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Last-mile delivery optimization using GPS data: a case study 

Juan B. García-Dueñas 

Universidad San Francisco de Quito 

Quito, Pichincha, 170157, Ecuador 

Abstract 

The development of GPS data analysis and processing is contributing to new solutions in urban logistics, 

such as route characterization or client detection. The city of Quito, Ecuador, has problems regarding 

freight transportation. The reduction in magnitude of these problems, through the implementation of a 

responsible enterprise logistics system, can contribute to a better urban and economic development of 

this Latin-American capital city. This study proposes and analyses a solution in GPS data manipulation 

methodologies applied to urban freight distribution. The reliability of traditional routing software 

methods and truck drivers’ empiric knowledge are evaluated by comparing it to mathematical 

optimization algorithms which consider the city’s transportation network, modeled after the Asymmetric 

Traveling Salesperson Problem (ATSP). Tools used include Python for manipulating data and 

optimizing, CartoDB for Graphical Information Systems (GIS), and Compass (a logistics application 

developed by MIT) for generation of route indicators. The results of this study represent a better 

understanding of solutions to last-mile delivery operations in Quito, and suggest mathematical 

optimization is a reliable way to develop freight transportation routes.  

 

1. Introduction 

A company, which will be referred to as Gorilla Ice, is an international company known for its ice cream. 

Gorilla Ice outsources its distribution in Ecuador to a local company, referred to as Chilly Trucks. 

Specifically, Chilly Trucks is in charge of distribution of the international company’s products to 

nanostores, which are small “neighborhood” stores common throughout Latin America. Currently, the 

use of Chilly Trucks’s GPS technology implemented in their trucks is only reactive and control-oriented. 

However, there is a lot of information that could be used to the company’s advantage. This reflects the 

situation of many local companies; their use of technology is limited compared to its full potential. The 

company is interested in reducing its operating costs, while providing a better service (fulfillment of 

delivery times, reduction in variability, etc.). 

Quito, Ecuador, has an approximate population of 2.3 million inhabitants over a 4200 [km²] surface area 

(INEC, 2011). It is not considered a megacity since it contains less than the required population to be 

defined as one, but it has many characteristics in common with megacities – not to mention that it may 

become one in the future. Varying criteria for defining a megacity, as stated by Blanco & Fransoo (2013) 

include a population of over 10 million inhabitants, a high population density over a large area, 

permanent congestion of traffic, large income disparities, and large organic growth. Quito shares most 

of these. In addition, according to a projection by the McKinsey Global Institute, by 2025 most large 

cities and megacities will be in currently developing countries (Dobbs et al., 2011). This calls for 

research on solutions applied to these types of environments. 

In Quito, the number of vehicles rises at a higher rate than the number of its inhabitants in this city (El 

Telégrafo, 2013), causing major traffic problems. Other causes include inefficient urban planning and 

insufficient consideration of freight transportation needs by the public sector (Dablanc, 2007 and 

Blanco, 2015). There is a clear need for solutions in urban freight distribution to nanostores, a particular 

type of small, usually family-owned store that is prevalent in developing countries. One possible solution 

is the use of routing technology. A limitation is that companies are not willing to invest in technology 

unless they observe that it will provide an immediate benefit to them.  

Many companies do not adopt routing software since truck drivers have in-depth knowledge of their 

routes from driving some of them for years. They sometimes know smaller or less transited roads that 
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routing algorithms fail to identify. Questions to consider are as follows: To which extent do truck drivers 

generate/develop optimal routes? Is it worth it for companies in charge of logistics and distribution to 

invest in routing technology? 

