
much larger than that for spin glasses.12 For the diluted sys-
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tem of LTO nanoparticles, the relative variation ofTm per
decade off, (DTm /Tm)/D(log10 f )'0.1, indicates that the
system was in the superparaelectric state.10,12

It is well known that the response of the glassy system to
an external field depends on the history of the system. Spe-
cifically, if the system has been cooled in an external field,
the corresponding field-cooled~FC! dielectric constant
«FC(T) will differ from the zero-field-cooled~ZFC! one
«ZFC(T), which is observed after cooling the sample in zero
field. As the temperature lowers,«FC(T) and«ZFC(T) curves
diverge from each other at the bifurcation point (Tbif).
«ZFC(T) then deviates below«FC(T), and shows a maximum
at Tm corresponding to the freezing temperature of the glassy
system. An Arrhenius-type behavior of relaxation times pro-
duces a slowing-down of the motions of the dipole moment,
even aboveTm . A shift of Tbif with f is a clear indication of
the glassy nature of dipolar glasses. Splitting between
«FC(T) and «ZFC(T) has been observed in many glassy
systems.11 However, there has been no report on the splitting
of «FC(T) and«ZFC(T), nor on the frequency dependence of
Tbif for the diluted ferroelectric nanoparticles. For a diluted
system of LTO nanoparticles (f'30 Å), we confirmed both
splitting between«FC(T) and«ZFC(T) and a rise ofTbif with
increasingf.

Since the spontaneous polarization of LTO crystals is so
large~50 mC/cm2!,14,15the LTO nanoparticle is promising for
ultrahigh-density memory device applications. For fabrica-
tion of the diluted system of LTO nanoparticles, we used the
mesopores of the MCM-41 molecular sieve16 as a growth
template of the nanoparticles. The MCM-41 was soaked in
0.01 mol/l absolute ethanol solution of lithium chloride and
tantalum chloride, and then calcined at 850 °C. The concen-
tration of LTO determined by energy-dispersive x-ray analy-
sis was approximately 0.8 mol %. We found barely an indi-
cation of the formation of LTO nanoparticles, even in the
x-ray diffraction measurement using synchrotron radiation
(l50.636 Å) at the BL15XU of SPring-8, Japan. A smeared
and rather broad hump was observed at the diffraction angle
(2u'9.75°) corresponding to the LTO~012! reflection
~JCPDS No. 29-0836!, as shown in Fig. 1. However, it is
hard to manifest the formation of nanoparticles since the
hump is buried in an intense background due to the diffuse
scattering of amorphous SiO2 . The signal-to-noise ratio was
almost equal to or less than 2. A transmission electron mi-
croscope~TEM! was used to examine directly the formation

of LTO nanoparticles.17 As shown by the dark spots in the
bright-field image of Fig. 2, the particles were distributed
randomly in the matrix. The particles are well separated and
no aggregation occurred. The average size of the particles
was'30 Å, as shown by the inset of Fig. 2. The particles are
monodisperse withs<5% in diameter. The Li K energy-loss
spectrum and Ta L and M x-ray spectra measured by the
TEM confirmed that the dark spots correspond to the LTO
nanoparticles dispersed in SiO2 .

In order to confirm the glassy nature of the diluted LTO
nanoparticles, we examined history dependence of«* ( f ,T)
5«81 i«9 at temperaturesT from 200 to 750 °C withf from
10 to 1000 kHz.18 Since the voltage applied to a sample 0.5
mm thick was 10 V, the probing fieldEac was 0.2 kV/cm,
smaller than the coercive fieldEc ~160 kV/cm! of LTO.14,15

Figure 3 shows the temperature dependence of«FC8 and«ZFC8
from 200 to 600 °C atf of 10, 50, 100, 500, and 1000 kHz of
the diluted system of LTO nanoparticles embedded in the
SiO2 matrix. The splitting between«FC8 and«ZFC8 has indeed
been observed at eachf. Similar to what we have already
reported,10 the matrix showed gradually increasing«8 with T

FIG. 1. Synchrotron radiation x-ray diffraction pattern of the diluted system
of LTO nanoparticles embedded in the amorphous SiO2 matrix.

