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RESUMEN 

La suposición de sólo efectos principales en los métodos del Análisis Conjunto ha 
creado un debate sobre el hecho de enfocarse o no en el impacto de las interacciones pues-
tas a prueba en esta investigación. Diferentes metodologías de Análisis Conjunto se han 
usado en estudios de desarrollo de nuevos productos y resultados diversos se han obtenido 
con respecto al mejor desempeño que estos pueden tener para obtener información de los 
encuestados. La comparación se realizó entre las encuestas del Análisis Conjunto Tradi-
cional CVA y el Análisis Conjunto Basado en la Elección CBC para contrastarlas a través 
de los valores de utilidad, valores de importancia de los atributos y bondad de ajuste en 
ambas metodologías, usando una bebida lista para tomar como sujeto de prueba. La supo-
sición de efectos principales en la regla de composición del CVA fue comparada con la 
inclusión de términos de interacción significativos en el CBC. Se desarrollaron dos escena-
rios; en el primero de consideró características internas del sujeto de prueba y se utilizó un 
tamaño de muestra de 250 encuestados. En el segundo escenario consideró características 
de presentación del sujeto de prueba y un tamaño de muestra de 150 encuestados. El orden 
de importancia de los atributos para el Escenario 1 difirió, mientras que para el Escenario 2 
fue el mismo. Diferencias significativas se encontraron entre atributos y niveles en cada 
escenario y el mismo patrón se encontró en ambas metodologías y ambos escenarios. 

Los dos valores de utilidad más altos se obtuvieron del CBC, usando una regla de 
composición con interacciones, acabó considerando a la Cerveza, en cambio en el CVA 
este nivel reporto una utilidad negativa. En el Escenario 1 se encontró una bondad de ajus-
te más alta para el CBC, incluyendo interacciones significativas, en contraste con el Esce-
nario 2, donde no se encontraron interacciones significativas y en ese caso el CVA tuvo 
una bondad de ajuste mayor. 

A pesar del hecho de que el diseño y los cálculos es un Análisis Conjunto basado 
en elección no fueron tan sencillos ni conocidos como el diseño y los cálculos realizados 
por un Análisis Conjunto Tradicional, la inclusión de interacciones es información valiosa 
que los investigadores en futuras investigaciones deberían considerar. 
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ABSTRACT 

The assumption of only main effects in Conjoint Analysis methods has created a 
debate whether to focus or not on the impact of interactions that were tested in this re-
search. Different conjoint methodologies have been used in new product development 
studies and diverse results have come to which of them perform better to obtain infor-
mation from respondents. A comparison of Conjoint Value Analysis CVA and Choice-
Based Conjoint CBC surveys were undertaken to contrast them through utility scores, im-
portance values of attributes and goodness-of-fit found in both methodologies using ready 
to drink beverages as the subject. The main effects assumption in the CVA composition 
rule was compared to the interaction terms in the CBC one. Two scenarios were devel-
oped; the first one considered inner characteristics of the subject and a sample size of 250 
respondents. The second one considered the presentation characteristics of the subject and 
a sample size of 150 respondents. The attribute importance order in each methodology for 
Scenario 1 was different, while in Scenario 2 it was the same. Significant differences were 
encountered among attribute levels and within them; the same pattern was found in both 
methodologies and in both scenarios.  

The two higher total utility scores were obtained in the CBC using an interactive 
composition rule that considered beer, whereas in the CVA this level reported a negative 
utility. In Scenario 1 a higher goodness-of-fit was found in the CBC, including significant 
interactions, in contrast with Scenario 2, where no interactions were found, and CVA had a 
higher goodness-of-fit.     

Despite the fact that the design and calculations of a Choice-Based Conjoint were 
not as straightforward and well-known as the design and calculations of a traditional con-
joint analysis, the inclusion of interactions is valuable information that researchers in fu-
ture studies should consider. 
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1.  Practical Applications 

Conjoint Analysis is a widespread statistical research technique that can be applied 

to New Product Development by determining the preference (utility) of a specified prod-

uct/service through its components and finds an optimal combination of their attributes. 

There are different Conjoint Analysis methodologies, and a dispute has come along about 

which methodologies can be more appropriate to use. The traditional full profile Conjoint 

Analysis or Conjoint Value Analysis (CVA) was the first methodology developed and the 

most frequently used due to its simplicity in calculations. However, Choice-Based Con-

joint (CBC) is gaining popularity due to its way of presenting combinations that simulates 

what happens in the marketplace more accurately. 

Little research has been made in comparing different Conjoint Analysis in an effort 

to conclude or recommend the utilization of a particular methodology of this technique. 

Several authors have given guidelines to researchers to know which methodology to 

choose, basing their recommendations only on the capabilities of each one. There are no 

conclusive results about which of the methodologies could lead to better results.  

Main effects only assumption and the election of one of the elicitation methods 

have brought interest in using more complex and accurate estimation methods that can 

include more crucial information for the modeling of consumer’s preference for a new 

product. 
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Nomenclature 

CA    Conjoint Analysis               CBC Choice-Based Conjoint 

CVA Conjoint Value Analysis  RTD   Ready to Drink 

OLS  Ordinary Least Squares             NPD New Product Development  

FF     Fractional Factorial Design       MNL Multinomial Logit Model 

HB    Hierarchical Bayes 

2.  Introduction 

Conducting business decisions is critical, and the use of resources has to be effi-

cient. Some examples of these decisions are: product/service design, product line and port-

folio optimization, capacity planning, customer support management, as well as volume 

and mix flexibility decisions (Karniouchina, Moore, van der Rhee & Verma, 2008). 

