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Preface 

My PhD three years course in Pharmaceutical Sciences at the Department 

of Pharmacy of Salerno University was started in 2012 under the supervision 

of Prof. Ines Bruno.  

My research project was mainly focused on the design and synthesis of 

small molecules as new modulators of emerging targets involved in 

inflammatory and cancer processes. Specifically, my research activity was 

addressed to the investigation of three major targets:  

·  the epigenetic family of readers, Bromodomain (BRD) 

containing proteins; 

·  the membrane enzyme, microsomal Prostaglandin E2 synthase-

1 (mPGES-1); 

·  the molecular chaperone, Heat shock protein 90 (Hsp90).  

The entire work was carried out under the direct supervision of Prof. Ines 

Bruno and Dr. Stefania Terracciano. 

Computational guided design of compounds was performed in 

collaboration with Prof. Giuseppe Bifulco�s research group. 

Biological screenings were performed in collaboration with Dr. Panagis 

Filippakopoulos of the Structural Genomics Consortium (Oxford) in the case 

of BRDs, with Prof. Oliver Werz of Friedrich Schiller University (Germany) 

in the case of mPGES-1, and with Prof. Antonietta Leone and Fabrizio Dal 

Piaz of Salerno University in the case of Hsp90. 

Furthermore, to improve my knowledge on mPGES-1, in 2013 I joined 

Prof. Hans Hebert�s research group at the Department of Biosciences and 

Nutrition of Karolinska Institutet (Sweden), where I spent seven months. 

During that period, my research was carried out under the supervision of Dr. 

Caroline Jegerschöld and was addressed to the heterologous expression and 

two-dimensional crystallization of human mPGES-1. 



Preface 

 

 

 

 

List of publications related to the scientific activity performed during the 

three years PhD course in Pharmaceutical Sciences 

 

Papers: 

 

Ø Lauro G., Strocchia M., Terracciano S., Bruno I., Fischer K., Pergola 

C., Werz O., Riccio R., Bifulco G. �Exploration of the 

dihydropyrimidine scaffold for the development of new potential anti-

inflammatory agents blocking prostaglandin E2 synthase-1 enzyme 

(mPGES-1)�. Eur J Med Chem 2014, 80, 407-415. 

 

Ø Terracciano S.,  Lauro G., Strocchia M., Fischer K., Werz O., Riccio 

R., Bruno I., Bifulco G. �Structural insights for the optimization of 

dihydropyrimidin-2(1H)-one based mPGES-1 inhibitors�. ACS Med 

Chem Lett 2015, 6, 187�191.  

 

Ø Strocchia M.,� Terracciano S.,� Chini M. G., Vassallo A., Vaccaro M. 

C., Dal Piaz F., Leone A., Riccio R., Bruno I., Bifulco G. �Targeting 

the Hsp90 C-terminal domain by the chemically accessible 

dihydropyrimidinone scaffold�. Chem Commun 2015, Article in press, 

DOI: 10.1039/C4CC10074C. 

 

Ø Picaud S.,� Strocchia M.,� Terracciano S., Lauro G., Mendez J., 

Daniels D.L., Riccio R., Bifulco G., Bruno I., Filippakopoulos P. �The 

9H-purine scaffold reveals induced-fit pocket plasticity of the BRD9 

bromodomain�. J Med Chem. Accepted. 

 

� These authors contributed equally to this work. 

 



Preface 

 

 

Conference proceedings: 

 

Ø Terracciano S., Strocchia M., Chini M. G., Bruno I., Dal Piaz F., 

Bifulco G., Riccio R. �Structure-based approach for the discovery of 

potent inhibitors of the Hsp90 molecular chaperone bearing the triazole 

scaffold�. XXXIV National Meeting of Italian Chemical Society, 

Organic Chemistry Division, Pavia (Italy), September 10-14, 2012. 

 

Ø Strocchia M., Terracciano S., Riccio R., Bruno I., Jegerschöld C. 

�Human microsomal prostaglandin E2 synthase-1 (mPGES-1) 

overexpression in LEMO21(DE3) E. Coli strain�. Giornate di Facoltà 

di Farmacia e Medicina, Salerno (Italy), May 22-23, 2014. 

 

Ø Terracciano S., Strocchia M., Chini M. G., Vassallo A., Vaccaro M. 

C., Dal Piaz F., Leone A., Riccio R., Bifulco G., Bruno I. �3,4-

dihydropyrimidin-2(1H)-one as a useful scaffold for Hsp90 C-terminal 

inhibition�. XXV National Meeting of Italian Chemical Society, Rende 

(Italy), September 7-12, 2014.  

 

Ø Strocchia M., Terracciano S., Lauro G., Werz O., Riccio R., Bruno I., 

Bifulco G. �Identification of dihydropyrimidine derivatives as new 

mPGES-1 inhibitors�. XXV National Meeting of Italian Chemical 

Society, Rende (Italy), September 7-12, 2014. 

 

Ø Strocchia M., Terracciano S., Lauro G., Werz O., Riccio R., Bruno I., 

Bifulco G. �New 3,4-dihydropyrimidin-2(1H)-one derivatives as 

efficient modulators of microsomal prostaglandin E2 synthase-1�. 

Ischia Advanced School of Organic Chemistry, Ischia (Italy), 

September 21-25, 2014. 



Table of Contents 

Table of Contents 

 

Abstract..............................................................................................................I 

           

Introduction.............................................................................................1-34 

 

Chapter 1...........................................................................................................2 

1.1 The role of organic chemistry in drug discovery      3-5 

1.2 The crosstalk between cancer and inflammation      6-9 

1.3 Epigenetic readers of acetylated lysines: bromdomains              9-15 

1.4 Microsomal prostaglandin E2 synthase-1 (mPGES-1)            15-21 

1.5 Heat shock protein 90 (Hsp90)               21-30 

1.6 Workflow of the research project               30-34 

 

Results and Discussion.....................................................................35-104 

 

Chapter 2 Induced-fit pocket plasticity of the BRD9 bromodomain upon 

binding to 9H-purine inhibitors��������������................36 

2.1 Background                  37-38 

2.2 9H-purines: new modulators of human bromodomains             39-51 

2.3 Induced fit binding of 9H-purines to BRD9               52-56 

2.4 In cell validation of 9H-purines               56-58 

 

Chapter 3 Dihydropyrimidin-2(1H)-one: a new template for the modulation 

of microsomal Prostaglandin E2 Synthase-1 (mPGES-1).�.......................�59 

3.1 Targeting mPGES-1: rationale from high-resolution X-ray crystal 

structures                            60-61 

3.2 DHPMs designed from MGST-1structure                   61-64 



Table of Contents 

 

3.3 Investigation of DHPM-based compounds as mPGES-1 modulators: 

rationale from X-ray crystal structure                         65-72 

3.4 Structural optimization of compound 48, the promising DHPM-based 

mPGES-1 inhibitor                 72-78 

 

Chapter 4 Discovery of new Hsp90 C-terminal modulators: synthesis and 

biological evaluation of 3,4-dihydropyrimidin-2(1H)-one 

derivatives��������������������������.79 

4.1 Stressing the discovery of Hsp90 C-terminal inhibitors             80-82 

4.2 Targeting Hsp90 C-terminal domain by DHPM-based derivatives     82-86 

4.3 Antiproliferative assays, western blot analysis and effect on cell cycle 

progression                  86-88 

4.4 Study of Hsp90!/54 interaction               89-92 

 

Chapter 5 His-tagged human  mPGES-1 overexpression in Lemo21(DE3) E. 

coli strain and 2D-crystallization studies.�........................................�........93 

5.1 Membrane protein overexpression in E. coli              94-97 

5.2 Lemo21(DE3) E. coli strain                97-98 

5.3 mPGES-1 overexpression in Lemo21(DE3) strain            98-104 

 

Conclusions.........................................................................................105-107 

 

Experimental Section......................................................................108-170 

 

Chapter 6 Synthesis of purine derivatives as new modulators of human 

bromodomains: Experimental procedures�..������������109 

6.1 General synthetic methods        110 

6.2 Methods and materials            111-128 



Table of Contents 

6.2.1 General procedure for the Suzuki-Miyaura cross-coupling of 

free halo-purines             111-122 

6.2.2 General procedure for TBAF-assisted N9-alkylation of purine 

rings               122-125 

6.2.3 General    procedure     for  the    synthesis    of    2-hydroxy-6-

arylpurines              125-127 

6.2.4 THP-protection of 2-amino-6-bromo-9H-purine            127-128 

6.2.5 Attempt of C-8 electrophilic fluorination reaction on the 

bis(THP)-purine 13a             127-128 

 

Chapter 7 Synthesis of DHPM-based inhibitors of mPGES-1 and Hsp90: 

Experimental procedures �������������������130 

7.1 General synthetic methods            131-132 

7.2 Methods and materials            132-165 

7.2.1 General  procedure  for  microwave-assisted   Biginelli  

reaction               132-158 

7.2.2 General procedure for microwave-assisted Liebeskind-Srogl 

cross coupling reaction            158-163 

7.2.3 General procedure for reductive amination         163-165 

 

Chapter 8 His-tagged human mPGES-1 overexpression in Lemo21(DE3) E. 

coli strain and 2D-crystallization studies: Experimental 

procedures������...�������������������166 

8.1 Bacterial Overexpression of Human mPGES-1     167 

8.2 Preparation and solubilization of whole cell extract         167-168 

8.3 Purification of Human His6-mPGES-1          168-169 

8.4 Gel Electrophoresis and Western Blotting      169 

8.5 Electron Crystallography            169-170 

 



Table of Contents 

 

References..........................................................................................171-213 

          

List of abbreviations........................................................................214-218 

 

 

 

 

 



Abstract 

 

I 

 

Abstract 

Inflammation and cancer are two complex pathological processes, 

involving a variety of molecular actors. The deeply connection and crosstalk 

between cancer and inflammation is well-known and the modulation of these 

processes is one of the main goals of modern medicinal chemistry. The 

identification of new molecular entities able to interfere with biological targets 

placed at the crossroads of these two pathways is strongly needed, both for the 

development of new promising drug candidates and as chemical probes useful 

to further investigate less understood biological aspects. Three main targets, 

involved at different levels in inflammation and cancer, have been thoroughly 

investigated: bromodomain (BRD) containing proteins, microsomal 

Prostaglandin E2 Synthase-1 (mPGES-1) and Heat-shock protein 90 (Hsp90). 

The results obtained can be summarized in the three main sections, reported 

below according to the target of interest:  

a) Discovery of new modulators of human bromodomains by structure-

based and computer-aided combined approaches. BRDs are evolutionary 

conserved modules which act as readers of the histone code, by recognizing 

acetyl-lysine (Kac) residues on histone tails. The contribution of BRD 

containing proteins has recently emerged in a number of diseases, especially in 

cancer processes. With the aim of identifying a new Kac mimetic chemotype, 

a structure-guided approach was undertaken starting from small fragment-like 

9H-purine scaffolds. One of the initial identified fragments (2a), that was 

shown to be a BRD binder, was systematically modified employing organic 

synthesis approaches in order to gather a structure activity relationships profile 

to be exploited in the next structural optimization process. These studies 

allowed to disclose potent nanomolar ligands for BRD9 (compounds 7d and 

11), showing only residual micromolar affinity towards BRD4. Binding of 7d 

and 11 to BRD9 was investigated by crystallography and flexible docking 
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experiments and resulted in an unprecedented rearrangement of residues 

forming the Kac cavity, affecting plasticity of the protein in an induced-fit 

pocket. Finally, the compounds did not exhibit any cytotoxic effect in 

HEK293T cells and displaced the BRD9 bromodomain from chromatin in 

bioluminescence proximity assays without remarkably affecting the 

BRD4/histone complex.  

b) Identification and structural optimization of DHPM-based mPGES-

1 inhibitors. mPGES-1 is a homotrimeric membrane protein involved in the 

arachidonic acid cascade, which acts as downstream synthase in the 

cyclooxygenase (COX) pathway by catalyzing the biosynthesis of 

Prostaglandin (PG) E2 from the PGH2 precursor. Inhibition of mPGES-1 can 

represent a valid therapeutic approach to interfere with inflammation-induced 

PGE2 formation without affecting the constitutively formed prostanoids. In 

order to find a new molecular platform for mPGES-1 modulation, a structure-

based design approach was carried out on a focused collection of 3,4-

dyhidropyrimidin-2(1H)-one (DHPM)-based molecules, docked in the first 

high resolution X-ray crystal structure of the enzyme in its active form (PDB 

code: 4AL0). The key interactions with the receptor counterpart were 

introduced as a qualitative filter for the selection of the most promising 

compounds to be synthesized. Biological results were consistent with the 

computational suggestions and disclosed two molecules (48 and 49) showing a 

promising in vitro mPGES-1 inhibitory activity. The most recently crystallized 

structure of mPGES-1 with the inhibitor LVJ (PDB code: 4BPM) was used to 

optimise compound 48 (IC50 = 4.16 ± 0.47 �M) to give compound 53, a 10-

fold more potent mPGES-1 inhibitor (IC50 = 0.41 ± 0.02 �M). 

In order to deeply investigate this complex enzyme, a heterologous 

expression of human His6-tagged mPGES-1 and two-dimensional 

crystallographic studies were also carried out. 
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c) The DHPM core as new chemotype for Hsp90 C-terminal 

modulation. Hsp90 is a molecular chaperone highly involved in the 

development, survival and proliferation of cancer cells. Traditional inhibitors 

of Hsp90 target its N-terminal domain. Nevertheless, this type of modulation 

produces scheduling and toxicity issues connected to the induction of the 

deleterious heat shock response. Although less explored, C-terminal inhibition 

of Hsp90 represents a very promising approach for developing new potential 

anti-cancer drugs as it is devoid of the negative effects triggered by the heat 

shock response. In an attempt to identify non-natural inspired modulators of 

Hsp90 C-terminus, a collection of DHPM derivatives was synthesized. The 

rationale for targeting Hsp90 C-terminal domain by DHPMs derives from the 

structural analogy between the DHPM core and uridine triphosphate (UTP), a 

nucleotide shown to selectively interact with the chaperone C-terminal site, 

but not with its N-terminus. Biological evaluation revealed that the privileged 

DHPM core can be considered as a new template for the modulation of Hsp90 

chaperoning function, through the binding to its C-terminal region. In 

particular, compound 54 was identified as a novel promising antiproliferative 

agent against Hsp90 C-terminus. 
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1.1 The role of organic chemistry in drug discovery 

The drug discovery process requires interdisciplinary approaches involving 

a multitude of scientific areas, e.g., biology, medicinal and synthetic organic 

chemistry, statistics, pharmacology, medicine, toxicology, structural biology, 

chembioinformatics, computational chemistry, genomics and proteomics.1 

These disciplines work synergistically along the hard and complex journey 

toward the identification of a new drug.2 Indeed, the drug discovery and 

development process is one of the most challenging human endeavors, as the 

optimal balance between efficacy and safety of a drug must be ensured.3, 4 

Moreover, the development of a new drug is a long, difficult, expansive and 

highly risky process, as the market access environment is very restrictive. 

Research and development for most of the available medicines has required 

12�24 years for a single new medicine, from the beginning of the project to 

the launch of the drug.5 

The process of drug discovery starts with the identification of a molecular 

target, whose modulation is expected to have positive therapeutic effect.6, 7 

The selection of an appropriate target is a relevant issue: ideally, the biological 

target should be fully validated and its modulation should provide an 

unambiguous therapeutic response, with no susceptibility to the induction of 

resistance mechanisms.8 Appropriate assays, designed for the selected 

biological target are then needed to identify putative modulators.9 At this 

stage, the drug discovery process is focused on small organic molecules, as 

they are the main class of marketed drugs.10 Organic synthetic chemistry acts 

as the main player at this step, as its role is to identify and structurally 

optimize new active compounds both in potency and in their pharmacokinetic 

profile.11, 12 Actually, organic synthesis should be able to provide a more or 

less complex compound with high selectivity and efficiency.13 Many are the 

aims that organic chemistry is expected to achieve in the drug discovery 

process. Such examples include: to develop novel structural motifs with 
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improved pharmacological properties, to identify new synthetic methods and 

strategies, to expand applications of organic synthesis into the field of biology, 

to apply the information derived from structural biology studies on the 

selected target in order to synthesize molecules that can appropriately fit the 

receptor, to chemically modify an emerged lead structure in order to draw a 

structure�activity relationships (SARs) profile useful for its rapid 

optimization.14-18 Today, synthetic organic chemistry can rely on a wide range 

of tools for overcoming the several hurdles in the drug discovery process. 

These new tools include advances in synthetic, analytical and purification 

methods such as transition-metal-catalysed carbon�carbon couplings,19 

multicomponent and domino reactions,20 microwave-assisted and flow 

chemistry,21, 22 high-field NMR23 and preparative high-performance liquid 

chromatography (HPLC),24 as well as computer-assisted approaches,25 

combinatorial chemistry26 and high-throughput screening (HTS).27 

An active compound, referred as a �hit� in the drug discovery process, may 

arise in many ways. It may be found in large or more focused compounds 

libraries, which have demonstrated prior reliability in drug discovery 

programs. If inhibitors or ligands of a given target are known, potential new 

binders may be selected on the basis of structural similarities through a 

�ligand-based design� approach.28 Alternatively, when the crystal structure of 

the target has been elucidated, structural complementarity to the binding site 

can be evaluated through �structure-based design� approaches.29 In this case, 

virtual screening studies can be also carried out, in order to select promising 

compounds belonging to a commercially available database.30 The resulting 

hits generally have modest activity, typically at micromolar concentrations, 

while the marketed drugs are commonly active at low nanomolar range.31 

Development of the hit to a potent compound is the process of �lead� 

optimization.32 At this step, organic synthetic chemistry plays again a crucial 

role, as much synthetic effort is required to generate a large collection of 
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structurally related derivatives.33 In the course of this process, other problems 

related to drug pharmacokinetic profile must be taken into due account.34 

Indeed, organic and medicinal chemistry should also work synergistically 

to overcome pharmacokinetic liabilities of test compounds. To this end, the 

prediction of �drug-like� properties has to be accomplished.32 Highly 

lipophilic compounds with high molecular weight are generally more potent in 

vitro, but they tend to be usually not drug-like because of their poor 

pharmacokinetics and oral bioavailability. As a predictor of drug-likeness, 

Lipinski et al.
35 formulated the �rule of five� which consists of four important 

properties, each related to the number 5 (molecular mass <500 Da; calculated 

LogP <5; hydrogen-bond donors <5; and hydrogen-bond acceptors <10). 

However, this rule tries to predict oral bioavailability in a very basic manner, 

but drug discovery implies a very careful determination of the ADMET 

(absorption, distribution, metabolism, elimination, and toxicology) parameters 

of a drug, which implies more than Lipinski�s �rule of five�.
36 An example is 

represented by antibiotics, cytostatic and many other drugs which suffer from 

the so-called �molecular obesity�,
31 as they have higher molecular mass than 

the border of 500 Da, but possess elevated efficiency and bioavailability. 

Actually, the aim of lead optimization phase is to maintain favourable 

properties in lead compound, while improving any deficiencies in its structure. 

This represents a very complex issue and indeed, all the information gathered 

about the molecule at this stage will allow for the optimization of a target 

candidate profile which, together with toxicological and other control assays, 

will lay the basis first for preclinical candidate selection and finally for 

entering clinical trials.37-39 

In the present PhD project, thanks to combined approaches of organic 

synthesis, computational chemistry and structural studies, new chemical 

entities with antiinflammatory or antitumor effects have been successfully 

identified. 
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1.2 The crosstalk between cancer and inflammation 

It is beyond the scope of this thesis to discuss the complex mechanisms of 

cancer and inflammation, but the close relationship between these two 

pathological processes deserves some considerations. Although the involved 

pathways and the correlations between them have not been fully understood 

yet, the crosstalk between cancer cells and inflammatory mediators has been 

known for a long time.40 

The first example of inflammatory processes related to cancer development 

in tissues was reported in the nineteenth century by the German physician 

Rudolf Virchow, who described leukocyte infiltrates within tumours.41 These 

leukocyte infiltrates were at first related to the immune surveillance and 

antitumor immune response, but it is now understood that they can act both as 

tumour-suppressors and as tumour-promoters.42-45  

Cancers are composed of multiple cell types such as fibroblasts and 

epithelial cells, innate and adaptive immune cells, blood and lymphatic cells, 

as well as specialized cell types unique to each tissue.46, 47 Inflammation is a 

key component of the cancer microenvironment, also in tumours which are not 

related to an obvious inflammatory cause. Relevant aspects of cancer-related 

inflammation include the infiltration of white blood cells (mainly tumour-

associated macrophages), the presence of inflammatory mediators (cytokines 

and chemokines) and the occurrence of tissue remodelling and angiogenesis.48 

Both the intrinsic and the extrinsic inflammatory pathways have been 

related to cancer.44, 49, 50 The intrinsic one is activated by genetic events, 

mainly activation of oncogenes, resulting in the transformation of cells which 

trigger the expression of inflammation-related programs contributing to 

produce an inflammatory environment.51, 52 In the extrinsic pathway, chronic 

inflammatory conditions or infections increase the risk of developing cancer 

(e.g, prostatitis for prostate cancer, papillomavirus for cervical carcinoma).53-55 

The two pathways converge in the activation of transcription factors, mainly 
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NF-�B and STAT3 which have emerged as key mediators in cancer 

development and progression.56, 57 

In this context, it is not surprising that the traditional six hallmarks of 

cancer (self-sufficiency in proliferative signals, insensitivity to anti-growth 

signals, tissue evasion and metastasis, limitless replicative potential, sustained 

angiogenesis, resistance to cell death)58 have been joined by four additional 

emerging hallmarks (avoidance of immune destruction, induction of tumour-

promoting inflammation, genome instability and mutation, and deregulation of 

cellular metabolism)59 which are all directly or indirectly related to the 

inflammatory process (Figure 1.1). 

 
Figure 1.1 The ten hallmarks of cancer (adapted from ref. 59). 

Both premalignant and malignant tissues have been found in an 

inflammatory state driven by cells of the immune system which ultimately 

disclose the tumour-promoting effect of the inflammatory response (Figure 

1.2). Furthermore, inflammatory mediators contribute to genomic instability 

and to the occurrence of mutations associated with tumours, as many of them 

act as direct mutagens or as deregulators of DNA repair mechanisms and cell 
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cycle checkpoints, resulting in the acquired ability of cancer cells to 

proliferate, invade and escape from host defence, in particular from T and B 

lymphocytes, macrophages, and natural killer cells.60-63 

 

Figure 1.2 Role of inflammation in cancer development.
63

 

Whereas chronic innate immune inflammation in premalignant cells might 

promote cancer development, adaptive immune response to the tumour might 

result in abolition of the malignancy, a mechanism known as cancer 

immunosurveillance (Figure 1.2).64, 65 Adaptive immune cells can directly 

modulate cancer by inhibiting tumour growth through T-cell activity and 

cytokine-mediated lysis of malignant cells.66 

These considerations highlight the dual opposite function of inflammatory 

reactions, which can result both in antitumour and in tumour-promoting 

effects.67, 68 Anyway, many evidences have been gathered supporting the 

improved therapeutic efficacy that can be achieved by blocking the two 

signalling networks and their pathways.69-73 In this respect, targeting 

inflammatory and neoplastic pathways can be accomplished at different levels 
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through, the modulation of specific proteins involved in key steps of these 

processes.  

In the context of my PhD, three biological targets involved both in 

inflammation and cancer have been investigated: Bromdomain (BRD) 

containing proteins, microsomal Prostaglandin E2 synthase-1 (mPGES-1) and 

the chaperone Heat Shock Protein 90 (Hsp90). Although each of them is 

known for its major implication in inflammation (in the case of mPGES-1) or 

in tumour (in the case of BRDs and Hsp90), several evidences suggest their 

involvement in both processes, standing for an additional evidence of the 

crosstalk between cancer and inflammation. 

 

1.3 Epigenetic readers of acetylated lysines: bromdomains 

The array of post-translational modifications (PTMs) introduced on histone 

tails gives rise to the so-called �histone code�,
74 a cellular language generated 

by proteins which introduce (writers) or remove (erasers) PTMs.75-77 

Furthermore, this complex code involves also some evolutionarily conserved 

domains, found in structurally heterogeneous proteins, which act as readers of 

PTMs by recognizing covalent marks on histones.78-81 

The combination of PTMs (acetylation, methylation, phosphorylation, 

ribosylation, biotinylation, citruillination, crotonylation and SUMOylation82-84 

modulates chromatin plasticity and its functionality.85-89 For instance,  -N-

acetylation of lysine residues (Kac) is associated with neutralization of the 

positive charge of histone tails, resulting in an open chromatin structure 

(euchromatin) and transcriptional activation.90-94 Although lysine acetylation 

has been connected for a long time only to the histone code, this widespread 

PTM occurs throughout the entire proteome,95-99 and alterations in its levels 

have been associated to a large number of diseases, especially cancer.98, 100-103 

In the context of epigenetics, the acetyl group is deposited on lysine residues 

by histone acetyl-transferases (HATs),104 removed by histone deacetylases 
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(HDACs)105 and recognized by conserved protein modules such as 

bromodomains,106 as well as the more recently discovered YEATS domains.107  

There are 61 bromodomains (BRDs) that have been identified in 46 

different proteins in the human genome,108 which mainly act as transcriptional 

co-regulators and chromatin modifying enzymes, e.g., HATs and HAT 

associated proteins (PCAF, GCN5, BRD9),109-112 helicases (SMARCA),113 

ATP-dependent chromatin-remodelling complexes (BAZ1B),114 SET domain 

containing methyl-transferases (MLL and ASH1L),115, 116 transcriptional co-

activators (TAF1, TRIM/TIF1),117, 118 nuclear scaffolding proteins (polybromo 

PB1)119 and transcriptional regulators (BET family).120, 121 All BRDs share an 

architecturally conserved tertiary structure with an �atypical left-handed four-

helix bundle� (!Z, !A, !B, !C) linked by two main loop regions (ZA and BC 

loops) (Figure 1.3A), a structural motif identified in the early 90s in the 

Drosophila melanogaster brahma gene.122 Despite the conserved BRD fold, 

the overall sequence similarity of the BRD family members is not high, as 

considerable variations have been found especially in ZA and BC loops.123 

Nevertheless, the amino acids engaged in Kac recognition are among the most 

conserved in the hydrophobic Kac binding pocket and correspond to highly 

conserved asparagine and tyrosine residues (in BRD4(1): Asn140 and 

Tyr97).108 A peculiar feature of this module is also the presence of a network 

of water molecules, which form hydrogen bonds with carbonyl groups of the 

protein backbone at the base of the domain and are relatively conserved in 

most BRDs (Figure 1.3B).124-127 A large scale structure-based analysis of the 

human BRD family, using 34 high resolution crystal structures and 4 NMR 

models, as well as secondary structure prediction algorithms, grouped the 61 

BRD modules into 8 distinct sub-families (Figure 1.3C).108 The BET 

subfamily of BRDs (group II) has attracted particular attention, as its members 

(BRD2, BRD3, BRD4 and BRDT) play a central role in cell cycle progression, 

cellular proliferation and apoptosis.128 
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Figure 1.3 Structure and classification of the bromodomain family.(A) The atypical left-

handed four-helix bundle structural motif in BRD4(1). Highlighted is the interaction with the 

conserved asparagine residue. (B) Molecular surface of the bromodomain of BRD4(1) 

showing conservation of Kac binding site. Green represents more conserved regions, and 

white less conserved ones, as obtained from a multiple sequence alignment of all human 

BRDs. Conserved water molecules at the bottom of the Kac binding pockets are shown as 

ball-and-stick models.(C) Phylogenetic tree of human BRDs. 

BETs contain two N-terminal BRD modules that interact with acetylated 

histones,120 transcription factors129, 130 or other acetylated transcriptional 

regulators,131, 132 an extra terminal (ET) recruitment domain133 and a C-

terminal motif responsible for the recruitment of the positive transcription 

elongation factor B (P-TEFb),121 in the case of BRD4 and BRDT.134 BET 
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BRDs have been successfully targeted by small molecule inhibitors, such as 

the triazolothienodiazepine (+)-JQ1134 (Figure 1.4A) and the 

triazolobenzodiazepine IBET762135 (Figure 1.4A) which were identified 

employing phenotypic screening 136 and have consolidated the emerging role 

of BRDs as viable therapeutic targets.137, 138 The discovery of these two 

compounds prompted in the last years a number of medicinal chemistry 

efforts, which resulted in a growing number of novel and structural diverse 

Kac mimetics targeting bromodomains, exhibiting excellent potency and 

selectivity, especially against the BETs (Figure 1.4A).139 More recently, a 

number of kinase inhibitors have also been identified as interacting with the 

Kac binding pocket of some bromodomains (Figure 1.4B).140, 141 Potent and 

selective molecules against non-BET proteins have also emerged, mainly 

targeting the bromodomain of CREBBP.142, 143 Finally, it was also possible to 

modulate more challenging BRDs such as BRPF1,144 ATAD2145, 146 and 

BAZ2B147 (Figure 1.4C), even though they had emerged as difficult to target 

from a druggability analysis carried out on all BRDs.148 In this context, 

fragment-based programs proved to be very reliable approaches to identify 

fragments interacting with these less druggable BRDs.145-147, 149-154 

Potent and selective small molecules that inhibit the Kac�BRD interaction 

have been employed as chemical probes in elucidating the biology of several 

families of bromodomain-containing proteins, by shedding more light also on 

their role in pathological conditions. For instance, BET inhibition suppresses 

tumour growth in diverse mouse models of cancer, e.g., NUT midline 

carcinoma, acute myeloid and mixed lineage leukemia, multiple myeloma, 

glioblastoma, melanoma, Burkitt�s lymphoma, neuroblastoma and prostate 

cancer, leading to a number of clinical trials seeking to modulate BET function 

in diverse tumour settings.138 
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Figure 1.4 Bromodomain Inhibitors. (A) Representative BET inhibitors.
134, 135, 155-159

(B) 

Some dual kinase-BRD inhibitors.
140

 (C) Non-BET inhibitors.
142, 144, 146, 147, 160, 161 
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The first study to demonstrate the efficacy of a bromodomain inhibitor in a 

preclinical cancer model was carried out by Filippakopoulos et al.
134 with the 

aim of evaluating the effect of (+)-JQ1 on mice bearing a NUT midline 

carcinoma (NMC) xenograft, a rare but aggressive form of cancer determined 

by the BRD4-NUT oncoprotein.162 Treatment with (+)-JQ1 induced a 

reduction of tumour volume and promoted survival with minimal toxicity 

against normal tissues.134 This outcome paved the way for some BET 

inhibitors to enter clinical trials in a range of malignancies, including NUT 

midline carcinoma (ClinicalTrials.gov identifiers: NCT01587703, 

NCT01987362), progressive lymphoma (ClinicalTrials.gov identifier: 

NCT01949883), solid tumours (ClinicalTrials.gov identifier: NCT02259114), 

glioblastoma (ClinicalTrials.gov identifier: NCT02296476), acute leukemia 

and other hematological malignancies (ClinicalTrials.gov identifiers: 

NCT01943851, NCT01713582). 

The role of BETs in cancer is more than obvious, but these transcriptional 

factors have a relevant function also in inflammatory conditions, as emerged 

especially in the case of BRD4.163-169 The pan-BET inhibitor I-BET762 was 

shown to suppress inflammation by strongly attenuating the expression of 

LPS-induced pro-inflammatory genes during late macrophage activation.135 

BET proteins have also emerged as an essential connection between chromatin 

signalling and IL-17-producing T helper cells differentiation and activation, 

which suggests their potential therapeutic role in autoimmune conditions.170 A 

very recent study has demonstrated the ability of (+)-JQ1 to interfere with the 

interaction between BRD4 and the transcription factor NF-�B.171 As described 

in the previous paragraph, NF-�B is the central mediator involved in the 

crosstalk between cancer and inflammation: its master function in modulating 

the immune response is regulated by the acetylation of Lys130 on its RelA 

subunit, which triggers transcriptional activation of NF-�B target genes and 

contributes to maintain its persistently active form in tumors.172, 173 This event 
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can be suppressed through depletion or inhibition of BRD4, as this BET 

member has been shown to bind to acetylated Lys310 of RelA and to regulate 

the transcriptional activity of NF-�B. As a consequence of Brd4 deletion or 

inhibition upon treatment with (+)-JQ1, NF-�B activation mediated by TNF-! 

is suppressed, as well as the expression of NF-�B-dependent target genes.171 

Another BRD4 inhibitor, I-BET151, also exhibited anti-inflammatory 

properties, as it was shown to selectively regulate IL-6 production.174 In a 

chronic model of inflammation involving IL-6 (autoimmune 

encephalomyelitis used as a model of multiple sclerosis), treatment with I-

BET151 resulted in a significant delay in the onset of clinical symptoms.174 

Finally, BET bromodomains are involved also in heart failure,175, 176 

adipogenesis177 and in viral transcription of HIV, herpesviruses, Merkel cell 

polyomavirus and murine leukaemia virus, suggesting potential therapeutic 

applications of BRD inhibitors also in these fields.178-184 

 

1.4 Microsomal prostaglandin E2 synthase-1 (mPGES-1) 

Prostaglandin E2 synthases (mPGES-1, mPGES-2 and cPGES) are 

downstream enzymes that specifically catalyze the biosynthesis of the crucial 

inflammatory mediator PGE2 from PGH2.
185 

PGE2 and all other eicosanoids are biologically active mediators, produced 

from the oxidation of long-chain 20 carbon atoms polyunsaturated fatty acids 

and obtained, either via the cyclooxygenases (COX-1 and COX-2) pathway, or 

via the lipoxygenase (LO) one.186-191 The COXs pathway generates 

prostanoids, which include prostaglandins (PGs), prostacyclin and 

thromboxane (TXA), while the LO pathway results in the biosynthesis of 

leukotrienes (LTs).187 These inflammatory mediators are synthetized by most 

mammalian cells and tissues and their effect is mediated by the interaction 

with individual receptors, mainly G-protein coupled receptors (GPCR).192, 193 

The biosynthesis of eicosanoids is initiated by release of arachidonic acid 
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(AA) from cell membrane by phospholipase A2 (PLA2),
. in response to any 

inflammatory stimulus inducing an increase of intracellular Ca2+ levels.194, 195 

In the case of prostanoids (Figure 1.5A), AA is converted to PGH2 by COX-

1/2, in a process that requires two successive steps: firstly, AA is oxidized to 

generate endoperoxide PGG2 in the cyclooxygenase site of the COXs, and this 

AA-derived mediator is then reduced at the peroxidase site of COXs into 

PGH2.
196 PGH2 is very unstable197 and is rapidly converted to PGD2, PGE2, 

PGF2�, PGI2 (prostacyclin) and TXA2 (thromboxane), depending on the 

expression of specific terminal enzymes of the biosynthetic pathway.198, 199 

Among the three PGE2 synthases, cPGES and mPGES-2 are constitutively 

expressed, whereas mPGES-1 is an inducible isoform200, 201 specifically 

coupled with COX-2.202, 203 Low but constitutive expression of mPGES-1 is 

ubiquitous, but its level is up-regulated in response to various inflammatory 

stimuli and mediators, for example, cytokines (LPS, IL-1b and TNF-�).204-207 

Identification of mPGES-1 was reported in 1999 by Jackobsson et al.,208 who 

recognized it as a member of the Membrane-Associated Proteins in Eicosanoid 

and Glutathione Metabolism (MAPEG) family,209  which includes five 

additional proteins (MGST1, MGST2, MGST3, FLAP, LTC4S).210, 211 

The first high resolution X-ray crystal structure of mPGES-1 in the active 

conformation was described by Sjögren et al.
212 in 2013, who revealed that the 

protein is a membrane homotrimer with three active sites partially occupied by 

the cofactor (glutathione, GSH). The asymmetric monomer is characterized by 

four-helix, and each active site is oriented toward the cytoplasmic part of the 

protein, in particular between N-terminal parts of helix II and IV of a 

monomer and the C-terminal part of helix I and the cytoplasmic domain of the 

adjacent monomer (Figure 1.5B). This protein folding generates a pronounced 

deep active site occupied by GSH, and in the outer part, an extended groove 

between helix I of a monomer and helix IV of the adjacent monomer is 

observable (Figure 1.5C). Sjögren et al.
212

 also proposed a mechanism for 
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PGH2 isomerization to PGE2 mediated by the GSH cofactor (Figure 1.5A). 