FIG. 2. A representative TEM image of the LTO nanoparticles dispersed in
the matrix. Inset: Particle size distribution deduced from the image of 600
3600 Å2 region.

FIG. 3. Temperature dependence of history-dependent dielectric constant
from 200 to 600 °C atf of 10 ~j!, 50 ~h!, 100~m!, 500~s!, and 1000 kHz
~d! of the diluted system of LTO nanoparticles embedded in the matrix. At
eachf, upper and lower arms of the bifurcation correspond to«FC8 and«ZFC8 ,
respectively. The dotted line for eachf represents background in«8(T) due
to ionic conduction increasing withT.
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at eachf. The bulk LTO powders showed the peak in«8(T)
at 645 °C, regardless of the variation inf. We found no split-
ting in the history-dependent dielectric constant of either the
matrix or the bulk LTO powders below 750 °C. Therefore,
the observed splitting between«FC8 and«ZFC8 for the diluted
system of LTO nanoparticles can be attributed to the nano-
miniaturized ferroelectric materials. We assumed that the
background in«8(T) presented by the dotted line for eachf
in Fig. 3 was formed by ionic conduction increasing withT.
Figure 4 shows the background subtracted and normalized
«FC8 and«ZFC8 for the nanoparticles atf of 10, 100, and 1000
kHz. The relative variation ofTm(«ZFC8 ) per decade off was
'0.1, which indicates that the LTO nanoparticles were in the
superparaelectric state.12 The temperature at which the split-
ting between «FC8 and «ZFC8 should occur shifted pro-
nouncedly to the higher temperature side with increasingf.
The shift of Tbif with f represents strong evidence of the
glassy nature for the diluted system of LTO nanoparticles, as
mentioned before.

Progressive freezing of the motions of the dipole mo-
ment of the LTO nanoparticles began immediately below
Tbif . Two polarization states,1p and 2p, in a super-
paraelectric potential having double minima are separated by
an energy barrierU, which is approximately equal to the
product of the Gibbs free energy density and the nanoparticle
volume. The freezing appears through the probability of each
nanoparticle to overcomeU, and is expressed in terms of
relaxation timet5t0 exp(U/kBT), wheret51/f is the mea-
suring time,t0 is the characteristic relaxation time, andkB is
the Boltzmann constant. On lowering the temperature, the
relaxation time increases and a peak in«ZFC8 (T) will appear
at the freezing temperatureTf , whent becomes larger than
t0 . While the observedTm is not a true static quantity, we
have estimated theU value in order to evaluate the dielectric
stability of individual LTO nanoparticle.Tm at f of 10, 50,
100, 500, and 1000 kHz were 305, 332, 363, 437, and

457 °C, respectively. By usingTm as Tf in the equationTf

5U/kB ln(1/t0f ), with t051310212 s,10,19 we obtained
theU/kB values of approximately 0.908, 0.885, 0.883, 0.878,
and 0.869 eV atf of 10, 50, 100, 500, and 1000 kHz, respec-
tively. The rise inT lessened the Gibbs free energy density of
the nanoparticle, however, theU/kB value of '0.9 eV im-
plies that the dielectric stability of the LTO nanoparticle is
sufficient for nonvolatile memory devices to be in operation
above room temperature.

For the diluted system of LTO nanoparticles embedded
in SiO2 , we have observed the splitting between«FC8 and
«ZFC8 below Tc of the bulk LiTaO3 and the rise ofTbif with
increasingf. Such frequency dependence confirms the super-
paraelectric nature of the LTO nanoparticles dispersed in the
matrix. The dielectric stability sufficient for potential
ferroelectric-memory applications was observed for the LTO
nanoparticle.
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10 ~a!, 100 ~b!, and 1000~c! kHz. Arrows correspond to the bifurcation
points.
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