To answer these questions, a comparison was made between three types of routes: 

1) The truck driver’s actual route, referred to as 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 

2) A route that would be provided from routing software, referred to as 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟, 

that does not consider restrictions such as one-way streets and turn restrictions 

3) A route optimized using real distances, referred to as 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙, that does take into 

account the restrictions mentioned above 

This study proposes a solution for urban freight transportation, taking advantage of GPS technology that 

is already implemented in a lot of freight transportation vehicles, but largely unused. The use of GPS 

data in urban last-mile logistics has been studied increasingly in previous years (Comendador et al., 

2012; Pluvinet et al., 2012; Muñoz Silva, 2014). Studies have shown the effectiveness of GPS data 

analysis methods, but are focused on data analysis or survey methods, as opposed to exploring actual 

routing solutions with GPS data. In addition, there has been a considerable amount of research on 

optimization problems applied to urban logistics (Johnson & McGeoch, 1995; Delling et al., 2009; 

Larson & Odoni, 2007; Rego et al., 2011) but not necessarily considering the application of GPS data. 

This opens up certain research opportunities on the topic, such as optimization methods for delivery 

routes, while also considering the environmental impact of the decisions made by freight transportation.  

The comparison on this research was performed on a sample of routes, modeled after the Traveling 

Salesperson Problem (TSP). The results show that 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙 is more efficient than 

𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒. Additionally, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 returns indicators that are not representative of 

the real-life travel times and/or distances. The results suggest that the optimization procedure applied in 

this case will provide improved routes with reduced travel distances and times, even when applied to 

larger problems (i.e.: routes with more stops); while still considering realistic values for distances and 

times. 

 

2. Literature review 

Urban logistics deals with improving distribution systems within city limits, while considering aspects 

such as sustainability, operations optimization, competitiveness between companies, etc. Last-mile 

operations are an effective strategy that has been researched, while tailoring solutions to specific needs 

(Blanco, 2015). It is important to consider that there are important differences in the application of its 

methodologies in developed countries vs. in developing countries. In the latter’s retail scene, megacities 

(over 10 million inhabitants, a high population density, large area, permanent congestion, income 

disparities, and large growth) are starting to dominate, as well as the specific type of store associated 

with it. This type of store, a nanostore, makes up half of the market share of the total retail market. These 

stores are usually family-owned and family-operated, with 15-40 [m²] surface area, with an informal 

credit policy, shortage of cash, etc. (Blanco & Fransoo, 2013). Nanostores are also referred to as 

traditional channel. In contrast, the modern channel refers to the organized (corporate) retail channel, 

where professionals carry out organized functions. It is also important to mention that the urban freight 

system is defective in the sense that it does not account for the needs of goods transportation. (Dablanc, 

2007) 

It is estimated that by 2025, most megacities will be in currently developing countries. These cities have 

problems of their own, such as permanent congestion, insufficient urban planning, security problems, 

varying density and income in neighborhoods, faster growth rates, more informality, a lack of effective 

technology, lack of information, etc. (Blanco & Fransoo, 2013 and Blanco, 2015). This implies 

significant differences in supply chain management for these specific cases. 

There are close to 50 million nanostores in the developing world. Some characteristics specific to 

nanostores are a larger number of delivery points, smaller drop sizes, and higher costs of transportation. 
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Some trucks report more than 100 stops a day (Blanco & Fransoo, 2013). This may benefit the provider 

and the nanostore owner in some ways, like new logistics opportunities that are not applicable in modern 

channels of distribution. An example is the option of providing access to credit to storeowners. 

Nevertheless, designing a logistics system for this type of economy proves a much harder challenge. 

There have been case studies (Dablanc, 2007; Comendador et al., 2012; Bueno Almeida & Camacho, 

2014; Muñoz Silva, 2014; Blanco, 2015) regarding this matter. Examples of effective strategies include 

regulating pickup times, traffic regulation, research on last-mile operations, integration between 

transport practitioners and city planning departments, etc. (Dablanc, 2007 and Blanco, 2015) 

As the state of the art in urban logistics for developing megacities advances, it is important to adapt 

solutions to the specific needs of each city. Case studies realized in Ecuador prove the immediate need 

for solutions, as there has been an increase in demographic and pollution-related indices (Muñoz, 2015 

and Sandoval, 2015). It should be mentioned that there is not an active and widely used business-to-

consumer online retailer, such as Amazon, in Ecuador as of Q1 2016. It is expected that similar 

companies will be introduced in the following years. Implications of this include a greater number of 

trucks driving around the city, those trucks stopping regularly for deliveries, the possible need for 

infrastructure that facilitates these operations, etc. This calls for an urgent improvement in Ecuador’s 

urban freight system. 

