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Introduction

1.1 Research problem and motivations

In software engineering there are many expensive tasks that are performed during develop-

ment and maintenance activities. Therefore, there has been a lot of effort to try to automate

these tasks in order to significantly reduce the development and maintenance cost of soft-

ware, since the automation would require less human resources. One of the most used way

to make such an automation is the Search-Based Software Engineering (SBSE), which refor-

mulates traditional software engineering tasks as search problems [23]. In SBSE the set of all

candidate solutions to the problem defines the search space [24] while a fitness function differ-

entiates between candidate solutions providing a guidance to the optimization process [23].

After the reformulation of software engineering tasks as optimization problems, search al-

gorithms are used to solve them. Several search algorithms have been used in literature

[25], such as genetic algorithms [26, 27, 28], genetic programming [29, 30, 31], simulated

annealing [32], hill climbing (gradient descent) [33], greedy algorithms [34, 35, 36], particle

swarm [37] and ant colony [38].

The earliest work on the application of search-based optimization to software engineering

was proposed by Miller and Spooner in 1976 [39] for software testing and later Chang [40]

promoted the application of evolutionary algorithms for software management problems in

1994. The term SBSE was coined later by Harman and Jones [23] in 2001 and nowadays it

includes all research works coming from many and different areas of software engineering,

other than software testing and software management plan. SBSE has enough material

to justify the publication of several surveys on SBSE [41, 42, 43, 25, 44] and search-based

software testing (SBST) [27, 45, 46]. As revealed by a survey [44], 54% of the overall SBSE

literature is related to software testing [47, 48, 49, 50]. However, SBSE has been applied to

many software engineering problems such as requirement engineering [51], project planning

and cost estimation [52, 53, 54, 31], automated maintenance [32, 55, 56], service-oriented

software engineering [57], compiler optimisation [58] and quality assessment [32]. SBSE

is not only an academic research area, but it has been widely used in industry in many

industrial applications. For example, Microsoft used search-based techniques within its PeX

software testing tool in order to automatically test software programs with floating-point

input data and constraints [59, 60] while Google used multi-objective optimization techniques

for regression testing into its software development life cycle [61]. NASA [62] Motorola [63]

and Ericsson [64] used search algorithms for requirements analysis and optimization.

As pointed out by many previous works [41, 42, 43, 25, 44], SBSE is widely applica-

ble to many software engineering problems and it also provides to these problems several

advantages [41]:

• Generality. SBSE is applicable in all software engineering tasks that can be formulated

as optimization problems. It also provides a way to deal with hard, highly constrained

problems that involve many conflicting objectives using an automated approach. It is

also likely that there is a suitable fitness function with which one could start exper-

imentation since many software engineering metrics are readily exploitable as fitness

2
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functions [25].

• Robustness. Search based optimization techniques are stochastic algorithms that can be

tuned using a selection of parameters. However, it should be noted that such algorithms

are extremely robust and that often the solutions require only lie within some specified

tolerance [25].

• Scalability. Many approaches that are sound in the laboratory, turn out to be in-

applicable in the field, because they lack scalability [65]. Fortunately, some search

algorithms are parallel, since they use multiple solutions to explore many regions of

the search space, such as genetic algorithms. This intrinsic parallelism can be used

with distributed computation [66, 33] to increase the scalability of SBSE approaches.

For example recent work has also shown how General Purpose Graphical Processing

devices (GPGPU) can be used to scale the computation of a search process, showing

better performance than CPU-based computation [65].

• Re-unification. It is possible to identify links between apparently unconnected software

engineering problems by looking them from an optimization point of views [44]. For

instance, regression testing and requirements engineering are two software engineering

areas that are typically involved in two opposite steps of software life cycle. How-

ever, regression and requirements optimization problems share common formulations.

Viewed as optimization problems, they essentially consist in selection and prioritization

problems and they can be solved with similar search-based approaches.

For these reasons, this thesis investigates and proposes the usage of search based ap-

proaches to reduce the effort of software maintenance and software testing with particular

attention to four main activities: (i) program comprehension; (ii) defect prediction; (iii) test

data generation and (iv) test suite optimization for regression testing. For program compre-

hension and defect prediction, this thesis provided their first formulations as optimization

problems and then proposed the usage of genetic algorithms to solve them. More precisely,

this thesis investigates the peculiarity of source code against textual documents written in

natural language and proposes the usage of Genetic Algorithms (GAs) in order to calibrate

and assemble IR-techniques for different software engineering tasks. This thesis also investi-

gates and proposes the usage of Multi-Objective Genetic Algorithms (MOGAs) in order to

build multi-objective defect prediction models that allows to identify defect-prone software

components by taking into account multiple and practical software engineering criteria.

Test data generation and test suite optimization have been extensively investigated as

search-based problems in literature [67, 68]. However, despite the huge body of works on

search algorithms applied to software testing, both (i) automatic test data generation and

(ii) test suite optimization present several limitations and not always produce satisfying

results [69, 68]. The success of evolutionary software testing techniques in general, and GAs

in particular, depends on several factors. One of these factors is the level of diversity among

the individuals in the population, which directly affects the exploration ability of the search.
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For example, evolutionary test case generation techniques that employ GAs could be severely

affected by genetic drift, i.e., a loss of diversity between solutions, which lead to a premature

convergence of GAs towards some local optima. For these reasons, this thesis investigate the

role played by diversity preserving mechanisms on the performance of GAs and proposed a

novel diversity mechanism based on Singular Value Decomposition and linear algebra. Then,

this mechanism has been integrated within the standard GAs and evaluated for evolutionary

test data generation. It has been also integrated within MOGAs and empirically evaluated

for regression testing.

Next section provides a summary of the main contributions of this thesis.

1.2 Major Contributions

This section presents the research contributions of this thesis derived from the analysis of

the research problems briefly described in the previous section.

1.2.1 IR-based program comprehension using search algorithm

Extracting, representing, and analyzing conceptual information in software documents repre-

sent core activities for understanding the software to maintain. During program comprehen-

sion, developers read the source code in order to build a cognitive model that is used to form

a mental representation of the program to be understood and changed [70]. Such a cognitive

process could be tedious, error prone and time consuming in large software systems, where

the developer is requested to read (and comprehend) a large number of source code lines. In

such a scenario, developers spend more time reading and navigating the code than writing

it [71, 72].

