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Abstract:

The main concern of classical homogeneous nucleation theory has been a
thermodynamic description of initial stage of nucleation from embryo to nucleus with
a little larger size over the critical one, thus, the change of parent phase in the system
has been assumed to be negligible because of the largeness in volume and mass
comparing that of nuclei. As a result, the nucleation curve (free energy change versus
nucleus size) passes through well-known single maximum point corresponding to the
critical size of the nucleus. In the present study, thermodynamics of the classical
homogencous nucleation was re-visited and developed a modified equation for multi-
component solution and gas system with multi-component nuclei by taking into
account the change of the free energy of parent phase. Using this equation, the
calculation of nucleation curve beyond the size of critical nucleus became possible.
A calculation of A-B binary solution system revealed a new minimum point in the
nucleation curve, in addition to the maximum point. This minimum point indicates the
theoretical possibility to stabilize a large amount of nano-nuclei in equilibrium with
the supersaturated parent phase. In addition, Kelvin equation was proved at the
extremum on the nucleation curve. Many scientists have misunderstood that Kelvin
equation corresponds to the maximum state because they have unnoticed the presence
of the minimum and its stability. At the minimum state, the nuclei should be more
stable than those at the maximum state. Thus, Kelvin equation should correspond to
the minimum state rather than the maximum state.

Keywords: classical homogeneous nucleation theory, supersaturation, nucleation,
critical nucleus, free energy, Kelvin equation, equilibrium

1. Introduction.

Although a real nucleation phenomenon includes many processes and complicated
factors, numerous studies concerning the phenomena have been reported in various
fields [1-9]. Even though classical homogeneous nucleation theory [1-9] describes
the microscopic nucleation phenomenon through a macroscopic thermodynamic
approach and there is argument [6,10-11] against the theory on the standpoint of
molecular dynamics, it contains essence of nucleation phenomena in simple and clear
manner with deep insight in it, thus, it has been used widely for analyzing the real
nucleation phenomenon and fulfilled a big role for understanding it.

The generally-used classical homogeneous nucleation theory describes the Gibbs
free energy change during nucleation of a spherical nucleus made of pure liquid phase
A with radius r under a constant temperature and a pressure condition as [1-4]:
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where v, is the molar volume of pure component A in the liquid state, R the gas
constant, T the absolute temperature, o the interfacial tension between the drop and
the parent phase, and S§;, is the initial supersaturation degree of component A in

parent phase over the spherical drop of radius r, compared to the saturation limit for
the flat surface, i.e. when r = o. This equation is derived on an assumption of

unchanged free energy in parent phase. The 4,,.,G plotted as a function of r show a
curve with a maximum as shown in Fig.1. The maximum point corresponds to the so-



called critical radius (r..) of the nucleus. However, nuclei with an over-critical size
will grow without stabilization of their size in a nanometer scale.

In the previous report [12], the nucleation curve of Fe-Al-O liquid alloy system,
in which alumina nuclei are formed, calculated by taking into account the free energy
change of parent phase, revealed the presence of a minimum in the curve. The
minimum did not appear if the free energy change of parent phase was disregarded.
Consequently, the long-pending question for this system, namely, the reason of
persistence of supersaturated oxygen state, was clearly settled by the minimum.
There is a few report concerning the minimum except that of Fe-Al-O liquid alloy,
that is, the minimum in free-energy change for metal-hydrogen system calculated by
P.S.Popel et al. [13], that for closed one-component vapor system under isochoric-
isothermal conditions reported by J. Schmeltzer et al. [14]. The result suggests the
possibility of the presence of minimum in nucleation curves for various other systems.

During the last decades nano-science and nano-technology (i.e. the science and
technology of nanometer sized phases) has been playing an increasing role in different
branches of materials science and technology. One of the most straightforward ways
to produce nano-phases is to grow them from an oversaturated parent phase. Thus,
the minimum in nucleation processes from an oversaturated parent phase would
provide a theoretical possibility to stabilize nano phases.

In the present study, a modified classical homogeneous nucleation theory was
developed for multi-component solution and gas systems forming multi-component
nuclei by taking into account the change of the free energy of parent phase and it
proved a new minimum in the nucleation curve through numerical calculation for A-B
binary dilute solution.