Research opportunities have been opened up in certain areas. These include the use of routing problems 

rather than location problems as modifying the infrastructure of a city is often a more difficult matter. 

For these applications, Geographical Positioning System (GPS) data is a useful asset that is 

underestimated and underused in the public and private sector. GPS survey methodologies have been 

proposed by a number of authors (Comendador et al., 2012; Pluvinet et al., 2012; Muñoz, 2014; Bueno 

Almeida & Camacho, 2014) and have been proven as effective methods for data collection on freight 

transportation. By following these methodologies, GPS surveys may provide information on routes, road 

utilization, covered distances, vehicle speeds, fuel consumption, client localization, etc. which are 

important indicators while designing optimal routes. A timestamp, as well as latitude and longitude, are 

basic data that needs to be extracted from raw GPS data. There are methodologies (Bueno Almeida & 

Camacho, 2014) that have been developed for this, based on criteria that determines if a truck has 

stopped at a certain location (a delivery point).  

Regarding the application of GPS data in logistics, there is more literature on freight transportation that 

considers inter-city transportation, as opposed to within a city (Greaves & Figliozzi, 2008). This imposes 

additional restrictions and complications, such as one-way streets, heavy traffic, and time restrictions on 

certain roads. It is estimated that last-mile operations conform 18-25% of urban traffic for cities such as 

Quito (Dablanc, 2007). In order to solve the aforementioned traffic problems, Geographical Information 

Systems (GIS) can be applied to urban logistics in a number of different manners, which include, based 

on the work of Saunders & Rodrigues da Silva (2009): 

 Extraction of data from maps 

 Design of logistics networks 

 Simulations of modifications on urban areas 

 Routing problems 

It is worth mentioning the positive impact that these strategies can have on reversing environmental 

damage caused by pollution. Simulations have shown to reduce energy consumptions by up to 20% 

(Saunders & Rodrigues da Silva, 2009). Pluvinet et al. (2012) estimate the instantaneous fuel 

consumption and pollutants emission (CO2, CO, NOx, and hydrocarbons) in a routing model by using a 

physical, power-demand approach that considers aspects such as vehicle type, engine, emission 

technology, etc. (Barth et al., 1996) 
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3. Methodology 

Data from previous work by Bueno & Camacho (2014) was used to compare routes. The routes were 

optimized by rectilinear distances and real distances, in order to compare outputs of routing software 

and real optimal values. This was accomplished by using a two-dimensional projection of the Earth and 

the Google Maps Distance Matrix API to obtain the respective distances. The Traveling Salesperson 

Problem (TSP) was used as a model that was resolved by the 2-opt pairwise exchange algorithm. 

Indicators used to evaluate algorithm performance are the total distance reduction percentage, the 

proportion of routes which were improved, and the proportion of the routes where rectilinear and real 

distances provide the same solution. Details will be given in the following subsections. 

 

3.1. Tools 

The list of tools that were employed in the development of this study are described briefly as follows: 

 Compass: Application developed by the MIT Megacity Logistics Lab for visualization and 

analysis of routes. This application features a data extraction function that sorts that raw data 

from the input database into useful spreadsheets that can be manipulated for convenience. 

 Python: This programming language was used for the required data processing and 

mathematical optimization, on the SPYDER (Scientific PYthon Development EnviRonment) 

platform. 

 CartoDB: Online GIS application used to create visualizations. The required route data was 

entered to obtain a graphic representation of the routes, which serves as a useful analysis tool. 

 MS Excel: Used for data manipulation in spreadsheets. 

 Google Distance Matrix API (Application Program Interface): Tool for building software 

applications that provides travel distances for a matrix of origins and destinations. 

