
Multi-Threading Inside Prolog for

Knowledge-Based Enterprise Applications

Masanobu Umeda, Keiichi Katamine, Isao Nagasawa, Masaaki Hashimoto, and
Osamu Takata

Graduate School of Computer Science and Systems Engineering,
Kyushu Institute of Technology, Iizuka, Fukuoka, Japan

umerin@ci.kyutech.ac.jp

Abstract. A knowledge-based system is suitable for realizing advanced
functions that require domain-specific expert knowledge in enterprise-
mission-critical information systems (enterprise applications). This pa-
per describes a newly implemented multi-threaded Prolog system that
evolves single-threaded Inside Prolog. It is intended as a means to apply
a knowledge-based system written in Prolog to an enterprise application.
It realizes a high degree of parallelism on an SMP system by minimizing
mutual exclusion for scalability essential in enterprise use. Also briefly
introduced is the knowledge processing server which is a framework for
operating a knowledge-based system written in Prolog with an enterprise
application. Experimental results indicated that on an SMP system the
multi-threaded Prolog could achieve a high degree of parallelism while
the server could obtain scalability. The application of the server to clini-
cal decision support in a hospital information system also demonstrated
that the multi-threaded Prolog and the server were sufficiently robust
for use in an enterprise application.

1 Introduction

Advanced functions that utilize domain-specific expert knowledge are needed
for enterprise-mission-critical information systems (hereinafter called enterprise
applications) such as hospital information systems and logistics management
systems. Clinical decision support [1] for preventing medical errors and order
placement support for optimal inventory management are such examples. A
knowledge-based system is suitable for realizing such functions because it can
incorporate a knowledge base in which domain-specific expert knowledge is sys-
tematized and described.

Production systems in combination with Java technology [2] have been stud-
ied as a means to apply a knowledge-based system to an enterprise application
[3–5]. They provide possibilities of improving the development and maintenance
of an enterprise application to separate business rules, which are repeatedly up-
dated, from workflow descriptions, which are rarely updated. However, certain
issues involved in applying a production system to large business rules, that is,
side effects, combinatorial explosion, and control saturation [6], have not been



sufficiently resolved in these systems. On the other hand, Prolog, which is suit-
able for knowledge processing, in combination with Java technology has also
been studied with the aim of advancing the development of information systems
[7–11]. However, there remain unresolved issues of scalability and transaction
processing which are essential to enterprise applications.

The authors have been developing an integrated development environment
called Inside Prolog [12], which is dedicated to knowledge-based systems. Various
knowledge-based systems, such as design calculation support systems [13–15] and
health care support systems [16, 17], have been developed using Inside Prolog
and put to practical use [18]. Inside Prolog provides standard Prolog function-
ality, conforming to ISO/IEC 13211-1 [19], and also provides a large variety
of Application Programming Interfaces (APIs) which are essential for practi-
cal application development. These features allow the consistent development of
knowledge-based systems from prototypes to practical use. It has been, however,
difficult to apply Inside Prolog to an enterprise application as is, because only a
stand-alone system was within the scope of Inside Prolog.

Therefore, in order to cope with the scalability issue, the authors initially
developed a new Prolog system that was capable of multi-threading by evolving
Inside Prolog. The authors then developed the knowledge processing server [20]
for operating various knowledge-based systems with enterprise applications by
combining this multi-threaded Prolog system with Java technology. The knowl-
edge processing server has been practically applied to clinical decision support
[21, 22, 20] in the hospital information system CAFE [23, 24], and it enables
validation of contraindications within diseases, drugs, and laboratory results,
suggestion of the quantity and administration conditions of a medication order,
and the summarization of clinical data such as laboratory results.

This paper describes an overview of Inside Prolog and its multi-thread ex-
tension for enterprise use. The knowledge processing server is then briefly intro-
duced. Finally, the multi-thread feature and parallelism of multi-threaded Inside
Prolog, and the scalability of the knowledge processing server are evaluated.