According to this suggested mechanism, Ser127 activates the thiol function of 

GSH to form a thiolate anion that exerts a nucleophilic attack on the 

endoperoxide oxygen atom of PGH2, producing an unstable intermediate. 

Subsequently, Asp49 mediates the abstraction of the proton at C-9 followed by 

the cleavage of S-O bond, which results in the regeneration of GSH and in the 

formation of PGE2.  

 

 

Figure 1.5 Biosynthetic pathway of PGE2 and structure of mPGES-1. (A) PGE2 

biosynthesis and proposed mechanism of PGH2 isomerisation by mPGES-1, as reported by 

Sjörgen et al.
212

 (B) Overall structure of mPGES-1. (C) Interaction of mPGES-1 with the 

cofactor (GSH). 
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Figure 1.6 Some optimised scaffolds for mPGES-1 inhibition: (A) indole;
213

 (B) 

phenanthrene imidazole;
214, 215

 (C)biaryl imidazole;
216

 (D) pirinixic acid;
217-219

 (E) 

trisubstituted urea;
220

 (F) oxicam;
221

 (G) imidazoquinoline;
222

 (H) arylpyrrolizine;
223

 (I) 1,2,3-

triazole;
224, 225

 (J) 1,2,4-triazine;
226

 (K) 1,2,4-triazole;
226

 (L) benzoxazole.
227

 HWB: human 

whole blood, ND: not determined. 
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Traditional treatment of inflammation is based on the use of NSAIDs, 

which inhibit PGs production by blocking both COX-1 and COX-2. However, 

their incapability to discriminate between the two COXs is responsible for 

their gastric side effects,228-230 mainly due to the massive inhibition of PGE2 

synthesis, which is known to have a protective effect on the gastrointestinal 

mucosa. In order to circumvent this undesired effect, selective inhibitors of the 

inducible COX-2 (COXibs) were developed.231 However, they were shown to 

be associated with increased cardiovascular risk in patients after long-term 

treatments due to unbalanced levels of PGI2 and TXA2.
232-234 

In the light of the side effects connected to NSAIDs and COXibs, the 

development of inhibitory strategies, which specifically target the downstream 

PGs synthases, is the current goal of research in the modulation of AA 

inflammatory cascade. In particular, inhibitors of mPGES-1 are expected to 

manifest reduced adverse effects, by better maintaining the gastric mucosa 

integrity compared to traditional NSAIDs and by avoiding increased incidence 

of cardiovascular side effects related to COXibs. Modulation of mPGES-1 

may not be associated with the perturbations in PGI2 and TXA2 metabolism, as 

indicated by Cheng at al.,235 who reported that mPGES-1 deletion does not 

result in hypertension or predisposition to thrombosis in normolipidemic mice, 

differently from deletion, disruption or inhibition of COX-2. 

Inhibition of mPGES-1 offers a wide range of opportunities for therapeutic 

application. The potential use of mPGES-1 inhibitors is not limited to 

inflammatory condition, since mPGES-1 plays a crucial role in various 

phatological conditions such as pain,236, 237 fever,238 rheumatoid arthritis,239, 240 

cardiovascular diseases,241 cancer.242-245 The impact of mPGES-1 in tumours is 

particularly relevant, as it results overexpressed in a number of neoplasias, 

including gastrointestinal cancers (esophageal, gastric, colorectal, liver and 

pancreatic cancer),246-251 brain cancers (glioma and medulloblastoma),252, 253 

breast cancer,254 thyroid cancer255 and several cancers derived from epithelium 
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(head and neck, penis, lungs, larynx, cervix, endometrium and ovary).256-261 

Elevated levels of mPGES-1 correlate with a worse prognosis in late stages of 

colorectal cancer,262 suggesting that this synthase may play a key role in 

cancer progression. Moreover, mPGES-1-derived PGE2, in cooperation with 

vascular endothelial cell growth factor (VEGF), seems to play a critical role in 

the development of inflammatory granulation and angiogenesis.263 Indeed, 

mPGES-1 deficiency has been well documented to be associated with reduced 

induction of VEGF in the granulation tissue.237 

Despite the numerous potential applications in therapy and even though 

many companies and academic groups have worked to develop mPGES-1 

inhibitors (Figure 1.6),264 since the discovery of this MAPEG member in 

1999, no clinical trials have been reported yet. This can be ascribed to the poor 

in cell potency of many identified inhibitors, even though they showed very 

high and selective inhibitory potency on the recombinant human enzyme 

(Figure 1.6).265 An additional problem is sequence dissimilarity of mPGES-1 

isoforms in the diverse species, as first described by Merck scientists.215 For 

example, potent inhibitors against the human enzyme may partially or 

completely lose potency against the rat isoform, mainly due to the variation 

between human and rat mPGES-1 in three individual amino acids located in 

transmembrane helix IV, which play a crucial role as gatekeepers for the 

active site of mPGES-1, regulating the access of an inhibitor in the enzyme. In 

the human enzyme, these residues are rather small (Thr131, Leu135 and Ala-

138) but in the rat isoform they are bulkier or aromatic (Val131, Phe135 and 

Phe138), and thereby prevent the access to inhibitors for steric hindrance 

reasons.266 Similar bulky/aromatic residues are found also in mouse ortholog, 

but not in the guinea pig enzyme, suggesting the use of this specie as an 

animal model in pre-clinical studies.215 

Although better results in terms of cellular activity have been obtained for 

some of the optimised templates (Figure 1.6) and, despite in few cases in vivo 
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studies displayed promising effects,219, 227 none of these compounds has 

entered clinical trials yet. Despite the challenging problems connected with the 

exploration of the biological target, selective inhibition of mPGES-1 might 

represent a promising approach for the design of effective anti-inflammatory 

drugs lacking the severe side effects related to the classic use of NSAIDs. 

However, whether mPGES-1 inhibitors are less afflicted with side effects and 

can achieve the same therapeutic efficiency of COX inhibition remains to be 

thoroughly investigated.267 In this context, the development of new selective 

mPGES-1 inhibitors is highly desirable in order to fully clarify this issue. 

 

1.5 Heat shock protein 90 (Hsp90) 

The key role of the molecular chaperone family of proteins is to prevent 

protein aggregation, to assist the maturation and folding of proteins and to 

generally maintain protein homeostasis (proteostasis).268-272 According to a 

general definition, a molecular chaperone is any protein that interacts, 

stabilizes and assists a client protein in the acquisition of its functional 

conformation. Heat shock proteins (HSPs) are highly conserved chaperones, 

classified according to their molecular weights (small HSPs (<40 kDa), 

Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) which can be localized in cytosol, 

mitochondria or in endoplasmic reticulum.273 Among them, Hsp90 is of 

particular interest as it is extremely conserved from bacteria to eukaryotes and 

is one of the most abundant proteins in the cell, thus confirming its key role in 

maintaining protein homeostasis.272, 274, 275 Hsp90 represents 1�2% of total 

cytosolic proteins in non-stressed eukaryotic cells, and its level can increase 

up to 4�6% in stressful conditions.276-278 Its expression is up-regulated as a 

consequence to external and cellular stress including infections, heat, drugs, 

fever, oxidative stress, inflammation, hormonal stimulation, and cancer.279-281 

The two major Hsp90 isoforms are found in the cytoplasm and correspond to 

the inducible Hsp90  and the constitutive Hsp90�.282 In addition, two non-
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cytosolic forms are known, namely the Hsp75/tumor necrosis factor receptor 

associated protein 1 (Trap1) and the endoplasmic reticulum resident Hsp90 

isoform, 94 -kDa gluclose-regulated protein (Grp94). The former resides in the 

mitochondrial matrix and is involved in oxidative cell death and in 

maintaining mitochondrial integrity,283 the latter assists the folding of both 

secreted and membrane proteins and plays an eminent role in embryonic 

development, immune response, Ca2+ balance, and cell adhesion.284 Hsp90 

client proteins belong to different families and do not share any apparent 

functional or structural similarities.285, 286 A common feature may be their 

intrinsic instability and the conformational changes required in order to 

achieve their functional state. To date, more than 300 proteins are known 

whose maturation is regulated by Hsp90.287 

Hsp90 offers important therapeutic opportunities. Its inhibition by cytotoxic 

agents induces the degradation of client proteins which are subsequently 

addressed to ubiquitinylation-mediated proteasomal degradation (Figure 

1.7).288-290 Compounds that exhibit such effect have excellent therapeutic 

potential as anticancer drugs, as multiple signalling pathways involved in 

pathologies can be modulated.291, 292 On the other hand, non-toxic compounds 

inducing the expression of chaperone levels showed to reduce the 

accumulation of aggregated proteins, suggesting promising application against 

neuronal disorders (Figure 1.7).293-296 

Hsp90 is overexpressed in many human cancers and plays a relevant role in 

the progression of malignancy, as its level in cancer cells can be increased up 

to 10-fold than in normal cells.297-300 Malignant cells are dependent on its 

chaperoning function, mainly due to the adverse microenvironment (hypoxia, 

low pH and poor nutritional status)300 which results in an altered state of 

cellular proteins, consequently requiring a higher production of Hsp90 for 

repairing degraded proteins280, 301. Hsp90 prevents aggregation and misfolding 
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of overexpressed and mutated client oncoproteins, e.g., ErbB2, Akt, p53, Bcr-

Abl, Her-2, Cdk4, Cdk6, Raf-1, v-Src, MET, telomerase and survivin.302-304  

 

Figure 1.7 Therapeutic opportunities for Hsp90 inhibitors 

Hsp90 represents an exciting therapeutic target for the treatment of cancer 

and its inhibition allows for a combinatorial attack on transformed cells 

through the disruption of various signalling pathways.305, 306 Indeed, disruption 

of the Hsp90 protein folding machinery directly affects all hallmarks of 

cancer, by preventing maturation of proteins directly associated with each 

hallmark (Figure 1.8A).291, 307, 308 No other cellular protein has been ascribed 

to affect all cancer hallmarks, thus making Hsp90 one of the most promising 

targets for anti-tumour therapy at this time.309  

In addition, Hsp90 is an investigated target also for neurodegenerative 

diseases, derived from cell death in the central nervous system such as 

Alzheimer�s, Huntington�s, and Parkinson�s disease.310 The reason for 

neuronal cell death in these pathologies can be ascribed to a variety of factors, 

but an important general aspect is the accumulation of misfolded proteins 

responsible for cytotoxicity. The rationale behind targeting Hsp90 in 

neurological disorders is based on the principle that non-cytotoxic small 

molecule inhibitors of this chaperone can up-regulate the expression of heat 

shock proteins through the induction of the heat shock response mechanism, 

which ultimately leads to solubilisation of protein aggregates and refolding of 

misfolded proteins.311 
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Particularly relevant is also the emerging role of Hsp90 in innate immunity, 

evidencing the deep connection between cellular stress and inflammation.312 

The common player is again the transcription factor NF-�B, as Hsp90 is 

required for I�B kinase (IKK) biogenesis, homeostasis and activation.313-315 

Inhibition of NF-�B pathway is observed upon treatment with the Hsp90 N-

terminal inhibitor geldanamycin, suggesting the potential to prevent cancer 

development during chronic inflammation.316, 317 Moreover, the inhibitor 

SNX-7081 blocked nuclear translocation of NF-�B and strongly inhibited 

cytokines production in animal models of rheumatoid arthritis,318 modulation 

of Hsp90 function by radicicol attenuated intestinal inflammation,319 while 17-

DMAG reduced inflammation in macrophages by suppressing Akt and NF-�B 

pathways320 and also attenuated inflammatory responses in atherosclerosis.321 

The relationship between inflammation and chaperones is revealed also by 

Hsp90 involvement in endotoxin-induced uveitis,322 inflammatory 

myopathies,323
 inflammatory bowel disease,324, 325 gastric inflammation and 

ulcer healing,326, 327colitis,328 liver injury,329 autoimmune encephalomyelitis,330 

and inflammatory microenvironment associated with cancer prostate.331 

Structurally, Hsp90 functions as a dimer, with each monomer consisting of 

an N-terminal ATP-binding domain, a middle domain, and a C-terminal 

dimerisation domain (Figure 1.8B).332 The N-terminal site triggers the 

conformational change of the protein through ATP hydrolysis, supplying the 

required energy for the chaperoning function;333 the middle domain regulates 

client protein interactions and interacts with the !-phosphate of ATP;334 the C-

terminal contains a second nucleotide binding region,335-337 which does not 

exhibit ATPase activity, and is involved in the control of Hsp90 

conformational rearrangement and in the binding of co-chaperones through a 

conserved pentapeptide sequence (MEEVD).338 In addition, a dimerisation 

motif, implicated in the functional switch between the open and closed protein 

conformation, is present at the C-terminus.339 
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Figure 1.8 Hsp90 client proteins and structure of the Hsp90 dimer. (A) Involvement of 

Hsp90 client proteins in cancer hallmarks. (B) Hsp90 switch between open and closed 

conformation upon ATP binding. 

In the absence of ATP, Hsp90 adopts an open conformation.340 Upon 

nucleotide binding, the N-terminal domain closes over the bound nucleotide 

and the two N-terminal domains of the dimer subsequently associate.341 A 

flexible loop of the middle domain interacts with the ATP-binding pocket of 

the N-terminal domain resulting in a twisted, closed conformation of Hsp90 

and in ATP hydrolysis.342 In the final step of its chaperoning cycle, Hsp90 

switches back to the open conformation and the hydrolyzed nucleotide is 
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released (Figure 1.8B). In this process, Hsp90 interacts with a number of co-

chaperones which also mediate the maturation of client proteins.343, 344  

Hsp90 contains several small molecule binding sites. The N-terminal ATP 

region has been the most extensively investigated, while less is known about 

the binding sites in the C-terminal and middle domains. The most common 

Hsp90 inhibitors bind competitively to the N-terminal domain and they 

include both natural products such as geldanamycin (GDA) and radicicol 

(RDC), and synthetic compounds such as GDA and RDC derivatives, purine-

based molecules, benzamide- and resorcinol-containing inhibitors.345, 346 

A number of clinical trials have been initiated from 1999 in order to 

evaluate the potential use of Hsp90 N-terminal inhibitors in cancer.347, 348 

Although some N-terminal inhibitors are still under clinical investigation,349-

352 many trials have failed due to toxicity issues and to the occurrence of 

resistance against these agents,353-355 mainly associated with the induction of 

the deleterious heat shock response.356, 357 A strategy to circumvent this 

problem may be to target the less-explored Hsp90 C-terminal domain, as its 

modulation does not trigger the undesired heat shock response.358, 359 Potential 

Hsp90 C-terminal inhibitors, in fact, may maintain the anti-proliferative 

activity, without being associated with the side effects reported for N-terminal 

modulators and representing thus promising candidates for drug 

development.360, 361 However, only poor structural information on Hsp90 C-

terminus are currently available representing a strong limitation for rational 

design of selective inhibitors. While the binding mode of Hsp90 N-terminal 

inhibitors has been well characterized by X-ray crystallography, there is no 

reported co-crystal structure of its C-terminal domain with any inhibitor. 

The natural coumarin antibiotic novobiocin was identified as the first 

Hsp90 C-terminal inhibitor,362 followed by its analogues chlorobiocin and 

coumermycin A1 (Table 1). Novobiocin�s binding site is located at the C-

terminal region of the chaperone containing amino acids 538-728.362, 363 
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Mechanistically, the binding of novobiocin to Hsp90 induces a conformational 

change of the protein that is dissimilar from that induced by N-terminal 

inhibitors.336, 364 For instance, novobiocin was shown to protect Hsp90� from 

cleavage with proteolytic enzymes in correspondence of two main sites at the 

C-terminus (Arg400 and Lys615/Arg620) and of a minor site at middle 

domain;364, 365 moreover, it prevents binding of TPR-containing co-chaperones 

to the C-terminal MEEVD motif.366 Given the weak interaction of novobiocin 

with Hsp90 C-terminus (IC50 = 700 µM in SKBr-3 breast cancer cells),362, 363 a 

number of structural analogues (novologues) have been synthesized and have 

exhibited a significant improved potency (Table 1).367-370 Other inhibitors of 

the Hsp90 C-terminal domain include epigallocatechin gallate (EGCG),371, 372 

cisplatin,373 taxol374 and sansalvamide A derivatives375-377 (Table 1). 

Further strategies to circumvent the liabilities of N-terminal inhibitors may 

be the development of isoform-selective inhibitors378-380 or modulators that 

work by alternative mechanisms, for example, co-chaperone disruptors.381-383 

Even though more challenging, the modulation of Hsp90 through the 

inhibition of its C-terminal domain, together with the other alternative 

strategies, may allow to develop new potential effective anticancer drug 

candidates, that are expected to be free from side effects connected with the 

use of traditional N-terminal binders. 

 



Introduction 

 

 

- 28 - 
 

Table 1 Known Hsp90 C-terminal inhibitors and their optimised analogues. 

Lead compound Optimised derivatives Ref. 
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1.6 Workflow of the research project 

The main goal of the present PhD research project has been the design, 

synthesis and biological evaluation of new inhibitors able to interfere with the 

activity of three relevant biological targets, involved both in cancer-related and 

inflammatory processes. 

The general method employed in this study can be described through these 

main steps: 

1. design of potential inhibitors of the target protein through fragment-

based design, structure-based design, ligand-based design; 

2. chemical synthesis of compounds selected by computational 

analysis or driven by structure-based approach; 
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3. biological evaluation and individuation of possible hits or lead 

compounds; 

4. rationalisation of ligand/protein interaction by crystallographic or 

computational methods; 

5. structural optimization of the identified lead compound in order to 

improve its biological profile. 

Concerning step 1, fragment-based, structure-based and ligand-based 

approaches were used for the identification of a scaffold able to interfere with 

the target of interest. In more details, the 9H-purine and the 3,4-

dihydropyrimidin-2(1H)-one (DHPM) cores have been disclosed to 

appropriately fit with the receptor counterparts. These chemical templates are 

considered �privileged scaffolds� in medicinal chemistry being endowed with 

relevant biological activities and, when appropriately decorated, they can 

selectively modulate diverse receptors, channels or enzymes responsible for a 

wide range of pharmacological effects.392, 393 

With respect to step 2, suitable synthetic procedures have been employed 

and optimized in order to successfully obtain the desired compounds. For the 

synthesis of 6-aryl-9H-purine derivatives, a suitable strategy to overcome the 

necessity of a N9-protecting group394 in the Suzuki-Miyaura cross-coupling 

has been exploited. Indeed, the use of microwave irradiation and an 

appropriate aqueous solvent systems allowed to perform the Suzuki coupling 

by using boronic acids directly on the 6-halo-9H-purine precursors, at high 

yields and in short reaction times (Scheme 1.1).395 Concerning the synthesis of 

N9-alkylated purines, it is generally accomplished through the Mitsunobu 

reaction with alcohols396 or by strong basic conditions (NaH, K2CO3) with a 

variety of alkyl and benzyl halides.397 However, these reactions require long 

times (4�48 h), low temperatures for the Mitsunobu conditions or high 

temperatures for the basic conditions, and an inert atmosphere (Scheme 

1.2).398 In our case, an alternative approach was employed, by using 



Introduction 

 

 

- 32 - 
 

tetrabutylammonium fluoride (TBAF) and alkyl halides at room temperature, a 

mild and efficient procedure that enabled to easily and rapidly accomplish the 

synthesis of N9-alkylpurines (Scheme 1.2).399  

Scheme 1.1 Synthesis of 6-aryl-9H-purines by the Suzuki�Miyaura cross-coupling. 

 

 

Scheme 1.2 Preparation of 9-alkylpurines.  
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Regarding the DHPM core, it can be efficiently obtained by the well-known 

Biginelli reaction, a one-pot acid-catalyzed condensation of three components 

(urea, benzaldehyde and ethyl acetoacetate) that was first reported by the 

Italian chemist Pietro Biginelli in 1893 (Scheme 1.3). In the last decades, 

several procedures have been reported, replacing the traditional use of strong 

Brønsted acids400-402 with different Lewis acids such as FeCl3,
403 LaCl3,

404 

Cu(OTf)2,
405 SnCl2,

406 InCl3,
407 Yb(OTf)3,

408 TMSCl.409 The use of phase-

transfer catalyst,410 ionic liquids,411, 412 solvent-free conditions,413 polymer 

supported catalyst,414 solid-phase approaches,415 asymmetric synthesis416 have 

also been described. In addition, several high-speed microwave-assisted 

methods for the generation of diverse DHPM collections were developed in 

order to enhance product yield and reduce reaction time.417-421 In our case, 

DHPMs have been obtained through a protocol of the Biginelli reaction 

promoted by chlorotrimethylsilane (TMSCl)422 and microwave-irradiation.  

Scheme 1.3 The Biginelli multicomponent reaction between benzaldehyde, urea and ethyl 

acetoacetate, as reported by Pietro Biginelli. 

 

Concerning step 3, biological evaluation of the synthesized compounds has 

been accomplished using suitable assays for each of the three investigated 

targets, e.g., thermal shift and isothermal titration calorimetry (ITC) assays in 

the case of BRDs, a cell-free assay using the microsomal fraction of 

interleukin-1�-stimulated human A549 cells to evaluate the effect of 

compounds on mPGES-1 activity, and finally Surface Plasmon Resonance 

(SPR), cytotoxicity and western blot assays in the case of Hsp90. 

Regarding step 4, the rationalization of ligand/protein interaction has been 

performed using the support of X-ray crystallography and docking studies. 
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Lastly, the structure optimization step has required structure-based 

approaches that allowed to perform focused chemical modifications on the 

emerged lead molecule in order to improve its biological profile. 

 



Results and Discussion 

- 35 - 
 

 
 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

 

 

 

 



Results and Discussion 

 

 

- 36 - 
 

 

 

 

 

 

 

-CHAPTER 2- 

 

 

Induced-fit pocket plasticity of the BRD9 bromodomain 

upon binding to 9H-purine inhibitors. 

 

 

 

 

 

 

Based on: Picaud S., Strocchia M., Terracciano S., Lauro G., Mendez J., Daniels 
D.L., Riccio R., Bifulco G., Bruno I., Filippakopoulos P. J Med Chem. Accepted. 
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2.1 Background 

A number of medicinal chemistry studies have been addressed to target 

bromodomains, in particular BET proteins, with the aim of identifying novel 

scaffolds as mimetics of acetylated lysine (Kac),  the natural substrate of these 

conserved protein modules. Phenotypic screening, fragment-based and 

molecular docking approaches were shown to be successful tools for the 

discovery of Kac-mimetics, as they enabled to find a number of new 

chemotypes, including 3,4-dimethylisoxazoles,423, 424 3-methyl-3,4-

dihydroquinazolinones,425 indolizinethanones, N-phenylacetamides and N-

acety-2-methyl-tetrahydroquinolines,149 triazolopyrimidines, methylquinoline 

and chloropyridones,426 thiazolidinones,152 4-acylpyrroles158 and 

triazolophtalazines427 (Figure 2.1). 

 

Figure 2.1 Acetyl lysine (Kac) mimetic templates reported to bind to bromodomain 

proteins. The Kac mimetic portion of each substructure is highlighted in colored circles. 

Kac-mimetic fragments allowed to develop potent and selective BET 

inhibitors,151, 154 suggesting that it is possible to identify new BRD modulators 
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via initial fragment screening. In addition, fragment based approaches also 

allowed the discovery of new scaffolds able to modulate BRDs outside the 

BET family, such as CREBBP/p300,142 ATAD2,145, 146 BAZ2B147 and 

BRPF1.144  

Recent results disclosed some kinase inhibitors as interesting compounds 

endowed with high affinity and selective binding to the BET BRDs.140 Crystal 

structures with BRD4(1) revealed an acetyl-lysine mimetic binding of kinase 

inhibitors, without any significant distortion when compared to kinase 

complexes, indicating the possibility to develop dual inhibitors targeting both 

BRD and kinases at the same time. Interestingly, the cyclin-dependent kinase 

inhibitor dinaciclib was also identified as a binder of BRD4428 suggesting thus 

that other inhibitors classes might be good starting points for the discovery of 

new BRDs inhibitors.  

In light of the successful fragment-based approaches and their reliability for 

the discovery of BRDs inhibitors, the purine scaffold was chosen to evaluate 

its putative Kac mimetic character. Purine is a privileged chemical core, as it is 

one of the most abundant N-based heterocycle in nature,429 and it is present in 

a number of currently approved drugs used for the treatment of cancer (6-

mercaptopurine, 6-thioguanine), viral infections such as AIDS and Herpes 

(Carbovir, Abacavir, Acyclovir, Ganciclovir), hairy cell leukemia 

(Cladribine), and organ rejection (Azathioprine).430  

Moreover, purine based compounds have emerged as reliable chemical-

biology tools since they modulate a variety of biological targets involved in 

number of diseases. Some examples include their activity as microtubules 

(Myoseverin), 90-heat shock protein (PU3), sulfotransferase (NG38), 

adenosine receptor (KW-6002), and cyclin-dependent kinase (olomoucine, 

roscovitine) inhibitors.393, 431 
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2.2 9H-purines: new modulators of human bromodomains  

In order to evaluate the binding of purine fragments to human BRDs, 

molecular docking experiments were initially performed employing the 

previously determined crystal structure of the complex of BRD4(1) with a 5-

methyl-triazolopyrimidine ligand (PDB ID: 4MEN).426 To this end, binding of 

purine fragments 1, 2a and 2b (Figure 2.2) was investigated, seeking to 

determine acetyl-lysine competitive binding modes, within the BRD cavity, 

with promising predicted binding affinities, ideally establishing favorable 

interactions with residues implicated in acetyl-lysine peptide recognition. In 

order to verify a possible conformational change of the receptor�s binding site 

cavity upon ligand binding, the Induced Fit docking protocol432, 433 was 

employed (as implemented in the Schrödinger software package).  

 

Figure 2.2 Purine fragments tested on human BRDs. 

Molecular modeling disclosed a good accommodation of the investigated 

purine fragments within the Kac binding site of BRD4(1), mainly packing 

between the ZA-loop hydrophobic residues (Val87, Leu92, Leu94) and Ile146 

from helix C, in a groove that is capped, on one end by Tyr97, and Tyr139 and 

Trp81, on the other end (Figure 2.3). Different poses of compound 1 were 

observed within the BRD4(1) cavity, with the two chloro- functions pointing 

to the top of the pocket (Figure 2.3A) or adopting a Kac mimetic pose with 

one chlorine inserting deep into the pocket (Figure 2.3B). Compound 2a was 

also found in two different states, either orienting its primary amine function 

away from the conserved asparagine (Asn140 � Figure 2.3C), or directly 

engaging this residue and orienting its 6-Br substituent towards the ZA-loop 
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(Figure 2.3D/E). In all cases, the ligand poses resulted in promising predicted 

binding affinity values (-9.13 kcal/mol for 1, -9.95 kcal/mol for 2a, and -9.13 

kcal/mol for 2b). In the case of compound 2a, computational outcomes 

disclosed poses in which the halogen at position 6 resulted well exposed, 

suggesting thus the possibility to further optimise this fragment (Figure 

2.3D/E). Contrariwise, the presence of the 2-Cl substituent or the methyl 

substituent at N9 (compounds 1 and 2b respectively) resulted in steric clashes 

that would not allow for subsequent modifications. Given the multiple docking 

conformations observed, the purine scaffold was systematically investigated, 

employing synthetic chemistry and structure activity relationships, in order to 

better understand the binding mode of the this template to BRDs. 

Fragments 1 (2,6-dichloro-9H-purine) and 2a (2-amino-6-bromo-9H-

purine) were purchased from commercial source, while compound 2b was 

synthesized employing a TBAF-assisted N-9 methylation on the purine ring of 

2a (Scheme 2.1). A thermal shift assay (�Tm assay) was employed to confirm 

binding of these fragments to human bromodomains, in collaboration with dr. 

Panagis Filippakopoulos of the Structural Genomics Consortium (Oxford). 

This assay was previously used successfully with fragments and various 

bromodomains.134, 156, 423, 434 It is usually performed using 100 "M of 

compounds in the case of fragments but, with 1, 2a and 2b, binding was 

already detectable at 10 "M. In particular these purine fragments exhibited 

affinity for BET BRDs, especially BRD4(1), while the optimized CDK 

inhibitor olomoucine (Figure 2.4A) did not bind to any proteins in the panel 

(Figure 2.4B). This result encouraged a further investigation of these 

compounds, that were thus tested also against five other BRDs in order to 

cover most of the human BRD phylogenetic tree (Figure 2.4C). Interestingly, 

despite their structural diversity, the BRDs of CREBBP, PB1(5) and BRD9 

exhibited weak binding. 
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Figure 2.3 Induced-fit docking of fragments 1 and 2a in BRD4(1). (A) Docking pose of 1 

(yellow sticks) into the bromodomain of BRD4(1). (B) Alternative binding of compound 1 in 

BRD4(1) with the 6-Chloro substituent adopting a Kac-mimetic pose. (C) Docking of fragment 

2a (orange sticks) in BRD4(1). (D) Alternative docking of 2a into BRD4(1). The ligand adopts 

a Kac-mimetic pose, with the amine group directly engaging the conserved asparagine 

(N140). (E) Surface representation of BRD4(1) with compound 2a. 

A relevant outcome was obtained for fragment 2a which showed affinity 

for BRD9. In fact, until now only few compounds were shown to bind to this 

domain such as some triazolo-phthalazines,427 which exhibited cross-reactivity 

towards BET BRDs and CREBBP. BRD9 is a component of the SWI/SNF 

complex435 and has been associated with a number of different cancer types, 

including non-small cell lung cancer,436 cervical437 as well as hepatocellular 

carcinoma.438 Moreover, its BRD reader module has been frequently found 

mutated in lung squamous cell carcinoma, prostate adenocarcinoma as well as 

uterine corpus endometrial carcinoma.439-441 

Hence, binding of 2a onto BRD9 was investigated by induced fit docking, 

using the crystallized apo structure of the protein (PDB ID 3HME).108 As in 

the case of  BRD4(1), two main binding poses were obtained for this 

compound, with the most energetically favored one (predicted binding affinity 

= -9.06 kcal/mol) exhibiting an extended hydrogen bond network with the 
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conserved Asn100 and �-� interactions with the ZA-loop Tyr57 and Tyr106 

from helix C, while the 6-Br substituent was oriented towards Phe47 of the 

ZA-loop, suggesting that modifications on this position would not be tolerated 

without affecting the ligand orientation in the acetyl-lysine cavity (Figure 

2.5A). 

 

Figure 2.4 (A) Structures of fragments 1, 2a, 2b and of the kinase inhibitor olomoucine. 

(B) Fragments were tested in a thermal shift assay against bromodomains of the BET 

subfamily as well as representative members from other families. (C) Phylogenetic tree of the 

human bromodomain family. Domains tested for fragments binding are annotated in bold 

typeface and are highlighted with a red star, covering most subfamilies of human BRDs.  

Nevertheless, an alternative binding pose was also disclosed (predicted 

binding affinity = -8.62 kcal/mol), in which the ligand maintained the 

hydrogen-bond to Asn100, and inserted its primary amine towards the 

conserved asparagine, establishing also a �- � interaction with Tyr106 from 

helix C, while orienting the modifiable 6-Br substituent towards the top of the 

BRD cavity (Figure 2.5B), offering a promising vector for subsequent 

modifications. On the basis of these initial findings, a number of 2-amino-9H-

purine analogues were synthesized (Figure 2.6) and tested against human 

BRDs, primarily of the BET subfamily (sub-family II), but also against 

representative BRDs from other structural sub-families (family I: PCAF; 
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family III: CREBBP; family IV: BRD9; family V: BAZ2B; family VIII: 

PB1(5) � see Figure 2.5C) in order to probe structurally diverse proteins 

against this chemical template.  

