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abstract

This paper describes two simplified analysis methods for the magnetically damped

vibration. One is the method modifying the result of finite element uncoupled analysis

using the coupling intensity parameter, and the other is the method using the solution and

coupled eigenvalues of the single-degree-of-freedom coupled model. To verify these methods,

numerical analyses of a plate and a thin cylinder are performed. The comparison between

the results of the former method and the finite element tightly coupled analysis show almost

satisfactory agreement. The results of the latter method agree very well with the finite

element tightly coupled results because of the coupled eigenvalues. Since the vibration with

magnetic damping can be evaluated using these methods without finite element coupled

analysis, these approximate methods will be practical and useful for the wide range of design

analyses taking account of the magnetic damping effect.

1 Introduction

A large Lorentz force generated by the interaction of eddy current due to plasma

disruption and the toroidal magnetic field is applied to conductive thin shell structures of

fusion reactor components. When the structures deform in the magnetic field, the electromo-

tive force, which is produced by the deformation velocity and the magnetic field, reduces the

eddy current [1]. Therefore, it is important to evaluate the electromagnetic and structural

coupled effect or magnetic damping effect for the design of fusion reactor components. The

evaluation of magnetic damping effect may avoid too conservative structural design of the

reactor components. In the design work, since the finite element coupled analyses of the
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components take much time to prepare and execute the analyses, they will be performed to

confirm the integrity of the design. Simplified analysis methods will be useful for so many

analysis cases with various design parameters especially in deciding on a design concept.

Over the past few years, several attempts have been made on parameters related

to the magnetic damping effect. The critical magnetic viscous damping ratio, which can be

used for the approximate solution method(MMD method) for electromagnetic mechanical

coupling, has been proposed and its dependence on material properties was examined by

Takagi et al. [2], [3]. The magnetic damping parameters, which were obtained by non-

dimensionalizing a set of equations describing the coupled problem and can be used for

reduced experimental model, have been proposed by Yoshida et al. [4]. The authors have

defined the coupling intensity parameter and examined its dependence on magnetic field,

plate thickness and material properties [5]. The advantages of the coupling intensity param-

eter are that it can represent the characteristics of the magnetically damped vibration [6] and

that the parameter can be used to determine the conditions for the reduced experimental

model [7].

In this paper, two simplified analysis methods are proposed and described for the

vibration with magnetic damping. In one method, the result of finite element uncoupled

analysis is modified using the coupling intensity parameter. The other method utilizes the

single-degree-of-freedom coupled model taking into account the change of angular frequency

caused by the coupling effect. To verify the validity of these methods, numerical analyses

are performed for a cantilevered plate in an electromagnetic field. A problem of a cylinder

is also analyzed to confirm the use for practical application.
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2 Coupling intensity parameter

2.1 Definition of coupling intensity parameter

The symmetric matrix equation of magnetic damping problem [8] is expressed using

displacement u, the normal component of current vector potential T and velocity v by
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where M is the mass matrix, K the stiffness matrix, Cs the coupling sub–matrix by the elec-

tromagnetic force, Ce the coupling sub–matrix by the electromotive force, U the inductance

matrix, and R the resistance matrix; and vectors Fex, Ḃex are the external mechanical force

and the change of the external magnetic field respectively.

Since the coupled eigenvalue α of Eq.(1) includes the magnetic damping effect, the

coupling intensity parameter Ces is defined [5] by

Ces =
Re α

|α| (2)

to evaluate the magnetic damping effect.

2.2 Dependence of the coupling intensity parameter

Dependence of the coupling intensity parameter has been obtained from the single-

degree-of-freedom coupled model [5]. The equation of motion for the coupled problem is

expressed using u and T as

mü + ku + CsT = f ex , (3)

where F ex and CsT mean the external force and the coupling term by the electromagnetic

force respectively. The equation of the eddy current becomes

UṪ + Ceu̇ + RT = Ḃex , (4)
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where U,R, Ḃex, and Ceu̇ mean the inductance, the resistance, the change of external mag-

netic field, and the coupling term by the electromotive force respectively. Elimination of T

from Eqs.(3) and (4) yields the third order differential equation

mU
...
u +mR

..
u +(kU − CsCe)