2 Overview of Inside Prolog

Inside Prolog is an ISO/IEC 13211-1 compliant Prolog system with various ex-
tensions. It is developed over the Prolog abstract machine TOAM, which is based
on WAM [25]. Figure 1 illustrates the system architecture of Inside Prolog. It
provides several optimization features, such as unification optimization using the
matching tree [26] and the translation of determinate predicates to C functions
[27]. It also provides advanced APIs, which are required for the development of
practical applications, and integration APIs, which are required for integration
with existing information systems, in a uniform platform-independent manner
1. These features allow the consistent development of knowledge-based systems
from prototypes to practical use using one programming language, Prolog.

1 Platform-specific functions, such as OLE on Windows, are designed so as to eliminate
platform differences from an application program by providing minimal libraries.



PlatformsSolaris Linux Windows

TOAM

Prolog Interpreter/Compiler

File System Networking

JDBC

OpenGL/
3D Modeler

ODBC

Process

Java
Interface

GUI

Knowledge-Based Systems

Prolog Abstract
Machine

Advanced
APIs

Integration
APIs

Standard
APIs

DDE/OLE

Applications

Fig. 1. Architecture of Inside Prolog

The following subsections briefly introduce several topics related to a multi-
thread extension of Inside Prolog.

2.1 Memory Model

TOAM has three stacks - a control stack, trail stack, and global stack (or heap)
- and a data area (or atom area) for storing global data such as predicate defi-
nitions. The data area is divided into two, i.e., a persistent area and a transient
area. Data that are never modified dynamically, such as an inference engine and
GUI of a knowledge-based system, are stored in the persistent area, while data
that can be modified dynamically, such as a knowledge base and execution re-
sults, are stored in the transient area. The separation of the data area has the
following advantages. That is, the performance of garbage collection can be im-
proved due to the exclusion of the persistent area from its target; the reliability
of a system can be improved due to the prevention of unexpected modifica-
tions while further optimizations are possible using the immutability of program
locations as described in Sect. 2.3.

2.2 Program Code Representation

The components of a knowledge-based system can be classified into several cate-
gories. Immutable programs such as an inference engine and GUI, mutable data
such as inference rules and clinical information, and programs generated dynam-
ically from these data are such examples. These components can be expressed



in a uniform representation of a program code because Prolog’s programs and
data can be handled in the same manner. However, a program in each cate-
gory has both advantages and disadvantages if a uniform representation is used.
For example, if a program generated from an inference rule, as well as an in-
ference engine are optimized, the program’s execution speed can be improved;
however, its optimization costs result in the inconvenience of the interactive de-
bugging of inference rules. Therefore, Inside Prolog allows the choice of the most
suitable representation of a program code from the following according to its
role and scene in an application, and thus enables the development of practical
knowledge-based systems.

Static program A static program is represented as a bytecode generated by
an optimizing compiler [26]. It is appropriate to a static predicate whose
execution speed is important, and one that is never modified while an appli-
cation is running. A static program is stored in either the persistent area or
the transient area according to a directive.

Native program A native program is a kind of a built-in predicate represented
as C functions that are translated from a determinate predicate [27]. It is
appropriate to a static predicate whose execution speed is strongly impor-
tant, and one whose definition is rarely changed. Although the translation is
automatic, its use is limited because the object binaries rely on the platform.

Incremental program An incremental program is represented as a bytecode 2

generated by an incremental (non-optimizing) compiler invoked by asserta/1

and assertz/1. It is appropriate to a dynamic predicate that is defined and
executed dynamically. In such a case, the balance between the time required
for each is important. The compilation is speeded up by the omission of the
optimization while the execution is speeded up by the omission of the logical
database update [19].

Interpretive program An interpretive program is represented as a term that
is interpreted by the Prolog interpreter. It is appropriate to a dynamic pred-
icate which is defined and executed dynamically in the manner of an incre-
mental program, but the compilation has little effect on execution time. In
the case of a unit clause composed of ground terms, the same effect as that
of structure copying [28] can be expected because terms are shared without
being copied to the global stack. For example, it is appropriate to clinical
information on drug-drug interactions [21, 22] and engineering information
regarding product catalogues [29] because they can be represented as a set
of unit clauses composed of ground terms.