Information Retrieval (IR) methods were proposed and used to support software engineers

during comprehension tasks [73, 74, 75, 76, 77]. All IR-based techniques that support SE

tasks, such as Latent Semantic Indexing (LSI) [78] or Latent Dirichlet Allocation (LDA)

[79], require configuring different components and their respective parameters, such as type

of pre-processors (e.g., splitting compound or expanding abbreviated identifiers; removing

stop words and/or comments), stemmers (e.g., Porter or snowball), indexing schemata (e.g.,

term frequency - inverse document frequency), similarity computation mechanisms (e.g.,

cosine, dot product, entropy-based), etc. Even though IR techniques was successfully used

in the IR and natural language analysis community, applying it on software data, using the

same parameter values used for natural language text, did not always produce the expected

results [80]. A poor parameter calibration or wrong assumptions about the nature of the data

could lead to poor results [81]. Recent research has challenged this assumption and showed

that text extracted from source code is much more repetitive and predictable as compared

to natural language text [82]. This also makes the practical use of IR-based processes quite

difficult and undermines the technology transfer to software industry.

This thesis starts from the findings that IR techniques should not be applied as done
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in traditional information retrieval problems because text in software artifacts has different

properties, as compared to natural language text. For these reasons, this thesis considers a

novel approach to solve the problem of assembling IR-based solutions for a given SE task

and accompanying dataset. The main assumption, which is supported by a large body of

empirical research in the field [80], is that it is not possible to build a set of guidelines for

assembling IR-based solutions for a given set of tasks as some of these solutions are likely to

under-perform on previously unseen data-sets. The solution proposed in this thesis consists

of (i) formulating of the problem of finding the best IR configuration as an optimization

problem, and (ii) using genetic algorithm to find the (near) optimal configuration. The

approach is unsupervised and task-independent because it is based on the quality of the

clustering of the indexed software artifacts and not on past data. Thus, it can be used to

select and generate on demand an adequate IR-based solution given a dataset provided as

input.

1.2.2 Multi-objective defect prediction

Effective defect prediction models can help developers to focus activities such as code in-

spection or testing on likely defect-prone components, thus optimizing the usage of resources

for quality assurance. The idea is that software repositories provide information about past

faulty software entities that can be used to training data mining and machine learning al-

gorithms to predict and locating defects of future entities. A good defect prediction model

should be able to identify the largest proportion of defect-prone components (effective) and

should limit the number of false positives (efficient), thus not wasting the developers’ effort

in the quality assurance task. However, building effective and efficient bug prediction model

requires the availability of enough accurate data about a project and its history [83]. This

clearly limits the adoption of prediction models on new projects. Several authors [84], [85],

[86], [87] have discussed the possibility to use data from other projects to train machine learn-

ing models to deal with the limited availability of training data. This strategy, referred to as

cross-project defect prediction, does not always produce the expected performances [84, 85].

An important limitation of defect prediction models for cross-project defect prediction

is that they are built using the same algorithms and the same performance metrics that

are used for traditional classification problems, such as the number of defective software

components erroneously classified. Recently, researchers [88, 89, 90] have pointed out that

defect prediction models should be evaluated using other performance metrics, not used

for traditional classification problems, in order to take into account goals and needs of the

software engineer, such as inspection cost or defect density. In this scenario, a good model is

the one that identifies defect-prone files with the best ratio between (i) effort spent to inspect

such files, and (ii) number of defects identified. However, even if previous studies considered

cost-effectiveness to assess the quality of a predictor [88, 89, 90], they still built prediction

models using the same algorithms used for traditional classification problems which, by

definition, find the model that minimizes the fitting error, precision and recall without taking

into account (i) inspection cost and (ii) defect density.
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Stemming from the considerations by previous study [88, 89, 90], it can be argued the ML

techniques should not be applied, built and evaluated as in traditional classification problems.

Defect prediction models should take into account not only the accuracy of prediction but

also other metrics that have practical relevance for software engineer such as the inspection

cost and the defects density of software components. This thesis provides the first explicit

formulation of the problem of finding cost-effect prediction models as a multi-objective op-

timization problem. Then, evolutionary algorithm, and more precisely MOGAs, are used to

find (near) optimal solutions for this problem.

1.2.3 Improving search-based software testing through diversity in-

jection

The first studied research area on SBSE is the automated test data generation. Despite the

huge body of works on this area, automatically testing the 100% of code is still an open issue

because some branches of code can be particular complex and hard to cover using search-

algorithms. The success of GAs depends on the level of diversity among the individuals in

the population, which directly affects the exploration ability of the search. Indeed, given the

fact that the search space is usually extremely large, the GA has to maintain an adequate

level of diversity in the population in order to effectively explore the search space and look

for alternative, potential solutions. However, traditional genetic operators might not suffice

by themselves in maintaining enough diversity. Depending on the difficulty of the current

search target and the type of selection scheme in use, individuals in the population can

become too similar to one another, eventually converging to a single, sub-optimal individual.

Hence, the ability of the search to explore new areas of the search space is greatly reduced.

This phenomenon is referred to as genetic drift [91]. Hence, test data generation techniques

need to properly address this problem if they are to succeed on programs with complex logic

and branches. Previous work treated the problems of diversity considering simple heuristics

promoting diversity between individuals within the same generation [92, 93]. Hence, new

offsprings might explore regions that have been explored in previous generations while new

potential regions can still remain unexplored, increasing the likelihood to reach sub-optimal

solutions.

This thesis investigates the role of diversity for genetic algorithms and integrates in the

standard GA an orthogonal exploration mechanism of the search space through the estima-

tion of the evolution directions via Singular Value Decomposition (SVD) with the aim at

augmenting the population diversity. Results achieved on 17 Java classes extracted from

well-known libraries show that with the appropriate application of diversification techniques,

the effectiveness and efficiency of GAs in structural test data generation can be greatly

improved. In particular, effectiveness (coverage) was significantly improved in 47% of the

subjects and efficiency (search budget consumed) was improved in 85% of the subjects on

which effectiveness remains the same.
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1.2.4 Improving test suite optimization through diversity injection

Re-testing the whole software system by executing all the available test cases might be

too expensive and unfeasible, especially for large systems [94, 95]. The problem is clearly

amplified by the growth of the test suites as the system evolves. This has led to develop

of strategies in order to optimize test suite according to some testing criteria to be satis-

fied. For example, widely used criteria are code coverage [34, 96, 97], program modification

[98, 99, 100], execution cost [68, 101, 102], or past fault information [97, 68, 103]. The test

suite optimization problem has been also formulated as a combination of multiple—often

contrasting—criteria. Results have highlighted that when using multiple criteria the opti-

mization of test suite is more effective than when using individual ones [97, 104, 68, 103, 105].

Hence, test suite optimization has been treated using MOGAs to deal with multiple and con-

trasting objectives [68, 103]. Empirical results indicated that in some cases MOGAs provide

better performance than other single-objective algorithms. However, there is no a clear win-

ner between single-objective approach and MOGAs [68] and their combination is not always

useful to achieve better results [103]. The poor performance of MOGAs when applied to

test suite optimization can be due to the phenomenon of genetic drift, i.e., a loss of diver-

sity between solutions, which affects not only single-objective GAs but also MOGAs. Thus,

promoting diversity between test cases is a key factor to improve the optimality of MOGAs

[106].