To respond to those critical decisions efficiently and effectively, CA has been used 

as a technique that allows researchers to translate and predict customers’ needs and expec-

tations into product characteristics (Jervis, Ennis & Drake, 2012) (Lambin, 2007) (Orme & 

Chrzan, 2000). In this way, industries can use this technique to launch successful prod-

ucts/services in a competitive market (Barone, Lombardo & Tarantino, 2007). In this man-

ner, conjoint analysis has allowed different areas like statistics, probability, and experi-

mental design as well as econometric modelling to predict more realistic behaviors of the 

marketplace (Sawtooth Software, 2009). 

CA has been around for about 40 years, and since then a lot of improvements has 

come in hand with technology that has eased the calculations and made possible to test 

with more representative samples and improve the estimation of the data collected (Green 

& Srinivasan, 1990) (Hair, Black, Babin, Anderson & Tatham, 2007). 
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There are essentially four methodologies of CA mentioned in detail in Rao (2010), 

briefly explained next. The first one is called Conjoint Value Analysis (CVA), and it is the 

traditional conjoint methodology that uses stated preferences by rating (Rb) or ranking 

combinations (Rao, 2010) (Karniouchina et al, 2008). 

The second one is called Choice-Based Conjoint (CBC); this CA uses stated choic-

es (Cb) to select a combination from a set presented; the way preferences are obtained are 

partly deterministic and random (Karniouchina et al, 2008).  

The third methodology is called Adaptive Conjoint Analysis (ACA) in which, first, 

a self-explicated elicitation task considers attribute importance values and desirability lev-

els using ranking and subsequent rating in order to tailor partial profiles for each respond-

ent; these profiles are followed by a paired presentation of those choices in a graded com-

parison scale. 

The fourth CA methodology is called self-explicated, where respondents are asked 

to evaluate the desirability of each level of all the attributes as well as the relative im-

portance values assigned to them.  

Rao (2010) also mentioned that there are two different kinds of models in which 

the four methodologies are classified: decompositional and compositional. The first three 

methodologies mentioned earlier are decompositional because the data are decomposed to 

obtain partial utility scores of each attribute level of a combination; this is in contrast with 

the compositional approach, where utility scores are composed from the data obtained of 

each of the attribute levels. 

Karniouchina et al (2008) expressed that from more than 150 publications in top 

journals about CA, only 5 studies have compared the elicitation methods used before in 
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CVA and CBC as Rb and Cb, and no concrete results were obtained, but they concluded 

that CBC performed better at the individual-level. 

There are some benefits from using Rb or Cb elicitation methods. For example, Rb 

simplifies market decisions, whereas Cb is easier for respondents to adapt and give infor-

mation about their preference, but in terms of design, Rb is easier than Cb (Karniouchina et 

al, 2008) (Orme, 2010). 

Now, CBC is becoming more important due to the realism in the way respondents 

make trade-offs, simulating what happens in the market place; this is in contrast to CVA 

where respondents can either rate or rank a specific combination (Sawtooth Software, 

2014) (Rao, 2010). Also, choosing a combination is a simple and more natural task that 

everyone can understand (Orme, 2010). 

One of the main reasons that CVA was first used was the utility estimation through 

OLS for Rb or monotone regression for ranking that permitted individual utility estimation, 

unlike CBC, where the Multinomial Logit Model (MNL) only permitted to estimate aggre-

gate utilities. However, recent powerful estimation methods like HB have allowed to ob-

tain information from respondents with fewer questions and to calculate individual utility 

estimations; this process has led to enhance the information quality, reducing significantly 

the chances of getting noisy data (Orme, Alpert & Christensen, 1997). 

Moreover, the strength of the methodologies that estimate individual-level utilities, 

considering only main effects like CVA, are obtained at the cost of denying the presence of 

interactions, considering their values to be negligible. Therefore, if significant interactions 

are found, the conclusions reached by a traditional CA may be invalid, unlike CBC that 

offers the capability to estimate interactions between attribute levels (Sawtooth Software 

Inc., 2013).  
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The interaction analysis in a CA study can proportionate valuable information to 

find a model that could be more accurate (Orme & Chrzan, 2000) (Lambin, 2007). Hair et 

al (2007) differentiated two distinct composition rules, one considering main effects and 

other considering interaction terms. The first one is called Simple Additive Model, where 

the partial utility of attribute levels in a combination are summed up, and the second one is 

called Interactive Model, where the interaction terms can be added to obtain the total utility 

or combination preference. However, in the latter model, despite portraying a more realis-

tic situation, it implies more complex calculations (Hair et al, 2007).  

Using individual level estimation approaches has reduced the need for modelling 

interactions, but this does not directly take for granted the changes that significant interac-

tions can have on the respondents’ preferences, so their effects should not be considered 

negligible (Sawtooth Software, 2009). 

Considering the debate between using Cb or Rb, as well as whether or not taking 

interactions into account in a CA study, the objective of the research was to conduct and 

compare CVA vs. CBC to determine which Conjoint methodology gets better results in 

terms of goodness-of-fit, attribute importance values, utility scores. In addition, this study 

analyzes the use of an additive composition rule in both CBC and CVA where only main 

effects are considered in the CVA in contrast with an interaction composition rule in CBC, 

where interaction terms are included. 

3.  Material and Methods 

The stages for conducting a CA explained in Hair et al (2007) were adapted in or-

der to build the conjoint methodologies and are developed in the next sections. 
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3.1 Objectives of the CA 

A low-alcoholic level bottled cocktail, a ready to drink beverage (RTD), was se-

lected as the subject for this study due to its recent elevated local consumption (Forman, 

2011) (Brown-Forman, 2011) (INEC, 2012) (Sojo, 2012). 