2.3 Optimization by Instruction Rewriting

On the execution of a predicate, the symbol table is repeatedly referred to in
order to determine the program code associated with a predicate name. The time
required for referring to the table once is very short, but the cumulative time is

2 It also has a term representation for clause/2.



not negligible if the same predicate is executed repeatedly. Therefore, predicate
call instructions, such as call and execute, are optimized by rewriting these
instructions according to the type of a program code being called. For example,
if a predicate being called is a static program stored in the persistent area,
a predicate call instruction call to this predicate is rewritten as a direct call
instruction call directwith an absolute address because the location of a static
program is fixed in the persistent area. Likewise, a call instruction to a native
program is rewritten as call native, and others as call indirect that refers
to the symbol table. Thus, instructions that refer to the symbol table are limited
to only a few instructions such as call indirect.

3 Multi-Thread Extension for Enterprise Applications

This section describes a multi-thread extension of Inside Prolog for expanding
its application domains to enterprise applications.

3.1 Multi-Threading Prolog

Several approaches are known to realize multi-threading in Prolog. The first is to
realize scheduling and context switching in a Prolog abstract machine by itself
[7, 30]. The second is to utilize a standard multi-thread library for scheduling and
context switching [9, 8]. In the case of Java-based implementation, the third is to
create multiple single-threaded Prolog engines, and run them in multiple Java
threads [10, 31]. The first approach is a kind of user-level thread model, and has
an advantage in performance because kernel resources are not consumed, and
context switching and synchronization can be simplified. It is, however, difficult
to utilize the multiple processors of an SMP system [32]. The second approach
has disadvantages in regard to the costs of context switching and synchroniza-
tion. However, the throughput can be improved by parallel processing on an SMP
system. The third approach has advantages in parallel processing over other ap-
proaches, but it is inadequate for a large knowledge base because the data area
cannot be shared between threads.

Inside Prolog adopts the second approach so that it can deal with a large
knowledge base, and has advantages in throughput improvement on an SMP
system. The POSIX thread library of Unix and Linux, and the Windows thread
library can be used as the multi-thread library.

3.2 Execution Model

Figure 2 illustrates the execution model of multi-threaded Inside Prolog 3.

3 Hereinafter, a multi-threaded version of Inside Prolog is also called Inside Prolog
only when there is no possibility of confusion.



Transient Area

Persistent Area

Shared
Message Queue

Global
Stack

Control
Stack

Trail
Stack

Registers

Thread
Local Data

Global
Stack

Control
Stack

Trail
Stack

Registers

Thread
Local Data

Thread-1 Thread-2

Mutex/Cond

...

Thread-N

Fig. 2. Execution model of multi-threaded Inside Prolog

Shared variables Shared variables between threads require major changes of
the abstract machine TOAM regarding the handling of backtracking and its
organization [8]. Therefore, communication mechanisms using shared vari-
ables between threads are omitted.

Communication Shared message queues created in the transient area are used
for communication between threads. The shared message queue is capable
of sending and receiving messages in multi-thread safety. It is also possible
to send an interrupt message as an exception from one thread to another.

Synchronization Mutual exclusion object (mutex), condition variable (cond),
and read/write mutex based on POSIX threads are provided for the basic
synchronization mechanism. Mutex, cond, and read/write mutex are created
in the transient area, and are shared between threads.

Thread-local data Globally shared data that should not be reclaimed on back-
tracking are usually kept in the data area by associating them with the
symbol table using asserta/1, assertz/1 and so on. However, the risk of
contention exists because the symbol table is shared by all threads. The
thread-local data is provided for managing shared data specific to a thread.