 

Figure 2.5 (A) Docking of compound 2a (orange sticks) into the bromodomain of BRD9 

(PDB ID: 3HME). The ligand adopts a Kac-mimetic pose as in the case of BRD4(1), directly 

engaging the protein at the conserved asparagine (Asn100) via N3 and N9 while sterically 

packing between the ZA-loop Ile53/Ala54 and F47/F44 at the front of the BRD cavity. (B) 

Alternative docking mode of 2a in BRD9 inserting the primary function towards the conserved 

asparagine (Asn100) while retaining the steric packing within the ZA-loop residues. 

An aqueous-phase Suzuki-Miyaura cross-coupling reaction was employed 

to synthesize the 2-amino-6-aryl-9H-purine derivatives, yielding highly C-6 

decorated 9H-purines, in a one step procedure, and a subsequent TBAF-

assisted N-9 alkylation was performed to access N-9 substituted analogues 

(Scheme 2.1). The coupling step was accomplished under microwave 

irradiation with Pd(OAc)2 and triphenylphosphine-3,3',3"-trisulfonic acid 

trisodium salt as the catalytic system, with Cs2CO3 as base, in a water-

acetonitrile reaction solvent. This approach allowed the synthesis of 2-amino-

6-aryl-9H-purines with very short reaction times (5-15 min), at high yields and 

purity (Scheme 2.1). 
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Figure 2.6 Chemical structures of compounds 1-11. 

 

 



Results and Discussion 

- 45 - 
 

Scheme 2.1 General procedures for the synthesis of purine derivatives. 

 Reagents and conditions: (a) Pd(OAc)2/P(C6H4SO3Na)3, Cs2CO3, MeCN/H2O (1:2), MW, 150 
°C, 5-15 min; (b) CH3I or CH3COCH2Cl, TBAF, THF, rt, 10 min; (c) 50 % H2SO4, NaNO2, -
10 °C, 2 h, then 50 °C, 1 h. 

 

First, an unsubstituted phenyl ring was introduced at position 6 of the core 

purine scaffold, leading to compound 3a which was shown to stabilize 

BRD2(1), BRD4(1) and PCAF in thermal shift assays (Figure 2.7A/B). 

Binding to BRD4(1) was validated by isothermal titration calorimetry and a 

dissociation constant of 11.99 �M was measured (Figure 2.7C and Table 2.1). 

The lack of affinity of 3a towards BRD9 in the !Tm assay was reputed an 

anomalous outcome, since the initial fragment hit, compound 2a, had 
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exhibited a thermal shift of 1.6 �C towards that domain. 3a was therefore 

tested also by isothermal titration calorimetry against BRD9 and a dissociation 

constant of 8.5 �M was measured (Figure 2.7D, Table 2.2) suggesting that the 

thermal shift assay may not be very robust in the case of BRD9 when applied 

to weak ligands. 

 

Figure 2.7 Decoration patterns explored in the first group of purine compounds and 

biological screening for binding to human bromodomains. (A) Substitution patterns explored. 

(B) Thermal shift assay against human bromodomains. Compounds highlighted with a colored 

star were further validated by isothermal titration calorimetry. (C) Isothermal titration 

calorimetry validation of key compounds binding to BRD4(1) showing raw injection heats for 

titrations of protein into compound. (D) Compounds bearing ortho,meta�- substitutions gain 

potency towards BRD9 as demonstrated by ITC experiments.  



Results and Discussion 

- 47 - 
 

Table 2.1 Isothermal Titration Calorimetry of human BRD4(1) with 9H-purines. 
Titrations were carried out in 50 mM HEPES pH 7.4 (at 25 ºC), 150 mM NaCl and 15 ºC 

while stirring at 295 rpm. In both cases the protein was titrated into the ligand solution 

(reverse titration). Titrations were performed in triplicate. Ligand efficiencies (LE) have been 

calculated, where �G values were available (LE = �G/N, where N= number of non-hydrogen 

atoms (kcal/mol)).  

Ligand [P] 

(�M) 

[L] 

(�M) 

KD 

(nM) 

 H
obs

 

(kcal/mol) 
N 

T S 

(kcal/mol) 

 G 

(kcal/mol) 
LE 

2a 680 15 No binding/weak 
3a 402 16 11990 ± 743 -9.45 ± 0.55 1.03 ± 0.049 -2.97 -6.48 0.41 
7c 485 14 2037 ± 118 -6.21 ± 0.09 1.05 ± 0.012 1.29 -7.50 0.39 
7d 307 12 4651 ± 197 -6.09 ± 0.14 0.99 ± 0.018 0.94 -7.03 0.37 
11 382 30 1370 ± 29 -6.39 ± 0.02 1.09 ± 0.002 1.34 -7.73 0.39 

 

Table 2.2 Isothermal Titration Calorimetry of human BRD9 with 9H-purines. Titrations 

were carried out in 50 mM HEPES pH 7.4 (at 25 ºC), 150 mM NaCl and 15 ºC while stirring 

at 295 rpm. In both cases the protein was titrated into the ligand solution (reverse titration). 

Titrations were performed in triplicate. Ligand efficiencies (LE) have also been calculated 

where �G values were available (LE = �G/N, where N= number of non-hydrogen atoms 

(kcal/mol)). 

Ligand [P] 

(�M) 

[L] 

(�M) 

KD 

(nM) 

 H
obs

 

(kcal/mol) 
N 

T S 

(kcal/mol) 

 G 

(kcal/mol) 
LE 

2a 740 30 No binding/weak 
2b 385 30 No binding/weak 
3a 477 26 8475 ± 237 -9.11 ± 0.12 0.99 ± 0.010 -2.42 -6.69 0.42 
5b 392 30 No binding/weak 
7a 385 34 641 ± 33 -12.71 ± 0.07 1.06 ± 0.004 -4.55 -8.16 0.45 
7b 385 13.5 351 ± 18 -13.04 ± 0.07 0.97 ± 0.004 -4.52 -8.52 0.45 
7c 378 14 297 ± 10 -12.05 ± 0.04 0.98 ± 0.003 -3.46 -8.59 0.45 
7d 235 10 397 ± 19 -9.63 ± 0.06 0.97 ± 0.005 -1.18 -8.45 0.44 
8a 381 18 7874 ± 258 -8.30 ± 0.15 1.06 ± 0.014 -1.57 -6.73 0.35 
8b 392 30 No binding/weak 
8e 451 32 7576 ± 365 -5.35 ± 0.09 1.05 ± 0.013 1.40 -6.75 0.36 
9a 378 20 No binding/weak 
11 381 30 278 ± 15 -10.28 ± 0.04 1.03 ± 0.003 -1.63 -8.65 0.43 

 

Although the first bromodomain of BRD4 has been constantly shown to 

bind to weak compounds employing the thermal melt assay, it has been noted 

that other BRDs do not always display high temperature shifts despite they 

bind to several compounds very potently.161 Different patterns of functions 

were introduced on the 6-phenyl substituted 9H-purine scaffold in order to 

investigate the effect of diverse substitutions, including para-substitutions 

(compounds 3b-h), meta-,para-substitutions (compounds 4a-e), meta-,meta�-
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substitutions (compounds 5a-b), ortho-, ortho�-substitutions (compounds 6a-c) 

and ortho-meta�-substitutions (compounds 7a-e) (Figure 2.6 and 2.7A). 

Binding of these analogues was evaluated towards the 13 BRDs previously 

mentioned, employing the same thermal shift assay. Interestingly, compounds 

that carried a N9-methyl group (3c, 3e, 4e, 5b) displayed very weak or no 

binding towards most BRDs while showing small thermal shifts (1.0 � 1.3 �C) 

for the bromodomain of CREBBP. Para-substitutions of the 6-phenyl-9H-

purines (3b-3h) exhibited very weak effect across all BRDs, however, 

compound 3f showed binding towards all BRDs without any hints of 

selectivity towards BRD9. Meta-substitution (compounds 4a-4e) resulted in 

lower stabilisation of BRDs with no affinity for BRD9. Interestingly, meta-

,meta�- substitution (compound 5a) resulted in binding to most BRDs, albeit 

weak, with "Tm values between 1.1 and 1.8 �C. As expected, no binding was 

detected in the case of the N9-methyl analogue (compound 5b). Affinity was 

not improved with ortho-, ortho�- substitutions of the 6-phenyl 9H-purine 

scaffold (compounds 6a-6c) (Figure 2.7B). Since methyl substitution at N9 

could not be tolerated in BRD4(1) or BRD9 binding, it can be deduced, at this 

stage, that the five member ring points towards the bottom of the acetyl-lysine 

binding cavity, as predicted in docking models (Figure 2.3D/E and 2.5B), 

with the 6-substituted position towards the front of the pocket in order to 

accommodate the larger phenyl-substituted functions. 

Combinations in ortho-meta�- substituted compounds were further tested by 

first maintaining a methoxy functionality at the ortho position while changing 

the steric hindrance at the meta�- position (compounds 7a-7d). 2-

methoxyphenyl substitution (compound 7a) resulted in thermal shifts between 

1.4 and 2.5 �C for BET BRDs, while significantly stabilizing BRD9 compared 

to all previous tested compounds (2.9 �C) (Figure 2.7B). This interaction was 

confirmed by ITC with a measured dissociation constant of 641 nM against 

BRD9 (Figure 2.7D, Table 2.2). This result prompted to test halide analogues 
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at the meta�- position (compounds 7b-7d) maintaining the ortho-methoxy 

group. All of them exhibited improved thermal shifts against BRD9, while 

BET affinity was variable. Observed !Tm values followed the order H < F < 

Cl > Br, highlighting the importance of steric bulk and charge at the meta�- 

position, with compound 7c showing a !Tm of 3.8 "C against BRD9 (Figure 

2.7B). Binding was confirmed by ITC with measured dissociation constants of 

351, 297 and 397 nM against BRD9 for compounds 7b, 7c and 7d, 

respectively (Figure 2.7D, Table 2.2). Interestingly, although BRD4(1) 

exhibited !Tm values of 1.1 and 3.2"C for compounds 7c and 7d, it was found 

to bind more weakly to these scaffolds by ITC, and measured dissociation 

constants were 2.04 and 4.7 �M respectively (Figure 2.7C, Table 2.1). 

Affinity for BRD9 was lost with compound 7e which carried a bromine 

function at the meta�- position and an ethoxy- substituent at the ortho-position, 

suggesting that a bulkier group at the ortho position was not tolerated.  

To verify whether the primary amine function at position 2 of the 9H-

purine scaffold was necessary for binding to bromodomains, it was replaced 

by a chlorine group in compound 8a (Figure 2.6 and 2.8A), resulting in loss of 

affinity towards all BRDs in the panel (Figure 2.8B). In the case of BRD9 this 

finding was validated by isothermal titration calorimetry measurement which 

resulted in a KD of 7.8 �M (Figure 2.8C). As with compounds from previous 

series, the N9-methyl analogue 8b (Figure 2.8A) manifested no affinity for 

bromodomains as measured both by thermal melt (Figure 2.8B) and ITC 

assays in the case of BRD9 (Figure 2.8C), while larger substituents 

(compound 8c) were not tolerated. Introduction of a hydroxy substituent at 

position 2, while retaining a 6-(5-halide-2-methoxyphenyl) moiety 

(compounds 8d-8f), had variable effects on the 9H-purine affinity towards 

BRDs. Furthermore, fluoro- (8d) and bromo- (8f) substituted compounds lost 

affinity across the panel, while the chloro-substituted compound (8e) bound to 

most bromodomains in the !Tm assay, albeit weaker than its primary amine 
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analogue 7c (Figure 2.8A/B), suggesting that the interactions initiated by the 

hydroxyl group and the conserved asparagine (Asn100 in BRD9; Asn140 in 

BRD4(1)) are not favored over the primary amine. 

 

Figure 2.8 BRD pocket SAR. (A) Compounds designed to probe the acetyl-lysine mimetic 

character of the purine scaffold. (B) Thermal shift assay against human bromodomains. 

Compound 10 was heavily colored and interfered with the assay. Compounds highlighted with 

a colored star were further validated by ITC. (C) Substitution of the primary amine group to a 

hydroxyl (compound 8a) impairs binding towards BRD9 as demonstrated by ITC experiments 

while cyclisation of the aromatic substituent results in enhanced potency (compound 11). (D) 

Isothermal titration calorimetry validation of compound 11 binding to BRD4(1). 

In an attempt to direct the purine core deeper inside the bromodomain 

cavity, a methyl group was introduced at position 8 of the 9H-purine core 

(compounds 9a and 9b). The poor solubility of compound 9a did not allow for 

any measurements, but compound 9b exhibited weak binding to all 

bromodomains in the panel with the exception of BRDT(2), suggesting that 
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this compound did not carry a suitable decoration pattern to improve affinity 

toward BRD9. An attempt to insert a fluorine atom at position 8, through a C-

8 electrophilic fluorination on the bis(tetrahydropyran-2-yl)-protected 

derivative of 2a, following a reported metalation-fluorination reaction with N-

fluorobenzenesulfonimide,442 was also unsuccessful, as the formation of the 

corresponding 8-phenylsulfonyl product instead of the 8-fluoro derivative was 

observed, similar to the reported results by Roy et al.,443 even under 

heterogeneous conditions (Scheme 2.2).  

Scheme 2.2 C-8 electrophilic fluorination reaction on the bis(THP)-derivative of 2a. 

 
Reagents and conditions: (a) 3,4-dihydro-2H-pyran, HCl cat., anhydrous DMF, 60 °C, 6 h; (b) 

LDA 2.0 M solution in heptane/THF/EtPh, anhydrous THF, �78 °C, 2 h; (c) N-
fluorobenzenesulfonimide (NFSI), �78 °C, 1.5 h, then 0 °C, 30 min.  

Next, the size of the 6-(5-halide-2-methoxyphenyl) substituent was 

increased, leading to compounds 10 and 11. Unfortunately the bright yellow 

color and low solubility of compound 10 did not allow for further evaluation. 

The analogue of 7d obtained by cyclising the 2-methoxyphenyl ring into a 2,3-

dihydrobenzofuran-7-yl (compound 11) exhibited a remarkable increase in 

affinity for BRD9 (6.5 �C). Isothermal titration calorimetry yielded a 

dissociation constant of 278 nM for BRD9 (Figure 2.8C) while BRD4(1) 

binding resulted in a much weaker affinity (1.4 "M) (Figure 2.8D). 
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2.3 Induced fit binding of 9H-purines to the bromodomain of BRD9 

Our fragment and structure based design allowed to identify the 2-amino-

9H-purine as a new chemotype able to mimic Kac residue. Iterative 

optimization of the purine fragment precursor 2a allowed to find that some of 

its 6-aryl derivatives exhibited nanomolar affinity towards BRD9, with lower 

activity towards BRD4. In particular, two excellent inhibitors were discovered, 

namely compounds 7d and 11, which exhibited nanomolar and micromolar 

affinity toward BRD9 and BRD4, respectively, from ITC experiments. In 

order to investigate the interaction of 7d and 11 with both BR9 and BRD4(1), 

crystallography and docking studies were carried out. Crystal structures of 

7d/BRD9 and 7d/BRD4(1) were determined. In both cases, the ligand was 

found to occupy Kac pocket (Figure 2.9A and 2.10A) and was clearly defined 

in the electron density map (Figure 2.9B and 2.10B). 

 

Figure 2.9 Induced fit binding of 9H-purines to BRD9. (A) Overall fold of BRD9/7d 

crystal structure. (B) 2FcFo map of 7d in complex with BRD9 contoured at 2�. (C) 7d 

occupies the Kac binding cavity of the bromodomain module initiating direct interactions with 

the conserved asparagine (N100). (D) Binding of 7d to BRD9 results in a distinct re-

arrangement of the BRD fold. (E) Surface view of the side-chain re-arrangement in BRD9 

pocket, highlighting the induced pocket upon binding of 7d. 
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The primary amine function and nitrogen atom at position 3 of 7d 

established a direct interaction with the conserved asparagine in both 

structures (Asn140 in BRD4(1); Asn100 in BRD9) as well as a number of 

hydrogen bonds to the protein backbone and to the network of conserved 

water molecules in the pocket (Figure 2.9C and 2.10C). Moreover, compound 

7d engaged hydrogen bonds to a water molecule which, in turn, linked the 

ligand to the ZA-loop and to the carbonyl of Ile53 (in the case of BRD9) or 

Asn93 (in the case of BRD4(1)). A comparable binding mode was observed 

for 7d and (+)-JQ1, a well-known BRD4(1) modulator, with the purine ring 

superimposing well with the methyl-triazole of (+)-JQ1 (Figure 2.10D).  

 

Figure 2.10 Binding of compound 7d to BRD4(1) (A) Overall fold of BRD4(1)/7d crystal 

structure. (B) 2FcFo map of 7d in complex with BRD4(1) contoured at 2�. (C) Similar to the 

BRD9 complex, 7d occupies the acetyl lysine binding cavity of the BRD4(1) bromodomain 

module initiating direct interactions with the conserved asparagine (N140). (D) The mode of 

7d binding to BRD4(1) is similar to that of JQ1 (PDB ID: 3MXF) with the five member ring of 

the purine core mimicking the methyl-tiazolo function of JQ1. (E) Surface representation of 

the binding cavity of BRD4(1) in complex with 7d. 

In accordance with the induced fit computational models described for 

fragment 2a in BRD9, superimposition of the BRD9/7d complex to the apo 
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structure of BRD9 (PDB ID: 3HME)108 revealed rotations of the side-chains of 

Phe47 and Phe44, while the top of the ZA loop collapsed towards the ligand 

(Figure 2.9D/E). These marked re-arrangements within the BRD9 cavity had 

never been previously observed and are consistent with an induced fit binding 

of 7d to BRD9 pocket. Interestingly, the structural re-arrangements observed 

were unique to BRD9: the structure of compound 7d in complex BRD4(1) did 

not reveal any re-arrangements of Kac binding cavity, as the inhibitor packed 

between Trp81 and Leu92 of the ZA-loop (Figure 2.10D/E).  

 

Figure 2.11 Complex of compound 11/BRD4(1). (A) Overview of the complex of 

compound 11 with BRD4(1). (B) FcFo map of compound 11 in complex with BRD4(1) 

contoured at 2�. (C) Detail of compound 11 biding to BRD4(1) demonstrating the acetyl-

lysine mimetic binding mode, initiating interactions with the conserved asparagine (N140). 

In the case of compound 11, it readily crystallized with BRD4(1) and was 

found to occupy the acetyl-lysine binding cavity (Figure 2.11A) in a well 

defined electron density map (Figure 2.11B). The ligand directly engaged the 

conserved asparagine (Asn140) and established a network of interactions with 

conserved water molecules, while packing between the ZA-channel tryptophan 

(Trp81) and the ZA-loop leucine (Leu92) (Figure 2.11C). However, any 

attempts to obtain a crystal structue of  11 in BRD9 was unsuccessful, as no 

diffracting quality crystals, suitable for structure determination, were 

generated. Computational methods were therefore employed to account for its 

binding to BRD9. Rigid docking into the BRD9/7d complex structure resulted 

in a conformation similar to that observed with compound 7d, with the ligand 

engaging the conserved asparagine via its primary amine function and the 6-
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aryl-substituted ring packing betweent he ZA-loop Ile53 and Phe44 (Figure 

2.12A). Afterwards, induced-fit docking was carried out using the complex of 

BRD9/7d, yielding a pose whereby the 2-amine function inverted and inserted 

in the BRD pocket, without any changes in the surrounding side chains of 

Phe44, Phe47, Ile 53 and Tyr106 (Figure 2.12B).  

 

Figure 2.12 Docking of compound 11 to BRD9. (A) Rigid docking of compound 11 into the 

complex structure of BRD9/7d results in a minimal energy pose that resembles the 7d/BRD9 

complex. (B) Induced fit of compound 11 into the cavity of the BRD9/7d complex results in an 

orientation of the ligand that inverts its primary amine function, without affecting the side-

chains of the residues within the binding site of BRD9. (C) Induced fit docking of compound 

11 into the apo site of BRD9 (PDB ID 3HME) results in a re-arrangement of the binding site 

residues in a similar mode to that observed in the case of compound 7d, however the ligand 

rotates its 6-aryl substituent by 180 degrees. The bottom panel shows a clockwise 60 degree 

rotation of the structures, highlighting the tilt of the ligand poses with respect to each other. 

Intrigued by this finding, another induced fit docking experiment was 

performed in the BRD9 apo structure, allowing the flexibility of key residues 

upon compound binding. A similar set of side-chain re-arrangements within 

the BRD9 acetyl lysine cavity was displayed, including a rotation of Phe47, 

resulting in capping of the binding groove, as well as a repositioning of Phe44 

from helix C and Ile53 from the ZA-loop (Figure 2.12C). These results 
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revealed that compound 11 can also affect plasticity of BRD9 Kac binding 

cavity, as obtained for 7d through crystallographic experiments.  

In the case of the BRD family of proteins, an induced fit binding was 

previously observed only for CREBBP upon binding to a 

dihydroquinoxalinone-based inhibitor. The ligand was shown to insert under 

an arginine residue of the CREBBP BRD, resulting in re-structuring of the 

Kac binding site of this bromodomain.143 Intriguingly, in our case the 

structural re-arrangement of BRD9 binding site was more extensive, with 

several side-chains rotating and shifting to accommodate the small purine 

ligands.  

 

2.4 In cell validation of 9H-purines  

In order to verify that the developed 2-amine-9H-purine scaffolds are active 

in a cellular environment and can perturb the interaction of BRD9 with 

acetylated histones, cellular assays were carryed out in collaboration with 

Jacqui Mendez and Danette Daniels of Promega Corporation (U.S.A.). BRD9 

is a component of the large SWI/SNF complex435 and its bromodomain was 

shown to bind to acetylated histone H3 peptides.108 To assess whether 9H-

purines were able to competitively displace the bromodomain of BRD9 from 

chromatin, a bioluminescence resonance energy transfer (BRET) system was 

set-up, combining NanoLuc Luciferase fusions of the BRD9 bromodomain 

(Figure 2.13A) or full length BRD4 and Halo-tagged Histone H3.3 as BRET 

pairs. This assay is an excellent tool to quantify protein-ligand interactions in a 

cellular system444 and has recently been used to determine cellular IC50 values 

for the inhibition of the histone/bromodomain interaction in the case of 

BRPF1, using a 1,3-dimethyl benzimidazolone scaffold.144 As a first step, 

incorporation of Halo-tagged histone H3.3 into chromatin was confirmed by 

fluorescence microscopy (Figure 2.13B).  
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Figure 2.13 In cell validation of compounds 7d and 11. (A) NanoLuc fusion construct of 

the bromodomain of BRD9 (UniProt: Q9H8M2, residues 120-240) used to probe binding to 

Halo-tagged histone H3.3 in a BRET assay. (B) Confocal images of halo-tagged histone H3.3 

transfected into HEK293 cells demonstrating incorporation into the nucleus. (C) Cytotoxicity 

assay demonstrating that compound 11 is not toxic to HEK293 cells in the concentration 

range used for the BRET assay. (D) Titration of compounds 7d and 11 into HEK293 cells 

transfected with nanoLuc-fused full length BRD9 and halo-tagged histone H3.3. (E) Titration 

of compounds 7d and 11 into HEK293 cells transfected with nanoLuc-fused full length BRD4 

(UniProt: O60885) and halo-tagged histone H3.3.  

Afterwards, dose response experiments were carried out, showing that the 

NanoLuc-BRD9 bromodomain was readily displaced from chromatin upon 

treatment with compounds 7d and 11 with cellular IC50 values of 3.5 ± 0.11 

�M and 477 ± 194 nM, respectively (Figure 2.13D). In contrast, full-length 

BRD4 was not completely displaced in this assay up to concentrations of 33 

�M for both compounds (Figure 2.13D), suggesting that the compounds 

retained the in vitro selectivity towards BRD9 in this cellular system. Toxicity 

of compound 11 was evaluated towards HEK293 cells, using cell viability in 

the presence of the compound in the concentration regime of BRET 

experiments as a readout and no cytotoxic effect was observed (Figure 
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2.13C), suggesting that this compound can be used in cellular systems to 

target BRD9/Kac interactions without affecting BRD4/Kac interactions or 

causing any cytotoxic responses. 

In summary, 9H-purine scaffold has emerged as a simple template suitable 

to generate initial tools for the bromodomain of BRD9, which have not 

attracted attention until now. Fragment based design, structural activity 

relationships and iterative optimization allowed to identify compounds 7d and 

11 which bound to BRD9 with nanomolar affinity and only weak residual 

micromolar affinity for BRD4. These compounds were able to competitively 

displace the BRD9 bromodomain from histone H3.3 in cellular environment. 

Finally, high-resolution X-ray crystal structure of compound 7d in complex 

with BRD9 revealed exstensively structural re-arrangements of the Kac 

binding cavity of BRD9 upon 7d binding, resulting in an unprecedented cavity 

shape. Docking studies suggested that compound 11 was also able to induce 

the same type of structural re-arrangements. 
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Dihydropyrimidin-2(1H)-one: a new template for the 

modulation of microsomal Prostaglandin E2 Synthase-1  

(mPGES-1). 
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Lauro G., Strocchia M., Terracciano S., Bruno I., Fischer K., Pergola C., Werz 
O., Riccio R., Bifulco G. Eur J Med Chem 2014, 80, 407-415; Terracciano S., 
Lauro G., Strocchia M., Fischer K., Werz O.,  Riccio R., Bruno I., Bifulco G. 
ACS Med Chem Lett 2015, 6, 187�191.  
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3.1 Targeting mPGES-1: rationale from high-resolution X-ray crystal 

structures 

Structural information on the key functional groups, including a defined 

pharmacophore, have been the major issue for the development of new 

mPGES-1 inhibitors through rational design approaches.  

In our previous works,224, 225 in which some triazole-based mPGES-1 

inhibitors have been described, it was used the MGST-1 structure solved by 

Hebert et al.
445 in 2006 for computational-guided design, due to the lack of a 

mPGES-1 crystal structure in its active conformation. At that time, the only 

available mPGES-1 crystal structure had been elucidated by electron 

crystallography, but in that case, the protein was in its inactive closed state446 

and was not suitable to be used for the classical receptor-based approach in 

drug discovery. Therefore, the structure of MGST-1, a homotrimer also 

belonging to the MAPEG family and showing the 38% of homology sequence 

with mPGES-1,447 represented an appropriate alternative for our purposes. 

The first detailed information about the three dimensional structure of this 

glutathione-dependent membrane protein in the active form were only recently 

provided by means of X-ray crystallography by Sjögren et al.
212 in 2013. The 

solved structure revealed that the mPGES-1 homotrimer has three active site 

cavities within the membrane-spanning region at each monomer interface. The 

asymmetric monomer is formed by a four-helix bundle, each active site is 

between the N-terminal parts of helix II and IV of a monomer and the C-

terminal part of helix I and the cytoplasmic domain of the adjacent monomer, 

toward the cytoplasmic part of the protein (Figure 3.1). The cofactor (GSH) 

adopts a U-shape due to the strong interactions between its two terminal 

carboxylic functions and a positively charged region in the deeper part of the 

binding site. In 2014, a second X-ray crystal structure of human mPGES-1 in 

lipidic mesophase was reported in a structural biology study in complex with 

the inhibitor LVJ (2-[[2,6-bis(chloranyl)-3-[(2,2dimethylpropanoylamino)-
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methyl]phenyl]amino]-1-methyl-6-(2-methyl-2-oxidanyl-propoxy)-N-[2,2,2-

tris-(fluoranyl)ethyl]-benzimidazole-5-carboxamide).448 This structure 

provided more information on the structural elements required for the 

interaction with the enzyme, as it is the first reported ligand/mPGES-1 co-

crystal structure. 

 

Figure 3.1 Microsomal prostaglandin synthase-1 (mPGES-1) structure (PDB code: 

4BPM) (secondary structure: chain A blue, chain B red, chain C orange). Glutathione as 

cofactor is depicted in licorice mode; molecular surface focused to the binding site colored in 

gray. 

 

3.2 DHPMs designed from MGST-1 structure 

At the beginning of my PhD, in 2012, a high-resolution crystal structure of 

mPGES-1 in active conformation was not yet available. Therefore, for the 

rational design of new mPGES-1 inhibitors, it was initially used the structure 

of MGST-1,445 another member of the MAPEG family sharing 38% of 

homology with our target protein.447 The dihydropyrimidin-2(1)H-one 

(DHPM) core was chosen as template for biological investigation, as it 

represents a privileged structure, being endowed with several relevant 

pharmacological effects, including calcium channel modulation for the 

treatment of cardiovascular diseases, �1a�adrenergic receptor antagonism, 

useful for benign prostatic hyperplasia, and mitotic kinesin inhibition with 

potential anticancer application.392 In addition to its interesting biological 
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profile, the DHPM core has received considerable attention in drug-discovery 

processes due to its synthetical accessibility through the easy, cheap and rapid 

Biginelli one-pot multicomponent reaction.449 Consequently, molecular 

docking calculations were carried out in order to select the most promising 

compounds, among a large collection of designed synthetically accessible 

DHPMs. It was subsequently accomplished the synthesis of the selected 

compounds which showed the highest binding affinity with MGST-1 active 

site (Scheme 3.1). 

The first group of molecules (14a-e) was synthesized by a microwave-

assisted protocol of the Biginelli reaction promoted by chlorotrimethylsilane 

(TMSCl), a procedure that allowed very short reaction times and good yields 

also in the case of N-susbstituted urea derivatives and thioureas which are 

notably known to give very complex reaction mixtures and poor amount of the 

desired DHPM (Scheme 3.1).418, 422 The synthesis of the second group (14f-l) 

was accomplished in a two-step procedure: firstly, the dihydropyrimidine-2-

thione precursors 14m-q were produced through the same protocol of the 

multicomponent reaction, and subsequently, final desired compounds were 

obtained through a Liebeskind�Srogl cross-coupling.450 Liebeskind-Srogl 

reaction is a carbon-carbon cross-coupling, involving the Pd(0)-catalyzed, 

Cu(I)-mediated reaction of a variety of different thioorganic compounds with 

boronic acids under neutral conditions.451-456 This desulfitative carbon-carbon 

coupling requires stoichiometric amounts of a Cu(I) carboxylate, such as 

Cu(I)-thiophene-2-carboxylate (CuTC)457 as metal cofactor. In the context of 

scaffold decoration of heterocycles, the Liebeskind-Srogl cross-coupling 

reaction can also be applied to cyclic thioureas,458 such as the 

dihydropyrimidine-2-thiones from the Biginelli condensation. Hence, this 

procedure was employed to synthesize compounds 14f-l, using Pd(PPh3)4 as a 

catalyst, CuTC as Cu(I) source and THF as solvent system, under microwave 

irradiation at 100 °C (Scheme 3.1). 
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Scheme 3.1 Structures of selected DHPMs 14a-l and synthetic strategies. 
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Interference of the synthesized compounds on mPGES-1 activity was 

investigated in a cell-free assay using the microsomal fraction of interleukin-

1�-stimulated human A549 cells,225
 in collaboration with professor Oliver 

Werz of Friedrich Schiller University (Germany). The tested DHPMs 

manifested no effect or only a moderate inhibitory activity against mPGES-1. 

In particular, mPGES-1 remaining activity, after treatment with 10 �M of 14a-

l, was not affected in all the cases, except for compounds 14e-g which showed 

to inhibit the enzyme of about 30-35% (Figure 3.2). Nevertheless, since the 

maximal inhibition value was lower than 40%, an IC50 value could not be 

obtained . These data were not in accordance with modeling predictions, thus 

suggesting that the structure of MGST-1, successfully used in the case of 

rational design of triazole-based mPGES-1 inhibitors, was probably unsuitable 

in the case of the DHPM core. However, potent DHPM-based mPGES-1 

inhibitors have been successfully identified utilizing the high-resolution X-ray 

crystal structures of the protein, as illustrated in the next sections. 

 

Figure 3.2 Effect of compounds 14a-k on the activity of mPGES-1. Experiments were 

performed in triplicate. 
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3.3 Investigation of DHPM-based compounds as mPGES-1 modulators: 

rationale from X-ray crystal structure 

On the basis of the additional structural information derived from the high-

resolution X-ray crystal structure of mPGES-1 elucidated in 2013,212 a new 

structure-based drug design was undertaken, focused on the DHPM core for 

mPGES-1 modulation. As a first step, a focused in silico virtual screening was 

performed on a small set of synthetically accessible compounds, by molecular 

docking (15-50, Table 3.1). A qualitative computational filter was introduced, 

based on the respect of some key interactions with the receptor counterpart, in 

order to identify a set of compounds for the subsequent step of chemical 

synthesis and biological evaluation. Molecular docking calculations were 

performed using the first crystallized structure of mPGES-1 (PDB code: 

4AL0) by Sjögren et al.,212 who also proposed a mechanism for PGE2 

isomerisation through a dynamic process in which PGH2 reaches the binding 

site to interact with GSH and other key residues. Accordingly, it can be 

supposed that a potential mPGES-1 inhibitor can act either as a false substrate 

(PGH2) or as a cofactor analogue (GSH), or at last it can behave in both 

ways.459 In the latter case, the inhibitor can displace not only the substrate but 

also the cofactor in the enzyme pocket. In order to simulate the partial or total 

displacement of GSH, molecular docking calculations were performed 

removing the cofactor from the active site. New putative dihydropirymidin-

2(1H)-one-featured inhibitors were designed taking into account the synthetic 

accessibility of the selected molecules. Hence, a first computational study was 

focused on a small set of compounds (Table 3.1) derived from the 

combination of the following chemical synthons: 

1. urea, thiourea or N-methyl urea; 

2. ethyl 3-oxobutanoate or ethyl 4-(4-methoxyphenyl)-2,4-

dioxobutanoate as 1,3-dicarbonyl compound; 

3. seven different aldehydes with increasing steric hindrance.  
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Table 3.1 3,4-dihydropyrimidin-2-one derivatives 15-50. 