On the other hand, many textbooks [2,7-9] wrote that Kelvin equation holds at a
maximum in nucleation curve expressed as Fig. 1. Then, how does it at a minimum?
Since the nucleus should be in equilibrium with the parent phase at both of the
maximum and minimum states, both states should be described by Kelvin equation.
Further, the minimum state should be more stable than the maximum state. Thus,
Kelvin equation could be realized rather in the minimum state. However, there is
limited information [14] on the relation between the minimum and Kelvin equation.
Therefore, the present study attempted to derive Kelvin equation through the modified
classical homogeneous nucleation theory without approximation at both of the
extremum. This procedure is necessary for a proof of the modified theory and also for
an appeal that the minimum state could often be come across in natural phenomena
even though it passes unnoticed, because the state described by Kelvin equation
frequently occurres in nature.

2. A Minimum in Nucleation Curve
2.1 Helmholz Free Energy and Gibbs Free Energy in Nucleation Process for
Multi-Component System.
Let us consider a nucleation of liquid or solid spherical nuclei with radius r under a

constant temperature (7) in a closed multi-component system: the system includes m
components and is composed of spherical nuclei, parent phase and interface; nucleus
is assumed to be entirely homogeneous from the center to the interface; nucleus
includes ¢ components; the m and ¢ are integers andm 2 ¢ .

Helmbholtz free energy before nucleation (the initial state of nucleation) is expressed
as:
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where P, V represent the pressure, and volume of the system respectively, i, n; are
the chemical potential and mole number of component i. Helmholtz free energy
during and after nucleation is expressed as:

F=Ynl g (P")+ Snj g + Sl gl + oA~ PV + PV, (2:2)
i=| i :

The superscripts *, " and ' attached in the parameters (P, V (I, n;) indicate the
parent, nucleus and interfacial phases. The o and A are the interfacial tension and
total area of interface between nuclei and parent phase, respectively. Since P" is
higher than P*, which is predicted by Laplace equation, the chemical potential of
component i in nucleus phase is expressed as £'(P"). The thickness of the interface
is taken as zero and the interface corresponds to the surface of tension in a model by
Gibbs which is described by Defay and Prigogine [9],and Abraham [7], in which the
interface satisfies Laplace equation. The volume difference before and after
nucleation can be written as:
av =v"+v*-v . (2.3)
The total mole number of each component in the system remains constant, thus:
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Helmholtz free energy change which should be used as potential energy change
under a constant temperature and volume condition ( AV =0) is expressed as [9,15]:
AF = F - F,

ini.
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For a system under a constant pressure ( P = P"), Gibbs free energy should be used as
potential energy [9,15]:

AG = AF + PAV
=0 (P")+ > nf gl > 0l ! = npt; + oA (P" =PV, (2.6)
i=1 i i i
Here, the following equations are written:
sy (P") =i +v{ (P" = Ry), 2.7)
Snlpl(P")=Snlu +V"(P" - By), (2.8)
i=1 i=1
c &
Vr=Yw'm =" I, (2.9)
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where v" is the partial molar volume of component i in nucleus and v" is the molar
volume of nucleus. Since nucleus is in the solid or liquid state, the compressibility
can be neglected [9,10], and the v and v" are approximately constant for the change
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of pressure. The g;' in Egs. (2.7) and (2.8) is the chemical potential of component i in
nucleus under pressure F,. The F, value can be selected arbitrary but when
considering Kelvin equation, it should be the final pressure over the flat nucleus
(1/r=0). Under a constant pressure condition, £, equals P.

Therefore, Eq. (2.5) can be rewritten:

AF =3 {n! (] = g )V + D AnS =)y + D {nf (] —p )} + oA+ K
i=l i i
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Further, AF can be also written as follows:

AF =3 (n! (4" = )Y+ D (=) + 2] (]~} + oA+ K
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Here:

K=—(P,—PV"—(P"-P)V". (2.10)
Therefore, similarly:

AG = _(i,z;' JRT In S, + > An] (1] =)+ D An (] —u)}+ oA,  (2.6.0)
i=l i i

AG =—(in;* )RTInS + ¥ {n; (] —ﬂr-)}-!-Z{n!(,Ut-’ —4; )} + oA, (2.6.b)

i=lI i

where S is the supersaturation degree and S;,; is the initial supersaturation degree

ini.
before nucleation. When the parent phase is the liquid and solid phase, g and g

can be written as:

u, =u’ +RTIna, , (2.11)

i = +RTIna; , (2.12)

u!' = +RT Ina’™ . (2.13)
When the parent phase is the gas phase:

U, = +RTInP (2.14)

W = +RTInP*, (2.15)

ul' =+ RT In P, (2.16)

where 4 and g are the standard chemical potentials, @, and P, are the activity
and partial pressure of component i in the supersaturated system before nucleation,

a; and P are the activity and partial pressure of component 7 in the parent phase

!

during nucleation and «,*"" and P.** are the saturated values being equilibrium with

the flat nucleus under the pressure F,. When the parent phase is the liquid and solid
phase, §;,; and § can be expressed as:

ini.
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When the pdlenl phase is the gas phase:

S 10 (R (2.18)
i=1 =l

g n L ) R
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Here, x| is the molar fraction of component i in nucleus and is constant because of
the assumption of homogeneous nucleus phase.
For one-component nucleus system, the following equations can be written:
A=4m’N, (2.19)
n' =4m’N/3v,), (2.20)
where N is the total number of nuclei in the system. Therefore, if ignoring the third

and fourth terms () _{n (4' =)} + Y {n/ (1! —14;)}). Eq. (2.6.a) agrees with Eq.

(1.1). Thus, Eq. (1.1) can be obtained if the change of parent phase and interfacial
term is ignored.
When nucleus is a kind of compound:

AF =—n"RTInS+ ) {n,(u] - )} + Y {n) (1] 1))} + oA+ K, (2.5.c)
AG=-n"RTInS + Z{n, (u' —y,.)}+2{n,’ (i —p )+ oA, (2.6.c)

where n" is the mole number of the compound. The supersaturation degrees for the
liquid and solid parent phase and for the gas parent phase can be written as the
following equations, reqpeclively:

8= I](a )“"fﬂ( sy (2.21)

* ar i
s =11H" Mm@ ™ (2.22)
i=l i=l
where g;, ¢», ¢s, ... . are integers and show the stoichiometric ratio of the compound.
For instance, the compound is expressed as A, B, when it is composed of A and B

component.
By the way, Abraham pointed that disregarding the final term in Eq. (2.6) is in
error [7]. Gibbs free energy before nucleation is expressed as:

m

G Zn,#, : (2.23)

Thus, Glbbb tree energy during and after nucleation is described as:

m

c ; "
G=Yniu'(P") +Zn i +Zn Ul +oA—(P" - P* V"
i=l
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Equation (2.24) means that the last term (P" — P*)V" corresponds to the increase of
Gibbs free energy of nuclei due to the increase of pressure which is disappeared by
the transformation using Eq. (2.8).

2.2 Nucleation Curve for a Pure Solid Nucleus in Binary Liquid Solution.
In this section, let us calculate numerically the Gibbs free energy change during
nucleation of solid nuclei composed of A from | mole of liquid binary A-B solution.

However, an assumption of Z{n,.’ (y," —,u,*)} = ( for Eq. (2.6.b) was used. As for the

Gibbs free energy change for one nucleus, the following equation is obtained:
AGIN=A, G=4m’c—(n,RT/N)InS

+(n,RT/N)In(a’,/a,)+(1—n, ) RT/N)In(a,/a,) , (2.25)
where following equations are used:

nucl

S =g lare, (2.26)
A=4m>N. (2.27)

In case of ideal solution, each activity equals to the mole fraction. Thus:
a,=x,=n,, (2.28)
agp=xp=ng=1-—n,, (2.39)

a: =%, = n; (l=ny)=(ng—ny)(1—ny), (2:30)
ag =Xy =ngl-#1): (2.31)

Here, x, and x, are the initial mole fractions and x, and x, are the mole fractions

in the parent phase, respectively, of A and B components. Therefore, Eq. (2.25) can
be simplified to:

A,,/G =420 —(nsRT/N)InS,,;
+(n, —n"YRTINYIn{(1=n! /0 ) [0 =) (1=, RT I Ny Infl/(1 =)}
(2.25.a)
_sat

Since a}" equals the saturated mole fraction (x}"), S;,; can be expressed as:

S =g Faf. (2.32)
The total mole number of nuclei can be expressed with radius (r) and molar volume
(v,), as follows:
n' =4m'N/3v,). (2.33)
Therefore, Eq.(2.25.a) is a function of r, if the values of v,, n,, n,, a*;, o, T and

N are given,and A G can be calculated for A-B ideal solution.

micl
In many cases nucleation is taking place in dilute solution. In this case, Henry’s
law is valid, and activity coefficient of A component (ry ) have a constant value and
that of B component is nearly equal to 1. Then:
ay = r;.rA s (2.34)

u:‘ = r{:,r:‘ , (2.35)



ag =xg, (2.36)

dp = Xp. (2.37)
Equation (2.25.a) also satisfies this dilute condition.