This thesis investigates the role of diversity for MOGAs and integrates in the main loop

of one the most popular MOGAs, called NSGA-II [107], two novel genetic operators to pro-

mote diversity between the selected test cases without adding any further diversity-based

objective function: (i) a generative algorithm to build a diversified initial population, based

on orthogonal design [108], and (ii) an orthogonal exploration mechanism of the search space,

trough Singular Value Decomposition (SVD) [109], aimed at preserving the diversity during

the evolution of the population. These two diversity mechanisms can be applied for any test

suite optimization problem and independently of the number of test criteria or objectives

to be taken into account. The thesis investigates the usefulness of the proposed diversity

mechanisms through an empirical study conducted on 11 real world open-source programs.

Results show that the proposed algorithm outperforms both traditional MOGAs and greedy

algorithms. The thesis also presents a performance metric, inspired by the traditional hyper-

volume metric widely used for numeric multi-objective problems [110], to evaluate the ability

of the selected test cases to reveal faults (effectiveness) in a multi-objective paradigm.

1.3 Thesis organization

This thesis is composed of 9 chapters including this chapter. In particular, the thesis is

composed of two parts:

• Part I: this part considers two software maintenance activities, that are (i) IR-based

program comprehension and (ii) defect predictions. It also provides a search-based
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formulation for both the two activities. Specifically, Chapter 2 gives an overview on

optimization problems, GAs, MOGAs and discusses related work on search-based soft-

ware maintenance. Chapter 3 contains (i) the formal formulation of finding the best

the best IR process as an optimization problem; (ii) the description of a novel a search-

based approach based on GAs to solve such a problem; and (iii) an empirical evaluation

of the proposed approach through a case study involving different software engineering

tasks. This chapter also shows how using GAs to calibrate sophisticate IR methods such

as LDA. Finally, Chapter 4 provides (i) the formal formulation of finding cross-project

defect prediction models as a multi-objective optimization problem; (ii) the definition

of a novel a search-based approach based on MOGAs to solve such a problem; and (iii)

an empirical evaluation of the proposed approach through a case study.

• Part II: this part presents the contribution of the thesis within the context of software

testing. It is composed of 4 chapters. Chapter 5 presents discusses related work on

evolutionary test data generation, test suite optimization and their limitations. Chap-

ter 6 presents the novel diversity preserving techniques proposed in this thesis aimed at

improving the performance of both GAs and MOGAs when applied to complex prob-

lems by reducing the problem of genetic drift. This chapter also presents a preliminarily

evaluation of the proposed techniques on numeric test benchmark problems widely used

in evolutionary computation community to test the performance of search algorithms.

Chapter 7 presents the empirical evaluation of diversity preserving techniques proposed

in Chapter 6 and its variants, when integrated into the main loop of GAs for evolu-

tionary test data generation. Chapter 8 presents an empirical evaluation of diversity

preserving techniques proposed in Chapter 6 and its variants, when integrated into the

main loop of MOGAs for solving multi-objective test suite optimization problem.

Finally, Chapter 9 gives conclusion remarks and directions for future work.
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2.1 Introduction and Motivations

During the past few decades, there has been a rapid increase of software systems to sup-

port humans in several activities including health-care services, manufacturing industries,

financial company, etc. Software systems are dynamic entities subjected to continuous and

frequent changes and corrective operations that are generally needed to support, to preserve

or to improve software quality, such as functionality, flexibility, correctness, reliability, etc. A

change can involve small parts of the software system, such as changes performed to fix errors

discovered in the system, or a more complex and massive operation aimed at re-engineering

the system to improve its performances [111]. According to the IEEE Standard the process

of modifying a software system or its components after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a modified environment1 is defined

as software maintenance. Maintenance is needed to ensure that the software continues to

satisfy user requirements. However, a system always evolves through maintenance activities

to meet the requirements of the changing world in which it operates [112], and this makes

changes hard, complex and expensive. Software maintenance involves the execution of many

complex operations other than the simple source code editing [111], such as (i) planning

phase, (ii) understanding and comprehension of the source code and its behavior; (iii) identi-

fication of the components to be modified; (iv) impact analysis; (v) change implementation;

(vi) testing of new components implemented during software maintenance; (vii) regression

testing aimed at verifying whether new changes have introduced errors into unchanged parts,

endangering their behaviors [27].

According to various studies [113, 114], software maintenance activities consume about

the 60% and the 90% of the cost of the entire software system life cycle. Thus, compa-

nies spend the majority of time and resources to maintain and change existing software

than to design and develop new software. Maintenance activities that are too expensive

can have practical implication for software companies because they can negatively affect the

capabilities to release new version of existing systems. Researches also reported that the ma-

jority of software maintenance resources are devoted to program comprehension [115, 71, 72],

software verification and validation [116] rather than implementing changes. For these rea-

sons, this first part of the thesis focuses on two critical activities performed before/during

maintenance activities: program comprehension and defect prediction. To support program

comprehension many researchers have proposed the usage of IR-based techniques, such as

Latent Semantic Indexing (LSI) [78] or Latent Dirichlet Allocation (LDA) [79], to automati-

cally extract and manage textual information from source code and software documentation.

As pointed out by previous works [81, 80], these techniques require to accurately configure

different components and parameters in order to successfully support the software engineers.

Moreover, the problem of building a set of guidelines for assembling IR-based solutions for

a given dataset or for a specific task is impossible [80], because different datasets and differ-

ent software engineering tasks requires different parameters with different calibrations of IR

1Standard ISO-IEC/IEEE 14764-2006.
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methods. To address these issues, in this thesis we propose the usage of search based tech-

niques to automatically calibrate IR methods. Therefore, we provide the first formulation of

the problem of calibrating IR-techniques for SE tasks as an optimization problem and then

we suggest to use optimization algorithm to solve it.

Machine Learning (ML) techniques have been used to identifying likely fault-prone soft-

ware components [88, 83, 84, 85, 86], in order to prioritize Quality Assurance (QA) activities

in the presence of limited time or resources available, thus, reducing the effort of software ver-

ification and validation. An important limitation of defect prediction models for cross-project

defect prediction is that they are built using the same algorithms and the same performance

metrics that are used for traditional classification problems, such as the number of defective

software components erroneously classified. Recently, researchers [88, 89, 90] have pointed

out that predicting defect prone software components is not equivalent to traditional clas-

sification problems, since for software engineer is more useful to consider inspection cost or

defect density, instead of the prediction error. However, even if previous studies considered

cost-effectiveness to assess the quality of a predictor [88, 89, 90], they still built predic-

tion models using the same algorithms used for traditional classification problems which,

by definition, find a model that minimizes the fitting error without taking into account (i)

inspection cost and (ii) defect density. To address these issues, in this thesis we propose the

usage of search based techniques to build defect prediction models which take into account

not only the accuracy of prediction but also other metrics that have practical relevance for

the software engineer. Specifically, this thesis provides the first explicit formulation of the

problem of finding cost-effect prediction models as a multi-objective optimization problem.