 

Entry R1 R2 R3 R4 X 

15 H phenyl CO2C2H5 CH3 O 

16 CH3 phenyl CO2C2H5 CH3 O 

17 H phenyl CO2C2H5 CH3 S 

18 H phenyl 4-(methoxybenzoyl) CO2C2H5 O 

19 CH3 phenyl 4-(methoxybenzoyl) CO2C2H5 O 

20 H phenyl 4-(methoxybenzoyl) CO2C2H5 S 

21 H 3-formylphenyl CO2C2H5 CH3 O 

22 CH3 3-formylphenyl CO2C2H5 CH3 O 

23 H 3-formylphenyl CO2C2H5 CH3 S 

24 H 3-formylphenyl 4-(methoxybenzoyl) CO2C2H5 O 

25 CH3 3-formylphenyl 4-(methoxybenzoyl) CO2C2H5 O 

26 H 3-formylphenyl 4-(methoxybenzoyl) CO2C2H5 S 

27 H 3-ethoxybenzoyl CO2C2H5 CH3 O 

28 CH3 3-ethoxybenzoyl CO2C2H5 CH3 O 

29 H 3-ethoxybenzoyl CO2C2H5 CH3 S 

30 H 3-ethoxybenzoyl 4-(methoxybenzoyl) CO2C2H5 O 

31 CH3 3-ethoxybenzoyl 4-(methoxybenzoyl) CO2C2H5 O 

32 H 3-ethoxybenzoyl 4-(methoxybenzoyl) CO2C2H5 S 

33 H (4-cyanophenyl)pyridin-2-yl CO2C2H5 CH3 O 

34 CH3 (4-cyanophenyl)pyridin-2-yl CO2C2H5 CH3 O 

35 H (4-cyanophenyl)pyridin-2-yl CO2C2H5 CH3 S 

36 H (4-cyanophenyl)pyridin-2-yl 4-(methoxybenzoyl) CO2C2H5 O 

37 CH3 (4-cyanophenyl)pyridin-2-yl 4-(methoxybenzoyl) CO2C2H5 O 

38 H (4-cyanophenyl)pyridin-2-yl 4-(methoxybenzoyl) CO2C2H5 S 

39 H 6,8-dibromo-4-oxo-4H-chromen-3-yl CO2C2H5 CH3 O 

40 CH3 6,8-dibromo-4-oxo-4H-chromen-3-yl CO2C2H5 CH3 O 

41 H 6,8-dibromo-4-oxo-4H-chromen-3-yl CO2C2H5 CH3 S 

42 H 6,8-dibromo-4-oxo-4H-chromen-3-yl 4-(methoxybenzoyl) CO2C2H5 O 

43 CH3 6,8-dibromo-4-oxo-4H-chromen-3-yl 4-(methoxybenzoyl) CO2C2H5 O 

44 H 6,8-dibromo-4-oxo-4H-chromen-3-yl 4-(methoxybenzoyl) CO2C2H5 S 

45 H 5-(3-(trifluoromethyl)phenyl)furan-2-yl CO2C2H5 CH3 O 

46 CH3 5-(3-(trifluoromethyl)phenyl)furan-2-yl CO2C2H5 CH3 O 

47 H 5-(3-(trifluoromethyl)phenyl)furan-2-yl CO2C2H5 CH3 S 

48 H 5-(3-(trifluoromethyl)phenyl)furan-2-yl 4(methoxybenzoyl) CO2C2H5 O 

49 CH3 5-(3-(trifluoromethyl)phenyl)furan-2-yl 4(methoxybenzoyl) CO2C2H5 O 

50 H 5-(3-(trifluoromethyl)phenyl)furan-2-yl 4(methoxybenzoyl) CO2C2H5 S 
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The combination of the most simple aldehydic building block 

(benzaldehyde) with the two dicarbonyl compounds and the three urea 

derivatives yielded a first group of structurally diverse molecules (15-19) to 

submit to docking calculations in order to verify the presence of some key 

interactions with the receptor counterpart, namely: 

· �-� with Tyr130(A), indicative of a good accommodation 

within the GSH binding site; 

· a polar interaction with Ser127(A), a key residue involved in 

PGH2 recognition; 

· polar interactions with Thr131(A), Gln134(A), and van der 

Waals interactions with Tyr28(B) and Ile32(B), belonging to the 

external binding groove.  

None of these 6 compounds was able to properly occupy the external 

groove, establishing at the same time the �- � with Tyr130(A). In particular, 

compounds 15-17, featuring aliphatic substituents at position 5 and 6, were not 

able to interact with both the sites, showing only a partial placement in the 

GSH binding site. However, it was found a pose of 18 in which the 4-phenyl 

group was partially accommodated in the external groove, while the 5-(4-

methoxybenzoyl) moiety was properly oriented to establish a �-� with 

Tyr130(A) (Figure 3.3). A similar binding mode was found for N1-methyl 

derivative 19 and for the thio-analog 20. Since the remaining part of the 

external groove was only partially occupied by the meta-position of the 4-

phenyl group, the substitutions in this direction were gradually expanded. 

Preserving all the other substituents, a new set of compounds featuring a new 

4-(3-formyl-phenyl) moiety was evaluated (21-26). The data obtained showed 

that, even though a better accommodation of 5-(4-methoxybenzoyl) was 

reached, the external groove was still not fully occupied. Furthermore, the 

poses obtained showed that compounds 21-23, featuring aliphatic substituents 

at C5 and C6, were not at all compatible with this binding mode. For these 
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reasons, it was progressively increased the steric hindrance at the C4 position 

of the dihydropyrimidine scaffold, with the introduction of 3-ethoxybenzyl 

(27-32), (4-cyanophenyl)pyridine-2yl (33-38), 6,8 dibromo-4-oxo-4H-

chromen-3-yl) (39-44), and 5-(3-(trifluoromethyl)phenyl)furan-2-yl) (45-50) 

substituents, respectively. The introduction of heteroaromatic rings is due to 

the aim of increasing the possible polar interactions with the hydrophilic 

residues in the external groove. As expected, docking poses, satisfying the 

contemporary �-� interaction with Tyr130(A), were found only in compounds 

featuring 5-(3-methoxybenzoyl) and 6-ethylcarboxylate groups. In more detail, 

docking calculations showed for the 4-(3-ethoxybenzyl) derivatives a binding 

mode comparable to that found for the previously considered 4-(3-

formylphenyl) derivatives. Furthermore, together with the �-� interaction 

between the 4-methoxybenzoyl in C5 and Tyr130 (A), only a partial 

accommodation of the larger 4-cyanophenyl (pyridine-2yl) and 6,8-dibromo-

4-oxo-4H-chromen-3-yl) substituents in the external groove was detected. 

Regarding compounds 48-50, docking analysis showed that the orientation of 

the 4-(5-(3-(trifluoromethyl)phenyl)furan-2-yl) allows better interactions with 

the binding groove counterpart (Figure 3.4).  

 

Figure 3.3 (a) 3D model of 18 in docking with mPGES-1 (PDB code: 4AL0); residues in 

the active site represented in licorice (black captions for residues in chain A and white 

captions for those in chain B) and related molecular surfaces depicted in transparent green 

(for residues able to interact with 18) and transparent red (for residues not able to interact 

with 18). (b) 2D panel representing interactions between 18 and residues in mPGES-1 binding 

site. 
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In order to corroborate computational outcomes, compounds 24, 30, 36, 42, 

48 were initially synthesized (Scheme 3.2) and submitted to biological 

screening. In particular, in this first group of molecules, only the substituent at 

position 4 was varied, while in all compounds the ethyl 4-(4-methoxyphenyl)-

2,4-dioxobutanoate was employed as 1,3-dycarbonil synthon, as it was 

significantly favored over the alkyl analogue in docking simulations. 

Moreover, in consideration that a similar behavior was observed for urea, 

thiourea and N-methylurea derivatives in docking calculations, only urea was 

employed at this stage as Biginelli ureidic synthon.  

With the optimized general conditions reported in Scheme 3.2, the 

synthesis of these compounds was performed through a TMSCl-mediated 

microwave-assisted Biginelli reaction, as described above.  

 

Figure 3.4 Shape complementarity between 6-(5-(3-(trifluoromethyl)phenyl)furan-2-yl) 

substituent and external binding groove of mPGES-1 (PDB code: 4AL0). 

Interference of the test compounds with mPGES-1 activity was investigated 

in a cell-free assay, using the microsomal fraction of interleukin-1�-stimulated 

human A549 cells. Inhibition of mPGES-1 by the test compounds was 

perfectly in line with computational predictions. In fact, among the tested 

compounds, an interesting IC50 value of 4.16 ± 0.47 "M was detected for 

compound 48 (Table 3.2), confirming our previsions regarding the appropriate 

accommodation of a putative inhibitor in the mPGES-1 binding site. 
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Scheme 3.2 Synthetic protocol and chemical structures of synthesized DHPM derivatives. 

 

 

Table 3.2 mPGES-1 inhibition by tested DHPM compounds. Experiments were performed 

in triplicate. 

Entry IC50 ± SEM (�M) 

24 > 30 

30 > 30 

36 > 30 

42 > 30 

46 > 30 

48 4.16 ± 0.47 

49 7.56 ± 0.94 

50 > 30 
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Moreover, maintaining the crucial 4-, 5- and 6- substituents on the 

dihydropyrimidine core, two 48-related compounds were synthesized and 

tested for their biological activity, namely the N1-methyl derivative 49 and the 

thio-analog 50 (Scheme 3.2). The results obtained showed an efficient 

inhibitory activity for 49 (IC50 = 7.56 ± 0.94 �M), but a weak and incomplete 

suppression of mPGES-1 activity for 50 (37% inhibition at 10 µM, IC50 > 30 

µM) (Table 3.2). Since the docking model of 50 confirms the respect of the 

key interactions found for 48 and 49, the differences in biological activities 

could be most likely ascribed to the influence of the chemical properties of 

sulfur versus oxygen (such as dimensions, electronegativity), not properly 

weighted by the scoring functions of the docking software. To further confirm 

that the presence of both 4-methoxybenzoyl group at C5, and 5-(3-

(trifluoromethyl)phenyl)furan-2-yl) group at C4 is necessary for the activity, 

compound 46 was synthesized as negative control. 

As expected, compound 46, lacking the aromatic substituent at C5 was 

found to be inactive. In figure 3.5 the docking model related to the active 

compound 48 is depicted. The 5-(3-methoxybenzoyl) group establishes a �-� 

interaction with Tyr130(A), while the bulky 4-(5-(3-

(trifluoromethyl)phenyl)furan-2-yl) substituent occupies the external binding 

groove, interacting with Thr31(B), Ile32(B), Gln134(A), and Leu135(A); more 

specifically, trifluoromethyl terminal group contributes to these interactions, 

making contacts with Tyr28(B). The 6-ethylcarboxylate function interacts with 

a shallow groove directed toward the cytoplasmic side of the protein, while the 

urea containing portions of the molecules establish polar contacts with 

Ser127(A). Similar binding modes have been observed for the derivatives 49 

and 50, while 46 lacked these fundamental interactions.  

These outcomes have thus allowed to disclose the DHPM scaffold as an 

emerging molecular platform useful for the development of mPGES-1 

inhibitors. Compound 47 and 48 have emerged as new inhibitors of this 
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complex membrane protein and have highlighted the structure-based design 

utilized as a reliable approach in the rational discovery of new mPGES-1 

modulators.  

 

Figure 3.5 (a) 3D model of 48 docked in mPGES-1 active site (PDB code: 4AL0); residues 

in the active site represented in licorice (captions for residues in chain A and white captions 

for those in chain B) and related molecular surfaces depicted in transparent green. (b) 2D 

panel representing interactions between 48 and residues in mPGES-1 binding site. 

 

3.4 Structural optimization of compound 48, the promising DHPM-based 

mPGES-1 inhibitor 

The second crystallized structure of mPGES-1 in complex with the 

inhibitor LVJ (PDB code: 4BPM)16 offered new structural information for the 

optimization of the identified lead compound 48 (IC50 = 4.16 ± 0.47 �M), 

which contains the privileged DHPM chemical core. Since this was the first 

reported co-crystal ligand-protein structure, the binding mode of LVJ was 

carefully analyzed in order to get useful information and to clarify the 

molecular basis for the interaction of a mPGES-1 inhibitor with the receptor 

counterpart. Firstly, LVJ acts as a substrate competitive inhibitor, but is unable 

to displace the cofactor GSH. Its 3D model (Figure 3.6) shows the presence of 

an extended set of polar and hydrophobic interactions of GSH with the key 

residues responsible for the catalytic activity of the investigated protein 

(A:ARG126, A:SER127, A:THR131).  
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Figure 3.6 (a) 3D model of LVJ in the mPGES-1 binding site (PDB code: 4BPM); residues 

in the active site represented in licorice and related molecular surfaces depicted in 

transparent silver; molecular surfaces of the interacting chemical groups of LVJ and 

B:PHE44 (edge-to-face �-� interaction) are highlighted in wireframes. (b) 2D panel 

representing interactions between LVJ and residues in mPGES-1 binding site. 

Importantly, LVJ adopts a peculiar slumped shape in the binding site, and 

this is mainly due to a strong edge-to-face �-� interaction between its 

dichlorophenyl moiety and the phenyl group in the side chain of B:PHE44, 

and similarly with B:HIS53. Moreover, the substituted benzimidazole moiety 

interacts with the external part of the binding site toward chain A, and the 

smaller (2,2-dimethylpropanoylamino)-methyl linear substituent partially 

occupies the binding groove in the upper portion of the active site (Figure 

3.6). In light of the new elucidated structural insights, the binding mode of our 

lead compound 48 (Scheme 3.2) was re-evaluated with this new X-ray 

mPGES-1 structure (Figure 3.7). In particular, in our previous model, it was 

underlined the importance of the 4-methoxybenzoyl group at C5 on the central 

DHPM core that, when absent, dropped the inhibitory activity due to the lack 

of key-interactions with the receptor counterpart. Moreover, a fundamental 

face-to-face �-� interaction emerged between this aromatic moiety and the 

A:TYR130, the latter being normally involved in a stable contact with the 

cofactor GSH promoting the catalytic process.212 In the new model here 

proposed, the binding mode of 48 was evaluated in presence of GSH, in 
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comparison with LVJ-protein interaction, revealing that the main feature of 

these two models is the different orientation of the 4-methoxybenzoyl group at 

C5 (Figure 3.7). In particular, while the 5-(3-(trifluoromethyl)phenyl)furan-2-

yl group at C4 occupies the binding groove in a similar manner, in our new 

model the aromatic ring at C5 is oriented toward the shallow binding groove 

on the cytoplasmic part of the protein, close to the B:PHE44.  

 

Figure 3.7 (a) 3D model of 48 in docking with mPGES-1 (PDB code: 4BPM); residues in 

the active site represented in licorice and related molecular surfaces depicted in transparent 

silver; superimposed structure of LVJ is depicted in transparent iceblue licorice. (b) 2D panel 

representing interactions between 48 and residues in mPGES-1 binding site. 

Nevertheless, although the compound is able to occupy the binding site by 

establishing a large pattern of contacts, the strong edge-to-face �-� interaction 

with B:PHE44, observed for LVJ, was not detectable in this case (Figure 3.7). 

In an effort to improve the activity of our lead compound, three structural 

related analogues of 48 (compounds 51-53, Scheme 3.3), considered as 

reference compound, were designed and synthesized, by making precise and 

accurate slight modifications. In particular, the 5-(3-(trifluoromethyl)phenyl)-

furan-2-yl group at C4 was preserved in light of its good shape 

complementarity with the enzyme, the aromatic substituent at C5 was 

modified in order to reach B:PHE44, and finally the C6 position of the DHPM 

core was simplified, as it showed to be not essential for the protein inhibition.  
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Scheme 3.3 Structures of compounds 51-53 and synthetic strategy. 

 

 

 

Figure 3.8 (a) 3D model of 51 in docking with mPGES-1 (PDB code: 4BPM); residues in 

the active site represented in licorice and related molecular surfaces depicted in transparent 

silver; superimposed structure of LVJ is depicted in transparent iceblue licorice. (b) 2D panel 

representing interactions between 51 and residues in mPGES-1 binding site. 

Three commercially available Biginelli building blocks were used in the 

microwave-assisted procedure, which yielded compounds 51-53 in good yields 

and short reaction times, as outlined in Scheme 3.3. At first, compound 51 was 

synthesized, employing 1-(5-bromo-2-hydroxyphenyl)-1,3-butanedione as 1,3-

dicarbonyl synthon in the Biginelli reaction, to verify whether substitutions on 
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the aromatic ring with H-bond acceptors/donors type (Br and OH) at the C5 of 

the DHPM core could gain favourable interactions with B:PHE44, also in 

consideration that, in virtual screening predictions, the meta bromine showed 

to mimic the chlorine of LVJ inserting deeply in mPGES-1 binding cavity, and 

showed to be more effective than meta chloro and meta hydroxy analogues. 

Moreover, since in the proposed 3D model of 48 the 6-ethylcarboxylate 

function was not involved in fundamental contacts in the binding site, this 

chemical function was replaced with the smaller 6-methyl group. 

Docking studies on 51 showed a slightly better interaction of the (5-bromo-

2-hydroxyphenyl)-oxo substituent at the C5 with B:PHE44 even if, also in this 

case, the moiety revealed to be not perfectly superimposed with that of LVJ 

involved in the �-� with B:PHE44. In vitro biological tests confirmed these 

computational outcomes, with an IC50 = 5.6 ± 0.4 "M, comparable with that of 

48 (IC50 = 4.16 ± 0.47 "M). On the basis of these results, in order to achieve a 

more favourable orientation of the C5 linked moiety in the binding site, an 

unsubstituted aromatic ring was inserted at C5, more spaced from the 

dihydropryrimidine core through the introduction of an oxymethylene linker 

(Scheme 3.3). For this purpose, benzyl acetoacetate was used as 1,3 

dicarbonyl synthon for the synthesis of compound 52. Docking experiments 

supported our hypothesis, revealing a perfect superimposition of the benzyl-

oxy-carbonyl portion at the C5 of 52 with the dichlorophenyl moiety of LVJ 

and showing to establish the key edge-to-face �-� with B:PHE44 (Figure 3.9). 

As expected, the inhibitory activity of 52 on mPGES-1 was improved, with an 

IC50 = 1.4 ± 0.6 µM. After having identified the optimal C5 substituent on the 

DHPM core, the possibility of modifying the N1 position was also considered, 

since in 48 this unsubstituted nitrogen was not involved in any key interactions 

with polar residues. A 2-carboxy-ethyl function was thus inserted at N1 

(compound 53), also in accordance with the suggestion of molecular docking 

experiments performed on differently N1 substituted compounds. 
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Figure 3.9 (a) 3D model of 52 in docking with mPGES-1 (PDB code: 4BPM); residues in 

the active site represented in licorice and related molecular surfaces depicted in transparent 

silver; superimposed structure of LVJ is depicted in transparent iceblue licorice. (b) 2D panel 

representing interactions between 52 and residues in mPGES-1 binding site. 

 

Figure 3.10 (a) 3D model of 53 in docking with mPGES-1 (PDB code: 4BPM); residues in 

the active site represented in and related molecular surfaces depicted in transparent silver; 

molecular surfaces of the interacting chemical groups of 53 and B:PHE44 (edge-to-face �-� 

interaction) are highlighted in wireframes; superimposed structure of LVJ is depicted in 

transparent iceblue licorice. (b) 2D panel representing interactions between 53 and residues 

in mPGES-1 binding site. 

The significant improvement of the biological profile of 53 (IC50 = 0.41 ± 

0.02 �M) fully validated our computational approach (Figure 3.10), 

confirming the hypothesis that the additional 2-carboxy-ethyl moiety at N1 

gains relevant polar interactions with the key residue A:SER127 that, in turn, 

contributes to the catalytic isomerization of PGH2 to PGE2.
212  
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In consideration that all the molecules have a stereocenter at C4 position of 

the DHPM core, computational calculations were performed on both the 

possible enantiomers. Results obtained for 53 showed only slight different 

binding energy values between them which, however, prompted us to further 

explore the stereochemical aspect on DHPM chemistry (studies are currently 

in progress). Anyway, the fulfillment of the key-interactions with the receptor 

counterpart was found for both the possible enantiomers at C4, albeit a 

difference in predicted binding energies was observed due to the slightly 

different orientation of the DHPM core into the mPGES-1 binding cavity 

(Figure 3.11).  

 

Figure 3.11 Superimposition between the two possible enantiomers of 53 at C4 (R 

enantiomer colored by atom types: C black, N blue, O red, H light gray, F pink; S enantiomer 

colored in transparent orange) in docking with mPGES-1. Predicted binding affinities, as 

calculated with Glide software: -7.48 kcal/mol (R enantiomer); -8.83 kcal/mol (S enantiomer). 

In conclusion, the careful analysis of mPGES-1 crystal structure in complex 

with its known inhibitor LVJ offered precious insight for the structural 

optimization of our DHPM-based mPGES-1 inhibitor 48, allowing to disclose 

the 10-fold more potent analogue 53. The described structure-activity 

relationships and the very useful synthetic approach constitute important 

guidelines for the design of further improved DHPM-based inhibitors of 

mPGES-1. 
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Discovery of new Hsp90 C-terminal modulators: synthesis 

and biological evaluation of 3,4-dihydropyrimidin-2(1H)-one 

derivatives. 

 

 

 

 

 

 

 

Based on: Strocchia M., Terracciano S., Chini M. G., Vassallo A., Vaccaro M. 
C., Dal Piaz F., Leone A., Riccio R., Bruno I., Bifulco G. Chem Commun 2015, 
Article in press, DOI: 10.1039/C4CC10074C. 
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4.1 Stressing the discovery of Hsp90 C-terminal inhibitors 

In recent years many natural and synthetic Hsp90 N-terminal inhibitors 

have been developed, some of which show excellent antitumor activity and 

have entered clinical trials,348 while only few C-terminal inhibitors have been 

identified so far.361 In contrast to N-terminal modulators, which have some 

drawbacks in clinical application (high concentration for biological effect, 

poor solubility and toxic side effects),353-355 the C-terminal inhibitors represent 

a promising therapeutic alternative for targeting malignant cells, as they do not 

induce the deleterious pro-survival heat shock response commonly reported 

for N-terminal ligands.356, 357 The heat shock response (HSR) is a highly 

conserved mechanism in all organisms, from yeast to humans, induced by 

proteotoxic insults such as heat, oxidative stress, toxins, bacterial infections 

and heavy metals.460 This ubiquitous reaction suggests that the HSR is crucial 

for survival in a stressful environment. Expression of the heat shock proteins 

(HSPs) is increased as a result of HSR induction, which is mediated by the 

transcription factor heat shock factor 1 (HSF-1).461, 462 In non-stressed cells, 

HSF-1 is found as a monomer, bound to Hsp90 (inactive state) in the 

cytoplasm.463-465 In case of stress, or upon administration of an N-terminal 

Hsp90 inhibitor, HSF-1 is released from the heteroprotein complex.357 As a 

monomer, HSF-1 is unable to bind to DNA but, once dissociated from Hsp90, 

it trimerizes, undergoes hyperphosphorylation and translocates to the 

nucleus.466 As an activated trimer, HSF-1 is able to bind the so-called heat 

shock element sequence on the DNA and directs transcription, resulting in the 

expression of HSPs.467 N-terminal Hsp90 inhibitors induce the dissociation of 

HSF-1 from Hsp90 and trigger the pro-survival heat shock response, which 

results in increased levels of HSPs, giving rise to a cytoprotective mechanism 

that allows cancer cells to escape the cytotoxic effect (Figure 4.1).358 In 

addition, Hsp90 levels are remarkably increased, producing dosing and 

scheduling issues.468, 469  
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Figure 4.1 Heat shock response.
462 

Conversely, C-terminal Hsp90 inhibitors have an opposite effect, as they 

lock HSF-1 into its inactive Hsp90-bound state and promote its degradation 

via the proteasome.359, 470, 471 This aspect of C-terminal inhibition is 

particularly relevant, due to the possibility of overcoming the limitations 

associated with N-terminal inhibition. The first identified C-terminal ligand 

was novobiocin (IC50 = 700 µM against Hsp90 in SKBr3), a natural coumarin 

antibiotic which inhibits type II topoisomerases.362 Since novobiocin�s 

discovery, only few other C-terminal inhibitors have been found, including 

taxol,374 epigallocatechin-3-gallate,372 cisplatin,373 sansalvamide A 

derivatives,377 and novobiocin�s structural related synthetic analogues 

(novologues).367, 368, 389 Although the binding mode of Hsp90 N-terminal 

inhibitors has been well defined,472 the structural elements required for 

interaction with Hsp90 C-terminus are currently poorly characterized, due to 

the absence of a co-crystal structure of this site with any inhibitor. A recent 
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work on novobiocin analogues, by molecular dynamics approaches, has 

provided additional information on structural variations of Hsp90 C-terminal 

binding site;473 however, the vast conformational space of this flexible 

chaperone is still a strong limitation for the rational design of selective 

inhibitors of this domain.  

 

4.2 Targeting Hsp90 C-terminal domain by DHPM-based derivatives 

In an attempt to identify non-natural inspired modulators as new molecular 

templates for the inhibition of Hsp90 C-terminal domain, published data were 

used as starting assumptions. Csermely et al.
335, 337 reported that this domain is 

able to interact with both purine and pyrimidine nucleotides (GTP and UTP 

preferentially), unlike the N-terminus which is highly specific for adenine 

nucleotides. On the basis of the structural analogy between UTP and the 

privileged heterocyclic core 3,4-dihydropyrimidin-2-(1H)-one (DHPM), a 

collection of different decorated DHPM derivatives  was synthesized 

(compounds 54-85, Figure 4.2 and 4.3), by a microwave-assisted Biginelli 

multicomponent reaction418 through the combination of the following synthons 

(Scheme 4.1): 

· seven different aldehydes (A-G); 

· four urea derivatives (i-iv); 

· two 1,3-dicarbonyl compounds (a-b). 

In most cases, compounds were obtained by using chlorotrimethylsilylane 

(TMSCl) as the mediator of the microwave-assisted Biginelli reaction but, for 

some compounds, TMSCl was replaced by the Lewis acids ytterbium(III) 

trifluoromethanesulfonate [Yb(OTf)3] and iron(III) chloride [Fe(Cl)3] (see 

Experimental Section). 

Biological screening on some of the synthesized compounds is still in 

progress (71-85, Figure 4.3), while activity of 54-70 (Figure 4.2) has already 

been investigated and will be here discussed. 
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Scheme 4.1 General synthetic procedure for the synthesis of compounds 54-85 and 

structures of the building blocks used to generate the collection of DHPMs. 

 

Regents and conditions: a) TMSCl (1 equiv), MeCN b) Yb(OTf)3 (10 mol %), 
AcOH/EtOH (3:1) c) FeCl3 (10 mol %), AcOH/EtOH (3:1). 

Figure 4.2 Structures of compounds 54-70 (preliminary screened compounds). 
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Figure 4.3 Structures of compounds 76-85 (biological evaluation in progress). 

Biological evaluation has been accomplished in collaboration with 

Professor Antonietta Leone and Fabrizio Dal Piaz of Salerno University. Once 

synthesized, compounds 54-70 were evaluated for the putative binding to the 

recombinant Hsp90�, by a Surface Plasmon Resonance (SPR)-based 

approach.474 On the basis of this preliminary screening, 7 out of 17 tested 

molecules with low KD values were identified (Table 4.1 and Figure 4.4). 

Among these, there are compounds with the less bulky 3-ethoxyphenyl and 3-

formylphenyl substituents at R2 of the DHPM ring (54, 55, and 59-61 

respectively), one molecule with a bulkier group at this position (65) and 

compound 70, obtained from derivatisation of 59 by reductive amination.  

Actually, the results obtained on this small collection of compounds do not 

allow to draw a clear SAR profile. In any case, beyond the identification of 

DHPM as a suitable scaffold for the development of new promising Hsp90 

inhibitors, some speculations can be argued. In particular, all the compounds 

with a N-phenyl at N-1 position were shown to bind to the immobilized 
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protein with nanomolar (KD values of 76 ± 7 and 30 ± 1 nM for 54 and 70, 

respectively) or micromolar affinity (KD = 3.86 ± 0.33 µM for 59), with the 

exception of compound 63 which did not exhibit any binding to Hsp90�, 

probably due to the presence of the bulkier (4-cyanophenyl)pyridin-2-yl 

group. 

Table 4.1 Thermodynamic constants measured by SPR for the interaction between tested 

compounds and immobilized Hsp90�. 

Entry KD (µM) 

54 0.0756 ± 0.0071 

55 0.0137 ± 0.0017 

56 No Binding 

57 No Binding 

58 No Binding 

59 3.860 ± 0.331 

60 0.176 ± 0.0089 

61 0.3626 ± 0.0289 

62 No Binding 

63 No Binding 

64 No Binding 

65 1.1475 ± 0.098 

66 No Binding 

67 No Binding 

68 No Binding 

69 No Binding 

70 0.0295 ± 0.0014 

17-AAG 0.388 ± 0.089 

 

Neither the effect of a sulfur atom at the C-2 position of the ring could be 

clearly rationalized. Indeed, while the thio-analogue of 55, compound 56, 

showed no affinity for the immobilized protein, on the contrary compound 65, 

the thio-derivative of 64, was the only (4-cyanophenyl)pyridin-2-yl-containing 

molecule able to interact with Hsp90�; furthermore, compounds 60 and 61, 
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more related to 55 and obtained utilizing respectively urea and thiourea in the 

multicomponent reaction, were both tight binders (KD values of 176 ± 9 and 

363 ± 29 nM, respectively). Finally, the 5-(3-(trifluoromethyl)phenyl)furan-2-

yl substituent at C-4 showed to be not effective, since compounds 66-69 did 

not bind at all to the immobilized target protein. 

 

Figure 4.4 Surface Plasmon Resonance sensorgrams acquired for compounds interacting 

with Hsp90� and for the positive control 17-AAG. Each compound was injected onto an 

Hsp90� modified sensor chip at 6 different concentrations in the range 0.025�1 µM. 

 

4.3 Antiproliferative assays, western blot analysis and effect on cell cycle 

progression 

The seven identified Hsp90� binders (54, 55, 59-61, 65, 70) were tested for 

their potential antiproliferative effect in A375 (human melanoma) and Jurkat 

(human leukemic) cell lines. Compound 70 exhibited IC50 values of 150 ± 0.3 

µM in both cancer cell lines, while 55, 59-61 and 65 had no cytotoxicity. The 
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best result was reported for compound 54, which showed moderate cytotoxic 

effects at micromolar concentration, with IC50 values of 50.8 ± 0.2 and 20.8 ± 

0.3 µM in A375 and Jurkat, respectively. Under the same experimental 

conditions, IC50 values for 17-AAG treatment were 2.1 ± 0.3 µM in A375 and 

9.6 ± 0.15 µM in Jurkat cell lines, in agreement with those reported by Dal 

Piaz et al.
475 and Liu et al.

476 Interestingly, the cytotoxic effect found for 

compound 54 was in line with SPR analyses, in which 54 resulted as one of 

the most efficient binder to the immobilized recombinant Hsp90� (KD of 76 ± 

7 nM). Furthermore this compound had no negative effect on PHA-stimulated 

proliferating PBMC, a non-tumour cell line utilised as control (the percentage 

of non-viable cells after 24 h of treatment with 50 µM of compound 54 (about 

8% ± 0.7) was similar to that observed control cells (about 7% ± 0.5) treated 

with DMSO). To ascertain that the cytotoxic activity of compound 54 was 

associated with changes in Hsp90 modulation, the level of expression of some 

Hsp90 client oncoproteins was verified in treated and untreated cancer cell 

lines, by western blot analysis (Figure 4.5).  

 

Figure 4.5 Effect of compound 54 on Hsp90 client protein levels in A375 and Jurkat cells. 

The shown blots are representative of three different experiments with similar results. 

Following 24-h exposure to compound 54, the levels of Hsp90 and Hsp70 

proteins were unaffected, while the level of the client proteins Raf-1 and p-Akt 

was strongly down-regulated (about 50-70% less compared to untreated cells, 
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by densitometric estimation) in A375 and Jurkat cell lines. These data 

suggested that the binding of compound 54 might cause conformational 

changes of Hsp90 structure, thus preventing its chaperone activity, necessary 

for stabilizing the oncoproteins, which are therefore subsequently addressed to 

the proteolytic degradation.289 It is worth to note that exposure to compound 

54 did not cause any significant increase in the level of Hsp90 and Hsp70 in 

both cancer cell lines, evidencing that the undesired HSR was not induced.  

To further investigate the cytotoxic effects induced by compound 54, the 

cell cycle progression of treated cancer cells versus normal cell PHA-

stimulated PBMC was analyzed, using flow cytometric analysis.477 The A375, 

Jurkat and PBMC cells were incubated for 24 h with concentrations close to 

IC50 values of 54 or 17-AAG. Cell cycle distribution analysis indicates that, 

unlike 17-AAG, compound 54 affects the cell cycle inducing a G2/M arrest in 

both cancer cell lines, and a consequent increase of subG0/G1 DNA content, 

indicative of apoptotic/necrotic cell death, in the Jurkat cells (Figure 4.6). 

Compound 54 did not exhibit any pro-death or cytostatic activity in PHA-

stimulated proliferating PBMC (data not shown).  

 

Figure 4.6 Quantification of cell cycle distribution of viable A375 (A) or Jurkat (B) cells 

treated with DMSO, compound 54 (50 or 20 µM, respectively) or 17-AAG (2 or 10 µM, 

respectively) for 24 h, evaluated by PI staining. Results are expressed as means ± SD of three 

independent experiments, performed in duplicate (***P < 0.001, ** P < 0.01, *P < 0.05 

versus control). 
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4.4 Study of Hsp90�/54 interaction  

With the aim of identifying the Hsp90� region involved in the binding of 

54, a limited proteolysis-mass spectrometry-based approach was employed out 

for the structural analysis of the Hsp90�/54 complex. The efficiency of this 

approach, in the investigation of Hsp90�/inhibitor interaction, relies on the 

evidence that exposed, weakly structured and flexible regions of a target 

protein can be recognized by a proteolytic enzyme and, therefore, the observed 

differences in the proteolytic patterns, in the presence or in the absence of a 

putative protein ligand, can be useful to identify the protein regions involved 

in the molecular interactions.475, 478 The proteolytic patterns obtained both on 

Hsp90� and on the Hsp90�/54 complex, using trypsin or chymotrypsin as 

proteolytic agents, are summarized in Figure 4.7. A comparison between them 

confirmed a direct interaction between 54 and the chaperone. Indeed, it was 

observed that the peptide bonds following Lys435 and Lys614, preferential 

cleavage sites of the native chaperone in absence of 54, were protected in the 

complex, thus indicating that the middle and C-terminal domain of Hsp90� are 

likely involved in the ligand binding.  