3.1.1 Market Analysis 

Over the years, the consumption of alcoholic beverages has changed in a way that 

cocktails are now taking more market than before, due to their flavor mixes involved and 

their low alcoholic content (Alcohol Advisory Council, 2012). Also Brown-Forman (2011) 

indicated that the propaganda and marketing towards this new trend in consumption of low 

alcoholic level beverages is directed to the young population, and the core characteristics 

of these products are: new flavors, quality of ingredients in the mix, and the presentation 

with the package ready to drink.  

The growth in volume of this RTD can be seen in countries like New Zealand, 

where from early 1990s to 2007, the consumption went from 3% to 14% and assures that 

this growth will continue in part because of the marketing made and people's consumption 

habits (Brown-Forman, 2011).  

Data from the World Health Organization recorded consumption on average values 

in liters per capita; these values have increased between the periods of 2003-2005 (3.8L) to 

2008-2010 (4.2L), which also confirms the growing consumerism of these products 

(WHO, 2014).  

3.1.2 Target Population 

The research was conducted in the city of Quito, Ecuador due to high consumption 

rates per capita (Sojo, 2012) (INEC, 2012).  
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Groups of ages between 18-44 years old were selected to conduct the study because 

this age group is found to consume more than the others (Sojo, 2012). The socioeconomic 

population status targeted was high (AB) and mid high (C+) due to their more frequent 

consumption (Sojo, 2012). Finally, in order to obtain reliable results, only respondents that 

have drunk at least once in the last month were targeted, considering consumption fre-

quencies (Sojo, 2012). 

Considering the parameters mentioned earlier, 132,797 people composed the target 

population (INEC, 2012). 
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3.2 Design of the CA 

A comparison for conducting a CVA with Rb elicitation method and a CBC with 

Cb, are shown in Figure 1 with modifications according to the performed research (the 

modifications are shown in color). 

Figure 1. Conducting a Conjoint Analysis RB vs. CB adapted from (Rao, 2010) 

3.2.1 Identify product attributes and levels, and Factorial Design Development 

Three focus groups were conducted, as well as market research of places where 

cocktails were sold in order to identify which ingredients were going to be included in the 

experimental design as attributes and their respective levels.  

Each focus group conducted had the purpose of extracting important alcohol con-

sumption information from the participants. The information was about the types of alco-

hol they used to drink and the preference about each of them. The participants also provid-



19 
 

 

ed the information about the mixes they preferred to make or buy, and the ingredients and 

flavors they liked or dislike in a mix. In order to obtain more information about cocktail 

recipes, many of them were consulted in the market with different bartenders. The resultant 

attributes and levels for this study are presented in Table 1.  

Table 1. Attributes and levels for CA Scenario1 

Attributes Levels 

Type A Liquor Whisky Rum Beer 

Type B Liquor Tequila Gin Vodka 

Touch of Flavor Mentha Spicata Grenadine Energy Drinks 

Solvent Lemon Juice Tonic Water Lemon Flavored Soda 

 

Beer was considered as an attribute in this study due to the high percentage of con-

sumption (79.2%) (INEC, 2012). 

All attributes have the same number of levels, representing a symmetric design 

(Rao, 2010); these types of designs are the most common ones and have been studied the 

most. Also they have obtained more representative results than their counterpart asymmet-

ric designs, where the attributes may have different number of levels each. This study was 

labeled as Scenario 1. 

Thus, the resulting factorial design was a, which generated 81 possible combina-

tions (Addelman, 1974). Respondents often lack the energy or patience to answer many 

questions in a CA, thus this quantity of combinations can burn the respondents (Orme, 

2010).  
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Typically, the amount of tasks respondents can answer for a CVA are between 20 

and 30 (Hair et al, 2007). As a guide of the number of questions that could be asked to 

obtain stabilization in the results, Orme (2010) recommended at least two or preferably 

three times the number of parameters to be estimated. The parameters to be estimated are: , 

which yielded to 9 parameters. The factor of 3 was applied, thus 27 questions had to be 

asked in the CVA study. With the CBC methodology there were recommendations to es-

tablish a suitable number of questions, but in order to choose the same amount of combina-

tions presented to respondents in both CA, 9 questions with 3 combinations each was pro-

posed for CBC.  

The resulting combinations for Scenario 1 could have been difficult to conceptual-

ize for respondents considering that these RTDs have ingredients as attributes and levels 

that are not typical in the local market mixes. To mitigate this possible bias, a second sce-

nario with most frequent market cocktails was developed to run a complementary study, 

where now the attributes could be more distinguishable to respondents. 

The attributes in this case had different number of levels, resulting now in an 

asymmetrical design (Rao, 2010). The attributes and their levels are shown in Table 2. This 

study was labeled as Scenario 2. 
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Table 2. Attributes and levels for CA Scenario 2 

Attribute Levels 

Cocktail 

Mojito Cuba Libre Submarine Michelada 

Blue Margarita Tequila Sunrise Padrino Whisky Sour 

Vodka Tonic Screw driver Tom Collins Gin Tonic 

Container Type Aluminum Can Glass Bottle 

Container Size Medium (330ml) Small (220ml) 
 

The study was approached with these two scenarios for the comparison of both 

methodologies. Two surveys for each scenario were developed, one with CVA and one 

with CBC respectively. In each of the four surveys, respondents rated or chose among the 

27 combinations presented.  

Next, each methodology is described in terms of the design involved in each one. 