3.3 Extension of Prolog Abstract Machine

Major changes of TOAM for realizing the multi-thread feature include the in-
troduction of thread control data and synchronization 4. The thread control
data manages the state of multi-threaded TOAM per thread, such as stacks and
registers; in single-threaded TOAM these are managed using global variables.
Thread control data can be implemented using the thread local storage 5 of a
standard multi-thread library. On the other hand, even though synchronization
is unavoidable when accessing the symbol table and the data area, heavy use
of synchronization may cause significant performance degradation, and multi-
ple processors of an SMP system cannot be utilized effectively if the length of
mutual exclusion is long.

There are three cases that require synchronization in TOAM. That is, the
handling of catch/3 and throw/1 that deal with exceptions saved in the tran-
sient area; the rewriting of predicate call instructions such as call; and the
handling of predicate call instructions that refer to the symbol table, such as
call indirect. The first case does not affect usual inference performance and
parallelism because it happens only when exceptions are thrown. The influence of
the second case must be negligibly small because synchronization is required only
once for each instruction occurrence. On the other hand, the third case invokes
a program stored in the transient area, and this invocation procedure consists
of several inseparable steps. Therefore, synchronization is generally required so
that the definition and execution of a predicate can be performed safely under a
multi-threaded environment, though synchronization seriously affects inference
performance and parallelism. In case the definition and execution of a predicate
are performed in parallel, it is customary to ensure the consistency of a predi-
cate definition using explicit synchronization by an application program itself,
as described in Fig. 3 of Sect. 3.4. Consequently, the omission of synchronization
by TOAM is less likely to become a practical issue.

Therefore, synchronization regarding static programs and incremental pro-
grams is omitted by TOAM in order to give priority to inference performance and
parallelism. In contrast, interpretive programs are synchronized by clause/2,
assertz/1 and so on for ensuring the consistency of hash tables for clause in-
dexing and preserving the logical database update. This allows the choice of the
most suitable representation of a program code according to its role and scene
from the viewpoint of inference performance and parallelism, and the consistency
of a predicate definition.

3.4 Examples of Multi-Thread Programming

Figure 3 shows a programming example of the producer-consumer problem writ-
ten in Inside Prolog. A condition variable is created by cond create/1 for sus-

4 Built-in predicates that access the symbol table and the data area also must incor-
porate synchronization.

5 For example, it is provided by pthread getspecific() and its family of POSIX
threads and TlsGetValue() and its family of Windows.



pension and resumption of threads, and a mutual exclusion object is created
by mutex create/1. Consumer and producer threads that execute consumer/2

and producer/2 predicates, respectively, are created by thread create/3. A
buffer shared by these two threads is represented by buffer/1, and its con-
tents are updated by assertz/1 and retract/1 with synchronization using
with mutex lock/2. Threads are suspended by cond wait/2 when the buffer is
empty or full, and are resumed by cond signal/1 when the state of the buffer
is changed.

4 Knowledge Processing Server

The knowledge processing server is a framework for operating a knowledge-based
system written in Inside Prolog with an enterprise application, and for provid-
ing inference services to an enterprise application using a knowledge base. It is
independent of any enterprise application and any knowledge-based system, and
is realized by combining Inside Prolog and Java. The server improves interoper-
ability with various enterprise applications due to its adaptation to distributed
object technology, such as RMI, SOAP, and CORBA, using Java. The server
also makes it easier to incorporate a knowledge-based system into a transaction
system by allowing a knowledge-based system to inherit the transactions of an
enterprise application in the J2EE environment.

Figure 4 illustrates a simplified system configuration of the server that applies
a knowledge-based clinical decision support system to the hospital information
system CAFE in a J2EE environment. The clinical knowledge base stores med-
ical inference rules used for clinical decision support such as the validation of
contraindications and proposals of appropriate administration conditions, while
the clinical database consistently stores patient records such as the disease names
and medication orders of patients. The EJB client provides clinical support func-
tions to health care professionals using an application which handles workflow
in a hospital, and the clinical decision support system. The session bean is a
service interface to clinical decision support functions provided by the knowl-
edge processing server. The inference engine for clinical decision support is a
knowledge-based system written in Prolog. The knowledge base adaptor is a
Prolog program that fits data types and data structures used in a service inter-
face into an inference engine and a knowledge base, and vice versa. The external
data interface is used to access external data, such as patient records in the
clinical database, from the inference engine via EJB/JNDI services. The Prolog
server is a generalized mechanism that mediates communications between a ser-
vice interface written in Java and a knowledge-based system written in Prolog.