The last two terms of Egs. (2.25) and (2.25.a) come from the Gibbs free energy
change of the parent phase during nucleation. The sum of the last two terms is
positive, and becomes significant at relatively high values of r. Thus, these last two
terms will lead to the appearance of a minimum point in the nucleation curve at
relatively large values of r.

In Fig.2, a nucleation curve calculated by Eq. (2.25.a), by using the parameters of
ny=x4 =10 x§ =107 and N = 10" in dilute A-B binary solution. The initial

supersaturation degree (S, ) equals 10. A minimum is observed where a, (:x:)

mni.

does not reach the value of a}" (= x}"). The minimum state should be stable, thus,

the system would stay at the minimum for a longer time.

In Fig.3 the evolution of the nucleation curve is shown with increasing amount of
nuclei (N). It is clear that with decreasing N, the radius at the minimum point
increases. Therefore, the stirring of the system will promote the collision and
coalescence and subsequently causes the decrease of N, growing of nuclei, moving of
the system to the more stable minimum position. For the limiting case with N = [, the

nucleus at the minimum shows the final state with a} =a}"

increases so much that the maximum and the minimum meet and nucleation curve
extends to positive direction, once formed nuclei will be decomposed.

In contrast, when N

3. Mathematical Prove that the Kelvin Equation Corresponds to Extremum of
the Nucleation Curve.
3.1 Derivative of Egs. (2.5) and (2.6).

Here, in this section, we derive Kelvin equation through derivative of Eqgs. (2.5) and
(2.6).
The following equations can be written:

V" .
~n )p” s YOS
on; i

Mo

v =(
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3
vixt, Vi =il 2" Yal =4m3N/3. (3.1)
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From Eqgs.(2.19) and (3.1):
=S a =Y E, B=ov =23 e (32
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Therefore, at extremum, from Eq.(2.5), under the constant volume condition, the

following equation can be obtained:

- * 1 *. A n L
S(AF) = Z{(,u;' (P"Yy—p/ Y+ Q20 /r—P" + P! }&z,- + Y —uHon!
i=I

i=l

[4 m m
—V"SP" + S al' S{ul (P} -V P + Snidu; +Snldu!l +Adc=0.
i=l i=1 i=l
(3.3)
This equation should be written for the extremum in any arbitrary stage in nucleation
process, that is, for the extremum on every nucleation curves with different N value,
or any arbitrary system and, thus, for arbitrary value of &' and c‘h! . Therefore, the

following equations are concluded:



Wi Py =t} )+ Q201 r=P" + P )} =0, (34)
# - ui =0, (3]

-V"oP" + infﬁ{y:’(P” )} =VIOP" + %11,5;/, + %n!b‘ﬂf +Adc=0. (3.6)
i=l

=l =l
From Eqs.(3.4), (3.5) and Laplace equation (2a/r— P" + Py

AP y=uf =4ty (3.7)

Equation (3.7) shows the equilibrium condition. Consequently, the extremum in
nucleation curve corresponds to the equilibrium state of the system. In addition,

Eq. (3.6) corresponds to Gibbs-Duhem relation in the present total system.
According to Defay and Prigogine [9], the equation can be seperated into three
relations corresponding to nucleus, parent, and interfacial phases, respectively, under
equilibrium condition:

—V"SP" + S nlS(ul' (P")) =0, (3.8)
=1

~V*oP" + %nfsyf =0, (3.9)
i=l

Salou! + Ado=0. (3.10)

=l

From Eqgs. (2.7) and (3.4):
—(u' -4 =In(P"/P**"Y=RTInS; =v]'{(2o/r)—(Py— P")}, (3.11)
where F, is the final pressure over the flat nucleus and S; is the supersaturation
degree for i component. Equation (3.11) agrees with Kelvin equation for i component

in multi-component system [9]. Multiplying it by x;' and summation leads to:

ern[ﬁ(ﬂ*)"‘:" /ﬁ(P. ""”)""" }=RTInS =v"{(20/r)—-(Py—P")}.  (3.12)
i i (

i=l i=I
Under a constant temperature and pressure condition, the d(AG) can be expressed by
the same terms in Eq. (3.3). Thus, putting By = P" in Egs. (3.11), (3.12), the
following is obtained.
In(P*/P**y=RTInS; =v!'(2o/r), (3.13)

3 J C 1
RTIn{[T(P)" ITI(P*)% }=RTInS =v"(20/r). (3.14)
i=l i=1
When the parent phase is the liquid and solid solution phase under constant
temperature and pressure condition,

In(a; /a;*"y=RTIn S; =v/'{2(c/r), (3.15)

Lot Xl e A 20
RTIn{[1(a; )" /TI(a;")" }=RTInS =v"(—). (3.16)
i=1 3

i=l !