Then, evolutionary algorithm, and more precisely MOGAs, are used to find (near) optimal

solutions for this problem.

The rest of the chapter is organized as follows: Section 2.2 summarizes related work on

search-based approaches to software maintenance. Section 2.3 provides background notions

on optimization problems, while Section 2.4 describes evolutionary algorithms and GAs in

particular. Finally, Section 2.5 and Section 2.6 summarize background notions about single

objective genetic algorithms and multi-objective genetic algorithms.

2.2 Search-based approaches to Software Maintenance

According to a recent survey on SBSE [44], the majority of search-based works on soft-

ware maintenance focused on software modularization and refactoring. The earliest work on

search-based software modularization was proposed by Mancoridis et al. in 1998 [117] and

presented a tool called Bunch that implements clustering techniques to cluster software mod-

ules. In this work, the quality of software modularization is measured using a single fitness

function, named Modularization Quality (MQ), which condenses two contrasting goals: (i)

maximizing cohesion and (ii) minimizing coupling [55]. Harman et al. [55] used evolution-

ary algorithms to optimize a fitness function that integrates module granularity into MQ.

Mahdavi et al. [33] described a multiple hill climbing approach for optimizing the MQ fitness
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function. In this approach an initial set of hill climbs is performed and from these, a set of

best hill climbs is identified according to some threshold. Harman et al. [118] empirically

compared the robustness of two fitness functions used for software module clustering: (i) the

MQ function used by previous works and (ii) EValuation Metric (EVM).

Search-based software clustering techniques have been also used for further applications

in SE applications, other than the original work on software modularization. Bodhuin et

al. [119] proposed to cluster together (in jars) classes that, for a set of usage scenarios, are

likely to be used together. They used genetic algorithms to minimize a fitness function that

considers the packaging size and the average downloading times. Huynh and Cai [120] pro-

posed an automated approach to check the consistence between source code modularity and

designed modularity. Their approach uses design structure matrices (DSMs) as a uniform

representation; it uses existing tools to automatically derive DSMs from the source code and

design, and uses a genetic algorithm to automatically cluster DSMs and check the consis-

tence. Cohen [121] used genetic algorithms in order to cluster multi-threaded applications

that use single shared heap memory in order to improve garbage collector operations. Del

Rosso [122] proposed the usage of genetic algorithms in order to improve the internal memory

fragmentation by finding the optimal configuration of a segregated free lists data structure.

Other works proposed search-based approaches in order to automatically change the struc-

ture of software programs, in order to improve some software quality metric, without altering

the behavior and the semantics of the programs. For example, O’Keefee and Cinnéide [123]

presented a software tool capable of refactoring object-oriented programs to conform more

closely to a given design quality model, by formulating the task as a search problem in the

space of alternative designs. Harman and Tratt [124] proposed the usage of Pareto efficient

multi-objective evolutionary algorithms to suggest a sequence of refactoring steps that are

(near) optimal according to multiple software quality metrics. Bouktif et al. [125] proposed

to adopt meta-heuristic approaches to schedule refactoring operations in order to remove

duplicated code under constraints and priority. Other works [126, 125, 127] proposed the

usage of search-based approaches to improve the performance of compiled code by searching

the space of compiler options. For example, Dubach et al. [125] considered 60 different opti-

mizations for the gcc compiler and used as objective functions the compilation time and code

quality (measured in terms of execution time). Fatiregun t al. [128] and Kessentini et al. [129]

proposed program transformations via search-based approaches to reduce programs size and

to automatically construct amorphous slices. Nisbet [130] proposed a framework based on

GAs to find the optimal sequence of code transformations that minimizes the execution time

of loop-based programs written in FORTRAN for parallel architectures.

Other than software modularization and refactoring, previous works considered other

SBSE applications that do not fall in these two categories. For example, Bate and Em-

berson [131] incorporated scenario based analysis into heuristic search strategies to improve

the flexibility of real-time embedded systems. Saharaoui et al. [132] presented two search-

based algorithms for identifying objects in procedural code and facilitating the migration of

legacy systems to object-oriented technology. Forrest et al. [133] used genetic programming
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combined with program analysis methods to repair bugs in off-the-shelf legacy C programs.

In summary, all previous works on search-based software maintenance focused on auto-

matic modifications of programs in order to improve some software quality metrics (such as

cohesion, coupling, memory usage, etc.) without modifying their behavior. All these ap-

proaches apply automatic changes in order to improve performance, functionality or in order

to reduce the effort of future maintenance activities. To the best of our knowledge, no previ-

ous work rigorously focused on using search-based approaches to automatically calibrate IR

processes/methods to support program comprehension or for building multi-objective defect

prediction models. In this thesis we proposed the first formulation of these two problems as

optimization problems, and then we propose the usage of genetic algorithms to solve/optimze

them. Since for both program comprehension and defect prediction we use search-based ap-

proaches, the next sections provides background notions on optimization problems and search

algorithms, with particular attention to genetic algorithms.

2.3 Optimization problems

According to [23] there are three key ingredients to use in order to reformulate a software

engineering task as an optimization problem: (i) a representation of the problem which allows

the symbolic manipulation; (ii) a fitness function that captures the objective or objectives to

be optimised; (iii) a set of manipulation operators which allow to change candidate solutions.

The representation of the candidate solutions is a critical phase of any search problem and

it depends on the nature of the problem itself. Representations that are widely used for

problem parameters are floating point and binary code [23]. The fitness function allows to

characterize what is a good solution to a given problem. It defines the fitness landscape, i.e.,

it assigns an ordinal scale of goodness to the solutions it is applied to. Such a landscape

should be not too flat, nor should has too local optima that can prevent the identification of

a global optimum to the problem [25]. However, this aspect is highly related to the nature

of the problem being solved with SBSE approaches. Some operators are used to mutate

candidate solutions to produce other nearby candidate solutions. Different search algorithms

differ on the number and the type of operators.