5 Performance Evaluation

This section presents the evaluation results for the multi-thread feature and
parallelism of Inside Prolog, and the scalability of the knowledge processing
server.



producer_consumer :-

cond_create(Cond), % Create a condition variable

mutex_create(Mutex), % Create a mutual exclusion object

%% Create a producer thread, and call producer/2.

thread_create(Producer, producer(Cond, Mutex), []),

%% Create a consumer thread, and call consumer/2.

thread_create(Consumer, consumer(Cond, Mutex), []).

producer(Cond, Mutex) :-

repeat,

produce_item(Item),

with_mutex_lock(Mutex,

(%% Wait until the buffer has a vacant.

(buffer(Items0), length(Items0, 100) ->

cond_wait(Cond, Mutex) ; true),

%% Add an item to the buffer.

retract(buffer(Items)),

append(Items, [Item], Items1),

assertz(buffer(Items1)),

%% Notify a consumer when the buffer becomes non-emtpy.

(Items1 == [Item] -> cond_signal(Cond) ; true)

)),

fail.

consumer(Cond, Mutex) :-

repeat,

with_mutex_lock(Mutex,

(%% Wait until the buffer becomes non-empty.

(buffer([]) -> cond_wait(Cond, Mutex) ; true),

%% Take out an item from the buffer.

retract(buffer([Item | Items])),

assertz(buffer(Items)),

%% Notify a producer when the buffer has a vacant.

(length(Items, 99) -> cond_signal(Cond) ; true)

)),

consume_item(Item),

fail.

%% An initial value of the buffer is empty.

buffer([]).

Fig. 3. Programming example of the producer-consumer problem



Prolog
Server

Knowledge Processing Server

Inference E
ngine for

 C
linical D

ecision Support

E
xternal D

ata
Interface

K
now

ledge B
ase

A
daptor

Call
Response or
reference

Session B
ean

A
pplicaiton

for W
orkflow

Clinical
Database

Clinical
Knowledge

Base

Application Server

Observation
point

E
JB

C
lient

Fig. 4. System configuration of the knowledge processing server applied to a J2EE-
based hospital information system

5.1 Overhead Costs of the Multi-Thread Extension

In order to evaluate the overhead of the multi-thread extension, the elapsed
times of single- and multi-threaded versions were compared using benchmark
programs boyer, 8 queens, qsort, and takeuchi. Interpretive, incremental, and
static program code representations were applied. Static programs were stored
in the persistent area and executed once to obtain normal performance by forcing
the instructions to be rewritten before the measurement. Sun V880 with 1 CPU
was used in this experiment.

Figure 5 shows the elapsed time ratios of the multi-threaded to the single-
threaded version. The results indicate that the overhead costs of the multi-thread
extension are about 20% at its maximum. These costs are due to synchronization
and representation changes of the TOAM state from global variables to pointer
accesses through the thread control data, as in SWI-Prolog [9].

5.2 Parallelism on SMP Systems

In order to evaluate the parallelism of each program code representation on an
SMP system, the elapsed times of the benchmark programs were measured using
a Sun V880 with various CPU configurations. Each of the benchmark programs
was executed in parallel. The number of CPUs varied from 1 to 4, and the
number of threads that execute the programs in parallel varied from 1 to 8.