.
u +Rku = −CsḂ

ex + ḟ ex + Rf ex . (5)

Upon solving the characteristic equation of Eq.(5), the coupled eigenvalues

γe = − R

3U
+
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} 1
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} 1
3 (6)
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have been obtained, where a and b are the functions of Young’s modulus E, density ρ, electric

conductivity κ, and thickness h. Substituting these coupled eigenvalues γs±ωsi into Eq.(2),

the coupling intensity parameter is expressed [5] by

Ces =
Re α

|α| = Ces(B, h,E, ρ, κ, Ps, Pe, Pc) , (8)

where Ps, Pe, and Pc are the proportional constants which can be determined by the finite

element eigenvalue analysis.

3 Simplified analysis methods for magnetically damped vibration

Two simplified analysis methods are presented for a magnetically damped vibration

problem with an initial deflection. Although the problem is simple, these methods are also

applicable to the magnetically damped vibration with dynamic force.
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3.1 Modification of the finite element uncoupled result using the coupling in-
tensity parameter (method 1)

The magnetically damped vibration response can be approximately obtained by

modifying the finite element uncoupled results to include the coupling effect using the cou-

pling intensity parameter, which is based on the single-degree-of-freedom coupled model.

Since the structural and eddy current equations are solved alternately by neglecting the

electromotive force in the finite element uncoupled analysis, the computation time can be

much saved compared to the finite element tightly coupled analysis where the equations are

solved simultaneously.

In general free vibration problem with damping

mü + cu̇ + ku = 0 , (9)

with the initial conditions u(0) = U0 and u̇(0) = 0, the solution characterized by the damping

ratio ζ and the natural angular frequency ω0 is expressed as

u =

√
1

1− ζ2
U0 exp (−ζω0t) cos

(
ω0

√
1− ζ2t− β

)
, (10)

where

β = tan−1 ζ√
1− ζ2

. (11)

Since ζ is the ratio of the damping coefficient c and the critical damping coefficient 2
√

mk,

it can also be written as

ζ =
Re α′

|α′| , (12)

where α′ is the eigenvalue of Eq.(9). While ζ is defined based on the second order differential

equation (9), Ces is based on the third order differential equation (5). According to the
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similarity, however , in the definitions of Ces in Eq.(8) and ζ in Eq.(12), we assume

Ces'ζ . (13)

Then the magnetically damped vibration response is approximately written by

uc =

√
1

1− Ces
2U0 exp (−Cesω0t) cos

(√
1− C2

esω0t− β
)

. (14)

By substituting ζ = 0 into Eq.(10), the uncoupled vibration response without damping is

written as

ug = U0 cos ω0t . (15)

Comparing the magnetically damped vibration of Eq.(14) with the uncoupled vibration

of Eq.(15), the amplitude is decreased by
√

1
1−C2

es
exp (−Cesω0t) times as large as that of

uncoupled vibration, the angular frequency is multiplied by
√

1− C2
es , and the phase angle

is delayed for β. Therefore, the magnetically damped vibration response is obtained from

the result of the finite element uncoupled analysis using this analogy(Fig. 1). The value of

Ces is calculated from Eq.(8) based on the single-degree-of-freedom coupled model.

This method may be useful for the parametric survey in the design taking account

of the magnetically damped vibration response, because the coupling intensity parameter

is expressed as the function of the magnetic field, material properties and thickness. This

method can be applied to the response with more than one structural mode. After evaluating

each mode using this method, the response is obtained by superposing these modes.

3.2 The method using the solution and coupled eigenvalues of the single-degree-
of-freedom coupled model (method 2)

The analytical solution and coupled eigenvalues γs , γs±ωsi of the single-degree-of-

freedom coupled model are used to approximately evaluate the magnetic damped vibration
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response. The geometry of the structure is taken into account by the proportional constants

Ps, Pe and Pc of the single-degree-of-freedom coupled model.