An optimization problem (or search problem) is the problem of finding the best solution

from the set of all feasible solutions according to a given function to be optimized. It

can be of different kinds on the basis of the number goals to be considered in the search

task. The optimization problem can have only one objective function to be optimized and

in this case the problem is named single-objective optimization problem. In other cases the

optimization problem can involve multiple and conflicting objective functions to be optimized

in the same time and in this case it is named multi-objective optimization problem. Some

problems can have only one optimum (unimodal problem) while other may contain more

than one optimum in the search space (multimodal problem). The standard definition of a

single-objective optimization problem is the following:

Definition 1. Given an objective function f : Ω → R, where Ω is the set of all possible
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solutions. Find the solution (or decision vector) x = (x1, . . . , xn) from the universe Ω that

minimizes (or maximizes)

f(x) = f (x1, x2, . . . , xn)

In this definition f(x) denotes the objective function; Ω is the feasible region, i.e. it contains

all possible decision vectors that can be used to evaluate f(x) and its constraints; x =

(x1, . . . , xn) is a decision vector defined in Ω. In this thesis we are interested in findings

the global optimum of f(x), hence we will focus on global search algorithms. In general, the

global optimum of a single-objective optimization problem is defined as follows:

Definition 2. Let f : Ω → R be the objective function to be minimized; let Ω be the set of

all possible solutions. A solution x∗ = (x∗1, . . . , x
∗
n) ∈ Ω is a global minimum if and only if

f(x∗) ≤ f(x) ∀ x ∈ Ω

.

For a maximization problem the goal is to find a decision vector x∗ = (x∗1, . . . , x
∗
n), said to be a

global maximum, such that f(x∗) ≥ f(x) for all x ∈ Ω. Conceptually, the problem consists in

finding a solution that provides the minimum (or maximum) value for the objective function

within the space of possible solutions.

Many real-world problems require trading off multiple criteria in the same time, including

software engineering problems. For example, software re-modularization requires to deal

with multiple well-known contrasting criteria, such as cohesion and coupling [134]. Another

example is represented by regression testing that is aimed at selecting test cases that cover

(test) as much as possible a program but with minimum execution cost [68]. Differently

from single-objective problems, finding optimal solutions for problems with multiple criteria

involves to analyze trade-offs. The standard definition of a multi-objectives optimization

problem is the following:

Definition 3. Given a set of objective functions F = {f1, . . . , fm}, where each function

fi : Ω→ R. Let Ω be the set of all possible solutions. Find the solutions (or decision vectors)

x = (x1, . . . , xn) from the universe Ω that minimizes (or maximizes) the components of vector

F (x) = {f1(x), . . . , fm(x)}

For multi-objectives problems the concept of optimality is based on two widely used notions

from economics with wide range of applications in game theory and engineering [68, 135]:

Pareto dominance and Pareto optimality (or Pareto efficiency). Without loss of generality,

let us assume that we want to minimize a set of objectives F = {f1, . . . , fm}, the definition

of Pareto dominance is the following:

Definition 4. We said that a solution x dominates another solution y (also written x <p y)
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if and only if the values of the objective functions satisfy:

fi(x) ≤ fi(y) ∀ fi ∈ F
∃ fj ∈ F such that fj(x) < fj(y)

The definition above means that a solution x is preferred to y if and only if, at same level of

objective values fi 6= fj , x is at least better for one objective function fj ∈ F . Starting from

Definition 4, the concept of optimality for the multi-objectives problem is defined as follows

[135]:

Definition 5. A solution x∗ is Pareto optimal (or Pareto efficient) if and only if it is not

dominated by any other solution in the feasible region Ω, i.e., if and only if

f(x∗) <p f(x) ∀ x 6= x∗ ∈ Ω

The Pareto optimal solution are the ones within the feasible region whose corresponding

objective vector components in F cannot be improved simultaneously, hence, no other so-

lution exists which would improve one of the objective functions, without worsening other

objectives [135]. While single-objective optimization problems have only one solution, solv-

ing a multi-objective problem may lead to find a set of Pareto optimal solutions which, when

evaluated, correspond to trade-offs in the objective space. All the solutions that are not

dominated by any other decision vectors are said to form a Pareto-optimal set, while the

corresponding objective vectors (containing the values of the objective functions) are said to

form a Pareto frontier. A decision maker can choose one of the solution within the Pareto

frontier according to her preferences or needs.

When the search space becomes too large there is the need for using a specific technique

to find efficiently the global optimum (or Pareto optima) for both single-objective and multi-

objective problems. This thesis focused on a class of global search algorithms, named evo-

lutionary algorithms, inspired on the darwinian principles of evolution and natural selection

[136]. Specifically, this thesis will use single-objective genetic algorithms (GAs) to deal with

single-objective problems and multi-objective genetic algorithms for solving multi-objective

problems. Next sections describe genetic algorithms and their genetic operators.

2.4 Evolutionary Computation

Charles Darwin theory of evolution of species suggests that natural life is an intrinsic search

and optimization mechanism. Indeed, biological organisms demonstrate optimized complex

behavior where the fittest organisms, i.e. individuals that are more adapted to the natural

environment, have higher probability to survive and procreating, then, transmitting their

genes to the next generation. The theory of natural selection suggests that organisms that

exist nowadays are the result of millions of years of adaptation to the external environment

and its resources. The biological organisms showing better characteristics for the natural

environment (fit) are more capable of earning resources and successfully procreating, hence
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they will tends to have numerous descendants. Vice versa, organisms showing worst char-

acteristics (unfit) for the natural environment will tend to have few or no descendants. In

this way, the characteristics of the fittest organisms are selected over the characteristics of

the other organisms by the environment. During reproduction, the recombination of the

good characteristics of pairs of fittest organisms can produce more adapted descendants with

respect to their parents. Over several generations, organisms evolve to adapt more to the

environment.

The efficiency of natural evolution has suggested the possibility to define efficient search

algorithms by simulating the behavior of biological organisms. In 1975, Holland developed

this idea by abstracting and applying these evolutionary principles into algorithms to solve

optimization problems [136]. Evolutionary computation techniques abstract these evolution-

ary principles into algorithm that can be used to search for optimal solutions to a problem.

Genetic Algorithms (GAs) are the most popular and widely applied evolutionary search algo-

rithms [137]. Since their introduction, these algorithms have been widely used in several fields

where optimization is required and finding an exact solution is complex, such as industrial

engineering, software engineering, numerical analysis, etc. [137].

A GA search starts with a random population of solutions, where each individual (i.e.,

chromosome) of a population represents a potential solution to the optimization problem.

Each solution is evaluated on the basis of the function to be optimized to give a measure

of its fitness. Then, the population is evolved toward better solutions through subsequent

iterations to form new individuals by using genetic operators. Specifically, new individuals

(i.e., offsprings) are generated by applying a selection operator that picks out pairs of indi-

viduals for reproduction. Since selection operators select the fittest individuals according to

their fitness function, it simulates the natural selection due the natural environment. The

reproduction (or genetic recombination) is performed through a specific crossover operator

which creates new individuals (offsprings) by combining parts from selected individuals (par-

ents). Finally, offsprings are mutated by a mutation operator, which randomly modifies their

genes, and then evaluated. These genetic operators are performed for several subsequent it-

erations, called generations, until the function cannot be further improved or a fixed amount

of time is reached. Hence, generation by generation the population evolves under specific

selection rules by adapting itself to the fitness function to be optimized. In general, after

some generations the algorithm converges to the best individual, which hopefully represents

an optimal or sub-optimal solution to the problem [137]. The advantage of GAs with respect

to the other search algorithm is in its intrinsic parallelism because it has multiple solutions

(individuals) evolving in parallel to explore different parts of the search space.