 

Figure 4.7 Schematic representation of limited proteolysis experiments. The preferential 

cleavage sites detected on recombinant Hsp90� and on the Hsp90�/54 complex are indicated 

in black. The Hsp90� N-terminal domain is highlighted in light grey, while the middle domain 

is boxed and the C-terminal domain is highlighted in grey. 

The conformational changes of Hsp90 induced by compound 54, through a 

likely interaction with its C-terminus encouraged to evaluate whether this 

binding could affect also Hsp90� oligomerisation, as previously reported for 

other C-terminal inhibitors, such as some novobiocin-related compounds366 or 
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(-)-epigallocatechin-3-gallate.372 To evaluate this hypothesis, an Hsp90� 

dimerisation experiment, using a chemical cross-linking agent on both the full-

length protein and on the Hsp90�/54 complex, was carried out.372 

 

Figure 4.8 Inhibition of Hsp90� oligomerisation by compound 54. 

Compound 54 showed to inhibit the chemically-induced oligomerisation of 

the full-length Hsp90 (Figure 4.8). Under the experimental conditions used, 

and in the presence of the cross-linking agent, the protein tended to form 

tetramers, while incubation of Hsp90� with 54 clearly prevented protein 

tetramer formation. These effects on Hsp90� oligomerisation closely resemble 

those observed for (-)-epigallocatechin-3-gallate,372 thus confirming a similar 

interaction of 54 with Hsp90�. Taken together, the experimental data from 

limited proteolysis and those from oligomerisation assays indicated that 

compound 54 interacts with the C-terminal domain of Hsp90�. Finally, 

molecular docking was performed in the attempt to obtain a binding mode of 

54 in the C-terminal pocket. The chosen model receptor for computational 

analyses was the ATP-bound active state of Hsp82, yeast homolog of Hsp90� 

(PDB code: 2CG9),341 and its sequence alignment with the human protein, 

reported by Lee et al.
479 As recently reported by Colombo et al.,473 the most 

frequent residues interacting with inhibitors are represented by Arg591, 

Asp503, Lys423, Gln596, and Arg599 of chain B, and Lys594 and Glu477 of 

chain A (Hsp90 residue numbering as in the PDB entry 2CG9).341 
Figure 4.9 
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clearly shows the interactions of 54 with the region located at the dimerisation 

site interface (residues 587-594, chain A). 

 

Figure 4.9 Three dimensional model of 54 at interface of C-terminal domain of chain B 

(orange ribbon) and chain A (yellow ribbon) of the Hsp82, yeast homolog of Hsp90�. 

In more detail, the contemporary �-cation interaction with Arg591 of chain 

B and Lys594 of chain A, together with the hydrophobic contacts with the key 

residues, such as Gln596, Asp503, Glu477, can account for its inhibitory 

activity. These results are consistent with the data obtained from limited 

proteolysis and oligomerisation assays, confirming that the C-terminal domain 

of Hsp90! (Lys614Hsp90 (Lys594Hsp82)) is involved in the ligand binding 

responsible for its inhibitory activity. 

In Table 4.2, the most representative properties of compounds 54-70 are 

reported and, among them, predicted apparent Caco-2 cell permeability 

(nm/sec) was considered with particular attention.480, 481 

Interestingly, 54 shows the highest predicted Caco-2 cell permeability with 

respect to the other Hsp90! binders (55, 59-61, 65 and 70) emerged from the 

SPR assay. The presence of a 3-ethoxyphenyl group in 54 at R2 position 

increases the predicted Caco-2 cell permeability of » 4 folds with respect to 

the strictly related compound 59 which instead contains at R2 the 3-

formylphenyl group; this could explain their different in-cell activity, together 

with the higher KD value observed for 59. 
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Table 4.2 Predicted properties of tested compounds calculated by QikProp algorithm. 

Entry mol MWa QPPCaco2b metabc RuleOfFived rtvFGe QPlogPo/wf QPlogSg 

54 380.4 1444.6 4 1 1 4.28 -5.33 
55 424.5 538.0 4 0 2 2.98 -4.56 
56 440.5 1572.8 5 1 3 5.21 -6.59 
57 274.3 1012.5 3 0 1 3.33 -4.39 
58 302.3 244.1 3 0 1 5.07 -6.54 
59 364.4 344.6 3 0 1 3.67 -5.36 
60 408.4 88.1 3 0 2 5.38 -6.37 
61 424.5 295.7 4 0 3 3.88 -6.59 
62 376.4 204.1 3 0 1 6.00 -6.94 
63 438.5 232.3 3 1 1 5.32 -7.17 

64 482.5 71.0 3 0 2 3.60 -6.58 
65 498.6 340.2 4 0 3 5.00 -8.00 
66 408.4 936.7 4 1 1 2.20 -3.49 
67 394.4 566.0 4 1 1 3.81 -5.67 
68 514.5 261.9 4 2 1 4.94 -7.64 
69 530.5 1289.1 5 2 2 5.15 -6.32 
70 433.5 241.0 5 1 1 5.10 -6.88 

a Molecular weight, range 95% of drugs (130/725). b Caco2 cell permeability in nm/s, range 95% of 
drugs (<25 poor, >500 great). c Number of primary metabolites. Range 95% of drugs (1/8). d Number of 
violations of Lipinski�s rule of five.35 The rules are: mol_MW < 500, QPlogPo/w < 5, donor HB !5, 

accptHB !10. Compounds that satisfy these rules are considered drug-like. e Number of reactive 
functional groups, range 95% of drugs (0 � 2). f Log of the octanol/water partition coefficient, range 
95% of drugs (2/6.5). g Log of aqueous solubility S (mol/L), range 95% of drugs (-6.5/0.5). 

Given the promising results on compound 54, the DHPM collection was 

further expanded by synthesizing other structural related analogues of this 

compound has been undertaken in order to get more information and to 

provide a clear structure-activity relationships profile against Hsp90. The 

structures of some 54-derivatives are shown in Figure 4.10. Their biological 

evaluation as well as and the synthesis of further analogues are currently in 

progress. 

Figure 4.10 Synthesized analogues of compound 54 to explore SAR against Hsp90. 
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During the second year of my PhD, in 2013, I joined Prof. Hans Hebert�s 

research group at the Department of Biosciences and Nutrition of Karolinska 

Institutet (Sweden), where I spent seven months. During that period, my 

research was carried out under the supervision of Dr. Caroline Jegerschöld and 

was addressed to the heterologous expression and two-dimensional 

crystallization of human mPGES-1. Results of that work are here discussed. 

 

5.1 Membrane protein overexpression in E. coli 

Integral membrane proteins are notoriously difficult to study, as their 

natural abundance is usually too low to isolate sufficient material for structural 

and biochemical investigation. Consequently, membrane protein 

characterization studies can be accomplished only after appropriate 

overexpression procedures in suitable hosts.482-486 Membrane proteins are 

grouped in two main classes: b-barrel and helical bundle membrane 

proteins.487 b-barrel membrane proteins can be more easily obtained than 

helical bundle ones, as they can be readily isolated and refolded after 

overexpression from inclusion bodies.488 Conversely, despite remarkable 

efforts, the refolding of helical bundle membrane proteins after denaturing 

isolation from inclusion bodies is very challenging and frequently 

unsuccessful.489 Therefore, overexpression of helical membrane proteins, 

through accumulation in a membrane system, is actually the preferred strategy, 

as it avoids the refolding problems and enables protein purification after 

detergent extraction. The bacterium E. coli is the most widely used host,490 

although membrane protein overexpression is often toxic to prokaryotic cells, 

hence preventing biomass formation and strongly reducing yields.482, 491 

Toxicity to their over-production host is just one of the problems to deal with: 

in fact, the unavailability of a systematic, generic, and high-throughput-

compatible method, the requirement of lipids for correct folding and function, 
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and finally the need to use detergents that can destabilise the overexpressed 

protein are further difficulties to be faced.492-494 

Bacteriophage T7 RNA polymerase (T7RNAP) is often used to drive 

recombinant protein expression in E. coli.495 T7RNAP recognizes the T7 

promoter, governing the expression of the target protein, and transcribes 8 

times faster than E. coli RNAP, allowing high yields of produced protein.496, 

497 In E. coli BL21(DE3) strain and its derivatives,498, 499 the gene encoding 

T7RNAP is under control of the IPTG-inducible, not well-titratable lacUV5 

promoter, a strong variant of the wild-type lac promoter.497, 500, 501 The 

rationale behind BL21(DE3) is very simple; the more mRNA is produced, the 

more protein can be overexpressed. However, this assumption is not always 

correct, especially in the case of membrane proteins.502 Indeed, membrane 

proteins overexpression in BL21(DE3) is typically toxic, resulting in 

accumulation of cytoplasmic aggregates containing the overexpressed protein, 

proteases, chaperones, many essential cytoplasmic proteins, and many 

precursors of periplasmic and outer membrane proteins.503 Moreover, 

membrane protein overexpression causes an inefficient ATP production, due 

to the reduced levels of respiratory chain complexes in the cytoplasmic 

membrane. These effects are caused by a too fast transcription/translation rate, 

which leads to saturation of the bacterial membrane protein insertion 

machinery, the Sec translocon,504 that has a severe impact both on the 

composition and on the functioning of the cell envelope, as it is proved by 

hampered cell division (Figure 5.1).503 

An expedient to harmonise translation and insertion into the membrane of 

the recombinant membrane protein would be therefore the minimization of the 

toxic effects derived from overexpression. 
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Figure 5.1 Consequences of membrane protein overexpression in E. coli.
503

 

BL21(DE3)-derived strains with improved membrane protein 

overexpression characteristics were isolated in the laboratory of John Walker: 

BL21(DE3) cells, able to cope with the toxic effects of membrane protein 
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overexpression, were selected and led to the C41(DE3) and C43(DE3) strains, 

commonly known as the Walker strains, which are often used to overexpress 

membrane proteins.505 However, they do not always allow to get improved 

yields for all tested membrane proteins.506 Mutations in the lacUV5 promoter, 

governing expression of the T7 RNAP, play a key role in the improved 

membrane protein overexpression observed with the Walker strains.506 As a 

consequence of these mutations, much lower amounts of T7 RNAP are 

produced upon the addition of IPTG, when compared to BL21(DE3). 

Therefore, the risk of saturating the Sec translocon capacity upon membrane 

protein overexpression is diminished. 

 

5.2 Lemo21(DE3) E. coli strain 

The mutations in the lacUV5 promoters in the Walker strains can be 

mimicked in BL21(DE3) by dampening T7RNAP activity through its natural 

inhibitor, T7 lysozyme (T7Lys).507 Expression of T7Lys is under the control of 

a rhamnose promoter, which is extremely well titratable, meaning that the 

amount of rhamnose added correlates with the amount of protein expressed.508 

T7Lys was placed under the control of an L-rhamnose inducible promoter 

(rhaBAD) on a pACYC derived plasmid, designated pLemo. The rhaBAD 

promoter has some features that make it extremely well suitable for expression 

of the T7RNAP inhibitor T7Lys: it is exceptionally well titratable, covers a 

broad window of expression intensities, and finally it functions independently 

of strain background (Figure 5.2).508 BL21(DE3) transformed with pLemo is 

referred to as Lemo21(DE3).506 In Lemo21(DE3) strain a clear correlation 

between the L-rhamnose concentration, growth, and protein production was 

observed. Upon increase of L-rhamnose concentrations, overgrowth of the 

culture, by nonexpressing cells and aggregate formation, were prevented. 

Moreover, at the optimal concentration of L-rhamnose, only mild induction of 

bacterial chaperones was detected and oxygen consumption was not affected. 



Results and Discussion 

 

 

- 98 - 
 

Interestingly, screening the overexpression of various membrane proteins in 

Lemo21(DE3) in the presence of different amounts of rhamnose suggested 

that this strain may be very well suitable for optimizing the E. coli-based 

production of membrane proteins.506, 509-511 

Given the tunable characteristics of the Lemo21(DE3) for membrane 

protein overexpression, this strain has been employed for the heterologous 

expression of the human homotrimeric membrane protein mPGES-1, with the 

aim of performing 2D-crystallization studies in order to evaluate the 

interaction of our identified DHPM inhibitors with this enzyme.  

 

Figure 5.2 Optimizing membrane protein overexpression in Lemo21(DE3) strain.
510 

 

5.3 mPGES-1 overexpression in Lemo21(DE3) strain 

Human mPGES-1 had been previously overexpressed in E. coli 

BL21(DE3)pLysS competent cells.446 In that case, the electron 

crystallographic structure of the enzyme was elucidated at 3.5 Å in-plane 

resolution. However, the protein was in its closed conformation, while only its 

open active form represents the suitable state for ligand/protein interaction 

studies. In an attempt to isolate mPGES-1 from a different host for further 

structural studies finalized to investigate the interaction between this 
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membrane protein and its ligands, an expression in a bacterial strain, more 

suitable for membrane protein overexpression, was carried out. Preliminary 

screenings pointed out that the Walker strains, C41(DE3) and C43(DE3), often 

used for overexpression of membrane proteins, resulted inappropriate in the 

case of mPGES-1. Therefore, a strain more similar to the previously used 

BL21(DE3)pLysS, but engineered for the production of proteins considered as 

�difficult� to be overexpressed, was employed: the Lemo21(DE3) strain.486 

 

Figure 5.3 Screening of the optimal overexpression condition of His6-mPGES-1 in 

Lemo21(DE3) cells. Results are shown in the case of induced protein expression in LB 

medium at 30 °C.(a) Western Blot analyses of overexpressed protein at different L-rhamnose 

concentrations. (b) SDS-PAGE of samples from Western Blot experiments. 

Lemo21(DE3) competent cells were transformed with pSP19T7LT-His6-

mPGES1 vector, expressing the protein with a hexahistidine tag (His6-

mPGES1) at the N-terminal portion. Initial expression screening was carried 

out by inoculating a starter culture of transformed Lemo21(DE3) cells in 20 

ml of Luria-Bertani (LB) or Terrific broth (TB) at different L-rhamnose 

concentrations (0 � 4 mM), by inducing protein expression with the addition of 

0.4 mM Isopropyl !-D-1-thiogalactopyranoside (IPTG) at different 

temperatures (in a range between 20 and 37 °C). Purification of cell lysates on 

nickel magnetic beads (Dynabeads® Life Technologies) and analysis by SDS-

PAGE, followed by Western Blot, highlighted that a major amount of 
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overexpressed protein was obtained in LB medium at 2 or 4 mM of L-

rhamnose by inducing protein expression at 30 °C (Figure 5.3).  

The optimal identified conditions were employed to scale-up mPGES-1 

overexpression in 1 liter culture of Lemo21(DE3) cells in LB medium at 2 

mM L-rhamnose concentration. Cells were grown at 37 °C until an appropriate 

value of  optical density was reached (OD600 = 0.4�0.6), afterwards 

temperature was cooled to 30 °C and protein expression was induced by the 

addition of IPTG. Cells continued to grow over-night at 30 °C and were 

subsequently harvested by centrifugation and lysed by sonication. His6-

mPGES1 was purified from the whole cell extract, after detergent 

solubilisation of membrane proteins (4% Triton X-100), by a two-step 

combination of hydroxyapatite followed by immobilized metal ion affinity 

chromatography on a chelating Sepharose column charged with Ni2+. The 

solubilised extract was mixed with hydroxyapatite resin and the unbound 

fraction was loaded on the nickel column. All His6-mPGES-1 was retained on 

the column, and the unspecifically bound proteins were removed by a wash 

step of 60 mM imidazole. Pure His6-mPGES-1 was then eluted by the addition 

of 350 mM imidazole (Figure 5.4a). The eluted protein was instantly loaded 

on a desalting column to avoid any possible damage by the high imidazole 

concentration. A 17,500 purified protein on Comassie-staining SDS-PAGE 

gels was identified. The molecular weight of the purified protein was 

calculated to 17,500 from its electrophoretic mobility relative to standards 

used for SDS-PAGE gel. This value is in agreement with the theoretical 

molecular weight of human His6-mPGES1 (17,900) (Figure 5.4a). The yield 

was 0.2�0.5 mg of purified protein per 1 liter of Lemo21(DE3) expression 

culture. The purified protein was identified as mPGES-1 by immunoblot 

analysis, using rabbit polyclonal antibody directed against mPGES-1. 

Moreover, the correct assembly in its native trimeric form was confirmed by 

High Resolution Clear Native Electrophoresis (hrCNE),512 which revealed a 
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band at 66,000 perfectly compatible with the native molecular weight of 

trimeric His6-mPGES1 (53,700) solubilised in detergent micelles (Figure 

5.4b). 

 

Figure 5.4 Large scale expression of human His6-mPGES1. (a) SDS-PAGE from large 

scale purification of His6-mPGES1 overexpressed in the Lemo21(DE3) strain in the presence 

of 2.0 mM L-rhamnose.(b) High-resolution clear native electrophoresis (hrCNE) of the 

purified protein. 

 

Figure 5.5 Two-dimensional crystallisation of membrane proteins.
513
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Purified His6-mPGES1 was subsequently subjected to two-dimensional 

crystallographic experiments in order to proceed with structural 

characterization by electron microscopy studies. Electron crystallography is 

the only structural biology branch in which a membrane protein is crystallized 

within the context of a membrane and from which atomic resolution structures 

of both protein and lipid can emerge.513 Two-dimensional crystals are prepared 

by slow dialysis, which allows reconstitution of the membrane protein into a 

lipid bilayer. This is accomplished by mixing the detergent-solubilised protein 

with detergent-solubilised lipids. The detergent is then removed by slow 

dialysis and its removal induces the lipids to begin to form membranes in 

which the protein is integrated (Figure 5.5). This process must be optimized 

with the aim of inducing the formation of large and very well ordered 

crystalline sheets or vesicles.  

 

Figure 5.6 Two-dimensional crystals of human His6-mPGES1 overexpressed in 

Lemo21(DE3) cells. 
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In the case of His6-mPGES1, two-dimensional crystals were grown by 

adding to the protein, solubilised in 1% Triton X-100, the lipid (bovine liver 

lecithin) at a low molar lipid to protein ratio of 9. The protein-lipid-detergent 

mixture was subsequently subjected to slow dialysis, by using a buffer as the 

one used for protein storage, but with 20% glycerol and lacking the detergent. 

Negatively stained samples, analysed by transmission electron microscopy, 

disclosed 1 x 0.3 µm crystals with a hexagonal symmetry in two layers 

(Figure 5.6). Unfortunately, crystals were not suitable for electron diffraction 

studies due to their small size. Several attempts were made to improve the 

quality of mPGES-1 crystals, such as repurification on magnetic beads of the 

eluate from Ni-NTA column, washes/elution of Ni-NTA column charged with 

His6-mPGES1 at different imidazole concentrations, performing size exclusion 

chromatography on the samples from hydroxyapatite/IMAC purification, and 

finally isolation of the recombinant protein from the membrane fraction of 

bacterial cells, rather than from the whole cell lysates. Nevertheless, none of 

these trials enabled a better quality of the crystals suitable for structural 

studies.  

In conclusion, in the field of bacterial overexpression of human mPGES-1 

the best results have been achieved with BL21(DE3)pLysS until now.446 

However, the two mPGES-1 X-ray crystal structures, published in 2013212 and 

2014448 respectively, display that high-resolution crystal structures of mPGES-

1 can be elucidated when this membrane protein is expressed in Spodoptera 

frugiperda Sf9 cells, that represents a precious insight in the field and paves 

the way for next more efficient experiments of membrane protein expression 

by the use of eukaryotic cells instead of bacterial host. 
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Conclusions 
The crosstalk between cancer cells and inflammatory mediators has been 

known for a long time, even though the complex pathways and correlations 

between these two pathological processes have not been fully clarified yet. In 

this research field, considerable efforts have been carried out leading to the 

identification of new emerging molecular targets involved at different levels in 

cancer and inflammatory-related diseases. Among these, bromodomain (BRD) 

containing proteins, microsomal Prostaglandin E2 Synthase-1 (mPGES-1) and 

Heat shock protein 90 (Hsp90) are of relevant interest, as they are main 

players both in inflammatory and in malignant processes. Considered their 

biological importance and their potential for therapeutic applications, this 

research project has been mainly addressed to the discovery of new 

modulators of these three biological targets. 

In order to find new BRDs modulators, a combination of structure-guided 

and computational approaches was employed, allowing to identify some 9H-

purine-based compounds (e.g., 7d and 11) which showed nanomolar affinity 

towards BRD9, with lower activity towards BRD4. The interaction between 

the two emerged 6-aryl-9H-purine inhibitors (7d and 11) and the 

bromodomain cavities of BRD9 and BRD4 has been fully elucidated by 

crystallography and docking experiments. Finally, their efficiency in a cellular 

environment was validated by performing BRET assays. These outcomes 

validate the hypothesis of using 2-amino-9H-purines as a starting point to 

develop new compounds targeting BRDs outside the BET family, with 

compound 11 representing a promising tool in the case of BRD9.  

The use of a proper qualitative structure-based filter, together with the 

docking binding predicted affinities, represented an excellent approach for the 

discovery of new mPGES-1 inhibitors. This strategy allowed to identify the 

3,4-dyhidropyrimidin-2(1H)-one (DHPM) core as new molecular platform for 

mPGES-1 modulation, yielding compounds 48 and 49 which exhibited IC50 
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values in the low micromolar range. Subsequently, the study of mPGES-1 

crystal structure in complex with its known inhibitor LVJ offered new insights 

for the structural optimization of compound 48 (IC50 = 4.16 ± 0.47 �M), 

leading to a 10-fold more potent analogue (compound 53, IC50 = 0.41 ± 0.02 

�M).  

The assumption that the DHPM core may also represent a new template to 

target Hsp90 C-terminal domain derived from the structural analogy between 

the DHPM core and uridine triphosphate (UTP), a nucleotide that selectively 

interacts with Hsp90 C-terminus. A collection of differently decorated 

DHPMs has been synthesized and, to date, deep biological investigation has 

been carried out on a group of 17 compounds. Our outcomes disclosed 

compound 54 as a new promising antiproliferative agent, exerting its activity 

through inhibition of Hsp90 upon binding to its C-terminal region. 
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6.1 General synthetic methods 

All commercially available starting materials were purchased from Sigma-

Aldrich and were used as received. Solvents used for the synthesis were of 

HPLC grade and were purchased from Sigma-Aldrich or Carlo Erba Reagenti. 

NMR spectra were recorded on Bruker Avance 600 or 300 MHz instruments. 

Compounds were dissolved in 0.5 ml of MeOD, CDCl3, or DMSO-d6. 

Coupling constants (J) are reported in Herz, and chemical shifts are expressed 

in parts per million (ppm) on the delta (�) scale relative to the solvent peak as 

internal reference. Multiplicities are reported as follows: s, singlet; d, doublet; 

t, triplet; m, multiplet; dd, doublet of doublets. Electrospray mass spectrometry 

(ESI-MS) was performed on a LCQ DECA TermoQuest (San Josè, California, 

USA) mass spectrometer. Chemical reactions were monitored on silica gel 60 

F254 plates (Merck) and spots were visualized under UV light. Analytical and 

semi-preparative reversed-phase HPLC were performed on an Agilent 

Technologies 1200 Series high performance liquid chromatography system 

using Jupiter Proteo C18 reversed-phase columns ((a) 250 x 4.60mm, 4 ", 90 

Å, flow rate = 1 ml/min; (b) 250 x 10.00 mm, 10 ", 90 Å, flow rate = 4 ml/min 

respectively, Phenomenex®). The binary solvent system (A/B) was as follows: 

0.1% TFA in water (A) and 0.1% TFA in CH3CN (B). Absorbance was 

detected at 240 nm. The purity of all tested compound (> 95%) was 

determined by HPLC analysis. Microwave irradiation reactions were carried 

out in a dedicated CEM-Discover® Focused Microwave Synthesis apparatus, 

operating with continuous irradiation power from 0 to 300 W utilizing the 

standard absorbance level of 300 W maximum power. Reactions were carried 

out in 10 ml sealed microwave glass vials. The DiscoverTM system also 

included controllable ramp time, hold time (reaction time) and uniform 

stirring. After the irradiation period, reaction vessels were cooled rapidly (60-

120 s) to ambient temperature by air jet cooling. 
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6.2 Methods and materials 

Fragments 1 (2,6-dichloro-9H-purine) and 2a (2-amino-6-bromo-9H-

purine) were purchased from Sigma Aldrich and used as received. Fragment 

2b (2-amino-6-bromo-9-methylpurine) was synthesized from 2a by a TBAF-

assisted alkylation procedure with iodomethane (See 6.2.2). 

 

6.2.1 General procedure for the Suzuki-Miyaura cross-coupling of free halo-

purines (3a-b, 3d, 3f-h, 4a-d, 5a, 6a-c, 7a-e, 8a, 9a-b, 10, 11) 

2-amino-6-bromopurine (50.0 mg, 0.23 mmol), commercially available 

boronic acids (A-U, 0.29 mmol), Pd(OAc)2 (2.70 mg, 0.012 mmol), 

P(C6H4SO3Na)3 (34.0 mg, 0.06 mmol) and Cs2CO3 (228.0 mg, 0.70 mmol) 

were added to a 10 ml microwave vial equipped with a magnetic stirrer. The 

vial was evacuated and backfilled with nitrogen three times. Degassed 

acetonitrile (0.5 ml) and degassed water (1.0 ml) were added by means of an 

air-tight syringe. The mixture was heated under microwave irradiation at 150 

ºC for 5-15 min. After irradiation, the vial was cooled to ambient temperature 

by air jet cooling and a mixture of cold water and 1.5 M HCl were added (5.0 

and 2.0 ml, respectively). The mixture was subsequently poured into crushed 

ice and then left at 4 ºC overnight. The resulting precipitate was filtered and 

purified by HPLC to give the desired product in good yields (53-90%). HPLC 

purification was performed by semi-preparative reversed-phase HPLC using 

the gradient conditions reported below for each compound.  

 

2-amino-6-phenyl-9H-purine (3a): was obtained as a white powder in 

90% yield from 2a and phenylboronic acid (A). RP-HPLC tR = 12.1 min, 
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gradient condition: from 5% B to 100% B in 60 min, flow rate of 4 ml/min, � 

= 240 nm. Spectral data were in accord with previously published data.514 

 

2-amino-6-(4-methoxyphenyl)-9H-purine (3b) was obtained as a pale 

yellow powder in 86% yield from 2a and 4-methoxyphenylboronic acid (B). 

RP-HPLC tR = 14.6 min, gradient condition: from 5% B to 100% B in 65 min, 

flow rate of 4 ml/min, � = 240 nm. Spectral data were in accord with 

previously published data.395 

 

2-amino-6-(4-phenoxyphenyl)-9H-purine (3d) was obtained as a pale 

yellow powder in 90% yield from 2a and 4-phenoxyphenylboronic acid (O). 

RP-HPLC tR = 24.1 min, gradient condition: from 5% B to 100% B in 65 min, 

flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 MHz, MeOD): ! = 7.10-7.20 

(m, 4H), 7.25 (t, J = 7.1 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 8.36 (br s, 3H). ESI-

MS, calcd for C17H13N5O 303.1; found m/z = 304.3 [M + H]+. 



Experimental Section 

- 113 - 
 

 

2-amino-6-(4-(benzyloxy)phenyl)-9H-purine (3f) was obtained as a 

yellow powder in 77% yield from 2a and 4-(benzyloxy)phenylboronic acid 

(R). RP-HPLC tR = 17.4 min, gradient condition: from 5% B to 100% B in 40 

min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 MHz, MeOD): ! = 5.28 

(s, 2H), 7.30 (d, J = 8.8 Hz, 2H), 7.36-7.46 (m, 3H), 7.50 (br s, 2H), 8.37-8.45 

(m, 3H). ESI-MS, calcd for C18H15N5O 317.1; found m/z = 318.1 [M + H]+. 

 

2-amino-6-(4-(3'-(trifluoromethyl)phenoxymethyl)phenyl)-9H-purine 

(3g) was obtained as a yellow powder in 79% yield from 2a and 4-(3'-

(trifluoromethyl)phenoxymethyl)phenylboronic acid (S). RP-HPLC tR = 25.0 

min, gradient condition: from 5% B to 100% B in 50 min, flow rate of 4 

ml/min, � = 240 nm. 1
H NMR (300 MHz, MeOD): ! = 5.31 (s, 2H), 7.22-7.33 

(m, 3H), 7.48 (t, J = 7.9 Hz, 1H), 7.73 (d, J = 8.1 Hz, 2H), 8.37 (br s, 3H). 

ESI-MS, calcd for C19H14F3N5O 385.1; found m/z = 386.1 [M + H]+. 
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2-amino-6-(4-((4'-(2-methoxyethyl)phenoxy)methyl)phenyl)-9H-purine 

(3h) was obtained as a yellow powder in 77% yield from 2a and 4-((4'-(2-

methoxyethyl)phenoxy)methyl)phenylboronic acid (T). RP-HPLC tR = 17.9 

min, gradient condition: from 5% B to 100% B in 40 min, flow rate of 4 

ml/min, � = 240 nm. 1
H NMR (300 MHz, MeOD): ! = 2.80 (t, J = 6.9 Hz, 

2H), 3.33 (s, 3H) , 3.57 (t, J = 6.9 Hz, 2H), 5.22 (s, 2H), 6.96 (d, J = 8.7 Hz, 

2H), 7.16 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 8.33 (s, 1H), 8.40 (d, J 

= 8.3 Hz, 2H). ESI-MS, calcd for C21H21N5O2 375.2; found m/z = 376.1 [M + 

H]+. 

 

2-amino-6-(4-benzyloxy-3-chlorophenyl)-9H-purine (4a) was obtained 

as a yellow powder in 84% yield from 2a and 4-benzyloxy-3-

chlorophenylboronic acid (P). RP-HPLC tR = 20.4 min, gradient condition: 

from 5% B to 100% B in 40 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR 

(300 MHz, MeOD): ! = 5.32 (s, 2H), 7.33-7.44 (m, 4H), 7.50 (br s, 2H), 8.34 
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(br s, 2H), 8.50 (s, 1H). ESI-MS, calcd for C18H14ClN5O 351.1; found m/z = 

352.1 [M + H]+. 

 

2-amino-6-(3-chloro-4-(3',5'-dimethoxybenzyloxy)phenyl)-9H-purine 

(4b) was obtained as a yellow powder in 86% yield from 2a and 3-chloro-4-

(3',5'-dimethoxybenzyloxy)phenylboronic acid (U). RP-HPLC tR = 20.5 min, 

gradient condition: from 5% B to 100% B in 40 min, flow rate of 4 ml/min, � 

= 240 nm. 1H NMR (600 MHz, MeOD): ! = 3.76 (s, 6H), 5.28 (s, 2H), 6.48 (s, 

1H), 6.68 (s, 2H), 7.32 (d, J = 8.8 Hz, 1H), 8.18 (s, 1H), 8.47 (br s, 1H), 8.61 

(s, 1H). 13
C NMR (150 MHz, MeOD): ! = 56.2, 71.6, 100.7, 106.2, 115.6, 

123.2, 127.0, 128.7, 132.1, 139.7, 143.1, 149.5, 150.3, 155.7, 157.2, 160.4, 

161.8. ESI-MS, calcd for C20H18ClN5O3 411.1; found m/z = 412.1 [M + H]+. 

 

2-amino-6-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-9H-purine (4c) was 

obtained as a pale yellow powder in 84% yield from 2a and 1,4-benzodioxane-

6-boronic acid (N). RP-HPLC tR = 11.6. min, gradient condition: from 5% B 

to 100% B in 50 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 MHz, 

MeOD): ! = 4.34-4.40 (m, 4H), 7.09 (d, J = 8.5 Hz, 1H), 7.89-7.98 (m, 2H), 
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8.34 (s, 1H). ESI-MS, calcd for C13H11N5O2 269.1; found m/z = 270.2 [M + 

H]+. 

 

2-amino-6-(3-(4'-chlorobenzyloxy)phenyl)-9H-purine (4d) was obtained 

as a yellow powder in 78% yield from 2a and 3-(4'-chlorobenzyloxy)-

phenylboronic acid (Q). RP-HPLC tR = 29.8 min, gradient condition: from 5% 

B to 100% B in 70 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 

MHz, MeOD): ! = 5.19 (s, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 

2H), 7.45-7.58 (m, 3H), 7.90 (d, J = 6.9 Hz, 1H), 8.01 (s, 1H), 8.37 (s, 1H). 

ESI-MS, calcd for C18H14ClN5O 351.1; found m/z = 352.2 [M + H]+.  

 

2-amino-6-(3-bromo-5-butoxyphenyl)-9H-purine (5a) was obtained as a 

white powder in 83% yield from 2a and 3-bromo-5-butoxyphenylboronic acid 

(I). RP-HPLC tR = 26.7 min, gradient condition: from 5% B to 100% B in 50 

min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (600 MHz, DMSO-d6): ! = 

0.93 (t, J = 7.3 Hz, 3H), 1.39-1.51 (m, 2H), 1.68-1.76 (m, 2H), 4.06 (t, J = 6.3 

Hz, 2H), 6.46 (s, 2H), 7.28 (s, 1H), 8.16 (s, 1H), 8.37 (s, 1H), 8.50 (s, 1H), 

12.72 (s, 1H). 13C NMR (150 MHz, DMSO-d6): ! = 14.9, 20.1, 32.1, 69.5, 

115.8, 120.9, 124.4, 125.8, 138.7, 142.2, 148.1, 151.3, 157.2, 161.3. ESI-MS, 

calcd for C15H16BrN5O 361.1; found m/z = 362.3 [M + H]+.  
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2-amino-6-(2,6-dimethoxyphenyl)-9H-purine (6a) was obtained as a 

white powder in 53% yield from 2a and 2,6-dimethoxyphenylboronic acid (J). 