 

3.2. Data 

This study uses data from previous work by Bueno & Camacho (2014); a study that proposes a 

methodology for creating and cleaning a GPS database. Specifically, Bueno & Camacho obtained the 

raw data from Chilly Trucks, the company in charge of the distribution of Gorilla Ice’s products to 

nanostores. The raw data is a list of georeferenced timesamps (data that includes longitude and latitude 

coordinates, as well as time and date) from Chilly Trucks’s trucks, over a period of 5 months. Bueno & 

Camacho’s methodology consists of processing data to a format that permits manipulation for analysis 

and visualization. It is worth mentioning the most important parameters that were used for cleaning the 

data: 

 Routes outside of Quito were eliminated: some trucks have inter-city deliveries but were not 

taken into account for the study. Coordinates were established to eliminate all data outside of 

the Quito city limits. 

 Nighttime data: some trucks are loaded at night, and the GPS is turned on always for security 

reasons. Therefore, all data before 05h00 and after 20h00 were rejected. 

 Parking spots: there are days when a certain truck will have no routes, but will move inside or 

near the distribution center (DC) of Gorilla Ice and the operations center (OC) of Chilly Trucks. 

All routes that are fully inside a 30 [m] radius from the OC and the DC were eliminated. 

 Long stops: sometimes, the vehicles are at the shop for maintenance or they park at the 

respective driver’s home for long periods of time, as opposed to parking in the OC or DC. If 

data points are inside a 15 [m] radius for more than 3 [h], they are rejected. 

 Speed less than 3 [km/h] for a duration greater than 150 [s]: this is the criteria proposed by 

Pluvinet (2012) to identify the delivery stops that the driver makes, while excluding stops caused 

by traffic lights. 
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 Data was classified into routes under a specific identification, called RouteID, where each route 

refers to the route covered by a specific truck in a specific date.  

The result of this work is a database that includes information for 15 of the company’s trucks for the 5 

month period. A total of 1344 routes were obtained, of which 950 are appropriate for this study, since 

394 routes were discarded (a certain truck’s data is corrupted, some trucks exit the city of Quito, etc.). 

This data was input into the Compass application for visualization. Compass can then process this data 

and obtain detailed indicators on routes such as number of stops and their locations, total route time and 

average speed. Finally, the application has a function that allows the downloading of that processed 

information into organized spreadsheets. This information presents coordinates for the stops that each 

truck makes in each route for a delivery.  

A sample size, 𝑛, of 84 routes was determined necessary to obtain a confidence level, 1 − 𝛼, of 95% as 

well as a margin of error, 𝑒, of 6%. Stratified sampling was used so that the optimization algorithm’s 

performance could be evaluated individually among a range of possible types of routes. The routes were 

sorted into strata, depending on their number of stops. Finally, samples were allocated to each stratum 

using optimal allocation, where allocation is based on variability and the relative cost of sampling a unit 

in each stratum (Lohr, 2010). In this case, the cost variable is the relative computing time required to 

evaluate a route. Table I shows a summary of information regarding the stratified sampling allocation: 

Table I: Stratified sampling allocation. 

 

 

The objective, as mentioned before, is to compare the actual routes used by truck drivers (referred to as 

𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒) with routes that could be provided by routing software and also with routes that consider 

real-life distances between stores. 

A distance matrix (which contains the distances between each pair of stores and/or OC and DC) is to be 

provided in order to solve the optimization model, which is described in detail afterwards. Delling et al. 

(2009) recommend precomputing a distance matrix before running the actual optimization, as it is a 

faster procedure. Two different distance matrices must be created in order to calculate each respective 

type of optimal route: 

 Rectilinear distance matrix 

 Real distance matrix 

Rectilinear distance matrix: routing software usually bases its algorithms (and outputs) on calculations 

done with rectilinear distance (a.k.a. Manhattan distance, taxicab metric, etc.) (Larson & Odoni, 2007). 