In general, a GA has the following basic elements:

• Encoding of solutions to the problem;

• Fitness function used to measure the quality of each solution; in general, it is propor-

tional to the objective function2 to be optimized;

2Either a vector of objective functions for multi-objective problems
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• Selection operator to select best individuals within each generation; typically the se-

lection depends on the relative fitness function values of the individuals;

• Crossover operator, which is used to recombine pairs of selected individuals;

• Mutation operator, which randomly modifies genes of individuals.

In the original definition by Holland [136], a solution is encoded by fixed-length binary

string where each element of such a string represents a particular binary decision variable to

the problem. In this definition, the genetic operators are binary operators used to deal with

binary strings. However, during the years several variants of GAs and genetic operators have

been proposed in order to customize the original scheme to different kinds of problems to

solve. For example real-coded GAs have been proposed to deal with continuous real problems

[137], while permutation operators have been designed to solve permutation problems. All

these variants of GAs, as well as the original version by Holland, are often named as single-

objective GAs because they are designed and developed to solve single-objective problems.

More sophisticated GAs have been designed to solve multi-objective problems where selection

schemata have to take into account multiple objective functions in order to establish which

individuals in each generation are the fittest ones. These GAs are often called as multi-

objective genetic algorithms or MOGAs.

In this thesis both single-objective and multi-objective genetic algorithms have been con-

sidered to deal with various software maintenance and software testing activities. The next

two sections provide further details on both single-objective and multi-objective genetic al-

gorithms, and their genetic operators, used in this thesis.

2.5 Single-objective Genetic Algorithms

A single-objective genetic algorithms is a genetic algorithm developed and designed to solve

single-objective problems, i.e., problems consisting in finding global optimum to single objec-

tive function. The traditional procedure of the single-objective genetic algorithms is shown

in Algorithm 1. The algorithm starts with an initial set of random solutions or population,

obtained by randomly sampling the search space (line 3 of Algorithm 1). To produce new

individuals, GA first creates new offsprings by merging the genes of two individuals in the

current generation using a crossover operator or modifying a solution using a mutation op-

erator (line 5 of Algorithm 1). Then the next generation is obtained by selecting the best

(fittest) individuals from parents and offsprings using a selection operator and according

to their fitness values (line 6 of Algorithm 1). In single-objective optimization, the fitness

of an individual is assigned proportionally to the value of the single objective function for

that individual. The better the value of the objective function, the higher the corresponding

fitness value. The main loop of the algorithm is repeated until a stop condition is reached.

Before applying Algorithm 1 to solve a real-world problem, it is necessary to use an

encoding schema to represent solutions as chromosomes. Then, it is needed to choose good

genetic operators —that are crossover, mutation, and selection— according to the peculiarity
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Algorithm 1: Genetic Algorithms

Input:
Number of decision variables N
Population size M
Result: A solution S to the problem

1 begin
2 t←− 0 // current generation
3 generate initial population Pt
4 while not (end condition) do
5 generate offsprings Qt using crossover and mutation
6 select Pt+1 from Pt and Qt
7 t←− t+ 1

8 S ←− best individual of Pt

of the problem taken into account. There are several encoding schemata and genetic operators

that can be placed in the pseudo-code of Algorithm 1.

2.5.1 Solution encoding

Encoding a generic solution to a problem into a chromosome is the first issue to consider

when using genetic algorithms. Before running GAs it is necessary to represents all possible

solutions as chromosomes. Given an optimization problem min f (x1, x2, . . . , xn) where f(x)

is the function to be optimized and x = (x1, x2, . . . , xn) is the vector of decision variables;

the simplest encoding schema consists of representing each potential solution by a string s

of length n obtained by concatenating all its decision variables:

s = x1x2 . . . xn

The string s is the chromosome that consists of n genes, where each gene corresponds to a

specific decision variable to the problem; different values of a gene are named alleles. The

chromosome s is the genotype of the individual while the value assumed by the function f

in s is the corresponding phenotype. Hence, the function f links genotype and phenotype.

In maximization problem the fitness of a solution s is exactly equals to the objective func-

tion f(x), hence, solution having higher phenotype have also higher fitness. Vice versa, in

minimization problems, solutions with higher fitness are those showing a lower phenotype.

According to type of alleles of a gene, the encoding schemata can be classified in different

categories [138]. In this thesis we consider the two most used encoding schemata that are

the binary encoding and real-number encoding. The Binary encoding is the original schema

defined by Holland [136] where solutions are represented by binary strings and each gene

is a binary decision variable assuming two possible values {0; 1}. This encoding schema is

used for solving binary problems such as the knapsack problem and it will be used in this
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Individual Fitness Relative Fitness
10101 1.14 0.10
11001 2.05 0.19
01101 1.98 0.18
10100 3.40 0.31
00000 2.45 0.22

I1
10%

I2

19%

I3

18%

I4

31%

I5

22%

Figure 2.1: Example of roulette wheel selection

thesis to solve the test suite optimization problem. The binary encoding schema can be

also used for solving non-binary problems by converting integer or real decision variables in

binary strings. For example, a vector of three integers <112, 255, 52> in the range [0, 255]

can be represented as <01110000, 11111111, 00110100>. For real values, a decision must

be made on the precision and the mapping in binary strings to use. To overcome this issue,

Antonisse [139] suggested to use a real number encoding. In this schema, a chromosome is

represented as string of real numbers and each gene is a real decision variable assuming value

in real and continuous intervals of the search space. Davis [140] demonstrated that real-

valued representations always outperformed binary encodings when solving problems with

real-number decision variables. Thus, this schema will be used in this thesis to solve software

maintenance activities having real-coded decision variable.

For more complex real-world problems other encoding schemata can be used to capture

the properties of the problem itself. A more detailed survey on other encoding schemata can

be found in [138].

2.5.2 Selection operators

Selection operators emulate the Darwinian selection due to natural environment. It is used to

select fittest individuals that have to survive in the next generation. The intuitive idea is that

this operator should be related to the fitness of each individual in some way. The selection

operator proposed by Holland is the roulette wheel selection [136], which assigns to each

individual a probability to survive in proportion to its fitness: the higher the fitness of an

individual, the higher its probability to survive or to be selected. The process is analogous to

the use of a roulette wheel where each individual share a slice of the wheel that is proportional

to its fitness value. Thus, the wheel is spun M times in order to pick M individuals and

to make constant the population size. Figure 2.1 shows an example of survival probability

assignment obtained using the roulette wheel selection. Despite its simplicity, this operator

has several disadvantages. First, it requires that the fitness function has to be positive.