3.2.2 Conducting CVA methodology 

Considering the number of questions to obtain stable results and to eliminate in-

formation overload, a FF design was proposed. A 3-level FF design matrix was used to 

obtain the most efficient fraction of the design, which considered a minimum aberration 

criterion in order to guarantee a maximum resolution design (Xu, 2005). Noting that CVA 

does not consider interactions, the criterion assures not to confuse the main effects between 

them and with two-way interactions, obtaining a design of resolution IV. 

For Scenario 1, ten versions of the design matrix were randomly generated and 

manually introduced into the SSI Software to avoid order and context effects in the ques-

tionnaire, which could have affected people's responses, generating a potential bias in the 
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results (Orme, 2010). For Scenario 2, the same amounts of versions of Scenario 1 were 

automatically generated. 

A 10-point (10 categories) rating scale was used for the CVA methodology due to 

its advantages in reliability, validity, discriminating power, and respondents’ preferences 

of rating scales (Preston & Colman, 2000). 

3.2.2.1 CVA Utility Estimation by OLS 

The basic weighted additive model for CVA methodology using rating tasks can be 

stated as follows (Ighomereho, 2011) 

𝑟! = 𝛽! + 𝛽!"

!

!!!

!

!!!

𝑥!" + 𝑒! 

Where 

𝑟! = Response for option k 

𝛽! = Intercept or constant 

𝛽!" = Part worth utility of level m of attribute j 

𝑥!" = 1 if option k has level m on attribute j (otherwise) else 𝑥!" = 0 

𝑒! = Error term 

Part worth utilities were estimated by applying multiple regressions with OLS, us-

ing a dummy variable coding in which deleting one level of each attribute from the compu-

tation was done. Otherwise, a linear dependence among the variables describing the levels 

of each attribute would lead to indeterminacy in the computation (Sawtooth Software, 

2002). 
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3.2.3 Conducting CBC methodology 

As mentioned earlier, the condition was to test the same amount of combinations 

between the two CA methodologies. In order to achieve that, each choice set was com-

posed by 3 combinations plus the "none option", obtaining a total of 9 tasks; in addition, 

two fixed tasks were added to improve the estimation (Sawtooth Software, 2014), giving a 

total of 11 tasks instead of the 27 tasks on the CVA. This was done to comply with the 

typical number of choice task on a CBC, which is about 8 to 12 (Howell, 2009).  

Next, a method to construct the choice sets was selected. Several methods exist to 

do the construction, depending on their capabilities, exposed in Table 3.  

Table 3. Comparison of Capabilities (Orme & Chrzan, 2000) 

The random method was selected to compose the CBC sets because it is the most 

complete design in estimating interaction effects, in spite of being the least efficient when 

estimating main effects (Sawtooth Software, Inc., 2013). For computerized interviewing, in 

order to gain in design efficiency, but most importantly to decrease order and context ef-

fects, 300 different version sets were automatically created (Sawtooth Software, Inc., 

2014). 
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Each version showed 27 different combinations among the 81 possible ones, unlike 

the CVA methodology where the 27 combinations were part of the same fraction but the 

order was randomized. 

3.2.3.1 CBC Utility Estimation by HB 

The utility associated with a combination can be stated as follows (Ighomereho, 

2011) 

𝑈!" = 𝛽𝑥!" + 𝑒!" 

Where 

𝑈!" = The utility of respondent i associated with profile j (this could be a combina-

tion A or B) 

𝛽 = A vector of parameters to be estimated 

𝑥!" = A vector of attributes of profile j presented to respondent i 

𝑒!" = The stochastic portion of the utility function 

Respondent i would choose profile A over profile B if 

𝑈!" > 𝑈!" And the probability of such choice is  

𝑃! 𝐴 = 𝑃𝑟𝑜𝑏 𝛽𝑥!" + 𝑒!" ≥ 𝛽𝑥!" + 𝑒!"  

CBC is based on a maximum utility model MNL, which is part deterministic and 

part random, borrowing information from the rest of the sample to estimate the probabilis-

tic part of the utility (Allenby, Rossi & McCulloch, 2005). 

Using MNL, the Hierarchical Bayes estimation method performs an iterative pro-

cess using Bayesian Analysis to draw the parameters of the prior distributions that the data 

is assumed to follow, in this case the partial utility weights of the preference model.  
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Using the Bayesian Analysis implies to turn the statistical estimation process 

around; this is done instead of assuming that the data is described by a particular model 

with specified parameters, and then investigate if the data is consistent with those assump-

tions; now the assumption about the model that describes the data remains, and computa-

tions are done to see if the data is consistent with the assumptions a priori. The difference 

lies in the fact that now the probability distribution of the parameters is investigated given 

the data (Sawtooth Software, 2009) (Allenby et al, 2005). 

In Appendix A, a more detailed explanation of the Hierarchical Bayes model used 

to estimate the utilities is presented based on the work made by Lenk, DeSarbo, Green & 

Young (1996), (Allenby et al, 2005). 

In order to detect if the interactions were significant, an interaction analysis was 

performed using the modified 2-log likelihood test (2LL); this process has demonstrated to 

be very effective in finding significant interactions (Sawtooth Software, 2014). 

3.3 Sample Size 

Reducing the possible errors generated by the data in a cost-effective way is of big 

concern for researchers that want to implement CA and obtain representative results (Or-

me, 2010). Current literature on the topic presents several options for determining valid 

sample sizes in CA. For developing hypothesis for a market, values of 30 to 60 are rec-

ommended (Orme, 2010). A range of 150 to 1200 respondents is suggested for experimen-

tation (Orme, 2010). Moskowitz & Silcher (2005) mentions a sample size for full factorial 

designs between 50-100 respondents to achieve meaningful, robust, and projectable data. 