Figures 6 and 7 show the results of the interpretive and static programs
of 8 queens. Elapsed times are normalized by the elapsed time in the case of
one thread for each CPU configuration. The elapsed times of the interpretive



0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

qsort 8 queens takeuchi boyer

E
la

ps
ed

 ti
m

e 
ra

ti
o

Interpretive Incremental Static

Fig. 5. Elapsed time ratios of multi-
threaded version to single threaded version

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

ti
o

1CPU

2CPUs

3CPUs

4CPUs

Fig. 6. Elapsed time ratios of the interpre-
tive program of the 8-queens benchmark

program were increased as the number of threads increased. Elapsed times were
also increased if the number of CPUs was greater than two. This is because an
interpretive program requires synchronization of the transient area as described
in Sect. 3.3. In contrast, the elapsed times of the static program decreased as
the number of CPUs increased when the numbers of threads were the same.
Especially, when the number of threads was equal to or smaller than that of
CPUs, the elapsed times did not increase even if the number of threads increased.
This is because synchronization is unnecessary for a static program after the
instruction rewriting. Results similar to those of a static program were obtained
for an incremental program except for real elapsed times due to optimization
differences. The results of qsort and takeuchi were almost the same.

On the other hand, the results of all program codes of boyer were similar to
those of the interpretive program of 8 queens as shown in Figs. 8 and 9. This is
because parallelism is decreased due to the synchronization caused by the heavy
use of functor/3 which accesses the symbol table.

These results indicate that the multi-thread extension is effective in parallel
processing on SMP systems for incremental and static programs if predicates
including synchronization are not used frequently.

5.3 Scalability of the Knowledge Processing Server

In order to evaluate the scalability of the knowledge processing server on an SMP
system, the server was applied to a J2EE-based application, and the elapsed
times of the inference service were measured against multiple clients. The exper-
imental application was modeled upon the hospital information system CAFE,
and its system configuration was similar to that shown in Fig. 4 except for an
EJB client, the inference rules in the clinical knowledge base, and the entities
stored in the clinical database.

Initially, a client creates twenty entity beans, whose class is defined for this
experiment and has about ten fields, using an application server. A client then
invokes the inference rules stored in the knowledge base through a session bean.



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

tio

1CPU

2CPUs

3CPUs

4CPUs

Fig. 7. Elapsed time ratios of the static
program of the 8-queens benchmark

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

ti
o

1CPU

2CPUs

3CPUs

4CPUs

Fig. 8. Elapsed time ratios of the interpre-
tive program of the boyer benchmark

The inference rules search for twenty entity beans that meet query conditions,
and refer to the values of their fields.

The application server was deployed in a Sun V880 with from 1 CPU to 4
CPUs, and a database management system was deployed in a Sun Ultra60 with
2 CPUs. The number of threads that execute the inference engine was varied
from 1 to 8. The number of clients varied from 1 to 32, and they were run on a
maximum of eight machines. Elapsed times were measured at the point where a
session bean invoked a method of the Prolog server (indicated as circles in Fig.
4).

Figures 10, 11, and 12 show elapsed times normalized by the elapsed time
(about 0.027 seconds) in the case of one thread against one client. These results
indicate that the elapsed times increased as the number of clients increased, but
throughput speed was improved by increasing the number of threads and CPUs.
For example, in the cases of 32 clients and 8 threads, the elapsed times of 2 and
4 CPUs cases were improved 0.51-fold (B in Fig. 11) and 0.28-fold (C in Fig.
12) over that of 1 CPU case (A in Fig. 10). The improvement ratios, however,
did not reach the points estimated based on the number of CPUs, and they
slowed down by degrees. Both the inference engine and the inference rules used
in this experiment are represented as static programs 6, and the synchronization
caused by these code representations is not included. Consequently, one reason
for bounding scalability is the synchronization included in both the inference
engine and the Java interface of Inside Prolog. However, it seems that this effect
is sufficiently small because the elapsed times are not increased even on an SMP
system of up to 4 CPUs, unlike boyer.

6 Conclusion

This paper describes a newly implemented multi-threaded Prolog system that
evolves single-threaded Inside Prolog. It is intended as a means to apply a

6 Inference rules are represented as incremental programs in a development phase and
static programs in an operation phase.