Second, in the case of a population having individuals with small fitness values, they have

very few chances to be selected if one chromosome has a very high fitness value [137].
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To overcome such issues, many selection operators have been proposed in literature [138].

This thesis considers the following two widely used selection operators:

• Ranking selection. In this operator, all individuals of the population are ordered ac-

cording to their fitness values. Then, each individual has the probability to survive

that is proportional to its position (rank) in the ordered list, rather than directly using

of fitness values. This methodology allows to reduce the effect of individuals having

too large fitness values with respect to other individuals. On the other hand, it ignores

the magnitude of the fitness differences between individuals.

• Tournament selection. This method randomly chooses a set of k individuals from

the current population and select the fittest individual within k selected ones. The

process is repeated until the maximum number of individuals is selected, i.e. until the

population size is reached. The number of individuals k in the set is named tournament

size. With this operator, individuals with small fitness values have higher chance to

be selected with respect to the roulette wheel selection. However, it presents a further

controlling parameter3 that directly affect the selective pressure [137].

Further details of advantages and disadvantages of the two operators can be found in [138].

2.5.3 Crossover operators

Crossover is the operator used to create offsprings by combining genes of their parents. Since

this operator works at gene level it is highly dependent of the encoding schema used to

represent the solutions. Indeed, each encoding schema has an own plethora of crossover

operators. Single-point crossover is the simplest and the original crossover designed by

Holland for binary encoding and it is outlined in Algorithm 2. It takes two parents and cuts

their chromosome strings at some randomly chosen position and the produced substrings

are then swapped to produce two new full-length chromosomes. For example, given two

binary-coded chromosomes 000000001111111100000000 and 111111110000000011111111, the

single-point crossover with cut point in the 12-th position will recombine the two parents

generating two new offsprings as follows:

000000001111 111100000000

111111110000 000011111111
=⇒ 000000001111 000011111111

111111110000 111100000000

Crossover is applied to individuals selected at random with a probability pc, referred to as

the crossover probability. When crossover is applied, the offsprings are inserted into the new

population, while when crossover is not applied the two parents are simply copied into the

new population. This simple crossover operator can be applied for real encoding schema

as well. For example, given two real-coded chromosomes <0,255,0> and <255,0,255> the

recombination with cut point in the second position, will produce two offsprings: <0,0,255>

and <255,255,0>

3The larger the value of the tournament size, the stronger the selective pressure.
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Algorithm 2: Single-point crossover

Input:
Two parents A = (a1, . . . , an) and B = (b1, . . . , bn)
Result: Two offsprings C = (c1, . . . , cn) and D = (d1, . . . , dn)

1 begin
2 randomly choose one crossover point p ∈ {1, . . . , n− 1}
3 for i=1 to p do
4 ci = ai
5 di = bi

6 for i=p+1 to n do
7 ci = bi
8 di = ai

Multi-point crossover or uniform crossover, is an extension of the single point crossover

that uses multiple cut-points instead of a single one. It takes two parents and cuts their

chromosome strings at k randomly chosen cut positions and the produced substrings are

then swapped over the k point to produce two new full-length chromosomes. In other

words it sample uniformly along the full length of a chromosome. Algorithm 3 outlines

the pseudo-code of the multi-point crossover. For example, given two binary-coded chromo-

somes 000000001111111100000000 and 111111110000000011111111, the three-point crossover

with cut point in the 5-th and 12-th positions will recombine the two parents generating two

new offsprings as follows:

00000 0001111 111100000000

11111 1110000 000011111111
=⇒ 00000 1110000 111100000000

11111 0001111 000011111111

As for single-point crossover, the multi-point crossover can be also applied for real encoding

schema. For example, given two real-coded chromosomes <0,255,0> and <255,0,255> the

recombination with cut points in the first and second positions, will produce two offsprings:

<0,0,0> and <255,255,255>.

Arithmetic crossover is a crossover operator defined for real encoding schema. It com-

bines two selected parent chromosomes to produce two new offsprings by linear combination.

Graphically, the two generated offsprings lie on the line segment connecting the two parents.

Algorithm 4 outlines the pseudo-code of the arithmetic crossover. For example, given two

real-coded chromosomes <0,255,0> and <255,0,255> the arithmetic crossover might produce

two new offsprings: <101,50,198> and <154,205,57>.

Further crossover operators have been proposed in literature and a detailed analysis of

the different crossovers can be found in [141]. In this thesis we used the single-point crossover

for test data generation, the multi-point crossover for test suite optimization problem (binary

problem), and arithmetic crossover for the other (real-coded) software engineering problems.

It is important to highlight that the choice of using these crossover operators in not random,
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Algorithm 3: Multi-point crossover

Input:
Two parents A = (a1, . . . , an) and B = (b1, . . . , bn)
Result: Two offsprings C = (c1, . . . , cn) and D = (d1, . . . , dn)

1 begin
2 randomly choose k crossover points p1, . . . , pk ∈ {1, . . . , n− 1}
3 index←− 0
4 for i=1 to k do
5 for j=index+ 1 to pk do
6 if k is odd then
7 cj = aj
8 dj = bj
9 else

10 cj = bj
11 dj = aj

12 index←− pk

Algorithm 4: Arithmetic crossover

Input:
Two parents A = (a1, . . . , an) and B = (b1, . . . , bn)
Result: Two offsprings C = (c1, . . . , cn) and D = (d1, . . . , dn)

1 begin
2 Generate a random number p ∈ [0; 1]
3 for i=1 to n do
4 ci = p · ai + (1− p) · bi
5 di = (1− p) · ai + p · bi

but it follows trends and choices of previous work in SBSE and SBST [21, 28, 47, 142].

2.5.4 Mutation operators

After crossover, the chromosomes are subjected to mutation in order to prevent the algorithm

to be trapped in local minimum. Mutation is considered as a background operator to main-

tain genetic diversity in the population because it helps to explore of the search space[137].

This is because it injects diversity by randomly modifying some genes in the population.

There are many different mutation operators for the different kinds of encoding schemata.

Since we considers only binary and real encoding schemata, in the following we describe only

mutation operators for these two schemata:

• Bit-flip mutation. It is the simplest mutation for binary encoding schema that consists
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in flipping the genes of each individual with small probability pm, replacing 0 with 1

and vice versa.

• Uniform mutation. It is an extension of the bit-flip mutation for real-encoded GAs.

While with binary encoding each gene can only assume value in {0, 1}, with real en-

coding each gene assumes value in a real and continuous interval of the search space.