As opposed to Euclidean distance (the straight line as the shortest path between two points), rectilinear 

distance is the sum of the absolute differences of the Cartesian coordinates between two points. It may 

be used in applications regarding cities with a grid layout, such as New York City (specifically, 

Manhattan), but in cities like Quito, where the road network geometry is complicated, this has limited 

use. As mentioned by Delling et al. (2009), commercial route planning systems might provide 

suboptimal routes, as their algorithms favor reduced computing time over quality of results. For 

example, smaller or less transited streets might be overlooked unless they are necessary to reach the 

target. While optimizing routes, the corresponding output shall be referred to as 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟. 

To calculate the rectilinear distances, the Universal Transverse Mercator (UTM) coordinate system of 

the Earth is used. This is a two dimensional conformal projection of the globe that preserves angles and 

approximate shapes, although slightly distorting distance and area. Traditional latitude and longitude 

Stratum, ℎ Number of stops Stratum size, 𝑁ℎ Stratum sample size, 𝑛ℎ 

1 1 – 25 267 48 

2 26 – 50 482 27 

3 51 – 75 179 7 

4 76 or more 22 2 
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coordinates are converted to UTM format (via a Python library named “LLUTM_Convertor”, developed 

by Chuck Gantz) in order to compute the required mathematical calculations of distances in meters. 

Real distance matrix: to produce accurate and useful results, however, optimal routes have to take into 

account the local transportation network, which includes restrictions such as one-way streets or turn 

restrictions. The Google Maps Distance Matrix API was used to access this information. Coordinates 

for origins and destinations are provided from the Compass output so the API returns the respective real 

distances. While optimizing, this output shall be referred to as 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙. 

 

3.3. Methods 

To optimize routes, the Traveling Salesperson Problem (TSP) was used as a model. This is a special 

case of the Vehicle Routing Problem (finding optimal delivery or collection routes from one or several 

depots to a number of users/stores) in which the goal is to find a least-cost route while visiting each 

required store (a.k.a. vertex/node) exactly once, with the initial store repeated at the end (Ghiani, 2013 

& Weisstein, 2016). For urban settings, however, Ghiani (2013) recommends the Asymmetric 

Travelling Salesperson Problem (ATSP). Since the cost function (distance is used as the cost parameter 

in this case, where the result will be referred to as 𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒) of traveling from store 𝑖 to store 𝑗 

is not necessarily the same as traveling from store 𝑗 to store 𝑖, considering the transportation network, 

this is the case of an ATSP.  

A mathematical formulation of the model, obtained from Ghiani (2013), is shown as follows: 

Let 𝑉′ be the set of stores (vertices), and 𝐴′ be the set of paths between stores (arcs). With each 

path from store 𝑖 to store 𝑗 is associated a cost 𝑐𝑖𝑗 which represents the distance that needs to be covered 

while traveling between the stores. Note that 𝑐𝑖𝑗 is not necessarily equal to 𝑐𝑗𝑖, due to the asymmetric 

aspect of the model. 

Finally, let 𝑥𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐴′, be a binary decision variable equal to 1 if the arc (𝑖, 𝑗) is part of the solution; 

0 otherwise. Then, 

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗

(𝑖,𝑗)∈𝐴′

𝑥𝑖𝑗 
( 1 ) 

Subject to: 

 
∑ 𝑥𝑖𝑗

𝑖∈𝑉′\{𝑗}

= 1,   𝑗 ∈ 𝑉′ 
( 2 ) 

 
∑ 𝑥𝑖𝑗

𝑗∈𝑉′\{𝑖}

= 1,   𝑖 ∈ 𝑉′ 
( 3 ) 

 
∑ ∑ 𝑥𝑖𝑗

𝑗∉𝑆𝑖∈𝑆

≥ 1,   𝑆 ⊂ 𝑉′,   |𝑆| ≥ 2 
( 4 ) 

 𝑥𝑖𝑗 ∈ {0,1},   (𝑖, 𝑗) ∈ 𝐴′ ( 5 ) 

 

Where equation ( 1 ) is the cost objective function that will be minimized. Constraint ( 2 ) states that 

only one path enters each store j ∈ V′ and, similarly, constraint ( 3 ) states that only one path exits each 

store i ∈ V′. Constraint ( 4 ) guarantees that the tour has at least one path coming out from each proper 

and a non-empty subset 𝑆 of stores in 𝑉′.  
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To compute a solution, a number of different methods exist. These include algorithms for obtaining an 

exact solution, such as a brute force search (explores all possible permutations), and heuristic algorithms. 