Other examples include the work performed by Torres, Paz & Salazar that resulted in a 

sample size of 246 people using a mathematical formulation. Finally, in a study with lim-

ited sample size, 250 respondents for CBC had a stable performance (Jervis et al, 2012). 
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Based on these results, a sample size of 250 was used for Scenario 1 and 150 for scenario 2 

due to the more natural and known nature of the attributes to respondents. 

3.4 Construction of the survey and data collection 

SSI Web module was used to generate the questions for each scenario. One intro-

duction page was made to guide the respondents through the survey. Then, the screening 

questions were presented to guarantee the respondents were in fact part of the target popu-

lation.  

Validated CA questions were presented afterwards. The validation process consist-

ed of a pilot test where original questions were presented to the 25 respondents to deter-

mine if the questions were clear to answer. Results showed that respondents did not under-

stand how to answer to different elicitation tasks presented and got confused about the 

amount of combinations, tending to think that they were repeated along the survey. In or-

der to solve this issue, a description was added, indicating how to qualify the task with a 

notice that all of the combinations in the survey were different and at least one level made 

the difference among them. 

All surveys were fielded through the Internet and stored in Sawtooth Software 

servers. However, given the low rate response of 3% for the data collected through the 

Internet (Moskowitz &Silcher, 2005), the use of tablets was employed to collect data on 

the field. 
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4.  Results and Discussion 

4.1 Estimating the Conjoint model and assessing overall fit 

The highest incomplete surveys were from the CVA methodology due to the quan-

tity of rates that they involved; in contrast, in CBC choices facilitated the tasks to respond-

ents. The total data collected across surveys are shown in Table 4.   

Table 4.Number of fielded surveys 

 
CBC1 CVA1 CBC2 CVA2 Total 

Qualified/Complete 251 250 150 150 801 

Disqualified 101 130 106 145 482 

Incomplete 100 145 75 104 424 

Total 452 525 331 399 1707 
 

The average response times for each survey were also recorded. For the CVA sur-

veys the times were 6.85 and 7.09 minutes for Scenario 1 and 2, respectively. For the CBC 

survey, the response times were 6.74 and 6.45 minutes for Scenario 1 and 2 respectively, 

corroborating that the typical length of a CA interview should be 8-12 minutes (Moskowitz  

& Silcher, 2005).  

In order to compare similar situations among the used conjoint methodologies, the 

screening questions obtained from each survey were equivalent. The results from the 

screening questions corroborated what several authors mentioned, which is that this prod-

uct is aimed to younger group ages; thus, the inclusion of this group was more pronounced. 

The results table is exposed in Appendix B. 
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The utilities, importance values, and goodness-of-fit were obtained for each re-

spondents using SSI web (Sawtooth Software version 8.3.6). In Appendix C, the utility 

scores for Scenario 1 are presented as reference. Next the results obtained will be exposed 

for each Scenario. 

4.1.1 Scenario 1 

Importance values were obtained for both CA and are shown in Figure 2. 

Figure 2. Importance values for Scenario 1 

As it can be seen in Figure 2, the importance values obtained by each CA were not 

equal. The importance values of Touch of Flavor were different at 95% significance as 

well as in the Solvent importance values; in addition, considering the order of high to low 

importance values, the second importance, Type B Liquor for CVA and Touch of Flavor 

for CBC, indicated that both CA estimations did not lead to similar results.  
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Hair et al (2007) mentioned the determination coefficient as a measure of the 

goodness-of-fit for the estimation of the model as well as the study performed by Jervis et 

al (2012). The average determination coefficients obtained for Scenario 1 were 0.49 for 

CVA and 0.63 for CBC. This value includes significant interaction, which will be expand-

ed later, and represents a better fitting model estimation for CBC. Overall utilities for both 

conjoint methodologies are presented in Figure 3, along with the respective comparisons.  

Figure 3. Zero centered average utility values for Scenario 1 

Figure 3 shows the same utility trend; however, the analysis of significant differ-

ences at 95% confidence showed that some utility averages were different. Hence, this was 

another evidence that CBC and CVA did not lead to similar results. 

Figure 3 also showed that for Liquor Type A, the least preferred level was Beer for 

both methodologies and the most preferred ones were Rum and Whisky for CBC and 

CVA, respectively; for Liquor Type B, the least and most preferred attribute levels were 

Vodka and Tequila for both CA. Similarly, for Solvent attribute, the least and more pre-
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ferred levels were Tonic Water and Lemon Juice; for Touch of Flavor, the least and more 

preferred levels were Energy Drink and Mentha Spicata. 

Similarly, the utility means for each CA methodology were tested to determine if 

each CA could find significant differences between utilities, yielding in the impact over the 

total preference model. The results are shown in Figures 4 and 5.  

 

 

 

 

 

 

 

 

Figure 4. Zero Centered utility values per attribute levels for CVA1 
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Figure 5. Zero Centered utility values per attribute levels for CBC1 

 
As it can be seen, despite the fact that both CA revealed the same positive and neg-

ative trends for all levels, CBC considered more significant differences between levels of 

the same attribute than the CVA. For example, for Type A Liquor, CVA found the same 

significant differences as CBC; however, for the rest of the attributes, the results were not 

the same, especially for the Touch of Flavor attribute, where CBC determined all signifi-

cant differences between its levels, yet the CVA declares none. 
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4.1.1.1 Composition rule model for Scenario 1 

One important milestone in the results obtained from the CBC study was to look 

for possible interactions that could have been affecting the preference model. An interac-

tion plot was constructed using Minitab Software to identify possible interactions and is 

shown in Figure 6. 