RP-HPLC tR = 13.0 min, gradient condition: from 5% B to 100% B in 80 min, 

flow rate of 4 ml/min, � = 240 nm. 1
H NMR (300 MHz, MeOD): ! = 3.82 (s, 

6H), 6.87 (d, J = 8.5 Hz, 2H), 7.60 (t, J = 8.5 Hz, 1H), 8.44 (s, 1H). ESI-MS, 

calcd for C13H13N5O2 271.1; found m/z = 272.2 [M + H]+.  

 

2-amino-6-(2-isopropoxy-6-methoxyphenyl)-9H-purine (6b) was 

obtained as a white powder in 62% yield from 2a and 2-isopropoxy-6-

methoxyphenylboronic acid (K). RP-HPLC tR = 18.1 min, gradient condition: 

from 5% B to 100% B in 40 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR 

(300 MHz, MeOD): ! = 1.18 (s, 6H), 3.80 (s, 3H), 4.60-4.71 (m, 1H), 6.80-

6.88 (m, 2H), 7.56 (t, J = 8.5 Hz, 1H), 8.43 (s, 1H). ESI-MS, calcd for 

C15H17N5O2 299.1; found m/z = 300.1 [M + H]+.  

 

2-amino-6-(2-isobutoxy-6-methoxyphenyl)-9H-purine (6c) was obtained 

as a white powder in 76% yield from 2a and 2-isobutoxy-6-methoxy-

phenylboronic acid (L). RP-HPLC tR = 14.2 min, gradient condition: from 5% 

B to 100% B in 40 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (600 
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MHz, DMSO-d6): � = 0.69 (s, 6H), 1.72-1.79 (m, 1H), 3.71 (br s, 5H), 6.81-

6.86 (m, 2H), 7.52 (t, J = 8.1 Hz, 1H), 8.47 (s, 1H). 13C NMR (150 MHz, 

MeOD): � = 20.3, 29.0, 57.6, 76.1, 106.2, 118.6, 125.8, 134.7, 137.4, 142.7, 

154.9, 159.3, 160.8, 173.0. ESI-MS, calcd for C16H19N5O2 313.2; found m/z = 

314.1 [M + H]+.  

 

2-amino-6-(2-methoxyphenyl)-9H-purine (7a) was obtained as a pale 

yellow powder in 78% yield from 2a and 2-methoxyphenylboronic acid (C). 

RP-HPLC tR = 14.9 min, gradient condition: from 5% B to 100% B in 80 min, 

flow rate of 4 ml/min, ! = 240 nm. 1
H NMR (300 MHz, MeOD): � = 3.97 (s, 

3H), 7.21 (t, J = 7.5 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.8 Hz, 1H), 

8.10 (d, J = 7.4 Hz, 1H), 8.45 (s, 1H). ESI-MS, calcd for C12H11N5O 241.1; 

found m/z = 242.2 [M + H]+.  

 

2-amino-6-(5-fluoro-2-methoxyphenyl)-9H-purine (7b) was obtained as 

a pale yellow powder in 70% yield from 2a and 5-fluoro-2-methoxy-

phenylboronic acid (D). RP-HPLC tR = 14.0 min, gradient condition: from 5% 

B to 100% B in 60 min, flow rate of 4 ml/min, ! = 240 nm. 1H NMR (300 

MHz, MeOD): � = 3.95 (s, 3H), 7.29 (d, J = 8.9 Hz, 1H), 7.41 (dd, J = 8.9, 2.4 

Hz, 1H), 7.92 (br s, 1H), 8.54 (s, 1H). ESI-MS, calcd for C12H10FN5O 259.1; 

found m/z = 260.1 [M + H]+.  
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2-amino-6-(5-chloro-2-methoxyphenyl)-9H-purine (7c) was obtained as 

a pale yellow powder in 78% yield from 2a and 5-chloro-2-methoxy-

phenylboronic acid (E). RP-HPLC tR = 18.1 min, gradient condition: from 5% 

B to 100% B in 80 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 

MHz, MeOD): ! = 3.95 (s, 3H), 7.28 (d, J = 8.9 Hz, 1H), 7.63 (dd, J = 8.9, 2.5 

Hz, 1H), 8.03 (br s, 1H), 8.53 (s, 1H). ESI-MS, calcd for C12H10ClN5O 275.1; 

found m/z = 276.1 [M + H]+. 

 

2-amino-6-(5-bromo-2-methoxyphenyl)-9H-purine (7d) was obtained as 

a yellow powder in 77% yield from 2a and 5-bromo-2-methoxyphenylboronic 

acid (F). RP-HPLC tR = 17.3 min, gradient condition: from 5% B to 100% B 

in 60 min, flow rate of 4 ml/min, � = 240 nm. 1
H NMR (600 MHz, MeOD): ! 

= 3.95 (s, 3H), 7.23 (d, J = 9.0 Hz, 1H), 7.76 (dd, J = 8.9, 2.4 Hz, 1H), 8.14 (br 

s, 1H), 8.53 (s, 1H). 13
C NMR (150 MHz, MeOD): ! = 56.3, 113.3, 114.4, 

123.7, 126.4, 135.4, 135.9, 142.6, 149.5, 155.1, 157.8, 160.9. ESI-MS, calcd 

for C12H10BrN5O 319.0; found m/z = 320.3 [M + H]+.  
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2-amino-6-(5-bromo-2-ethoxyphenyl)-9H-purine (7e) was obtained as a 

yellow powder in 82% yield from 2a and 5-bromo-2-ethoxyphenylboronic 

acid (G). RP-HPLC tR = 21.6 min, gradient condition: from 5% B to 100% B 

in 80 min, flow rate of 4 ml/min, � = 240 nm. 1
H NMR (300 MHz, MeOD): ! 

= 1.31 (t, J = 6.9 Hz, 3H), 4.13-4.24 (m, 2H), 7.19 (d, J = 8.9 Hz, 1H), 7.72 

(dd, J = 8.9, 2.3 Hz, 1H), 7.98 (brs, 1H), 8.53 (s, 1H). ESI-MS, calcd for 

C13H12BrN5O 333.0; found m/z = 334.1 [M + H]+.  

 

6-(5-bromo-2-methoxyphenyl)-2-chloro-9H-purine (8a) was obtained 

following the general procedure (a) as a yellow powder in 68% yield from 1 

and 5-bromo-2-methoxyphenylboronic acid (E). RP-HPLC tR = 24.3 min, 

gradient condition: from 5% B to 100% B in 45 min, flow rate of 4 ml/min, � 

= 240 nm. 1
H NMR (300 MHz, CDCl3): ! = 3.91 (s, 3H), 7.00 (d, J = 8.8 Hz, 

1H), 7.23 (br s, 1H) 7.63 (d, J = 8.1 Hz, 1H), 8.04 (s, 1H). ESI-MS, calcd for 

C12H8BrClN4O 338.0; found m/z = 339.2 [M + H]+.  

 

6-(5-bromo-2-methoxyphenyl)-8-methyl-9H-purine (9a) was obtained as 

a pale yellow powder in 70% yield from 6-chloro-8-methyl-9H-purine 12 and 

5-bromo-2-methoxyphenylboronic acid (E). RP-HPLC tR = 21.7 min, gradient 

condition: from 5% B to 100% B in 70 min, flow rate of 4 ml/min, � = 240 

nm. 1H NMR (300 MHz, DMSO-d6): ! = 2.69 (s, 3H), 3.87 (s, 3H), 7.20 (d, J 
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= 9.0 Hz, 1H), 7.71 (dd, J = 8.9, 2.4 Hz, 1H), 7.82 (s, 1H), 8.95 (s, 1H). ESI-

MS, calcd for C13H11BrN4O 318.0; found m/z = 319.2 [M + H]+.  

 

6-(5-fluoro-2-methoxyphenyl)-8-methyl-9H-purine (9b) was obtained as 

a pale yellow powder in 81% yield from 6-chloro-8-methyl-9H-purine 12 and 

5-fluoro-2-methoxyphenylboronic acid (D). RP-HPLC tR = 15.6 min, gradient 

condition: from 5% B to 100% B in 60 min, flow rate of 4 ml/min, � = 240 

nm. 1
H NMR (300 MHz, MeOD): ! = 2.76 (s, 3H), 3.90 (s, 3H), 7.27 (d, J = 

9.0 Hz, 1H), 7.39 (br s, 1H), 7.67 (dd, J = 8.9, 2.4 Hz, 1H), 9.04 (s, 1H). 13C 

NMR (75 MHz, MeOD): ! = 14.1, 56.2, 113.5, 117.9, 118.3, 119.2, 126.9, 

147.7, 151.3, 154.5, 155.9, 158.2, 159.2. ESI-MS, calcd for C13H11FN4O 

258.1; found m/z = 259.1 [M + H]+.  

 

2-amino-6-thianthrenyl-9H-purine (10) was obtained as a yellow powder 

in 82% yield from 2a and 1-thianthrenylboronic acid (M). RP-HPLC tR = 18.5 

min, gradient condition: from 5% B to 100% B in 40 min, flow rate of 4 

ml/min, � = 240 nm. 1H NMR (300 MHz, MeOD): ! = 7.22-7.37 (m, 3H), 7.51 

(t, J = 7.5 Hz, 2H), 7.65 (d, J = 7.4 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 8.37 (s, 

1H). ESI-MS, calcd for C17H11N5S2 349.0; found m/z = 350.1 [M + H]+.  
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2-amino-6-(5-bromo-2,3-dihydrobenzo[b]furan-7-yl)-9H-purine (11) 

was obtained as a pale yellow powder in 79% yield from 2a and 5-bromo-2,3-

dihydrobenzo[b]furan-7-boronic acid (H). RP-HPLC tR = 15.2 min, gradient 

condition: from 5% B to 100% B in 40 min, flow rate of 4 ml/min, � = 240 

nm. 1
H NMR (600 MHz, MeOD): ! = 3.35-3.42 (m, 2H), 4.87-4.93 (m, 2H), 

7.65 (s, 1H), 8.50 (s, 1H), 8.57 (s, 1H). 13
C NMR (150 MHz, MeOD): ! = 

29.1, 74.3, 113.6, 121.2, 125.8, 131.5, 132.1, 134.0, 146.1, 154.9, 158.8, 

159.9, 160.7. ESI-MS, calcd for C13H10BrN5O 331.0; found m/z = 332.2 [M + 

H]+. 

 

6.2.2 General procedure for TBAF-assisted N9-alkylation of purine rings 

(2b, 3c, 3e, 4e, 5b, 8b, 8c) 

The opportune 2-amino-6-arylpurine (0.1 mmol) was dissolved in 0.4 ml 

THF at room temperature. To this mixture 0.2 ml (0.2 mmol) TBAF (1.0 M 

solution in THF) and iodomethane (12.5 "L, 0.2 mmol) or chloro-acetone 

(16.0 "L, 0.2 mmol) were added. The reaction was stirred at room temperature 

for 10 min. Water was added and the aqueous layer was extracted three times 

with dichloromethane. The combined organic layers were washed with water, 

dried with anhydrous Na2SO4 and concentrated under vacuum. The crude 

mixture was purified by semi-preparative reversed-phase HPLC using the 

gradient conditions reported below for each compound. Compounds were 

obtained in good yields (50-88%) and high purity (> 95%). 
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2-amino-6-bromo-9-methylpurine (2b) was obtained from 2a and 

iodomethane as a yellow powder in 85% yield. RP-HPLC: tR = 12.4 min, 

gradient condition: from 5% B to 100% B in 95 min, flow rate of 4 ml/min, � 

= 240 nm. 1
H NMR (600 MHz, MeOD): ! = 3.74 (s, 3H), 8.25 (s, 1H). 

13C 

NMR (150 MHz, MeOD): ! = 30.6, 126.3, 142.5, 149.4, 155.62, 160.8. ESI-

MS, calcd for C6H6BrN5 227.0; found m/z = 228.1 [M + H]+.  

 

2-amino-6-(4-methoxyphenyl)-9-methylpurine (3c) was obtained 

following from 3b and iodomethane as a yellow powder in 88% yield. RP-

HPLC tR = 15.5 min, gradient condition: from 5% B to 100% B in 65 min, 

flow rate of 4 ml/min, � = 240 nm. 1
H NMR (300 MHz, CDCl3): ! = 3.79 (s, 

3H), 3.94 (s, 3H), 7.12 (d, J = 8.6 Hz, 2H), 7.95 (s, 1H), 8.55 (d, J = 8.5 Hz, 

2H). ESI-MS, calcd for C13H13N5O 255.1; found m/z = 256.3 [M + H]+. 

 

2-amino-6-(4-phenoxyphenyl)-9-methylpurine (3e) was obtained from 

3d and iodomethane as a yellow powder in 82% yield. RP-HPLC tR = 27.5 

min, gradient condition: from 5% B to 100% B in 75 min, flow rate of 4 
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mL/min, � = 240 nm. 1H NMR (600 MHz, CDCl3): ! = 3.77 (s, 3H), 7.05-7.18 

(m, 5H), 7.37 (t, J = 7.8 Hz, 2H), 7.79 (s, 1H), 8.70 (br s, 2H). 13C NMR (150 

MHz, CDCl3): ! = 30.6, 118.3, 121.6, 124.8, 125.7, 127.1, 131.2, 133.9, 

142.8, 147.6, 150.7, 156.3, 157.8, 163.3. ESI-MS, calcd for C18H15N5O 317.1; 

found m/z = 318.2 [M + H]+. 

 

2-amino-6-(3-(4'-chlorobenzyloxy)phenyl)-9-methylpurine (4e) was 

obtained from 4d and iodomethane as a yellow powder in 63% yield. RP-

HPLC tR = 28.3 min, gradient condition: from 5% B to 100% B in 60 min, 

flow rate of 4 ml/min, � = 240 nm. 1
H NMR (300 MHz, CDCl3): ! = 3.77 (s, 

3H), 5.20 (s, 2H), 7.13 (d, J = 7.8 Hz, 1H), 7.36 (d, J = 8.2 Hz, 2H), 7.41-7.51 

(m, 3H), 7.83 (s, 1H), 8.31-8.42 (m, 2H). ESI-MS, calcd for C19H16ClN5O 

365.1; found m/z = 366.2 [M + H]+.  

 

2-amino-6-(3-bromo-5-butoxyphenyl)-9-methylpurine (5b) was obtained 

from 5a and iodomethane as a yellow powder in 85% yield. RP-HPLC tR = 

27.9 min, gradient condition: from 5% B to 100% B in 45 min, flow rate of 4 

ml/min, � = 240 nm. 1H NMR (300 MHz, CDCl3): ! = 0.97 (t, J = 7.3 Hz, 

3H), 1.46-1.55 (m, 2H), 1.73-1.83 (m, 2H), 3.79 (s, 3H), 4.11 (t, J = 6.2 Hz, 

2H), 7.29 (s, 1H), 7.92 (s, 1H), 7.97 (s, 1H), 8.33 (s, 1H). ESI-MS, calcd for 

C16H18BrN5O 375.1; found m/z = 376.2 [M + H]+.  
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2-amino-6-(5-bromo-2-methoxyphenyl)-9-methylpurine (8b) was 

obtained from 7d and iodomethane as a yellow powder in 87% yield. RP-

HPLC tR = 18.9 min, gradient condition: from 5% B to 100% B in 70 min, 

flow rate of 4 ml/min, � = 240 nm. 1
H NMR (300 MHz, CDCl3): ! = 3.79 (s, 

3H), 3.87 (s, 3H), 6.94-7.01 (m, 1H), 7.24 (br s, 1H), 8.02 (s, 1H). ESI-MS, 

calcd for C13H12BrN5O 333.0; found m/z = 334.2 [M + H]+.  

 

2-amino-6-(5-bromo-2-methoxyphenyl)-9-(2-oxopropyl)-purine (8c) 

was obtained from 7d and chloro-acetone as a yellow powder in 50% yield. 

RP-HPLC tR = 22.9 min, gradient condition: from 5% B to 100% B in 80 min, 

flow rate of 4 ml/min, � = 240 nm. 1H NMR (600 MHz, CDCl3): ! = 2.40 (s, 

3H), 4.01 (s, 3H), 5.00 (s, 2H), 7.03 (d, J = 8.9 Hz, 1H), 7.70 (dd, J = 8.9, 2.4 

Hz, 1H), 8.02 (s, 1H), 8.19 (s, 1H). 13C NMR (150 MHz, CDCl3): ! = 27.3, 

52.5, 57.1, 114.3, 118.8, 125.1, 126.9, 136.3, 138.4, 143.3, 148.2, 154.3, 

156.7, 158.4, 199.2. ESI-MS, calcd for C15H14BrN5O2 375.0; found m/z = 

376.1 [M + H]+.  

 

6.2.3 General procedure for the synthesis of 2-hydroxy-6-arylpurines (8d-f) 

A three-necked flask was charged with the 2-amino-6-arylpurine derivative 

(7b-d, 0.5 mmol) and 50% H2SO4 (2.0 ml). The mixture was stirred at room 

temperature for 30 min and then cooled to -5 ºC. A solution of NaNO2 (48.3 
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mg, 0.7 mmol) in H2O (200 �L) was added dropwise and the release of 

nitrogen gas was immediately observed. The reaction mixture was then stirred 

at -10 ºC for 2 h and urea (24.0 mg, 0.4 mmol) was added to decompose the 

excess of NaNO2. The mixture was then stirred at 50 ºC for 1 h and neutralized 

with 50% NaOH solution, diluted with water and extracted three times with 

EtOAc. The combined organic layers were dried with anhydrous Na2SO4 and 

concentrated under vacuum. The crude mixture was purified by semi-

preparative reversed-phase HPLC to get the pure products in good yields (47-

63%).  

 

6-(5-fluoro-2-methoxyphenyl)-2-hydroxy-9H-purine (8d) was obtained 

from 7b as a white powder in 47% yield. RP-HPLC tR = 13.9 min, gradient 

condition: from 5% B to 100% B in 50 min, flow rate of 4 ml/min, � = 240 

nm. 1H NMR (300 MHz, DMSO-d6): ! = 3.93 (s, 3H), 7.31 (d, J = 8.9 Hz, 

1H), 7.40 (dd, J = 8.9, 2.4 Hz, 1H), 7.89 (br s, 1H), 8.54 (s, 1H). ESI-MS, 

calcd for C12H9FN4O2 260.1; found m/z = 261.1 [M + H]+.  

 

6-(5-chloro-2-methoxyphenyl)-2-hydroxy-9H-purine (8e) was obtained 

from 7c as a white powder in 63% yield. RP-HPLC tR = 14.8 min, gradient 

condition: from 5% B to 100% B in 50 min, flow rate of 4 ml/min, � = 240 

nm. 1H NMR (300 MHz, DMSO-d6): ! = 3.94 (s, 3H), 7.26 (d, J = 8.9 Hz, 
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1H), 7.63 (dd, J = 8.9, 2.5 Hz, 1H), 8.03 (br s, 1H), 8.53 (s, 1H). ESI-MS, 

calcd for C12H9ClN4O2 276.0; found m/z = 277.1 [M + H]+.  

 

6-(5-bromo-2-methoxyphenyl)-2-hydroxy-9H-purine (8f) was obtained 

from 7d as a white powder in 55% yield. RP-HPLC tR = 15.8 min, gradient 

condition: from 5% B to 100% B in 50 min, flow rate of 4 ml/min, � = 240 

nm. 1H NMR (300 MHz, DMSO-d6): ! = 3.97 (s, 3H), 7.25 (d, J = 9.0 Hz, 

1H), 7.76 (dd, J = 8.9, 2.4 Hz, 1H), 8.14 (br s, 1H), 8.53 (s, 1H). ESI-MS, 

calcd for C12H9BrN4O2 320.0; found m/z = 321.1[M + H]+.  

 

6.2.4 THP-protection of 2-amino-6-bromo-9H-purine 

 

6-Bromo-9-(tetrahydropyran-2-yl)-2-[(tetrahydropyran-2-

yl)amino]purine (13a): a mixture of 2-amino-6-bromo-9H-purine 2a (500 

mg, 2.34 mmol), 1.0 M HCl in DMF (0.1 ml) and anhydrous DMF (18 ml) 

was stirred at 60 °C under nitrogen. 3,4-dihydro-2H-pyran (1.0 ml, 11.7 

mmol) was added dropwise through a septum. The stirring at 60 °C was 

continued for another 6 h and then the solvent was evaporated under reduced 

pressure. The dark yellow oily residue was dissolved in ethyl acetate and 

extracted with saturated aqueous Na2S2O3. The aqueous layer was washed 

with ethyl acetate and the combined organic layers were dried with Na2SO4 

and evaporated. Column chromatography of the residue on silica gel (ethyl 

acetate�light petroleum 1:1) afforded the product 13a as yellowish powder in 



Experimental Section 

 

 

- 128 - 
 

57% yield. RP-HPLC tR = 32.1 min, gradient condition: from 5% B to 100% B 

in 40 min, flow rate of 1 ml/min, � = 240 nm.  1H NMR (300 MHz, CDCl3): ! 

= 1.47�1.74 (m, 10H), 1.86 (br s, 1H), 2.02 (br s, 1H), 3.58�3.73 (m, 2 H); 

3.92�4.12 (m, 2 H); 5.27�5.36 (m, 1 H); 5.49�5.59 (m, 1 H); 7.97 (s, 1H). 

ESI-MS, calcd for C15H20BrN5O2 381.1; found m/z = 382.0[M + H]+.  

 

6.2.5 Attempt of C-8 electrophilic fluorination reaction on the bis(THP)-

protected purine 13a 

 

6-bromo-8-(phenylsulfonyl)-9-(tetrahydropyran-2-yl)-2-[(tetrahydro-

pyran-2-yl)amino]purine (13c): a stirring solution of bis(THP)-protected 

purine 13a (150 mg, 0.4 mmol) in dry THF (4.0 ml) was cooled to -78 °C (dry 

ice/i-PrOH) under nitrogen. LDA 2.0 M solution in heptane/THF/EtPh (2.0 

mmol, 1.0 ml) was added and the mixture was allowed to stir at -78 °C for 2 h. 

After that time, solid NFSI (380 mg, 1.2 mmol) was added. The mixture was 

allowed to stir at -78 °C for 90 min, then warmed to 0 °C with continued 

stirring for additional 30 min. Sat aq NH4Cl was added to the mixture, and the 

layers were separated. The aqueous layer was extracted three times with 

EtOAc, and the combined organic layer was washed with sat aq NaHCO3 and 

brine. The organic layer was dried over Na2SO4, and the solvent was 

evaporated under reduced pressure. The crude reaction mixture was purified 

by HPLC to give the corresponding 8-phenylsulfonyl product 13c in 69% 

yield. RP-HPLC tR = 35.7 min, gradient condition: from 5% B to 100% B in 

40 min, flow rate of 4 ml/min, � = 240 nm. 1H NMR (300 MHz, MeOD): ! = 

1.45�2.10 (m, 12H); 3.55�3.68 (m, 2 H); 3.87�3.99 (m, 2 H); 5.23 (br s, 1 H); 
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6.03�6.12 (m, 1 H); 7.61�7.78 (m, 3H); 8.01�8.14 (m, 2H). ESI-MS, calcd for 

C21H24BrN5O4S 521.1; found m/z = 544.0[M + Na]+.  
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7.1 General synthetic methods 

All commercially available starting materials were purchased from Sigma-

Aldrich and were used as received. All solvents used for the synthesis were of 

HPLC grade; they were purchased from Sigma-Aldrich and Carlo Erba 

Reagenti. All NMR spectra were recorded on a Bruker Avance 300, 500 or 

600 MHz instrument. All compounds were dissolved in 0.5 mL of 99.95% 

CDCl3 (Carlo Erba, 99.95 Atom % D). Coupling constants (J) are reported in 

Herz, and chemical shifts are expressed in parts per million (ppm) on the delta 

(�) scale relative to CHCl3 (7.26 ppm for 1H and 77.2 ppm for 13C) as internal 

reference. Multiplicities are reported as follows: s, singlet; d, doublet; t, triplet; 

m, multiplet; dd, doublet of doublets. Electrospray mass spectrometry (ESI-

MS) was performed on a LCQ DECA TermoQuest (San Josè, California, 

USA) mass spectrometer. High resolution mass spectra were acquired on a 

LTQ Orbitrap  XL (Thermo Scientific). 

Reactions were monitored on silica gel 60 F254 plates (Merck) and the spots 

were visualized under UV light. Analytical and semi-preparative reversed-

phase HPLC was performed on Agilent Technologies 1200 Series high 

performance liquid chromatography using a Jupiter Proteo C18 reversed-phase 

column (250 x 4.60mm, 4", 90 Å, flow rate = 1 mL/min; 250 x 10.00mm, 10", 

90 Å, flow rate = 4 mL/min respectively, Phenomenex®). The binary solvent 

system (A/B) was as follows: 0.1% TFA in water (A) and 0.1% TFA in 

CH3CN (B). The absorbance was detected at 280 nm.The purity of all tested 

compound (>95%) was determined by HPLC analysis. 

All microwave irradiation experiments were carried out in a dedicated 

CEM-Discover® Focused Microwave Synthesis apparatus, operating with 

continuous irradiation power from 0 to 300 W utilizing the standard 

absorbance level of 300 W maximum power. The reactions were carried out in 

10 mL sealed microwave glass vials. The DiscoverTM system also offers 

controllable ramp time, hold time (reaction time) and uniform stirring. The 
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temperature was monitored using the CEM-Discover built-in-vertically-

focused IR temperature sensor. After the irradiation period, the reaction vessel 

was cooled rapidly (60-120 s) to ambient temperature by air jet cooling. 

 

7.2 Methods and materials 

7.2.1 General procedure for microwave-assisted Biginelli reaction 

A mixture of the appropriate aldehyde (1.0 mmol), urea or its derivative 

(1.5 mmol), 1,3-dicarbonyl compound (1.0 mmol) in acetonitrile (1.5 mL) was 

placed in a 10 mL microwave glass vial equipped with a small magnetic 

stirring bar. TMSCl (1.0 mmol) was added and the mixture was then stirred 

under microwave irradiation at 120°C for 10-20 min. 

In a few cases, TMSCl (procedure a) was replaced by 10 mol % Yb(OTf)3 

(procedure b) or FeCl3 (procedure c) as Lewis acid catalysts, as needed. In 

these cases, also reaction solvent (acetonitrile) was replaced by 1.5 ml of a 

mixture of EtOH/AcOH (1:3). After irradiation, the reaction mixture was 

cooled to ambient temperature by air jet cooling, cold water was added and the 

vial was poured into crushed ice and then left at 4°C overnight. The resulting 

precipitate was filtered and washed with a cold mixture of ethanol/water (1:1) 

(3x3 mL), to give the desired product in good yields. HPLC purification was 

performed by semi-preparative reversed-phase HPLC (on a Jupiter Proteo C18 

column: 250 x 10.00mm, 10�, 90 Å, flow rate = 4 mL/min) using the gradient 

conditions reported below for each compound. The final products were 

obtained with high purity (>95%) as detected by HPLC analysis and were 

fully characterized by ESI-MS and NMR spectra. 
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3-(6-(5-(3,4-dimethylbenzoyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidin-4-yl)pyridin-2-yl)benzonitrile (14a) was obtained by following 

the general procedure a as a brownish solid in 86% yield. RP-HPLC tR = 35.3 

min, gradient condition: from 5% B to 100% B in 65 min, flow rate of 4 

ml/min, � = 280 nm. 1H NMR (300 MHz, CDCl3): ! = 1.82 (s, 3H); 2.24 (s, 

3H); 2.29 (s, 3H); 5.70 (s, 1H); 7.09-7.17 (m, 1H); 7.34-7.50 (m, 4H); 7.64 (br 

s, 2H), 7.82 (br s, 1H); 8.03-8.17 (m, 2H). ESI-MS, calcd for C26H22N4O2 

422.2; found m/z = 423.1 [M + H]+. 

 

4-(6-(benzo[d][1,3]dioxol-5-yl)pyridin-2-yl)-5-(3,4-dimethylbenzoyl)-6-

methyl-3,4-dihydropyrimidin-2(1H)-one (14b) was obtained by following 

the general procedure a as a yellow solid in 82% yield. RP-HPLC tR = 

26.0min, gradient condition: from 5% B to 25% B in 10 min, increased to 

100% B in 50 min, flow rate of 4 ml/min, � = 280 nm. 1H NMR (300 MHz, 

DMSO-d6): 1.71 (s, 3H); 2.20 (s, 3H); 2.26 (s, 3H); 5.35 (s, 1H); 6.08 (s, 2H); 

6.97 (d, J = 8.6 Hz, 1H); 7.11 (br s, 1H); 7.18 (d, J = 8.0 Hz, 1H); 7.36 (s, 1H), 

7.54 (br s, 2H); 7.75-7.80 (m, 3H). ESI-MS, calcd for C26H23N3O4 441.2; 

found m/z = 442.0 [M + H]+. 

 

5-(3,4-dimethylbenzoyl)-6-methyl-4-(6-(4-(methylsulfonyl)phenyl)-

pyridin-2-yl)-3,4-dihydropyrimidin-2(1H)-one (14c) was obtained by 
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following the general procedure a as a yellow gelatinous solid in 83% yield. 

RP-HPLC tR = 36.5 min, gradient condition: from 5% B to 100% B in 50 min, 

flow rate of 4 ml/min, � = 280 nm. 1H NMR (300 MHz, DMSO-d6): ! = 1.69 

(s, 3H); 2.16 (s, 3H); 2.25 (s, 3H); 3.27 (s, 3H); 5.42 (s, 1H); 7.19 (d, J = 7.9 

Hz, 1H); 7.25-7.33 (m, 2H); 7.84 (br s, 1H), 7.92-7.99 (m, 2H); 8.20 (d, J = 

8.4 Hz, 1H). ESI-MS, calcd for C26H25N3O4S 475.2; found m/z = 476.0 [M + 

H]+. 

 

2-(4-(6-(benzo[d][1,3]dioxol-5-yl)pyridin-2-yl)-5-(3,4-dimethylbenzoyl)-

6-methyl-2-oxo-3,4-dihydropyrimidin-1(2H)-yl)acetic acid (14d) was 

obtained by following the general procedure a as a reddish solid in 61% yield. 

RP-HPLC tR = 40.6 min, gradient condition: from 5% B to 20% B in 10 min, 

increased to 65% B in 50 min, � = 280 nm. 1H NMR (300 MHz, DMSO-d6): ! 

= 1.68 (s, 3H); 2.18 (s, 3H); 2.25 (s, 3H); 5.60 (s, 1H); 5.98 (s, 2H); 6.98 (d, J 

= 8.6 Hz, 1H); 7.09 (br s, 1H); 7.15 (d, J = 8.0 Hz, 1H); 7.34 (s, 1H), 7.53 (br 

s, 2H); 7.74-7.81 (m, 3H).  ESI-MS, calcd for C28H25N3O6 499.2; found m/z = 

500.1 [M + H]+. 

 

3-(4-(6-(3-cyanophenyl)pyridin-2-yl)-5-(3,4-dimethylbenzoyl)-6-methyl-

2-oxo-3,4-dihydropyrimidin-1(2H)-yl)propanoic acid (14e) was obtained by 

following the general procedure a as a yellow gelatinous solid in 56% yield. 
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RP-HPLC tR = 35.5 min, gradient condition: from 5% B to 25% B in 10 min, 

increased to 80% B in 50 min, flow rate of 4 ml/min, � = 280 nm. 1H NMR 

(300 MHz, CDCl3): ! = 1.88 (s, 3H); 2.20 (s, 3H); 2.25 (s, 3H); 2.40-2.48 (m, 

2H); 3.87-3.97 (m, 2H); 5.41 (s, 1H); 7.09-7.16 (m, 1H); 7.37-7.52 (m, 4H); 

7.67 (br s, 2H), 7.83 (br s, 1H); 8.01-8.15 (m, 2H). ESI-MS, calcd for 

C29H26N4O4 494.2; found m/z = 495.0 [M + H]+. 

 

Ethyl 4-(4-fluorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (14m) was obtained by following the general 

procedure a as a yellow solid in 92% yield. RP-HPLC tR = 28.7 min, gradient 

condition: from 5% B to 100% B in 50 min, flow rate of 1 mL/min, � = 280 

nm. Spectral data were in accord with previously published data.515 
1H NMR (300 MHz, CDCl3): ! = 1.14 (t, J  = 7.1 Hz, 3H); 2.47 (s, 3H); 3.95-

4.12 (m, 2H); 5.65 (s, 1H); 6.95 (br s, 2H); 7.25 (br s, 2H). ESI-MS, calcd for 

C14H15FN2O2S 294.1; found m/z = 295.0 [M + H]+. 

 

Ethyl 4-([1,1'-biphenyl]-4-yl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (14n) was obtained by following the general 

procedure a as a pale yellow solid in 94% yield. RP-HPLC tR = 30.9 min, 

gradient condition: from 5% B to 100 % B in 50 min, flow rate of 1 mL/min, � 

= 280 nm. 1H NMR (300 MHz, CDCl3): ! = 1.20 (t, J  = 7.1 Hz, 3H); 2.54 (s, 
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3H); 4.13-4.21 (m, 2H); 5.65 (s, 1H); 7.38-7.46 (m, 7H); 7.65 (br s, 1H); 7.79 

(br s, 2H). ESI-MS, calcd for C20H20N2O2S 352.1; found m/z = 353.0 [M + 

H]+. 

 

Ethyl 4-(9H-fluoren-2-yl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (14o) was obtained by following the general 

procedure a as a yellow gelatinous solid in 87% yield. RP-HPLC tR = 35.1 

min, gradient condition: from 5% B to 100 % B in 50 min, flow rate of 1 

mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.13 (t, J  = 7.1 Hz, 

3H); 2.70 (s, 3H); 4.07-4.18 (m, 2H); 5.75 (s, 1H); 7.45-7.57 (m, 4H); 7.70-

7.79 (m, 3H); 7.79 (br s, 2H). ESI-MS, calcd for C21H20N2O2S 364.1; found 

m/z = 365.0 [M + H]+. 