The latter may produce a suboptimal solution, but is preferred due to the large computing power required 

by exact methods. 

In Python, a brute force search was tried as an initial approach, in which a list (or array, vector, etc.) of 

all permutations of the routes was created to calculate their cost one by one. This proved ineffective for 

routes which contained more than 10 stores, as the time required to produce the list would increase 

dramatically which each store added, considering the number of permutations is 𝑛! for 𝑛 stores.  

A heuristics pairwise exchange method, known as 2-opt, was finally used to optimize the routes, as this 

is the most famous and practiced method due to the accuracy of its results, simplicity and relative 

computing power required (Croes, 1958 and Johnson & McGeoch, 1995). This local search algorithm 

is an iterative method commonly used to solve TSP. In each iteration of this method, the best possible 

2-opt move is applied. The objective, as explained by Burtscher (2014) is to “find the best pair of edges 

(𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) such that replacing them with (𝑖, 𝑗) and (𝑖 + 1, 𝑗 + 1) minimizes tour length”. 

Figure 1 is a visual model of the exchanges produced by 2-opt: 

 

 

Figure 1: Illustration of the 2-opt pairwise exchange method. Source: Burtscher, 2014. 

 

There is a way to solve an ATSP model which involves expanding the distance matrix (Jonker & 

Volgenant, 1983), but it would seem inefficient with relation to computing time and power, considering 

the scale of the problem. Instead, a high-speed 2-opt TSP solver for large problem sizes, proposed by 

Burtscher (2014), was adapted for this specific case. Traditional algorithms evaluate the whole route’s 

length on each iteration. Burtscher’s method, on the other hand, is based on evaluating solely the change 

in length from a 2-opt switch. This greatly reduces the level of complication of the required 

programming, as well as the computation time. It is designed for a Symmetric TSP (STSP), but was 

adapted to solve an ATSP.  

The heuristic was initialized with the existing 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒, which is represented by the ordinal 

sequence (1, 2, 3, 4, …, n, 1), where each number corresponds to each store. Finding a local minimum 

based on 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 would prove an effective solution, since 2-opt works well when switching routes 

that overlap each other, as these switches tend to reduce distances greatly. The result would be an 

improvement on the 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒.  

To analyze each individual route in the sample, an indicator, 𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒, was computed for the 

three different types of routes (𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙) so as 

to compare their efficiency. This value was calculated with the TSP model’s cost function. These 

indicators serve to compute global indicators for each stratum (described below), and consecutively for 

the whole sample. 

Global indicators used to compare the efficiency of the algorithm are: 

 The average distance reduction of the routes, expressed as a percentage. 

 The total percentage of routes that were improved– where the actual route was improved by 

using real distances.  
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 The percentage of routes where using real distances returned a different store sequence than 

when using rectilinear distances.  

 

4. Results 

Table II: %decrease and proportion results per strata. 

 

Table II shows the optimization results for each of the strata. The percentage of distance that can be 

reduced is significantly larger in shorter routes (1-50 stops) than in longer routes (51 or more stops). 

The results also show that the algorithm improved 100% of the routes in strata 2, 3, and 4 (26 or more 

stops), and 91.76% of the routes in stratum 1 (1-25 stops). In addition, in 100% of the routes in strata 2, 

3, and 4 (26 or more stops), and in 95.51% of routes in stratum 1 (1-25 stops), the use of real distances 

provided a different solution than the use of rectilinear distances. 

 

Table III: Overall %decrease results. 

 

 

Additionally, a confidence interval of 95% certainty was obtained: 

%3.028 ≤ %𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 ≤ %4.919 

As can be seen in Table III, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙 is a more effective route than 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒, since there 

is an average decrease in distance of 3.974% in the routes after applying the algorithm.  