For compound-nucleus, {H(P,.’ it /H(R. 4} and {I—[(a;’ )i /H(u,.“” )™} should

=l =l =l i=l

be used as §. All the equations from (3.11) to (3.16) could be regarded as Kelvin
equation (c.f. Appendix). Therefore, Kelvin equation could be derived correctly from
the modified classical homogeneous nucleation theory.
3.2 Consideration on Eq. (1.1) and Kelvin equation.

The critical maximum state in nucleation curve is the equilibrium state and often
described by the following equation involving the critical radius ( ., )derived through
taking the derivative of the 4,,,G in Eq.(1.1) with respect to r as zero:

R-T o
InS,, =<2 3.17)
VA or
It seems that Eq. (3.17) corresponds to Kelvin equation. However, the derivation of

Eq. (3.17) was performed based on an assumption of constant S,,;, coming from the

ini.

assumption of unchanged parent phase. Thus, the §;,; in Eq. (3.17) is taken to be

ini.
P, [P, where P, is the supersaturated pressure of A in parent phase before

nucleation, which is entirely different from Kelvin equation. Thus, the confusion in
Eq. (1.1) will occur. As Defay and Prigogine [9] expressed for the small nucleus, the
assumption of unchanged parent phase might be reasonable. However, strictly
speaking, the assumption is not adequate and, thus, Eq. (3.17) based on the
assumption does not correspond to Kelvin equation.

On the contrary, Kelvin equation can be derived in fully correct manner from the
present study and a minimum in nucleation curve was confirmed in A-B binary dilute
solution system. A nucleus could stay at the minimum for a considerable time, which
contrasts markedly with a nucleus at a maximum that should instantly decompose or
grow. It indicates that Kelvin equation should correspond to the minimum state in
nucleation curve rather than the maximum unstable state.

Recently there is argument against the classical homogeneous nucleation theory
expressed by Eq. (1.1). The argument is for a nucleus with around a critical size and a
smaller size than it, and includes the following points: the composition of a nucleus is
not homogeneous, thus, the pressure of the nucleus is different from the value
corresponding to the homogeneous bulk composition, and surface tension should
change with radius. These points of argument would be reasonable and a main part
of it would refer to the vagueness of difference between interfacial zone and inner part
of a nucleus when the nucleus is small. In the present modified theory, the interfacial
term is included in Egs. (2.5) and (2.6), although it stands on the assumptions of
entirely homogeneous nucleus and zero volume of the interface according to the
Gibbs model. However, the interfacial term was ignored in Eq. (2.25) for a numerical
calculation. In the present stage, numerical estimation of the interfacial term is
difficult. We expect further progress of the procedure based on molecular dynamics
for the correct estimation of interfacial influence. However, the main concern of our
present study focuses on a minimum in nucleation curve where nucleus size is fairy
large and, thus, it will be free from the points of the argument for a small nucleus. As
for the influence of the change of surface tension with curvature, it would be
discussed in the next report.

4. Conclusion.



The neglect of the free energy change in parent phase in classical homogeneous
nucleation process has caused oversight of an important phenomenon, which is the
presence of a minimum in nucleation curve. In the present study, the modified theory
of classical homogeneous nucleation of multi-component nuclei or compound nuclei
from the multi-component solution and gas phase was developed, taking the change of
parent phase into consideration, and proved a minimum in the nucleation curve in A-
B binary solution.  In addition, the modified theory proved that Kelvin equation,
which describes the state of oversaturated vapor pressure over small spherical droplet,
could describe the states at both of the maximum and minimum points in nucleation
curve.