Figure 6.Interaction Plot for Scenario 1 CBC 

Figure 6 showed a potential interaction between the attributes Type A Liquor and 

Type B Liquor, and similarly, with Type B Liquor and Solvent, as well as Solvent and 

Touch of Flavor. After running the modified 2LL test, the results found in Figure 6 were 

corroborated, and the 3 significant interactions agreed. The modified 2LL test results are 

shown in Table 5 with the respective p-values considered to establish significant interac-

tions at 95% of confidence. 
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Table 5.Interaction Search Tool Results 

Interaction Chi-square Value 2LL p-value 

Type A Liquor * Type B Liquor 19.8055 0.0005 

Type B Liquor * Solvent 17.6101 0.0015 

Solvent * Touch of Flavor 11.6912 0.0198 

Type A Liquor * Touch of Flavor 6.4600 0.1673 

Type B Liquor * Touch of Flavor 5.2857 0.2592 

Type A Liquor * Solvent 5.0089 0.2864 

 

The utility scores for the significant interactions are shown in Appendix D as refer-

ence.  

The 81 possible combinations were obtained considering the additive model for 

CVA and the interaction model for CBC (Hair et al, 2007). The total utility scores for each 

CA methodology were sorted from highest to lowest; the two highest scores are displayed 

in Table 6 as reference. 
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Table 6.Best two Combinations for CVA and CBC Scenario 1 

CA1 Ord. Type A 
Liquor 

Type B 
Liquor 

Touch of 
Flavor Solvent Total 

Utility 

CVA1 

1 Whisky Tequila Lemon 
Juice Mentha Spicata 17.96 

2 Whisky Gin Lemon 
Juice Mentha Spicata 17.34 

CBC1 

1 Beer Tequila Lemon 
Juice Mentha Spicata 71.33 

2 Beer Tequila Lemon 
Juice Grenadine 66.05 

 

The determinant appearance of Beer in both combinations with the higher utility 

scores for the CBC in contrast with the total absence of this level in the CVA showed a 

clear interaction that explains preference more accurately in the CBC with the interaction 

composition rule. 

When considering interactions, the performance of the CBC was greater in terms of 

information about the respondents’ preferences. Significant interactions can be crucial in-

formation that needs to be included in the analysis and are often ignored by researches due 

to time or resources (Sawtooth Software, 2014).  

For Scenario 1, the two highest utility scores of CVA were positioned in CBC in 

places 6 and 15. In contrast, the highest utility scores of CBC were positioned in places 49 

and 51 in CVA. 

 

 



35 
 

 

4.1.2 Scenario 2 

The same analysis was conducted for Scenario 2. Importance values are shown in 

Figure 7.   

Figure 7. Importance values for Scenario 2 

Cocktail showed, that in both CA methodologies, was by far the most preferred at-

tribute when comparing it with Container Type and Container Size. Also, the order of at-

tribute importance in both CA was the same.   

The average correlation coefficients obtained were 0.75 for CVA and 0.67 for 

CBC, representing a better fitting estimation for CVA. The comparison of the results for 

the utilities calculated are shown below 

One of the possible explanations to the sudden change in Scenario 2, was due to 

three main factors: with lower sample size, CVA performs better estimation predictions 

than CBC as the literature suggested; no significant interactions were found and the nature 

of the attributes were more known. 
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The same analysis of mean comparisons were performed between both CA and are 

shown in Figure 8 were the results presented significant differences between all utility lev-

els, except for Tequila Sunrise, Vodka Tonic and Michelada.  

Figure 8. Zero centered average utility values for Scenario 2. 

According to Figure 8, the least Cocktail level preferred was Cuba Libre and the 

most preferred one was Tequila Sunrise for CBC. In the CVA, the least preferred one was 

Submarine, and the most preferred one was Mojito.  For the Container Type attribute, the 

most preferred level was Glass Bottle for both methodologies. Finally, for Container Size, 

the most and least preferred attribute levels were contrasted between the two conjoint stud-

ies performed. 

Like in Scenario 1, a mean comparison between levels for each attribute was con-

sidered, revealing the same pattern for CBC being the technique that led to determine sig-

nificant differences between levels. For both CA, the results were different; for example, 

for the attribute Cocktail, in the CVA Mojito, Tequila Sunrise, and Michelada had the 
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highest utility scores, in contrast with the results from the CBC where only Mojito had the 

highest utility score. For Container Size, in CBC there was a significant difference between 

the values for 250ml with a higher value than for the 330 ml; on the other hand, in CVA 

significant differences were not found between these two levels. At last, for Container 

Type, significant differences between these two were found for both CA. 

4.1.2.1 Composition rule model for Scenario 2 

The interaction search tool did not find any significant interaction to be included in 

the model. Table 7 shows the higher utility values obtained after applying the additive 

model with no interactions. 

Table 7.Two Higher Utility values for CA Scenario 2 

CA2 Ord. Cocktail Container 
Type Container Size Total 

Utility 

CVA2 
1 Mojito Glass Bottle Medium 330ml 50.04 

2 Mojito Glass Bottle Small 250ml 44.21 

CBC2 
1 Tequila 

Sunrise Glass Bottle Small 250ml 64.18 

2 Michelada Glass Bottle Small 250ml 63.37 
 

Despite the fact that an Additive model was used for both methodologies, due to 

the absence of significant interactions, the combinations showed in Table 7 were different 

between both CA. 

As reference, for Scenario 2, the two highest utility scores of CVA were positioned 

in CBC in places 6 and 3. In contrast, the highest utility scores of CBC were positioned in 

places 4 and 8 in CVA. As it can be noticed, the highest utility scores in each methodology 
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switched places, considering that Container Size Small was present in three of the four 

combinations and had an individual estimation that was significantly different with a high 

utility score. 