 

Table IV: Overall proportion of routes with a different sequence of stores. 

 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 [%] 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟(𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛) 

Real vs. Actual 97.684% 0.10423E-04 0.010209119 

Real vs. Rectilinear 98.737% 5.9171E-05 0.007692272 

 

In Table IV are results regarding comparisons between types of routes. As shown in the above results, 

improvement was possible in a large percentage (97.684%) of routes. Also, an even larger proportion 

(98.737%) of routes obtain a different sequence when optimizing using rectilinear distances vs. real 

distances. The routes which were not optimized, or where the real and rectilinear distances produced 

the same results, belong exclusively to stratum 1 (1-25 stops). 

A comparison between the 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 and the new 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙 for a sample route is shown 

in Figure 2. It can be observed that the 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙 follows a much simpler path. 

Stratum, 

ℎ 

Number 

of stops 

Stratum 

size, 

𝑁ℎ 

Stratum 

sample 

size, 𝑛ℎ 

Average 

actual 

distance 

[m] 

Average 

optimized 

distance 

[m] 

Average 

distance 

reduction 

[%𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒] 

Percentage 

of 

improved 

routes [%] 

Percentage of 

routes with 

different 

sequences – real 
vs. rectilinear 

distances (%) 

1 1 – 25 267 48 38574 37587 3.80 91.76 95.51 

2 26 – 50 482 27 54647 52600 4.44 100.00 100.00 

3 51 – 75 179 7 94428 91690 3.15 100.00 100.00 

4 76 or more 22 2 93132 90744 2.65 100.00 100.00 

%𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(%𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒) 𝑆𝑡𝑑. 𝐸𝑟𝑟𝑜𝑟(%𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒) 

3.974 2.3271E-05 0.004824 
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Figure 2: A comparison between (Left) 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 and (Right) 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙  for RouteID 18D. 

 

5. Discussion 

Apart from the fact that there is an average reduction in distance for all routes when applying the 

algorithm, the non-optimality of the 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑠 can be confirmed by observing the sample 

𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 on Compass, as is shown in Figure 2. The 2-opt algorithm works well when switching 

roads that overlap each other. This is an appropriate explanation for the considerable reduction in 

distance while optimizing the routes, since the 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒 overlaps itself on multiple occasions. This 

suggests the algorithm works as expected. It has proven effective at optimizing delivery routes in a 

theoretical setting. 

On the other hand, since there is such a low proportion of routes where 𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑎𝑙 and 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑅𝑒𝑐𝑡𝑖𝑙𝑖𝑛𝑒𝑎𝑟  obtain the same sequence of stores as the optimal path, there is additional 

evidence that supports the fact that the rectilinear-distance-based algorithms are not as effective as 

algorithms that use real distances. 

Stratified sampling was used as a tool that allowed analysis on different types of routes, according to 

their number of stops. Findings include the fact that as routes get moderately longer (more than 51 

stops), there is a smaller margin for distance reduction through mathematical optimization. This 

information with regard to %𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 of distances can be extrapolated for operations planning and 

control. Also, it is worth noting that the algorithm improved all routes with more than 25 stops, and most 

routes with less than 25 stops. 
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In Appendix A, samples of routes from Compass are provided, which show how they may very well be 

less than optimal; this can be observed in the number of overlapping roads, as well as the excessive 

amount of turns the driver makes to account for one-way streets. 

Limitations include the fact that only the 2-opt algorithm was used. In a larger study, different 

optimization methodologies could be tried, perhaps even considering their specific computation 

requirements. Some of the most effective methods that have been proposed in the literature for solving 

TSP are 3-opt, genetic algorithms, and Christofides’ algorithm (Johnson & McGeoch, 1995; Sharma et 

al., 2005; Larson & Odoni, 2007). Some of these are probabilistic methods, which implies that the 

solutions might change with each “run” of the algorithm. Similarly, a different initialization method 

could be applied. There are constructive heuristics, such as the greedy algorithm (a.k.a. NN – Nearest 

Neighbor algorithm), which could provide a different basis over which to run improvement algorithms 

on. 