 

Ethyl 4-(4-(allyloxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (14p) was obtained by following the general 

procedure a as a pale reddish solid in 91% yield. RP-HPLC tR = 30.4 min, 

gradient condition: from 5% B to 20% B in 5 min, increased to 100 % B in 55 

min, flow rate of 1 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.15 

(t, J  = 7.1 Hz, 3H); 2.48 (s, 3H); 4.05-4.17 (m, 2H); 4.54 (d, J  = 5.2 Hz, 2H); 

5.31-5.45 (m, 2H); 5.60 (s, 1H), 5.97-6.12 (m, 1H), 6.88 (d, J  = 8.6 Hz, 2H); 
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7.22 (d, J  = 8.6 Hz, 2H). ESI-MS, calcd for C17H20N2O3S 332.1; found m/z = 

333.0 [M + H]+. 

 

Ethyl 4-(4-(benzyloxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (14q) was obtained by following the general 

procedure a as a pale yellow solid in 76% yield. RP-HPLC tR = 32.6 min, 

gradient condition: from 5% B to 100 % B in 50 min, flow rate of 1 mL/min, 

�= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.13 (t, J  = 7.1 Hz, 3H); 2.30 (s, 

3H); 4.04-4.15 (m, 2H); 5.15 (s, 2H); 5.65 (s, 1H); 6.92 (d, J  = 8.3 Hz, 2H); 

7.29-7.41 (m, 7H). ESI-MS, calcd for C21H22N2O3S 382.1; found m/z = 383.0 

[M + H]+. 

 

Ethyl 6-(3-formylphenyl)-5-(4-methoxybenzoyl)-2-oxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (24) was obtained by following the 

general procedure a as a yellow gelatinous solid in 85% yield. RP-HPLC tR = 

24.7 min, gradient condition: from 5% B to 25% B in 10 min, increased to 100 

% B in 45 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR (500 MHz, 

CDCl3): ! = 0.85 (t, J  = 7.1 Hz, 3H), 3.81 (s, 3H), 3.88-4.01 (m, 4H), 5.59 (s, 

1H), 6.77 (d, J = 8.9 Hz, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.53-7.61 (m, 3H), 7.76 

(br s, 2H), 9.92 (s, 1H); 13C NMR (125 MHz, CDCl3): ! = 13.7, 54.6, 57.8, 
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61.9, 112.7, 113.3, 128.4, 128.8, 130.7, 131.6, 132.0, 133.2, 190.7. ESI-MS, 

calcd for C22H20N2O6 408.13; found m/z = 409.1 [M + H]+. HRMS, calcd for 

C22H21N2O6 [ M+H]+ 409.1400, found 409.1388. 

 

Ethyl 6-(3-ethoxyphenyl)-5-(4-methoxybenzoyl)-2-oxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (30) was obtained by following the 

general procedure a as a brown gelatinous solid in 78% yield. RP-HPLC tR = 

22.9 min, gradient condition: from 5% B to 30% B in 10 min, increased to 100 

% B in 40 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (500 MHz, 

CDCl3): ! = 0.85 (t, J  = 7.1 Hz, 3H), 1.33 (t, J  = 7.1 Hz, 3H), 3.79 (s, 3H), 

3.85-3.98 (m, 4H), 5.46 (s, 1H), 6.72-6.82 (m, 4H), 7.13 (t, J = 7.8 Hz, 1H), 

7.35 (br s, 1H), 7.57 (d, J = 8.8 Hz, 2H); 13C NMR (125 MHz, CDCl3): ! = 

13.2, 14.2, 56.1, 55.9, 56.1, 59.6, 113.4, 113.9, 114.2, 119.6, 119.8, 130.7, 

131.4, 131.7.  ESI-MS, calcd for C23H24N2O6 424.16; found m/z = 425.2 [M + 

H]+. HRMS calcd for C23H25N2O6 [ M+H]+ 425.1713, found 425.1692.  

 

Ethyl 6-(6-(4-cyanophenyl)pyridin-2-yl)-5-(4-methoxybenzoyl)-2-oxo-

1,2,3,6-tetrahydropyrimidine-4-carboxylate (36) was obtained by following 

the general procedure a as a yellow powder in79 % yield; RP-HPLC tR = 20.8 

min, gradient condition: from 20% B to 100% B in 45 min, flow rate of 4 

mL/min, �= 280 nm. 1H NMR (500 MHz, CDCl3): ! = 0.83 (t, J  = 7.1 Hz, 

3H), 3.74 (s, 3H), 3.84-3.99 (m, 2H), 5.62 (s, 1H), 6.71 (d, J = 9.0 Hz, 2H), 
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7.24-7.37 (m, 1H), 7.60-7.63 (m, 4H), 7.74-7.88 (m, 4H); 13C NMR (125 

MHz, CDCl3): � = 13.4, 55.6, 59.7, 62.9, 113.5, 114.0, 120.1, 120.3, 127.3, 

127.7, 129.8, 131.4,  141.4. ESI-MS, calcd for C27H22N4O5 482.16; found m/z 

= 483.1 [M + H]+. HRMS calcd for C27H23N4O5 [ M+H]+ 483.1668, found 

483.1636. 

 

Ethyl 6-(6,8-dibromo-4-oxo-4H-chromen-3-yl)-5-(4-methoxybenzoyl)-2-

oxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate (42) was obtained by 

following the general procedure a as a yellow powder in 75% yield; RP-HPLC 

tR = 26.4 min, gradient condition: from 5% B to 30% B in 5 min, increased to 

100 % B in 45 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR (500 MHz, 

CDCl3): ! = 0.98 (t, J  = 7.1 Hz, 3H), 3.88 (s, 3H), 4.02-4.12 (m, 2H), 5.42 (s, 

1H), 6.98 (d, J = 8.7 Hz, 2H), 7.10 (s, 1H), 7.92 (d, J = 8.7 Hz, 2H), 8.03 (br s, 

1H), 8.25 (br s, 1H); 13C NMR (125 MHz, CDCl3): ! = 13.0, 61.7, 62.7, 75.3, 

112.5, 127.4, 130.7, 135.3, 136.3, 148.5, 157.4. ESI-MS, calcd for 

C24H18Br2N2O7 606.22; found m/z = 606.8 [M + H]+. HRMS, calcd for 

C24H19Br2N2O7 [ M+H]+ 604.9559, found 604.9533.  

 

Ethyl 1,6-dimethyl-2-oxo-4-(5-(3-(trifluoromethyl)phenyl)furan-2-yl)-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (46) was obtained by following 
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the general procedure a as a reddish solid in 75% yield; RP-HPLC tR = 26.7 

min, gradient condition: from 5% B to 40% B in 10 min, increased to 100 % B 

in 40 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR (500 MHz, CDCl3): � 

= 1.29 (t, J  = 7.1 Hz, 3H), 2.55 (s, 3H), 3.26 (s, 3H), 4.10-4.20 (m, 2H), 5.52 

(s, 1H), 6.21 (d, J  = 3.3 Hz, 1H), 6.62 (d, J  = 3.3 Hz, 1H),  7.45-7.52 (m, 

3H), 7.81 (br s, 1H);  13C NMR (125 MHz, CDCl3): � = 13.7, 14.8, 32.6, 56.0, 

60.2, 108.0, 110.8, 127.4, 128.6, 130.3, 133.5. ESI-MS, calcd for 

C20H19F3N2O4 408.13.; found m/z = 409.1 [M + H]+. HRMS, calcd for 

C20H20F3N2O4 [M + H]+ 409.1375, found 409.1354. 

 

Ethyl 5-(4-methoxybenzoyl)-2-oxo-6-(5-(3-(trifluoromethyl)phenyl)-

furan-2-yl)-1,2,3,6-tetrahydropyrimidine-4-carboxylate (48) was obtained 

by following the general procedure a as a reddish gelatinous solid in 88% 

yield; RP-HPLC tR = 34.2 min, gradient condition: from 5% B to 35% B in15 

min, increased to 100 % B in 40 min, flow rate of 4 mL/min, != 280 nm. 1H 

NMR (500 MHz, CDCl3): � = 0.85 (t, J = 7.1 Hz, 3H), 3.74 (s, 3H), 3.85-4.00 

(m, 2H), 5.59 (s, 1H), 6.37 (d, J  = 3.3 Hz, 1H), 6.57 (d, J = 3.3 Hz, 1H), 6.75 

(d, J = 8.4 Hz, 2H), 7.41-7.47 (m, 2H), 7.60 (br s, 2H), 7.73 (d, J = 8.4 Hz, 

2H); 13C NMR (125 MHz, CDCl3): � = 13.7, 52.7, 55.4, 63.0, 107.5, 109.7, 

111.6, 116.8, 121.7, 124.4, 127.0, 129.5, 130.8, 131.7. ESI-MS, calcd for 

C26H21F3N2O6 514.14; found m/z = 515.1 [M + H]+. HRMS, calcd for 

C26H22F3N2O6 [ M+H]+ 515.1430, found 515.1403. 
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Ethyl 5-(4-methoxybenzoyl)-3-methyl-2-oxo-6-(5-(3-(trifluoromethyl)-

phenyl)furan-2-yl)-1,2,3,6-tetrahydropyrimidine-4-carboxylate (49) was 

obtained by following the general procedure a as a red gelatinous solid in 76% 

yield; RP-HPLC tR = 30.3 min, gradient condition: from 5% B to 40% B in 10 

min, increased to 100 % B in 40 min, flow rate of 4 mL/min, �= 280 nm. 1H 

NMR (500 MHz, CDCl3): ! = 1.05 (t, J = 7.1 Hz, 3H), 3.20 (s, 3H), 3.82 (s, 

3H), 3.76-3.88 (m, 2H), 5.54 (s, 1H), 6.40 (d, J  = 3.3 Hz, 1H), 6.60 (d, J  = 

3.3 Hz, 1H), 6.87 (d, J = 8.7 Hz, 2H), 7.48 (br s, 2H), 7.66-7.73 (m, 4H); 13C 

NMR (125 MHz, CDCl3): ! = 13.7, 32.6, 50.8, 56.0, 63.5, 108.0, 110.8, 114.6, 

120.7, 121.2, 121.7 127.4, 128.6, 130.3, 133.5. ESI-MS, calcd for 

C27H23F3N2O6 528.15; found m/z = 529.1 [M + H]+. HRMS, calcd for 

C27H24F3N2O6 529.1586, found 529.1564. 

 

Ethyl 5-(4-methoxybenzoyl)-2-thioxo-6-(5-(3-(trifluoromethyl)phenyl)-

furan-2-yl)-1,2,3,6-tetrahydropyrimidine-4-carboxylate (50) was obtained 

by following the general procedure a as a pale red solid in 90% yield; RP-

HPLC tR = 32.3 min, gradient condition: from 5% B to 35% B in 10 min, 

increased to 100 % B in 40 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR 

(500 MHz, CDCl3): ! = 0.85 (t, J  = 7.1 Hz, 3H), 3.75 (s, 3H), 3.85-4.00 (m, 
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2H), 5.58 (s, 1H), 6.42 (d, J  = 3.3 Hz, 1H), 6.58  (d, J  = 3.3 Hz, 1H), 6.78 (d, 

J = 8.7 Hz, 2H), 7.43-7.51 (m, 2H), 7.60 (br s, 2H), 7.74 (d, J = 8.7 Hz, 2H); 
13C NMR (125 MHz, CDCl3): � = 13.7, 52.2, 55.1, 62.8, 107.4, 110.7, 113.6, 

113.8, 120.4, 124.0, 126.8, 128.9, 129.2, 131.1. ESI-MS, calcd for 

C26H21F3N2O5S 530.11; found m/z = 531.1 [M + H]+.  HRMS, calcd for 

C26H22F3N2O5S [M + H]+ 531.1202, found 531.1172. 

 

5-(5-bromo-2-hydroxybenzoyl)-6-methyl-4-(5-(3-(trifluoromethyl)-

phenyl)furan-2-yl)-3,4-dihydropyrimidin-2(1H)-one (51) was obtained by 

following the general procedure a as a red gelatinous solid in 65% yield. RP-

HPLC tR = 34.9 min, gradient condition: from 5% B to 35% B in 15 min, 

increased to 100 % B in 40 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR 

(600 MHz, CDCl3): ! = 3.20 (s, 3H), 5.53 (s, 1H), 6.37 (brs, 1H), 6.64 (brs, 

1H), 7.49 (br s, 2H), 7.62-7.69 (m, 3H), 7.79 (s, 1H), 8.06 (s, 1H); 13C NMR 

(150 MHz, CDCl3): ! = 19.5, 50.0, 108.1, 109.7, 121.5, 124.6, 126.3, 129.5, 

130.7, 133.7. ESI-MS, calcd for C23H16BrF3N2O4 521.29; found m/z = 522.7 

[M + H]+. HRMS, calcd for C23H17BrF3N2O4 [M+H]+ 521,03183, found 

522.03227. 
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Benzyl 6-methyl-2-oxo-4-(5-(3-(trifluoromethyl)phenyl)furan-2-yl)-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (52) was obtained by following 

the general procedure a as a yellow gelatinous solid in 87% yield. RP-HPLC 

tR = 32.7 min, gradient condition: from 5% B to 25% B in 5 min, increased to 

85% B in 40 min, flow rate of 4 mL/min, �= 280 nm. 1H NMR (600 MHz, 

CDCl3): � = 2.40 (s, 3H), 5.13 (dd, J= 25.5, 12.5 Hz, 2H), 5.58 (s, 1H), 6.12 

(brs, 1H), 6.18 (br s, 1H), 6.57 (br s, 1H), 7.21 (br s, 2H), 7.24 (br s, 1H) 7.44-

7.48 (m, 2H), 7.71 (br s, 1H), 7.81 (br s, 1H), 8.05 (s, 1H); 13C NMR (150 

MHz, CDCl3): � = 19.7, 50.1, 66.4, 108.1, 109.7, 121.5, 124.6, 126.3, 128.1, 

129.5, 130.7. ESI-MS, calcd for C24H19F3N2O4 456.42; found m/z = 457.1 [M 

+ H]+. HRMS, calcd for C24H20F3N2O4 [ M+H]+ 457.13697, found 457.13765. 

 

3-(5-((benzyloxy)carbonyl)-6-methyl-2-oxo-4-(5-(3-(trifluoromethyl)-

phenyl)furan-2-yl)-3,4-dihydropyrimidin-1(2H)-yl)propanoic acid (53) 

was obtained by following the general procedure a as a red gelatinous solid in 

58% yield. RP-HPLC tR = 29.6 min, gradient condition: from 5% B to 30% B 

in 5 min, increased to 100 % B in 45 min, flow rate of 4 mL/min, != 280 nm. 
1H NMR (600 MHz, CDCl3): � = 2.55 (s, 3H), 2.74-2.79 (m, 2H), 3.91-4.12 

(m, 2H), 5.15 (s, 2H), 5.53 (s, 1H), 6.12 (brs, 1H), 6.33 (d, J=3.3Hz, 1H), 6.57 

(d, J= 3.4Hz, 1H), 7.28 (br s, 4H), 7.44 (br s, 2H), 7.66-7.70 (m, 1H), 7.78 (s, 

1H); 13C NMR (150 MHz, CDCl3): � = 19.3, 36.6, 50.3, 66.2, 108.1, 109.6, 

121.5, 124.4, 126.3, 128.1, 129.5, 130.8. ESI-MS, calcd for C27H23F3N2O6 

528.48; found m/z = 529.0 [M + H]+. HRMS, calcd for C27H24F3N2O6 [ M+H]+ 

529.15810, found 529.15826. 
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Ethyl 4-(3-ethoxyphenyl)-6-methyl-2-oxo-1-phenyl-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (54) was obtained by following the general 

procedure a as a yellow gelatinous solid in 73% yield. RP-HPLC tR = 30.6 

min, gradient condition: from 5% B to 100% B in 45 min, flow rate of 4 

mL/min, �= 280 nm. 
1H NMR (600 MHz, CDCl3): ! = 1.21 (t, J  = 7.1 Hz, 

3H), 1.42 (t, J  = 6.9 Hz, 3H),  2.10 (s, 3H), 4.03 (q, J  = 7.0 Hz, 2H), 4.15 (q, 

J  = 7.1 Hz,  2H), 5.46 (s, 1H), 6.84 (dd, J = 8.2, 2.1 Hz, 1H), 6.93 (s, 1H), 

6.95 (d, J = 7.6 Hz, 1H), 7.25-7.29 (m, 2H), 7.41-745 (m, 4H); 13C NMR (150 

MHz, CDCl3): ! = 14.9, 15.1, 19.0, 54.5, 60.5, 64.4, 112.5, 114.2, 115.1, 

118.3, 117.9, 129.2, 129.5, 130.1, 131.3, 141.7, 145.1, 148.2, 158.2, 161.2, 

168.4. ESI-MS, calcd for C22H24N2O4 380.4; found m/z = 381.8 [M + H]+. 

 

Ethyl 6-(3-ethoxyphenyl)-5-(4-methoxybenzoyl)-2-oxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (55): see compound 30. 

 

Ethyl 6-(3-ethoxyphenyl)-5-(4-methoxybenzoyl)-2-thioxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (56) was obtained by following the 

general procedure a as a yellow powder in 78% yield. RP-HPLC tR = 31.8 

min, gradient condition: from 5% B to 35% B in 10 min, increased to 100 % B 

in 65 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (600 MHz, CDCl3): ! 
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= 0.84 (t, J  = 7.1 Hz, 3H), 1.33 (t, J  = 6.9 Hz, 3H), 3.82 (s, 3H), 3.85-3.97 

(m, 4H), 5.41 (s, 1H), 6.70 (s, 1H), 6.78 (d, J = 8.5 Hz, 3H), 7.16 (t, J = 7.9 

Hz, 1H), 7.38 (br s, 1H), 7.58 (d, J = 8.6 Hz, 2H);13C NMR (150 MHz, 

CDCl3): � = 13.2, 14.5, 56.7, 55.9, 56.3, 59.8, 113.4, 113.8, 114.2, 119.6, 

119.9, 120.5, 130.9, 131.5, 131.8, 144.7, 159.7, 165.5, 180.1, 192.3. ESI-MS, 

calcd for C23H24N2O5S 440.5; found m/z = 441.2 [M + H]+. 

 

Ethyl 1,6-dimethyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (57) was obtained by following the general procedure a as a 

yellow gelatinous solid in 89% yield. RP-HPLC tR = 23.6 min, gradient 

condition: from 5% B to 30% B in 10 min, increased to 90 % B in 50 min, 

flow rate of 4 mL/min, �= 280 nm. All spectral data were in accord with 

previously published data.516 

 

Ethyl 4-(3-formylphenyl)-1,6-dimethyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (58) was obtained by following the general 

procedure b as a yellow gelatinous solid in 60% yield. RP-HPLC tR = 23.9 

min, gradient condition: from 5% B to 25% B in 10 min, increased to 95 % B 

in 50 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (600 MHz, CDCl3): ! 

= 1.18 (t, J  = 7.1 Hz, 3H), 2.53 (s, 3H), 3.26 (s, 3H), 4.10 (q, J  = 7.1 Hz, 2H), 

5.45 (s, 1H), 7.47-7.55 (m, 2H),7.77 (br s, 2H), 9.98 (s, 1H);13C NMR (150 

MHz, CDCl3): ! = 14.3, 19.0, 30.3, 54.1, 61.0, 105.9, 129.9, 130.3, 132.5, 
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137.8, 143.6, 147.9, 156.7, 166.4, 192.1. ESI-MS, calcd for C16H18N2O4 

302.3; found m/z = 303.1 [M + H]+. 

 

Ethyl 4-(3-formylphenyl)-6-methyl-2-oxo-1-phenyl-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (59) was obtained by following the general 

procedure c as a pale orange gelatinous solid in 62% yield. RP-HPLC tR = 

27.3 min, gradient condition: from 5% B to 100% B in 40 min, flow rate of 4 

mL/min, � = 280 nm. 
1H NMR (600 MHz, CDCl3): ! = 1.19 (t, J  = 7.1 Hz, 

3H), 2.14 (s, 3H), 4.13 (q, J = 7.1 Hz, 2H), 5.59 (s, 1H), 7.30 (br s, 1H), 7.42-

7.51 (m, 4H), 7.58 (t, J  = 7.9 Hz, 1H), 7.71 (d, J  =7.6 Hz, 1H), 7.86 (d, J = 

7.4 Hz, 1H), 10.05 (s, 1H);13C NMR (150 MHz, CDCl3): ! = 14.7, 19.2, 54.8, 

60.4, 106.8, 120.6, 124.0, 127.7, 130.4, 132.8, 138.1, 140.9, 141.7, 145.1, 

148.2, 158.2, 168.4, 192.4. ESI-MS, calcd for C21H20N2O4 364.4; found m/z = 

365.3 [M + H]+. 

 

Ethyl 6-(3-formylphenyl)-5-(4-methoxybenzoyl)-2-oxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (60): see compound 24. 

 

Ethyl 6-(3-formylphenyl)-5-(4-methoxybenzoyl)-2-thioxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (61) was obtained by following the 

general procedure a as a yellow powder in 85% yield. RP-HPLC tR = 28.3 
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min, gradient condition: from 5% B to 25% B in 10 min, increased to 90 % B 

in 50 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (600 MHz, CDCl3): ! 

= 0.85 (t, J  = 7.1 Hz, 3H), 3.82 (s, 3H), 3.92-4.03 (m, 2H), 5.53 (s, 1H), 6.79 

(d, J = 8.8 Hz, 2H), 7.33 (br s, 1H), 7.44-7.54 (m, 2H), 7.60 (d, J = 8.7 Hz, 

1H), 7.71 (s, 1H), 7.78 (d, J = 7.3 Hz, 1H), 9.91 (s, 1H);13C NMR (150 MHz, 

CDCl3): � = 13.5, 54.8, 57.4, 61.9, 112.5, 113.6, 128.7, 129.0, 130.7, 131.4, 

132.1, 133.5, 159.8, 165.6, 180.3, 190.8, 192.6. ESI-MS, calcd for 

C22H20N2O5S 424.5; found m/z = 425.2 [M + H]+. 

 

Ethyl 4-(6-(4-cyanophenyl)pyridin-2-yl)-1,6-dimethyl-2-oxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (62) was obtained by following the 

general procedure a as a yellow gelatinous solid in 90% yield. RP-HPLC tR = 

21.5 min, gradient condition: from 5% B to 40% B in 10 min, increased to 100 

% B in 50 min, flow rate of 4 mL/min, ! = 280 nm. 
1H NMR (600 MHz, 

CDCl3): � = 1.24 (t, J  = 7.1 Hz, 3H), 2.51 (s, 3H), 3.22 (s, 3H), 4.18 (q, J = 

7.0 Hz, 2H), 5.50 (s, 1H), 7.22 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 

7.71-7.76 (m, 3H), 8.11 (d, J = 7.0 Hz, 2H); 13C NMR (150 MHz, CDCl3): � = 

14.4, 16.6, 30.4, 54.6, 60.4, 103.7, 119.6, 119.9, 120.9, 122.3, 127.4, 132.7, 

138.1, 143.7, 151.3, 155.9, 162.8, 166.5. ESI-MS, calcd for C21H20N4O3 

376.4; found m/z = 377.1 [M + H]+. 
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Ethyl 4-(6-(4-cyanophenyl)pyridin-2-yl)-6-methyl-2-oxo-1-phenyl-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (63) was obtained by following 

the general procedure a as a brownish gelatinous solid in 67% yield. RP-

HPLC tR = 31.2 min, gradient condition: from 5% B to 35% B in 10 min, 

increased to 100 % B in 45 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR 

(600 MHz, CDCl3): ! = 1.27 (t, J  = 7.1 Hz, 3H), 2.07 (s, 3H), 4.22 (q, J = 7.0 

Hz, 2H), 5.66 (s, 1H), 6.99 (br s, 1H), 7.33-7.42 (m, 4H), 7.67-7.77 (m, 4H), 

7.81(d, J = 7.5 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H);13C NMR (150 MHz, 

CDCl3): ! = 14.4, 16.6, 54.6, 60.4, 103.7, 119.6, 119.9, 120.9, 122.3, 127.4, 

129.3, 130.0, 132.7, 138.1, 141.6, 143.7, 151.3, 155.9, 162.8, 166.5. ESI-MS, 

calcd for C26H22N4O3 438.5; found m/z = 439.1 [M + H]+. 

 

Ethyl 6-(6-(4-cyanophenyl)pyridin-2-yl)-5-(4-methoxybenzoyl)-2-oxo-

1,2,3,6-tetrahydropyrimidine-4-carboxylate (64): see compound 38. 

 

Ethyl 6-(6-(4-cyanophenyl)pyridin-2-yl)-5-(4-methoxybenzoyl)-2-

thioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate (65) was obtained by 

following the general procedure a as a red gelatinous solid in 70% yield. RP-

HPLC tR = 30.0 min, gradient condition: from 5% B to 100% B in 45min, flow 

rate of 4 mL/min, �= 280 nm. 
1H NMR (600 MHz, CDCl3): ! = 0.85 (t, J  = 

7.1 Hz, 3H), 3.78 (s, 3H), 3.89-4.00 (m, 2H), 5.62 (s, 1H), 6.72 (d, J = 8.7 Hz, 

2H), 7.33 (br s, 1H), 7.61-7.70 (m, 5H), 7.81 (br s, 1H), 7.87 (d, J = 8.3 Hz, 

2H); 13C NMR (150 MHz, CDCl3):! = 13.8, 55.4, 59.9, 62.7, 113.4, 114.1, 

119.5, 120.3, 120.5, 122.4, 127.2, 127.6, 129.8, 131.5, 141.4, 143.6, 151.6, 
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155.8, 159.5, 163.0, 165.7, 192.3. ESI-MS, calcd for C27H22N4O4S 498.6; 

found m/z = 499.4 [M + H]+. 

 

Ethyl 1,6-dimethyl-2-oxo-4-(5-(3-(trifluoromethyl)phenyl)furan-2-yl)-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (66): see compound 46. 

 

Ethyl 6-methyl-2-oxo-4-(5-(3-(trifluoromethyl)phenyl)furan-2-yl)-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (67) was obtained by following 

the general procedure a as a brownish gelatinous solid in 78% yield. RP-

HPLC tR = 25.6 min, gradient condition: from 5% B to 40% B in 10 min, 

increased to 100 % B in 50 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR 

(600 MHz, CDCl3): ! = 1.24 (t, J  = 7.1 Hz, 3H), 2.37 (s, 3H), 4.17 (q, J  = 7.0 

Hz, 2H), 5.56 (s, 1H), 6.22 (d, J  = 3.3 Hz, 1H), 6.59 (d, J  = 3.3 Hz, 1H), 

7.43-7.51 (m, 2H), 7.73 (br s, 1H), 7.81 (s, 1H); 13C NMR (150 MHz, 

CDCl3):! = 13.7, 14.8, 56.0, 60.2, 102.9, 108.0, 110.8, 123.7, 127.4, 128.6, 

130.3, 133.5, 136.4, 151.6, 155.4, 156.0, 166.8. ESI-MS, calcd for 

C19H17F3N2O4 394.3; found m/z = 395.1 [M + H]+. 

 

Ethyl 5-(4-methoxybenzoyl)-2-oxo-6-(5-(3-(trifluoromethyl)phenyl)-

furan-2-yl)-1,2,3,6-tetrahydropyrimidine-4-carboxylate (68): see 

compound 48. 

 

Ethyl 5-(4-methoxybenzoyl)-2-thioxo-6-(5-(3-(trifluoromethyl)phenyl)-

furan-2-yl)-1,2,3,6-tetrahydropyrimidine-4-carboxylate (69): see 

compound 50. 
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Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (71) was obtained by following the general procedure a as a 

white solid in 92% yield. RP-HPLC tR = 18.9 min, gradient condition: from 

5% B to 100% B in 40 min, flow rate of 4 mL/min, �= 280 nm. Spectral data 

were in accord with previously published data.517 

 

Ethyl 6-methyl-2-oxo-1,4-diphenyl-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (72) was obtained by following the general procedure a as a 

yellow gelatinous solid in 58% yield. RP-HPLC tR = 24.0 min, gradient 

condition: from 5% B to 100 % B in 55 min, flow rate of 4 mL/min, �= 280 

nm. Spectral data were in accord with previously published data.422  
1H NMR (300 MHz, CDCl3): ! = 1.22 (t, J  = 7.1 Hz, 3H), 2.13 (s, 3H), 4.15 

(q, J  = 6.9 Hz, 2H), 5.56 (s, 1H), 7.17-7.25 (m, 2H), 7.36-7.48 (m, 8H). ESI-

MS, calcd for C20H20N2O3 336.1; found m/z = 337.1 [M + H]+. 

 

Ethyl 5-(4-methoxybenzoyl)-2-oxo-6-phenyl-1,2,3,6-tetrahydro-

pyrimidine-4-carboxylate (73) was obtained by following the general 

procedure a as a colourless gelatinous solid in 81% yield. RP-HPLC tR = 16.4 

min, gradient condition: from 5% B to 35% B in 5 min, increased to 100% B 
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in 45 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! 

= 0.88 (t, J  = 6.8 Hz, 3H), 3.81 (s, 3H), 3.91-4.05 (m, 2H), 5.54 (s, 1H), 6.78 

(d, J  = 8.1 Hz, 2H), 7.30 (brs, 4H), 7.58 (d, J  = 8.1 Hz, 2H), 7.77 (br s, 1H). 

ESI-MS, calcd for C21H20N2O5 380.1; found m/z = 381.0 [M + H]+. 

 

Ethyl 4-(3-ethoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (74) was obtained by following the general 

procedure a as a white powder in 86% yield. RP-HPLC tR = 17.5 min, gradient 

condition: from 5% B to 30% B in 5 min, increased to 100 % B in 40 min, 

flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.19 (t, J  

= 7.1 Hz, 3H), 1.42 (t, J  = 6.9 Hz, 3H), 2.37 (s, 3H), 3.99-4.15 (m, 4H), 5.59 

(s, 1H), 6.77-6.93 (m, 3H); 7.23 (t, J  = 8.0 Hz, 1H). ESI-MS, calcd for 

C16H20N2O4 304.1; found m/z = 304.0 [M + H]+. 

 

Ethyl 4-(3-ethoxyphenyl)-1,6-dimethyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (75) was obtained by following the general 

procedure b as a white  solid in 88% yield. RP-HPLC tR = 18.6 min, gradient 

condition: from 5% B to 35% B in 5 min, increased to 100 % B in 40 min, 

flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.21 (t, J  

= 7.1 Hz, 3H), 1.42 (t, J  = 7.0 Hz, 3H), 2.53 (s, 3H), 4.02 (q, J  = 7.0 Hz, 2H), 

4.13 (q, J  = 7.1 Hz, 2H), 5.40 (s, 1H), 6.77-6.87 (m, 3H); 7.23 (br s, 1H). ESI-

MS, calcd for C17H22N2O4 318.2; found m/z = 319.1 [M + H]+. 
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Ethyl 4-(3-formylphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (76) was obtained by following the general 

procedure c as a yellow gelatinous solid in 87% yield. RP-HPLC tR = 21.6 

min, gradient condition: from 5% B to 100 % B in 50 min, flow rate of 4 

mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.18 (t, J  = 7.1 Hz, 

3H), 2.37 (s, 3H), 4.02-4.17 (m, 2H), 5.50 (s, 1H), 7.15 (br s, 1H); 7.50-7.63 

(m, 2H); 7.83 (br s, 1H), 10.00 (s, 1H). ESI-MS, calcd for C15H16N2O4 288.1; 

found m/z = 289.0 [M + H]+. 

 

Ethyl 4-(4-(allyloxy)phenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (80) was obtained by following the general 

procedure a as an orange solid in 74% yield. RP-HPLC tR = 17.2 min, gradient 

condition: from 5% B to 35% B in 5 min, increased to 100% B in 45 min, flow 

rate of 4 mL/min, �= 280 nm. Spectral data were in accord with previously 

published data.517 1H NMR (300 MHz, CDCl3): ! = 1.18 (t, J  = 7.1 Hz, 3H); 

2.37 (s, 3H); 4.09 (q, J  = 7.0 Hz, 2H); 4.53 (d, J  = 5.2 Hz, 2H); 5.29-5.42 (m, 

2H); 5.70 (s, 1H), 5.95-6.10 (m, 1H), 6.86 (d, J  = 8.6 Hz, 2H); 7.23 (d, J  = 

8.6 Hz, 2H). ESI-MS, calcd for C17H20N2O4 316.1; found m/z = 317.0 [M + 

H]+. 
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Ethyl 4-(4-(allyloxy)phenyl)-1,6-dimethyl-2-oxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (81) was obtained by following the 

general procedure a as a yellow solid in 80% yield. RP-HPLC tR = 24.5 min, 

gradient condition: from 5% B to 30% B in 5 min, increased to 100% B in 55 

min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.19 

(t, J  = 7.1 Hz, 3H); 2.51 (s, 3H); 3.26 (s, 3H); 4.12 (q, J  = 7.1 Hz, 2H); 4.53 

(d, J  = 5.2 Hz, 2H); 5.28-5.39 (m, 2H); 5.67 (s, 1H), 5.98-6.11 (m, 1H), 6.86 

(d, J  = 8.6 Hz, 2H); 7.18 (d, J  = 8.6 Hz, 2H). ESI-MS, calcd for C18H22N2O4 

330.2; found m/z = 331.1 [M + H]+. 

 

Ethyl 4-(4-(allyloxy)phenyl)-6-methyl-2-oxo-1-phenyl-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (82) was obtained by following the 

general procedure a as a yellow gelatinous solid in 63% yield. RP-HPLC tR = 

26.8 min, gradient condition: from 5% B to 40% B in 5 min, increased to 100 

% B in 45 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, 

CDCl3): ! = 1.28 (t, J  = 7.1 Hz, 3H); 2.65 (s, 3H); 4.13-4.22 (m, 2H); 4.54 (d, 

J  = 5.2 Hz, 2H); 5.27-5.41 (m, 2H); 5.47 (s, 1H), 5.99-6.13 (m, 1H), 6.90 (d, J  

= 8.7 Hz, 2H); 7.11-7.25 (m, 7H). ESI-MS, calcd for C23H24N2O4 392.2; found 

m/z = 393.1 [M + H]+. 
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Ethyl 6-(4-(allyloxy)phenyl)-5-(4-methoxybenzoyl)-2-oxo-1,2,3,6-

tetrahydropyrimidine-4-carboxylate (83) was obtained by following the 

general procedure a as a pale yellow solid in 89% yield. RP-HPLC tR = 21.0 

min, gradient condition: from 5% B to 35% B in 5 min, increased to 100 % B 

in 45 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! 