0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

tio

1CPU

2CPUs

3CPUs

4CPUs

Fig. 9. Elapsed time ratios of the static
program of the boyer benchmark

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

� � � � �
#Threads

E
la

ps
ed

 ti
m

e 
ra

ti
o

1client 4clients 8clients 16clients 32clients ����
Fig. 10. Elapsed time ratios of the session
bean of the knowledge processing server on
1 CPU machine

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

ti
o

1client 4clients 8clients 16clients 32clients ����
Fig. 11. Elapsed time ratios of the session
bean of the knowledge processing server on
2 CPUs machine

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 2 4 6 8

#Threads

E
la

ps
ed

 ti
m

e 
ra

ti
o

1client 4clients 8clients 16clients 32clients

����
Fig. 12. Elapsed time ratios of the session
bean of the knowledge processing server on
4 CPUs machine

knowledge-based system written in Inside Prolog to an enterprise application. It
provides several representations of a program code, and allows the choice of the
most suitable one according to its role and scene in an application. This allows
the realization of a high degree of parallelism on an SMP system by minimizing
mutual exclusion in the Prolog abstract machine TOAM. Also briefly intro-
duced is the knowledge processing server which is a framework for operating a
knowledge-based system written in Inside Prolog with an enterprise application.

The results of experiments using benchmark programs indicated that the
overhead cost of the multi-thread extension was about 20% at its maximum, and
predicates represented as a bytecode could achieve a high degree of parallelism on
an SMP system. The results of experiments regarding the knowledge processing
server also indicated that the extension was effective for the improvement of
throughput speed on an SMP system, and the server could obtain scalability on
it.

The knowledge processing server has been practically applied to clinical de-
cision support in the hospital information system CAFE. It processes about a



thousand prescription orders per day, and contraindications on one order are
validated within about a second. The server has been problem-free for over a
year. This indicates that Inside Prolog and the server are sufficiently robust for
use in an enterprise application.

Because the application for the workflow of the hospital information sys-
tem CAFE became too large to run in a 32 bits version of Java VM, a 64 bits
version for workflow and a 32 bits version for the knowledge processing server
were combined irregularly. It is necessary for Inside Prolog to support a 64 bits
architecture in order to cope with large enterprise applications.

References

1. Kaplan, B.: Evaluating informatics applications – clinical decision support systems
literature review. International Journal of Medical Informatics 64 (2001) 15–37

2. Toussaint, A.: Java rule engine api. JSR-94 (2003)
3. YASU Technologies http://yasutech.com/products/quickrulesse/index.htm:

QuickRules. (2005)
4. ILOG, Inc http://www.ilog.com /products/jrules: ILOG JRules. (2006)
5. Drools Project http://drools.org: Drools. (2006)
6. Kobayashi, S.: Production system. Journal of Information Processing Society of

Japan 26 (1985) 1487–1496
7. Eskilson, J., Carlsson, M.: SICStus MT – a multithreaded execution environment

for SICStus prolog. In: Principles of Declarative Programming: 10th International
Symposium. Volume 1490 of Lecture Notes in Computer Science., Springer-Verlag
GmbH (1998) 36–53

8. Carro, M., Hermenegildo, M.: Concurrency in prolog using threads and a shared
database. In: International Conference on Logic Programming. (1999) 320–334

9. Wielemaker, J.: Native preemptive threads in SWI-Prolog. In: Logic Programming.
Volume 2916 of Lecture Notes in Computer Science., Springer-Verlag GmbH (2003)
331–345

10. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight prolog for internet
applications and infrastructures. In: Practical Aspects of Declarative Languages.
Third International Symposium, PADL 2001. Proceedings. Volume 1990 of Lecture
Notes in Computer Science., Springer-Verlag GmbH (2001) 184–198

11. Tarau, P.: Jinni: Intelligent mobile agent programming at the intersection of java
and prolog. In: Proceedings of the Fourth International Conference on the Practical
Applications of Intelligent Agents and Multi-agent Technology. (1999) 109–124

12. Katamine, K., Umeda, M., Nagasawa, I., Hashimoto, M.: Integrated development
environment for knowledge-based systems and its practical application. IEICE
Transactions on Information and Systems E87-D (2004) 877–885