Also, there is no account in the model for traffic data. This is a particularly challenging topic, considering 

the traffic in Quito is a largely influencing factor on travel times. A more complicated model would 

include this for the calculation of travel times and for the routing itself. The Google Distance Matrix 

API, in addition to the distances provided beforehand, can provide historical traffic information that 

could be used for this purpose, but this would require standardized starting times for each route. 

Furthermore, this would require confirmation from truck driver surveys. Also worth mentioning is that 

the same Distance Matrix API can provide current traffic information, an interesting feature to consider 

if a real-time routing technology is to be developed in the future for commercial freight in Quito.  

There was no opportunity to conduct truck driver surveys. These should be used to confirm the results 

of the optimization models, or to obtain extra input to help refine them. Allen & Browne (2008) state 

that driver surveys may be used to gather data about the overall route pattern, loading/parking locations, 

lunch stops, cash deposits, and more. Since the drivers have covered the same routes for many years, 

they can possibly have information that validates or rejects the optimal routes proposed by the models. 

In UPS, a system is used where a computer algorithm improves existing routes but the truck drivers are 

challenged to improve them even further (Zax, 2013). This “hybrid” system, built on trust and 

empowerment of the driver, has proven useful; the optimized results become another input that the driver 

uses together with his/her intuition in order to generate the best possible routes. 

If the decision is to not conduct truck driver surveys, however, then direct field testing of the optimal 

routes should provide accurate enough results, although with the added cost of experimentation by the 

drivers. Additionally, information regarding the stores (coordinates, opening times, type of store, etc.) 

may be obtained to validate the models.  

Another important limitation is that environmental impact was not included in the analysis, other than 

considering through the fact that shorter distances and travel times usually consume less fuel and pollute 

less (Saunders & Rodrigues da Silva, 2009). In a more comprehensive model, instantaneous fuel 

consumption and pollutants emission may be estimated in a routing model by using a physical approach 

based on the power demand required, according to vehicle type, engine, level of wear, speeds, 

accelerations, mass, etc. (Barth et al., 1996; Pluvinet et al., 2012). 

Also, it should be taken into consideration the idea of creating a model with a more complex cost 

function. This can be useful as a final evaluation for a company like Chilly Trucks to decide if it is 

economically feasible and convenient to adopt this solution. The value that could be optimized is the 

cost itself of traveling that route. In addition to distance; time and fuel consumption should be added as 

constraints to the model. The total cost of traveling the route would be calculated for the 𝐴𝑐𝑡𝑢𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑠, 

as well as for the optimized ones. Time can be calculated with traffic data, as mentioned above. In order 

to calculate fuel consumption, however, another approach can be used: if a vehicle’s engine computer 

is integrated into the database, efficiency tracking is available, which considers stops and starts, hills or 

operating at high speeds for extended periods of time (Pluvinet et al., 2012). This can also be used to 

forecast vehicle maintenance, for example. 
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6. Conclusion and recommendations 

An analysis on the reliability of rectilinear-distance-based routing algorithms and truck drivers’ 

experimentally-created routes was performed. The results suggest that accessing the road network data 

and calculating real travel distances before optimizing is an efficient way to address routing problems 

in cities such as Quito, which contain major traffic problems, as well as a complicated road geometry. 

While truck drivers may have developed and know their routes very well, vehicle routing through 

mathematical optimization may prove to be more effective, which in turn could benefit the logistics 

company with reduced costs and better service provided to customers (more deliveries arriving on time, 

for example). Alternatively, mathematically optimized routes can serve as a tool for drivers to improve 

their routes intuitively. Further research opportunities include a detailed analysis on environmental 

impact of vehicle routing (these results should be included in future routing models) and the 

development of an algorithm that optimizes the cost of routes by taking into account historical traffic 

data and fuel consumption. 
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Appendix A - Sample routes from Compass 

 

 

Figure A1: RouteID 19F. 

 

 



18 

 

   

Figure A2: RouteID 1BB. 