Using the coupled eigenvalues γs in Eq.(6) and γs ± ωsi in Eq.(7), the general

solution of Eq.(5) is given by

u = D1e
γet + eγst {D2 cos ωst + D3 sin ωst} , (16)

where D1, D2 and D3 are the constants determined from initial conditions. For the problem

with the initial conditions

u(0) = U0, u̇(0) = 0, ü(0) = − k

m
U0 , (17)

the constants are

D1 = U0(1− A) (18)

D2 = AU0 (19)

D3 = −U0

ωs

{γe − (γe − γs) A} , (20)

where

ω2
0 =

k

m
, A =

ω2
0 + γ2

e − 2γeγs

γ2
e − 2γeγs + γ2

s + ω2
s

. (21)

The magnetically damped vibration response is obtained from Eq.(16) by substituting D1,

D2 and D3, which are determined from Eqs.(18), (19) and (20) using the coupled eigenvalues

γe and γs ± ωsi of Eqs.(6) and (7) (Fig. 2).

Compared to the method in section 3.1(method 1), the response with high accuracy

may be obtained because this method is based on the analytical damped solution of the

third order differential equation. Since the dynamic finite element analysis is not required

in this method, the computation time may be shorter. Like method 1, the parametric study
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for design analysis and the application to the response with more than one mode are also

available using this method.

4 Magnetic damping problem of a cantilevered plate

4.1 Analysis model

To verify the validity of these simplified analysis methods, a cantilevered copper

plate in an electromagnetic field shown in Fig. 3 is solved. While the plate is vibrating

by the initial deflection (10 mm), the deformation velocity u̇z and the magnetic field Bx

generate an electromotive force, which generates the magnetic damping force to the plate.

4.2 Results with different magnetic fields

Analyses of dynamic behavior of the plate are performed and compared with the

finite element coupled solution for the cases of Bx = 0.2, 0.5, 0.7 T.

Figure 4 shows the deflection at the free end of the plate. The result of method 1

agrees well with that of the finite element tightly coupled analysis when Bx is 0.2 T(Fig. 4(a)).

For higher magnetic field, the results of method 1 are delayed in time compared to those of the

finite element coupled analysis because the angular frequency difference between
√

1− C2
es ω0

and ωs for each magnetic field (5.03 % for Bx = 0.5 T and 14.3 % for 0.7 T according to

Table 1) is larger than that for 0.2 T. Although small delay in time is observed for large

Ces values, the results obtained from method 1 satisfactory predict the response of magnet-

ically damped vibration. According to Fig. 4, the results of method 2 for all cases are in

good agreement with the finite element coupled results because the coupled eigenvalues used

include the coupling effect between the electromagnetic and mechanical systems.
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4.3 Results for different materials

These methods are applied to the plate with different materials such as aluminum

and Type 316 stainless steel with a magnetic field Bx = 0.5 T. Material properties used for

the analyses are summarized in Table 2.

Figure 5 shows the deflection at the free end of the plate. According to Table 3, the

angular frequency difference of Type 316 stainless steel is 2.96 × 10−3 %, which is so small

that the result of method 1 agrees with the finite element tightly coupled result as shown in

Fig. 5(a). As for aluminum, the result of method 1 is slightly delayed in time as shown in

Fig. 5(b) because the angular frequency difference of 6.17 % is not so small. This property

attributes to the good electric conductivity of aluminum compared to Type 316 stainless

steel. Then, the magnetic damping characteristics of aluminum is similar to those of copper

of Fig. 4(b). Method 1 is valid for the materials with different properties and can be used

for simplified magnetic damping analysis. Figure 5 also shows the results of method 2, which

agree very well with those of the finite element tightly coupled analysis. Since the coupled

eigenvalues are used in this method, the response with good accuracy is obtained even for

the material with large magnetic damping effect or good electric conductivity.

4.4 Usability of these simplified analysis methods

Since many cases with combinations of structural geometry, thickness, magnetic

field and material properties should be analyzed for design with the effect of magnetic

damping, finite element coupled analysis takes much computation time. In both simpli-

fied analysis methods, a finite element eigenvalue analysis is needed once for each geometry

of the structure to determine the proportional constants Ps, Pe and Pc, which lead to the
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coupling intensity parameter and the coupled eigenvalues using the single-degree-of-freedom

coupled model. Although a finite element uncoupled analysis is required for each combina-

tion of material properties and thickness for method 1, the magnetically damped vibration is

approximately obtained by modifying the result using the coupling intensity parameter for

cases with different intensity of magnetic field. In method 2, the vibrations for all analysis

cases are approximately obtained by using the dependence of the coupled eigenvalues on

magnetic field, material properties and thickness. Therefore, the computation cost for the

design analyses will be much saved using these simplified analysis methods.