13. Tegoshi, Y., Nagasawa, I., Maeda, J., Makino, M.: An information processing tech-
nique for a searching problem of an architectural design. Journal of Architecture,
Planning and Environmental Engineering (1989)

14. Nagasawa, I., Maeda, J., Tegoshi, Y., Makino, M.: A programming technique
for some combination problems in a design support system using the method of
generate-and-test. Journal of Structural and Construction Engineering (1990)

15. Umeda, M., Nagasawa, I., Higuchi, T.: The elements of programming style in design
calculations. In: Proceedings of the Ninth International Conference on Industrial



and Engineering Applications of Artificial Intelligence and Expert Systems. (1996)
77–86

16. Furukawa, Y., Ueno, M., Nagasawa, I.: A health care support system. Japan
Journal of Medical Informatics 10 (1990) 121–132

17. Furukawa, Y., Nagasawa, I., Ueno, M.: HCS: A health care support system. Journal
of Information Processing Society of Japan 34 (1993) 88–95

18. Umeda, M., Nagasawa, I.: Project structure and development methodology toward
the IT revolution – lesson from practice –. In: Proceedings of the Fourth Joint
Conference on Knowledge-Based Software Engineering. (2000) 1–8

19. ISO/IEC: 13211-1 Information technology – Programming Languages – Prolog –
Part 1: General core. (1995)

20. Umeda, M., Nagasawa, I., Ohno, K., Katamine, K., Takata, O.: Knowledge base
development environment and J2EE-compliant inference engine for clinical decision
support. In: The Proceedings of The 8th World Multi-Conference on Systemics,
Cybernetics and Informatics. Volume 1. (2004) 43–48

21. Ohno, K., Umeda, M., Nagase, K., Nagasawa, I.: Knowledge base programming for
medical decision support. In: The Proceedings of the 14th International Conference
on Applications of Prolog. (2001) 202–210

22. Ohno, K., Nagasawa, I., Umeda, M., Nagase, K., Takada, A., Igarashi, T.: Develop-
ment of medical knowledge base for clinical decision support. In: The Proceedings
of The 8th World Multi-Conference on Systemics, Cybernetics and Informatics.
Volume 7. (2004) 193–198

23. Nagase, K., Takada, A., Igarashi, T., Ouchi, T., Amino, T., Ohno, K.: Develop-
ment and implementation of J2EE based physician order entry system with clinical
decision support function. In: The Proceedings of the 23rd Joint Conference on
Medical Informatics. (2003) 1–G–2–2

24. Takada, A., Nagase, K., Ouchi, T., Amino, T., Igarashi, T.: Enhanced communi-
cation realized with UML utilization in the development of hospital information
system. In: The Proceedings of the 23rd Joint Conference on Medical Informatics.
(2003) O–3–2

25. Ait-Kaci, H.: Warren’s Abstract Machine. The MIT Press (1991)
26. Neng-Fa, Z.: Global optimizations in a prolog compiler for the TOAM. J. Logic

Programming (1993) 265–294
27. Katamine, K., Hirota, T., Zhou, N.F., Nagasawa, I.: On the translation of prolog

program to c. Transactions of Information Processing Society of Japan 37 (1996)
1130–1137

28. Li, X.: A new term representation method for prolog. The Journal of Logic
Programming 34 (1998) 43–57

29. Umeda, M., Nagasawa, I., Ito, M.: Knowledge representation model for engineering
information circulation of standard parts. Transactions of Information Processing
Society of Japan 38 (1997) 1905–1918

30. Clark, K., Robinson, P., Hagen, R.: Multi-threading and message communication
in Qu-Prolog. Theory and Practice of Logic Programming 1 (2001) 283–301

31. IF Computer http://www. ifcomputer .co.jp/MINERVA: MINERVA. (2005)
32. Fukuda, A.: Parallel operating systems. Journal of Information Processing Society

of Japan 34 (1993) 1139–1149