These results can be explained because the CBC could better represent more re-

spondents’ heterogeneity due to the significant interactions encountered within attribute 

levels. With this differentiation, the CBC can distinguish which attribute levels impact the 

respondents’ preferences better than the CVA. 

5.  Conclusions 

The inclusion of significant interactions led to different combinations with higher 

total utility in the composition rule for CBC Scenario1. If these interactions had been ex-

cluded from the analysis, the appearance of Beer level would have never been considered 

due to its negative partial utility score in both methodologies. Therefore, when considering 

only the main effects, information can be ignored; thus, the analysis of interactions has to 

be a fundamental part in a CA study. 

When the NPD process involves inner characteristics, like in scenario 1, the early 

knowing of which attribute levels could have significant interactions with others can be a 

challenging task that could be biased by the researchers. Thus, in this case using a CA 

methodology that permits the estimation of interactions should always be considered. 

In this study, CVA and CBC methodologies did not lead to similar results due to 

different importance orders attributes and significant differences across utility level estima-

tions. Moreover, CBC reflected more capabilities in finding significant differences within 

attribute levels that definitely aided to differentiate the levels that contributed to respond-

ent preferences. Furthermore, the goodness-of-fit when interactions were significant was 

higher for CBC, obtaining a model of preference with more information. 



39 
 

 

Designing a CBC study is a more complex task that involves specialized software 

aid for HB estimation and extra experimental design knowledge because it does not only 

considerate creation of combinations but also the design of sets. Consequently, the study 

gains the inclusion of significant interactions to predict as accurately as possible the con-

sumer’s preferences. 

The HB estimation method helped the CBC to obtain results at an individual level 

with less information from respondents. This led to capture more heterogeneity and signif-

icant interactions across the respondents, which is a positive fact about this method. How-

ever, the complexity involved with this estimation is high and without the help of special-

ized software, the estimation could be extensive, meaning that the iterative process per-

formed is computationally extensive and trying to simulate it can take longer periods of 

time and effort. Thus, using complex estimation methods should be balanced with using 

specialized software.  

The use of choices as an elicitation method instead of ratings, gives less infor-

mation about the preference of the respondent due to the fact that choices represent the 

preference of the selected combination in the set, but it does not state how high or low that 

preference is, like rating tasks do. This fact can be balanced with higher sample sizes, as it 

can be seen in the results of scenario 2, in which a smaller sample size led to obtain a low-

er goodness-of-fit for CBC. 

The goodness-of-fit of each methodology was compared and analyzed, and higher 

values were obtained when interactions were included; thus, CBC performed better due to 

the quantity of variance explained by the model, in contrast with the goodness-of-fit of the 

CVA methodology. When interactions were not found, the model explained greater vari-

ance with the CVA methodology possibly due to the random design method used for esti-
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mating the Conjoint instead of the Balance Overlap Method that is better at estimating 

main effects. 

In the CVA methodology, the amount of categories in rating scales can affect the 

results obtained; thus, the selection of the categories is a variable to be considered. Also, 

the number of tasks that is directly correlated with the number of profiles tested could 

overwhelm respondents, thus the use of fractional factorial designs helps the CVA meth-

odology in reducing drastically the number of tasks presented to respondents to obtain bet-

ter results. 

On the other hand, the construction of sets in CBC drastically reduces the number 

of tasks presented in contrast with CVA, therefore reducing a potential burden of respond-

ents. However, it is important to mention that the cognitive effort in a choice task is greater 

than in a rating task, therefore, this effect has to be studied in more detail. 

Design concerns for the creation of stimuli are a fundamental part of any CA study 

that needs to be completed to obtain the best possible results. The proper uses of experi-

mental design tools in each of the design phases are key for the results gathered. 

The results exposed in this study has led to recommend using CBC methodology, 

acknowledging the fact that interactions can not be foreseen, and balancing the complexity 

involved in HB estimation. An important result is the capture of heterogeneity in CBC, 

which means that the difference across respondents about their preferences was revealed, 

leading to know which levels in each attribute contributed more to the preference model. 

The results obtained cannot be generalized and the guidelines that several authors 

give should be taken into consideration and analyzed deeply. Nevertheless, the decision 

has to be supported on quantitative data, and more investigation should be encouraged to 

see the benefits and drawbacks of using different CA methodologies. 
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Supplementary Material 

Appendix A: Hierarchical Bayes 

The use of this Bayesian statistical analysis is based on the Bayes Theorem for 

conditional probabilities and it gives the capability to update the estimations made a priori 

with information from the data. Only an intuitive explanation is given here, and for more 

information refer to Sawtooth Software references for Bayesian Data Analysis. 

Now, the HB is called "hierarchical" because of the two levels that the estimation 

has where: 

At the higher level the individual's part worth is assumed to be described by a 

multivariate normal distribution. 

𝛽!~𝑁𝑜𝑟𝑚𝑎𝑙(𝛼,𝐷) 

Where 

𝛽! = A vector of part worth for the ith individual 

𝛼 = A vector of means of the distribution of individual's part worth 

𝐷 = A matrix of variances and covariance of the distribution of part worth across 

individuals   

At the lower level, once the individual's part worth’s are given, the probabilities 

that a respondent chooses a particular alternative is assumed to be governed by a Multino-

mial Logit Model.    
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The probability of the ith individual choosing the kth alternative in a particular task 

is 

p! =
e!!
′ β!

e!!
′β!!