= 0.86 (t, J  = 7.2 Hz, 3H); 3.84 (s, 3H); 3.88-4.01 (m, 2H); 4.45 (d, J  = 5.2 

Hz, 2H); 5.25-5.37 (m, 2H); 5.67 (s, 1H), 5.91-6.09 (m, 1H), 6.75-6.84 (m, 

4H); 7.17 (d, J  = 8.6 Hz, 2H); 7.61 (d, J  = 8.7 Hz, 2H). ESI-MS, calcd for 

C24H24N2O6 436.2; found m/z = 437.1 [M + H]+. 

 

Ethyl 4-(6-(4-cyanophenyl)pyridin-2-yl)-6-methyl-2-oxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (84) was obtained by following the 

general procedure a as a white solid in 80% yield. RP-HPLC tR = 35.1 min, 

gradient condition: from 5% B to 100% B in 60 min, flow rate of 4 mL/min, � 

= 280 nm. 1H NMR (300 MHz, CDCl3): ! = 1.22 (t, J  = 7.1 Hz, 3H), 2.40 (s, 

3H), 4.19 (q, J = 7.0 Hz, 2H), 5.59 (s, 1H), 7.21 (d, J = 7.5 Hz, 1H), 7.64 (d, J 

= 7.7 Hz, 1H), 7.72-7.77 (m, 3H), 8.14 (d, J = 7.0 Hz, 2H). ESI-MS, calcd for 

C20H18N4O3 362.1; found m/z = 363.0 [M + H]+. 
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Ethyl 6-methyl-2-oxo-1-phenyl-4-(5-(3-(trifluoromethyl)phenyl)furan-

2-yl)-1,2,3,4-tetrahydropyrimidine-5-carboxylate (85) was obtained by 

following the general procedure a as a reddish gelatinous solid in 51% yield. 

RP-HPLC tR = 31.6 min, gradient condition: from 5% B to 35% B in 5 min, 

increased to 100 % B in 40 min, flow rate of 4 mL/min, � = 280 nm. 
1H NMR 

(300 MHz, CDCl3): ! = 1.23 (t, J  = 7.1 Hz, 3H); 2.42 (s, 3H); 4.48 (q, J = 7.2 

Hz, 2H); 5.67 (s, 1H); 7.20-7.25 (m, 2H); 7.39-7.46 (m, 3H); 7.63 (s, 1H); 

7.71-7.79 (m, 3H); 8.00 (br s, 2H). ESI-MS, calcd for C25H21F3N2O4 470.1; 

found m/z = 471.0 [M + H]+. 

 

Ethyl 4-(3-ethoxyphenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (86) was obtained by following the 

general procedure a as a pale yellow powder in 59% yield. RP-HPLC tR = 30.8 

min, gradient condition: from 5% B to 35% B in 5 min, increased to 100% B 

in 50 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! 

= 1.23 (t, J  = 7.1 Hz, 3H), 1.45 (t, J  = 6.9 Hz, 3H),  2.14 (s, 3H), 4.06 (q, J  = 

7.0 Hz, 2H), 4.16 (q, J  = 7.1 Hz,  2H), 5.50 (s, 1H), 6.87 (dd, J = 8.2, 2.1 Hz, 

1H), 6.95 (s, 1H) 6.97 (d, J = 7.6 Hz, 1H), 7.28-7.31 (m, 2H), 7.43-7.49 (m, 

4H). ESI-MS, calcd for C22H24N2O3S 396.2; found m/z = 397.1 [M + H]+. 
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Ethyl 6-methyl-1,4-diphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-

carboxylate (86) was obtained by following the general procedure a as a 

yellow gelatinous solid in 62% yield. RP-HPLC tR = 27.8 min, gradient 

condition: from 5% B to 40% B in 5 min, increased to 100 % B in 50 min, 

flow rate of 4 mL/min, �= 280 nm. Spectral data were in accord with 

previously published data.422  
1H NMR (300 MHz, CDCl3): ! = 1.20 (t, J  = 7.1 Hz, 3H), 2.18 (s, 3H), 4.16 

(q, J  = 6.9 Hz, 2H), 5.58 (s, 1H), 7.14-7.23 (m, 2H), 7.33-7.45 (m, 8H). ESI-

MS, calcd for C20H20N2O2S 352.1; found m/z = 353.0 [M + H]+. 

 

Ethyl 4-(4-(allyloxy)phenyl)-6-methyl-1-phenyl-2-thioxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (88) was obtained by following the 

general procedure a as a yellow gelatinous solid in 51% yield. RP-HPLC tR = 

34.3 min, gradient condition: from 5% B to 40% B in 5 min, increased to 

100% B in 50 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, 

CDCl3): ! = 1.25 (t, J  = 7.1 Hz, 3H); 2.63 (s, 3H); 4.11-4.23 (m, 2H); 4.56 (d, 

J  = 5.2 Hz, 2H); 5.25-5.40 (m, 2H); 5.49 (s, 1H), 5.97-6.11 (m, 1H), 6.92 (d, J  

= 8.7 Hz, 2H); 7.13-7.27 (m, 7H). ESI-MS, calcd for C23H24N2O3S 408.2; 

found m/z = 409.1 [M + H]+. 
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Ethyl 4-(2-bromo-5-hydroxyphenyl)-6-methyl-2-oxo-1-phenyl-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (89) was obtained by following the 

general procedure a as a pale yellow gelatinous solid in 74% yield. RP-HPLC 

tR = 35.0 min, gradient condition: from 5% B to 100% B in 60 min, flow rate 

of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.10 (t, J  = 7.1 

Hz, 3H); 2.21 (s, 3H); 3.99-4.16 (m, 2H); 5.83 (s, 1H); 6.60-6.67 (m, 1H); 

6.89 (br s, 1H); 7.21 (br s, 1H); 7.38-7.46 (m, 5H). ESI-MS, calcd for 

C20H19BrN2O4 430.1; found m/z = 431.0 [M + H]+. 

 

Ethyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1-phenyl-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (90) was obtained by following the general 

procedure a as a yellow gelatinous solid in 66% yield. RP-HPLC tR = 22.7 

min, gradient condition: from 5% B to 40% B in 5 min, increased to 100 % B 

in 45 min, flow rate of 4 mL/min, �= 280 nm. 
1H NMR (300 MHz, CDCl3): ! 

= 1.22 (t, J  = 7.1 Hz, 3H); 2.12 (s, 3H); 4.16 (q, J  = 7.0 Hz, 2H); 5.61 (s, 1H); 

7.16 (br s, 2H); 7.40-7.50 (m, 3H); 7.57 (d, J  = 8.5 Hz, 2H); 8.22 (d, J  = 8.4 

Hz, 2H).  ESI-MS, calcd for C20H19N3O5 381.1; found m/z = 382.0 [M + H]+. 
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Ethyl 4-(3-ethoxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-

pyrimidine-5-carboxylate (93) was obtained by following the general 

procedure a as a pale yellow solid in 89% yield. RP-HPLC tR = 30.5 min, 

gradient condition: from 5% B to 100 % B in 50 min, flow rate of 4 mL/min, 

�= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.18 (t, J  = 7.1 Hz, 3H), 1.45 (t, 

J  = 6.9 Hz, 3H), 2.39 (s, 3H), 4.02-4.18 (m, 4H), 5.63 (s, 1H), 6.81-6.95 (m, 

3H); 7.26 (t, J  = 8.0 Hz, 1H). ESI-MS, calcd for C16H20N2O3S 320.1; found 

m/z = 321.0 [M + H]+. 

 

7.2.2 General procedure for microwave-assisted Liebeskind-Srogl cross 

coupling reaction 

A dry microwave process vial was charged with the corresponding 

dihydropyrimidine-2-thione (1.0 equiv), the appropriate arylboronic acid (1.5 

equiv), CuTC (3.0 equiv), and Pd(PPh3)4 (10 mol%). The reaction vessel was 

degassed and backfilled with nitrogen three times. Through the septum 

degassed dry THF (2.0 mL) was added. The mixture was subsequently heated 

in a microwave reactor at 100 °C for 60 min. After cooling, the mixture was 

transferred to a round-bottom flask and dried under reduced pressure. A 

solution of aqueous ammonia (25%) was added and the mixture was extracted 

three times with CHCl3. The combined organic layers were dried with 

anhydrous Na2SO4 and concentrated under vacuum. The crude residue was 

purified by HPLC to give the pure products in good yields (59-85%) and high 

purity (>95%). 
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Ethyl 2-(3-((4-chlorobenzyl)oxy)phenyl)-4-(4-fluorophenyl)-6-methyl-

1,4-dihydropyrimidine-5-carboxylate (14f) was obtained from 14m as a 

greenish gelatinous solid in 83% yield. RP-HPLC tR = 27.3 min, gradient 

condition: from 5% B to 100 % B in 50 min, flow rate of 4 mL/min, � = 280 

nm. 1H NMR (300 MHz, CDCl3): ! = 1.12 (t, J = 7.0 Hz, 3H); 2.49 (s, 3H); 

39.98-4.15 (m, 2H); 5.03 (s, 2H); 5.63 (s, 1H); 6.95-7.11 (m, 3H); 7.18-7.54 

(m, 9H). ESI-MS, calcd for C27H24ClFN2O3 478.1; found m/z = 479.1 [M + 

H]+. 

 

Ethyl 2-(3-((2-chlorobenzyl)oxy)phenyl)-4-(4-fluorophenyl)-6-methyl-

1,4-dihydropyrimidine-5-carboxylate (14g) was obtained from 14m as a 

greenish gelatinous solid in 81% yield. RP-HPLC tR = 29.5 min, gradient 

condition: from 5% B to 30% B in 5 min, increased to 100 % B in 75 min, 

flow rate of 4 mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.13 (t, J 

= 7.0 Hz, 3H); 2.53 (s, 3H); 4.03-4.17 (m, 2H); 4.97 (s, 2H); 5.61 (s, 1H); 

6.96-7.11 (m, 3H); 7.16-7.48 (m, 9H). ESI-MS, calcd for C27H24ClFN2O3 

478.1; found m/z = 479.0 [M + H]+. 
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Ethyl 4-([1,1'-biphenyl]-4-yl)-2-(2-((2-chloro-5-(trifluoromethyl)-

phenoxy)methyl)phenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate 

(14h) was obtained from 14n as a pale yellow gelatinous solid in 80% yield. 

RP-HPLC tR = 36.1 min, gradient condition: from 5% B to 30% B in 5 min, 

increased to 100 % B in 75 min, flow rate of 4 mL/min, � = 280 nm. 
1H NMR 

(300 MHz, CDCl3): ! = 1.18 (t, J = 7.1 Hz, 3H); 2.52 (s, 3H); 4.02 (s, 2H); 

4.10-4.18 (m, 2H); 5.75 (s, 1H); 7.06 (s, 1H); 7.15 (d, J = 8.3 Hz, 1H); 7.38-

7.54 (m, 12H); 7.66 (t, J = 7.3 Hz, 1H);. 7.78 (br s, 1H). ESI-MS, calcd for 

C34H28ClF3N2O3 604.2; found m/z = 605.2 [M + H]+. 

 

Ethyl 2-(2-((2-chloro-5-(trifluoromethyl)phenoxy)methyl)phenyl)-4-

(9H-fluoren-2-yl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (14i) was 

obtained from 14o as a yellowish solid in 77% yield. RP-HPLC tR = 35.3 min, 

gradient condition: from 5% B to 25% B in 5 min, increased to 100 % B in 65 

min, flow rate of 4 mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 

1.14 (t, J = 7.0 Hz, 3H); 2.69 (s, 3H); 3.73 (s, 2H); 4.03-4.17 (m, 2H); 5.10 (s, 

2H); 5.80 (s, 1H); 7.87 (d, J = 8.1 Hz, 2H); 7.29-7.39 (m, 4H); 7.45-7.55 (m, 

4H);. 7.64-7.75 (m, 4H). ESI-MS, calcd for C35H28ClF3N2O3 616.2; found m/z 

= 617.1 [M + H]+. 
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Ethyl 2-(3-((4-chlorobenzyl)oxy)phenyl)-4-(9H-fluoren-2-yl)-6-methyl-

1,4-dihydropyrimidine-5-carboxylate (14j) was obtained from 14o as a 

yellow powder in 74% yield. RP-HPLC tR = 36.8 min, gradient condition: 

from 5% B to 25% B in 5 min, increased to 100 % B in 65 min, flow rate of 4 

mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.11 (t, J = 7.1 Hz, 

3H); 2.69 (s, 3H); 3.82 (s, 2H); 4.01-4.14 (m, 2H); 5.12 (s, 2H); 5.72 (s, 1H); 

7.10 (br s, 1H); 7.22 (s, 1H); 7.29-7.42 (m, 8H); 7.53 (br s, 2H);. 7.69-7.77 (m, 

3H). ESI-MS, calcd for C34H29ClN2O3 548.2; found m/z = 549.1 [M + H]+. 

 

Ethyl 4-(4-(allyloxy)phenyl)-2-(3-((4-chlorobenzyl)oxy)phenyl)-6-

methyl-1,4-dihydropyrimidine-5-carboxylate (14k) was obtained from 14p 

as a yellow solid in 63% yield. RP-HPLC tR = 37.2 min, gradient condition: 

from 5% B to 20% B in 5 min, increased to 100 % B in 70 min, flow rate of 4 

mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.13 (t, J  = 7.1 Hz, 

3H); 2.49 (s, 3H); 4.03-4.16 (m, 2H); 4.52 (d, J  = 5.2 Hz, 2H); 4.96 (s, 2H); 

5.30-5.44 (m, 2H); 5.55 (s, 1H), 5.98-6.10 (m, 1H), 6.86 (d, J  = 8.6 Hz, 2H); 

7.12 (br s, 1H); 7.22 (d, J  = 8.6 Hz, 2H); 7.28-7.34 (m, 5H); 7.44 (br s, 2H). 

ESI-MS, calcd for C30H29ClN2O4 516.2; found m/z = 517.1 [M + H]+. 
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Ethyl 4-(4-(benzyloxy)phenyl)-2-(3-((4-chloro-3-methylbenzyl)oxy)-

phenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate (14l) was obtained 

from 14q as a pale yellow solid in 59% yield. RP-HPLC tR = 34.8 min, 

gradient condition: from 5% B to 25% B in 5 min, increased to 100 % B in 60 

min, flow rate of 4 mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 

1.14 (t, J  = 7.1 Hz, 3H); 2.29 (s, 3H); 2.67 (s, 3H); 4.05-4.16 (m, 2H); 5.00 (s, 

2H); 5.16 (s, 2H); 5.73 (s, 1H), 6.92 (d, J  = 8.3 Hz, 2H); 7.08 (d, J  = 8.7 Hz, 

2H); 7.31-7.45 (m, 10H); 7.84 (d, J  = 8.7 Hz, 2H). ESI-MS, calcd for 

C35H33ClN2O4 580.2; found m/z = 581.1 [M + H]+. 

 

Ethyl 4-(3-ethoxyphenyl)-6-methyl-2-phenyl-1,4-dihydropyrimidine-5-

carboxylate (91) was obtained from 93 as a colourless gelatinous solid in 85% 

yield. RP-HPLC tR = 21.6 min, gradient condition: from 5% B to 100 % B in 

50 min, flow rate of 4 mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 

1.17 (t, J  = 7.1 Hz, 3H); 1.35 (t, J  = 7.1 Hz, 3H); 2.50 (s, 3H); 3.93-4.01 (m, 

2H); 4.07-4.16 (m, 2H); 5.66 (s, 1H); 6.80-6.90 (m, 3H); 7.19-7.30 (m, 3H); 

7.47 (br s, 1H); 7.72 (br s, 2H). ESI-MS, calcd for C22H24N2O3 364.2; found 

m/z = 365.1 [M + H]+. 
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Ethyl 4-(3-ethoxyphenyl)-2-(4-fluorostyryl)-6-methyl-1,4-

dihydropyrimidine-5-carboxylate (92) was obtained from 93 as a colourless 

gelatinous solid in 73% yield. RP-HPLC tR = 20.5 min, gradient condition: 

from 5% B to 30% B in 5 min, increased to 100 % B in 45 min, flow rate of 4 

mL/min, � = 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.10 (t, J  = 7.1 Hz, 

3H); 1.36 (t, J  = 7.1 Hz, 3H); 2.35 (s, 3H); 3.91-4.09 (m, 4H); 5.30 (s, 1H); 

6.74-6.84 (m, 3H); 6.96 (br s, 2H); 7.20 (t, J  = 8.0 Hz, 1H); 7.39-7.49 (m, 

3H); 7.60 (br s, 1H). ESI-MS, calcd for C24H25FN2O3 408.2; found m/z = 

409.1 [M + H]+. 

 

7.2.3 General procedure for reductive amination 

The appropriate aldehyde (1.0 equiv) was dissolved in anhydrous MeOH in 

a 10 ml round bottom flask. Cyclopentylamine (1.1 equiv) was then added and 

the reaction mixture was stirred for 3 h at room temperature under nitrogen. 

Afterwards NaBH4 (1.6 equiv) was added and the mixture was stirred for 

further 20 min. The mixture was concentrated under reduced pressure, diluted 

with water and extracted three times with CHCl3. The combined organic layer 

was dried with anhydrous Na2SO4 and concentrated under vacuum. The pure 

products were obtained by HPLC purification in good yields (53-90%) and 

high purity (>95%). 
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Ethyl 4-(3-((cyclopentylamino)methyl)phenyl)-6-methyl-2-oxo-1-

phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (70) was obtained from 

compound 59 as a yellow powder in 90% yield. RP-HPLC tR = 19.5 min, 

gradient condition: from 5% B to 100% B in 45 min, flow rate of 4 mL/min, 

�= 280 nm. 
1H NMR (600 MHz, CDCl3): ! = 1.16 (t, J  = 7.1 Hz, 3H), 1.49 (br 

s, 2H), 1.62-1.77 (m, 4H), 1.9 (br s, 2H), 3.30 (s, 1H), 3.88 (s, 2H), 4.05-4.13 

(m, 2H), 5.45 (s, 1H), 6.88 (br s,1H), 7.16 (br s, 1H), 7.29-7.35 (m, 3H), 7.37-

7.44 (m, 3H), 7.47 (s, 1H); 13C NMR (150 MHz, CDCl3): ! = 14.5, 18.9, 23.9, 

29.8, 50.3, 53.9, 58.7,60.8, 108.4, 126.8, 129.4, 129.8, 130.6, 139.2, 144.2, 

150.5, 156.2, 166.4. ESI-MS, calcd for C26H31N3O3 433.5; found m/z = 434.3 

[M + H]+. 

 

Ethyl 4-(3-((cyclopentylamino)methyl)phenyl)-6-methyl-2-oxo-1,2,3,4-

tetrahydropyrimidine-5-carboxylate (77) was obtained from compound 76 

as a colourless gelatinous solid in 76% yield. RP-HPLC tR = 18.6 min, 

gradient condition: from 5% B to 100% B in 60 min, flow rate of 4 mL/min, 

�= 280 nm. 
1
H NMR (300 MHz, MeOD): ! = 1.18 (t, J  = 7.1 Hz, 3H); 1.62-

1.74 (m, 4H); 1.79-1.87 (m, 2H); 2.10-2.20 (m, 2H); 2.37 (s, 3H); 3.51-360 

(m, 1H); 4.03-4.11 (m, 2H); 4.20 (br s, 2H); 5.39 (s, 1H); 7.38-7.49 (m, 4H). 

ESI-MS, calcd for C20H27N3O3 357.2; found m/z = 458.1 [M + H]+. 
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Ethyl 4-(3-((cyclopentylamino)methyl)phenyl)-1,6-dimethyl-2-oxo-

1,2,3,4-tetrahydropyrimidine-5-carboxylate (78) was obtained from 

compound 58 as a white solid in 79% yield. RP-HPLC tR = 18.4 min, gradient 

condition: from 5% B to 100% B in 50 min, flow rate of 4 mL/min, �= 280 

nm. 1H NMR (300 MHz, CDCl3): ! = 1.17 (t, J  = 7.1 Hz, 3H); 1.48-1.79 (m, 

6H); 1.89-1.98 (m, 2H); 2.55 (s, 3H); 3.21 (s, 3H); 3.28-3.40 (m, 1H); 3.91 (br 

s, 2H); 4.06-4.15 (m, 2H); 5.36 (s, 1H); 7.16-7.24 (m, 3H); 7.35 (br s, 1H). 

ESI-MS, calcd for C21H29N3O3 371.2; found m/z = 372.1 [M + H]+. 

 

Ethyl 6-(3-((cyclopentylamino)methyl)phenyl)-5-(4-methoxybenzoyl)-2-

oxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate (79) was obtained from 

compound 58 as a yellow powder in 53% yield. RP-HPLC tR = 18.0 min, 

gradient condition: from 5% B to 100% B in 45 min, flow rate of 4 mL/min, 

�= 280 nm. 
1H NMR (300 MHz, CDCl3): ! = 1.16 (t, J  = 7.1 Hz, 3H); 1.45-

1.76 (m, 6H); 1.87-1.95 (m, 2H); 3.30-3.40 (m, 1H); 3.84 (s, 3H), 3.92 (br s, 

2H); 5.44 (s, 1H), 6.71 (s, 1H), 6.75 (br s, 3H), 7.14 (t, J = 7.9 Hz, 1H), 7.37 

(br s, 1H), 7.56 (d, J = 8.6 Hz, 2H). ESI-MS, calcd for C27H31N3O5 477.2; 

found m/z = 478.2 [M + H]+.  
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His-tagged human mPGES-1 overexpression in 

Lemo21(DE3) E. coli strain and 2D-crystallization studies: 

Experimental procedures 
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Materials 

Lemo21(DE3) competent E. coli cells were purchased from New Englands 

BioLabs. Glutathione, Triton X-100 and reduced Triton X-100 were from 

Sigma. Ni-NTA sepharose gravity flow columns and PD-10 desalting columns 

were from GE Healthcare Life Sciences. Rabbit mPGES-1 polyclonal 

antibody was purchased from Cayman Chemicals. Hydroxyapatite (Bio-Gel 

HTP) and ready-made 18% polyacrylamide gels were from Bio-Rad. Gelcode 

Blue stain and BCA Protein Assay Reducing Agent Compatible were from 

Pierce. All other chemicals were of reagent grade and obtained from common 

commercial sources. 

 

8.1 Bacterial Overexpression of Human mPGES-1 

The His6-tagged human mPGES-1 (His6-mPGES1) was expressed from the 

His6-mPGES1-pSP19T7LT vector in E. coli Lemo21(DE3) competent cells. 

An overnight culture of Lemo21(DE3) cells in LB broth containing ampicillin 

(100 �g/ml) and chloramphenicol (34 �g/ml) was diluted 1:100 into 1�2 liters 

of Luria Bertani medium containing ampicillin (100 �g/ml), chloramphenicol 

(34 �g/ml) and L-rhamnose (2.0 mM). The culture was grown at 37 °C with 

shaking (200 rpm) until the OD600 was 0.4�0.6. When the appropriate OD600 

was reached, expression of His6-mPGES-1 was induced by the addition of 0.4 

mM isopropyl  -D-thiogalactopyranoside (IPTG), and the culture was grown 

over-night at 30 °C. Cells were harvested by centrifugation (7,000 × g, 10 min 

at 4 °C) and washed once with phosphate-buffered saline. The cell pellets were 

stored frozen at �20 °C until further use. 

 

8.2 Preparation and solubilization of whole cell extract 

A frozen cell pellet from a 1-liter His6-mPGES-1 was thawed and 

resuspended in 20 ml of 10 mM sodium phosphate buffer, pH 8.0, 150 mM 

NaCl, 10% glycerol, 1 mM GSH and lysed by lysozime addition (1 mg/ml). 
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DNA was hydrolyzed by the addition of 10 mM MgCl2 and 10 �g/ml DNase 

and incubation on ice for 30 min. The viscous whole cell lysate was sonicated 

in an ice water bath by six 15-s sonication pulses until homogeneous from a 

MSE Soniprep 150 sonicator at 60% power. Then the lysate was solubilized 

by the addition of an equal volume of 10 mM sodium phosphate buffer, pH 

8.0, 150 mM NaCl, 10% glycerol, 1 mM GSH plus 8% Triton X-100 and was 

gently stirred on ice for 30 min. The remaining cell debris and insoluble 

material was removed by ultracentrifugation at 100,000 × g for 30 min. The 

cleared supernatant was filtered through a 0.45-�m filter. 

 

8.3 Purification of Human His6-mPGES-1 

Recombinant His6-mPGES-1 was purified in a two-step combination of 

hydroxyapatite followed by immobilized metal ion affinity chromatography. 

Solubilized whole cell lysate was mixed with hydroxyapatite (1 g/liter 

expression culture) that had been equilibrated with 10 mM sodium phosphate 

buffer, pH 8.0, 150 mM NaCl, 1 mM GSH, 10% glycerol, 10 mM imidazole, 

0.2% reduced Triton X-100. After a 10-min incubation on ice, the 

hydroxyapatite was pelleted by a short centrifugation pulse, and the 

supernatant (unbound fraction) was removed and cleared by centrifugation 

(1,500 × g, 3 min) and filtration (0.45 �m). The cleared, unbound fraction 

from the hydroxyapatite was immediately loaded on a Ni-NTA Sepharose 

gravity flow column that had been charged with NiCl2 and equilibrated with 

10 mM sodium phosphate buffer, pH 8.0, 150 mM NaCl, 10 mM imidazole, 1 

mM GSH, 10% glycerol, 0.2% reduced Triton X-100 (start buffer). After 

loading, the column was washed with start buffer until all unbound proteins 

were eluted. Thereafter, 60 mM imidazole was added to wash out 

unspecifically bound proteins. Finally, the histidine-tagged protein that had 

bound to the affinity column was eluted by a step addition of 350 mM 

imidazole and immediately desalted into 20 mM sodium phosphate buffer, pH 
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7.5, 50 mM NaCl, 10% glycerol, 1 mM GSH, and 0.2% reduced Triton X-100 

on a PD-10 desalting column. Protein concentration was determined by BCA 

Protein Assay Reducing Agent Compatible (Pierce). 

 

8.4 Gel Electrophoresis and Western Blotting 

SDS-PAGE was performed in 18% polyacrylamide gels. Protein bands 

were detected by Gelcode Blue Coomassie stain. Western blots and 

immunodetection using rabbit mPGES-1 polyclonal antibody were performed 

with GenScript One-hour Western Detection System. High Resolution Clear 

Native Electrophoresis (hrCNE) was performed on 4-16% Bis-Tris Glycine 

gels using sodium deoxycholate (0.05%) and Triton X-100 (0.05%) in place of 

Comassie Brilliant Blue G-250 in cathode buffers. 

 

8.5 Electron Crystallography 

Purified His6-mPGES1 in 1% Triton X-100 was subjected to two-

dimensional crystallization trials by adding phospholipids prior to reduction of 

the detergent content. Aliquots of 100 �l of protein were incubated with lipids 

(bovine liver lecithin, BLL) at a molar lipid to protein ratio of 9.  

After 1 h incubation, the detergent-protein-lipid mixture was transferred 

into a dialysis tube (MWCO 12-14 kDa) and dialyzed at room temperature 

against 500 ml 25 mM Tris-HCl, pH 7.4, 50 mM KCl, 0.1 mM EDTA, 20% 

glycerol, 1 mM GSH. After 8 days at least, the crystallisation suspension was 

analysed by electron microscopy (negative staining with 1% uranyl acetate). 

For electron microscopy, aliquots (2 �l) of the crystallization suspension were 

adsorbed onto glow discharged carbon-coated copper grids (400 mesh; 

Analytical Standards), washed twice with a drop of water and stained with a 

drop of 1% (w/v) uranyl acetate for 30 s before blotting and air-drying. Grids 

were placed into a Philips CM120 electron microscope operating at an 

accelerating voltage of 120 kV.  
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17-AAG 17-(Allylamino)-17-

demethoxygeldanamycin 

17-DMAG 17-Dimethylaminoethylamino-17-

demethoxygeldanamycin 

AA Arachidonic Acid 

ADMET Absorption, Distribution, Metabolism, 

Elimination, Toxicology 

ADP     Adenosine Diphosphate   

ATP     Adenosine Triphosphate  

Akt Protein Kinase B 

ASH1L Absent, small, or homeotic-like protein 

ATAD2 ATPase Family, AAA domain-containing 

protein 2 

BET Bromodomain and Extra C-Terminal 

domain 

BAZ1B Bromodomain Adjacent to Zinc finger 

domain 1B 

BAZ2B Bromodomain Adjacent to Zinc finger 

domain, 2B 

BRD     Bromodomain 

BRD2     Bromodomain-containing protein 2 

BRD3     Bromodomain-containing protein 3 

BRD4     Bromodomain-containing protein 4 

BRD4(1)    BRD4 first bromodomain 

BRD9     Bromodomain-containing protein 9 
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BRDT     Bromodomain Testis-specific protein 

BRET Bioluminescence Resonance Energy 

Transfer 

BRPF1 Bromodomain and PHD Finger 

containing, 1 

CDK     Cyclin-Dependent Kinase 

COX     Cyclooxygenase 

COXib     COX-2 selective inhibitor 

CuTC     Cu(I)-thiophene-2-carboxylate 

cPGES     cytosolic Prostaglandin E2 Synthase 

CREB     cAMP Response Element Binding protein 

CREBBP    CREB Binding Protein 

DEAD     Diethyl azodicarboxylate 

DHPM     3,4-dihydropyrimidin-2(1H)-one 

DMSO     Dimethyl Sulfoxide 

EGCG     (-)-Epigallocatechin-3-gallate 

FLAP     5-Lipoxygenase Activating Protein  

GCN5     General Control Nonderepressible-5 

GDA     Geldanamycin 

GPCR     G-Protein Coupled Receptors 

Grp94     94 kDa gluclose-regulated protein 

GSH     Glutathione 

GTP     Guanosine triphosphate 

HAT      Histone Acetyl-Transferases 

HDAC     Histone Deacetylases 

HIV     Human Immunodeficiency Virus 

hrCNE High Resolution Clear Native 

Electrophoresis 
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HSF1     Heat Shock Factor 1 

Hsp     Heat Shock Protein 

HSR     Heat Shock Response 

HTS     High-throughput screening 

IC50     Half Maximal Inhibitory Concentration 

IKK     I�B Kinase 

IL     Interleukin 

IMAC Immobilized-metal affinity 

chromatography 

IPTG     Isopropyl !-D-1-thiogalactopyranoside 

ITC     Isothermal Titration Calorimetry   

Kac     Acetylated Lysine 

KD     Dissociation Constant 

LB Luria-Bertani Broth 

LO Lipoxygenase 

LogP Logarithm of the Partition coefficient 

between water and 1-octanol 

LPS     Lipopolysaccharide 

LT     Leukotriene 

LTC4S Leukotriene C4 Synthase 

LVJ 2-[[2,6-bis(chloranyl)-3-

[(2,2dimethylpropanoylamino)- 

methyl]phenyl]amino]-1-methyl-6-(2-

methyl-2-oxidanyl-propoxy)-N-[2,2,2-

tris-(fluoranyl)ethyl]-benzimidazole-5-

carboxamide 
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MAPEG Membrane-Associated Proteins in 

Eicosanoid and Glutathione metabolism 

MGST     Microsomal Glutathione S-Transferase 

MLL     Mixed Lineage Leukemia protein 

mPGES-1    Microsomal Prostaglandin E2 Synthase-1 

mPGES-2    Microsomal Prostaglandin E2 Synthase-2 

MS     Mass Spectrometry  

MW     Microwaves 

NF-�B     Nuclear Factor kappa B 

NI-NTA    Nickel-nitrilotriacetic acid 

NMC     NUT Midline Carcinoma 

NMR     Nuclear Magnetic Resonance 

NSAID    Non-Steroideal Antiinflammatory Drug 

NUT     Nuclear protein in testis 

PB1     Protein Polybromo-1 

PCAF     P300/CBP-Associated Factor 

PG     Prostaglandin 

PLA2     Phospholipase A2 

P-TEFb    Positive transcription elongation factor B 

PTM     Post Translational Modification  

RDC     Radicicol 

RP-HPLC    Reverse Phase- High Performance  

     Liquid Chromatogrphy 

SAR     Structure Activity Relationship 

SEM      Standard error of the mean 
SET Suppressor of variegation, Enhancer of 

zeste and Trithorax 
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SDS PAGE    Sodium Dodecyl Sulphate -   

     PolyAcrylamide Gel Electrophoresis 

SMARCA SWI/SNF related, Matrix associated,  

Actin dependent Regulator of Chromatin, 

subfamily A 

SPR     Surface Plasmon Resonance 

STAT3 Signal Transducer and Activator of 

Transcription 3 

SWI/SNF SWItch/Sucrose Nonfermenting 

T7Lys T7 Lysozyme 

T7RNAP Bacteriophage T7 RNA polymerase 

TAF1 Transcription initiation factor TFIID 

subunit 1 

TB Terrific Broth 

TBAF Tetrabutylammonium Fluoride 

THF Tetrahydrofuran 

THP Tetrahydropyran-2-yl 

TMSCl Chlorotrimethylsilane 

TNF� Tumor Necrosis Factor alpha 

Trap1 Hsp75/tumor necrosis factor receptor 

associated protein 1 

TRIM/TIF1 Tripartite Motif/Transcriptional 

Intermediary Factor 1 

UTP Uridine triphosphate 

TXA2 Tromboxane 

VEGF     Vascular Endothelial cell Growth Factor 
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