5 Magnetic damping of a thin cylinder

These simplified analysis methods are applied to the magnetically damped vibration

of a cylinder to verify the applicability of these methods.

5.1 Analysis model

A thin cylinder made of Type 316 stainless steel of radius 1 m and length 2 m

shown in Fig. 6 is analyzed. It is supported rigidly along its bottom line and vibrated by the

initial deflection of 1.3 mm along point A to B. Since the region of this problem is multiply

connected, a lid with much lower Young’s modulus, mass density and electric conductivity

is attached on one end of the cylinder.

5.2 Numerical results

The simplified analysis methods are applied separately to vibration modes 3 and

6 shown in Fig. 7, then superposed. Table 4 summarizes Ces and the angular frequency

difference of the dominant modes for each magnetic field. Figure 8 shows the deflection at

11



point A of the cylinder. When Bx is 0.5 T, the result of method 1 agrees well with that of

the finite element tightly coupled analysis with direct time integration method. When Bx is

higher such as 1.5 T, the result of method 1 is slightly delayed in time as with the result of

the plate because of the angular frequency difference summarized in Table 4. The results of

method 2 are fitted to the finite element tightly coupled results as shown in Fig. 8. These

simplified methods are applicable to the magnetic damping effect of the cylinder as well as

that of the plate.

6 Conclusion

Two simplified analysis methods to approximately obtain dynamic response with

the effect of magnetic damping have been proposed and applied to a plate and a thin cylinder

in magnetic fields.

As for the method modifying the finite element uncoupled result using the coupling

intensity parameter, although the results are slightly delayed in time compared to those

of the finite element tightly coupled analysis as the magnetic damping effect increases, the

results obtained from this method satisfactory predict the response of magnetically damped

vibration. The results of the method using the solution and coupled eigenvalues of the single-

degree-of-freedom coupled model agree very well with the finite element tightly coupled

results because of the coupled eigenvalues. Since the vibration with magnetic damping can

be evaluated using these methods without finite element coupled analysis, these simplified

analysis methods will be practical and useful for the wide range of design analyses taking

account of the magnetic damping effect.
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Table 1 Coupling intensity parameter and angular frequencies for different magnetic field

Magnetic field Ces

√
1− C2

es ω0 ωs Difference between
Bx [T] [rad/s] [rad/s]

√
1− C2

es ω0 and ωs [%]

0.2 0.0374 67.0 67.4 0.704
0.5 0.241 65.0 68.7 5.03
0.7 0.498 58.1 67.8 14.3

Y. Tanaka et al.
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Table 2 Material properties for the analysis
Material Young’s modulus Density Electric conductivity

[Pa] [kg/m3] [S/m]

Type 316 SS 1.80× 1011 7.90× 103 1.38× 106

Al 6.90× 1010 2.71× 103 3.30× 107

Y. Tanaka et al.
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Table 3 Coupling intensity parameter and angular frequencies for different materials

Material Ces

√
1− C2

es ω0 ωs Difference between
[rad/s] [rad/s]

√
1− C2

es ω0 and ωs [%]

Type 316 SS 0.00474 91.1 91.1 0.003
Al 0.320 91.3 97.3 6.17

Y. Tanaka et al.
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Table 4 Coupling intensity parameter and angular frequencies of each structural mode

Magnetic field Ces

√
1− C2

es ω0 ωs Difference between
Bx [T] [rad/s] [rad/s]

√
1− C2

es ω0 and ωs [%]

Mode 3 0.5 0.0443 23.6 23.7 0.399
1.5 0.413 21.5 22.8 5.76

Mode 6 0.5 0.0451 85.4 86.4 1.22
1.5 0.446 76.5 94.0 18.6

Y. Tanaka et al.
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