 

Where 

p! = The probability of and individual choosing the kth combination in a particular 

task 

x!′ = A vector of values describing the jth alternative in that choice task 

The estimation is an iterative process where the parameters are uploaded until con-

vergence of the parameters are obtained, and it uses a Metropolis Hastings Algorithm 

which is based on the Markov Chain Monte Carlo methods used to simulate complex, non-

standard multivariate distributions according to Chib & Greenberg (1995). As mentioned 

before, the introduction of such methods were not possible due to the computational inten-

siveness required, but in the 90's these type of estimations were beginning to be developed 

with the technologic advances made and now it is used in the present research with the 

help of Sawtooth Software. One important aspect to point out about the HB estimation, has 

the capability to estimate individual part-worth for respondents, which was not possible 

with MNL or latent class utility estimations by itself when conducting a CBC; and it is this 

capability that permits a more detailed and accurate contrast with the results obtained from 

the CVA surveys.  

Also, through HB estimation interactions affecting the utility scores can be meas-

ured, which in the context of this research is valuable to obtain results that could add in-

formation, resulting in a more accurate model.    
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Appendix B:  Screening Questions Responses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CVA1 CBC2 CVA2

(n=250) (%) (n=150) (%) (n=150) (%)

58 44 52 38

42 56 48 62

0 0 0 0

60 47 69 77

29 35 11 14

5 14 6 6

3 3 7 3

0 0 6 0

0 0 0 0

Internet Access 98 97 97 97

Smartphone 79 90 95 81

Laptop 86 75 86 91

None of the 
Above 0 0 0 0

Floating floor 29 32 27 34

Parquet 30 32 26 26

Board 17 13 20 20

Wooden Stave 2 1 2 0

Ceramic 27 15 23 19

Tile 32 15 30 31

Vinyl 2 0 0 1

Porcelain / 
Marbel 6 7 15 16

Other 0 0 0 0

Yes 100 100 100 100

No 0 0 0 0

In the last week 69 66 61 66

In the last two 
weeks 15 20 26 22

In the last month 16 15 13 12

More than one 
month 0 0 0 0

Yes 100 100 100 100

No 0 0 0 0

Bars and discos 76 67 65 70

At home 26 24 38 27

Friends home 53 39 69 61

Restaurants 21 23 23 16

Other 0 2 0 1

Neighborhood 
shops 39 24 28 34

Supermarkets 47 40 61 50

Friends 27 22 25 33

Liquor stores 53 52 49 46

Other 2 4 3 3

Yes 39 40 42 39

No 61 60 68 61

If consumed, 
when was the last 

time you 
consumed 
alcohol?

Would you be 
willing to try a 
new blend of 

alcoholic 
cocktail?

What are the 
places where you 

drink alcohol 
more often?

Indicate where 
do you get 
alcoholic 

beverages more 
frequently

Do you want to 
be contacted for a 
future consumer 

test?

35-39 years old

40-44 years old

45 years old and older

Indicate if you or 
your house has 
the following 

options:

Indicate what 
type of floor has 

at home

Do you drink 
alcoholic 

beverages?

CBC1 (n=250) 
(%)

Male

Female

Under 18 years old

18-24 years old

25-29 years old

30-34 years old

11 SCREENING QUESTIONS
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Appendix C: Utilities Scores for Scenario1 

 

 CVA 

Factor Liquor Type A Liquor Type B Touch of Flavor Solvent 

Average 
Importance 

Values 
35.06 23.68 21.06 20.20 

Level Whisky Rum Beer Tequila Gin Vodka Mentha 
Spicata Grenadine Energy 

Drink 
Lemon 
Juice 

Lemon 
Flavored 

Soda 
Tonic 
Water 

Average 
Utilities 5.79 7.06 -12.85 3.38 2.76 -6.15 0.79 -0.36 -0.43 6.72 1.40 -8.13 

 CBC 

Factor Liquor Type A Touch of Flavor Liquor Type B Solvent 

Average 
Importance 

Values 
32.20 27.68 22.81 17.30 

Level Rum Whisky Beer Mentha 
Spicata Grenadine Energy 

Drink Tequila Gin Vodka Lemon 
Juice 

Lemon 
Flavored 

Soda 
Tonic 
Water 

Average 
Utilities 10.39 3.49 -13.88 24.17 -2.58 -21.60 4.10 2.53 -6.63 17.60 -0.38 -17.21 
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Appendix D: Utility Scores for Significant Interactions 

Interaction Utilities 

Interaction Term  Level Interaction  Average 
Utilities 

Liquor Type A * 
Liquor Type B 

Whisky x Tequila -11.50 
Whisky x Vodka 0.92 

Whisky x Gin 10.58 
Rum x Tequila -20.16 
Rum x Vodka 16.41 

Rum x Gin 3.75 
Beer x Tequila 31.67 
Beer x Vodka -17.34 

Beer x Gin -14.33 

Liquor Type B * 
Solvent 

Tequila x Tonic Water -17.00 
Tequila x Lemon Juice 18.25 

Tequila x Lemon Flavored Soda -1.25 
Vodka x Tonic Water 10.73 
Vodka x Lemon Juice -6.44 

Vodka x Lemon Flavored Soda -4.29 
Gin x Tonic Water 6.27 
Gin x Lemon Juice -11.81 

Gin x Lemon Flavored Soda 5.55 

Solvent * Touch of 
Flavor 

Tonic Water x Grenadine 7.47 
Tonic Water x Energizer -13.00 

Tonic Water x Mentha Spicata 5.53 
Lemon Juice x Grenadine 10.89 
Lemon Juice x Energizer -0.31 

Lemon Juice x Mentha Spicata -10.58 
Lemon Flavored Soda x Grenadine -18.36 
Lemon Flavored Soda x Energizer 13.31 

Lemon Flavored Soda x Mentha Spicata 5.05 

 