The following conclusions are made:

(1) Helmholtz free energy change and Gibbs free energy change during classical
homogeneous nucleation process for multi-component solution and gas systems with
multi-component nuclei or compound nuclei were developed.
(2) The calculated nucleation curve from the modified theory for A-B dilute solution
system has a minimum point, in addition to a maximum point. The minimum state
should be in more stable condition compared to the unstable maximum state. The
decrease of the number of nuclei, N, in the nucleation process through collision and
coalescence causes transformation of the system into further stable minimum state.
However, when the system reaches to the considerable dilute state in which the
collision and coalescence would rarely happened, the system would stay at the
minimum state for a long time.

(3) The derivative of the above free-energy changes at extremum with respect to
nuclear radius proved the equilibrium state at the extremum and the relations
corresponding to Kelvin equation.

(4) Kelvin equation corresponds to the minimum and maximum state, showing the
importance of the minimum state because of the more stable condition of the
minimum state.

(5) The Gibbs free energy change by classical homogeneous nucleation theory
ignoring the change of parent phase essentially includes an assumption of constant
supersaturation degree, thus, the use of the theory has been restricted only in the
initial stages of nucleation. Therefore, the well known equation obtained at the
maximum assuming the constant supersaturation degree does not correspond to
Kelvin equation in theoretically strict manner and can not describe the minimum state.

Appendix.

Defay et al. [9] explained generalized Kelvin equation from Laplace equation for
the multi-component system on the assumptions that the liquid phase is
incompressible and that the vapor phase behaves as an ideal gas.

Laplace equation expresses the relation between the pressure in spherical drop and
its vapor pressure as follows:

P"—=P" =26fr. (A.1)
The superscript " and * express the values in the drop phase and the parent phase
respectively. From equality of the chemical potentials in both phases in equilibrium:

ui = ;. (A.2)
From Eqgs. (A.l) and (A.2), we obtain:

20
oP" —OP" = 6(—), (A.3)
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dul' =du; . (A4)

Under a constant temperature and constant composition [9]:

(' 1 oP" )y o = v . (A.5)
..‘."-
Thus,
oui' =vj'oP" . (A.6)
Further,
u' =u+RTIn P . (A7)
From Egs. (A.6), (A.7):
SP" =du! Iv!' =(RT Iv!')SInP}. (A.8)
Using Eq. (A.3), we obtain:
5(3‘1) =(RT/v]")6InP;-P". (A.9)
r

The integration from zero curvature, which corresponds to flat surface of drop phase
(1/r=0, P, P, ), to the other state (1/r, P, P"), gives:

20 RT, P’
—= In

r n pat _(P* _PO)' (A.10)
Vi i
Therefore:
P‘* *
RTIn—L =" (2% _(p-PY) . (A.11)
P’. r

Eqation (A.11) is regarded as the generalized Kelvin equation for multi-component
system. The second term in the right hand side in Eq. (A.11) is negligible compared

to the first term and, in the case under constant pressure condition, F, equals P~ .
Then, Eq. (A.11) can be transformed as:

n i =vf'2—°. (A.12)

o ]
H.\al r

Equation (A.12) is also regarded as Kelvin equation.
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Fig.l. The nucleation curve, calculated from Eq. (1.1) and with the following

parameters: o= 1 J/mz, Vy = 107 m3/mol, T'=300K, .8:.; = 10.

ini.



40 I
|
O T i r\ T T T T
= I
= I \
O -40 '
‘"-g ¥y \
\T Lad i [ }
I ! il
© -120 : -
I
160 : H
0 2 :4 6 8 10 12: : 14 16
- |
Fig.2.a | r/ nm | |
I i
= -
| L
I I
0,12 L L.
| i
0,1 1 1
| I sat
0,08 :\ :aA
|
3 006 \ |
on | I
LN \ Pl
— 0,04 \:L:
I
0,02 - s Jlﬁ{
0 AI T T T T :' I T
0 2 4 6 8 10 12 14 16
Fig.2.b 7/ him

Fig.2. The nucleation curve, calculated by Eq. (2.25.a) and with the following
parameters: ¢ = 1 J/m*, v, = 10° m*mol, T=300K, n, =x, =107, N= 10", x}"
= 107, §

shows the mole fraction of component A in parent phase.

= 10 (r., = 3.48 nm ). Fig.2.a shows the nucleation curve, while Fig.2.b
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Fig.3. The nucleation curve, calculated by Eq. (2.25.a) and with the following
parameters: 6 = 1 J/m%, v, = 10° m¥mol, T =300 K, n, =x, =107", x" = 107,

S. . =10 and different values of N, indicated on the curves
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