Hence, the uniform mutation randomly changes the genes of each individual with small

probability pm, replacing an allele (real number) with another allele (real number)

of the feasible region. Formally, given a solution x = (x1, . . . , xn) with lower bound

xmin = (xmin1 , . . . , xminn ) and upper bound xmax = (xmax1 , . . . , xmaxn ). The uniform

mutation will change with small probability pm a generic gene xi of x as follows:

xi = xmini + p · (xmaxi − xmini )

where p is a random number generated within the interval [0; 1].

An important parameter for both the two mutation operators is the mutation probability

pm, i.e. the probability by which the genes are mutated. Whit zero probability none individ-

ual will be changed, increasing the ability to find nearby better solutions (better exploitation)

but also increasing the probability to converge toward some local optimum. If the mutation

probability is 100%, all genes of the individuals will be changed reducing the probability to

be trapped in local optimum (better exploration) but GA becomes quite similar to random

search [137]. For these reasons, generally the mutation probability should be very small in

order to reduce the frequency by which the mutation is applied. A widely used mutation

probability is pm = 1/n where n is the length of the chromosome (or equivalently the number

of decision variables to a problem). With this probability, on average, only one gene will be

changed for each individual.

2.5.5 Elitism

At each generation it is not guaranteed that the fittest individuals will be selected by a

selection operator to survive in the next generation. Moreover the mutation operator could

randomly modify the fittest individual, reducing the probability of its survival. This means

that if the genetic algorithm finds, at some generation, the global optimum, this solution can

be thrown away. Thus, for many problems the convergence speed of a genetic algorithm can

be improved by guaranteeing the survival of the best or elite individual. The mechanism of

preserving the best individual (or the best k individuals) is called elitism and it is considered

as a standard genetic operator [137].

2.5.6 Termination

The main stopping conditions or convergence criteria used to terminate the main loop of

GAs are the following:
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• maximum generation: GA terminates after a given number of maximum generations,

independently from the fitness value of the best individual in the last generation and

running time.

• maximum elapsed time: GA terminates after a given maximum elapsed time, inde-

pendently from the fitness value of the best individual in the last generation and the

reached number of generations.

• stall generations: GA terminates whether the objective function of the best individual

is not changed for a specific number of generations.

The algorithm will terminate whether at least one these stop conditions is reached.

2.6 Multi-objective Genetic Algorithms

The main goal of MOGAs is to converge to the Pareto optimal front, or equivalently to

find the set of Pareto optimal solutions. The main loop of MOGAs is quite similar to the

main loop of single-objective GAs shown in Algorithm 1 since they use the same genetic

operators. The main differences between them is represented by the mechanism used to

select the fittest individuals. With single-objective GAs, selection operator has to deal with

only one objective function; hence, the fittest individuals are those having the best objective

function value (or phenotype). With multi-objective problems, there are more objective

functions to be considered and then the selection operators have to use the concept of Pareto

optimality in order to identify the fittest individuals. At each generation, a MOGA provides

a set of non-dominated solutions that represents an approximation of the true Pareto front.

MOGAs should promote individuals that are non-dominated by any other solution in the

current population, thus hopefully guiding the evolution toward the Pareto optimal front.The

approximation of the Pareto-optimal solutions involves to deal with two contrasting goals:

(i) minimizing the distance to the optimal front and (ii) maximizing the diversity of the

generated solutions.

The first MOGA, called Vector Evaluated Genetic Algorithm (VEGA), was proposed

by Schaffer as a natural extension of the single-objective GAs [143]. Indeed, the difference

between single-objective GA and VEGA regards the selection operator while crossover and

mutation remain as usual. VEGA uses sub-population, each one for each objective function;

then the roulette wheel selection is performed separately for each sub-population according to

corresponding objective function. Later Goldberg [144] suggested to use a Pareto ranking al-

gorithm that orders the population based on Pareto dominance, such that all non-dominated

individuals are assigned the same rank (or importance). The idea is that all non-dominated

individuals should have the same probability to be selected for the next generation that

should be higher than the one corresponding to individuals that are dominated. Hence, the

concept of Pareto dominance is used to rank solutions and to apply selection strategies based

on non-domination ranks.
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Srinivas and Deb [145] proposed a variant to the Pareto ranking algorithm used by Gold-

berg, called Non Dominated Sorting Genetic Algorithm (NSGA), which assigns different lev-

els of Pareto ranking. The non-dominated solutions forms the first rank of Pareto dominance.

Then, individuals belonging to the first rank are ignored and another level of non-dominated

solutions is computed. The process continues until all the individuals in the current popu-

lation are classified in one of the ranking values. The selection operator will assign higher

survival probability to the individual having a lower (best) Pareto ranking. To maintain

diversity, fitness sharing is also used during the selection process. Further MOGAs have

been developed by varying the Pareto ranking mechanism proposed by Goldberg, such as

Niched Pareto Genetic Algorithm (NPGA) [146], Strength Pareto Evolutionary Algorithm

(SPEA), etc. Different Pareto ranking based MOGAs differ on how the ranking algorithm is

implemented and which diversity preserving mechanism is used during the selection process.

The work presented in this thesis exploits one of the most popular MOGAs: the elitist

Non-dominated Sorting Genetic Algorithm (NSGA-II) developed by Deb [107] which is an

extension of NSGA [145].

2.6.1 NSGA-II

The elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [107] is one of the most

popular MOGA where the best solutions —i.e., the current non-dominated solutions— are

preserved in the population and participate to the reproduction process for the next gener-

ation. It uses an elitist selection operator based on a fast non-dominated sorting approach

which ranks all individuals in subsequent Pareto fronts. Individuals with best (lower) non-

domination ranks are selected applying elitism for the non-dominated solutions, i.e. solutions

belonging to the first Pareto rank are preserved in the next generation. The pseudo-code of

NSGA-II is outlined in Algorithm 5. It starts with an initial randomly generated population,

obtained by randomly sampling the search space (line 3 of Algorithm 5). The population

then evolves through a series of generations to find nearby better solutions. To produce

the next generation, NSGA-II first creates new offsprings by merging the genes of pairs of

individuals of the current generation using a crossover operator or modifying a solution us-

ing a mutation operator (function MAKE-NEW-POP [107], line 5 of Algorithm 5). A new

population is generated using a selection operator, to select parents and offsprings according

to the values of the objective functions. The process of selection is performed using the fast

non-dominated sorting algorithm, which lead the selection of solutions with better ranks in

the current population. For individuals with the same rank, the selection process is per-

formed by selecting first those stated in non-crowded areas in order to improve diversity: the

individuals that are far away from the rest of the population have higher probability to be se-

lected. The crowding distance is used in order to make this kind of crowding-aware selection.

Specifically, the function FAST-NON-DOMINATED-SORT [107] in line 7 assigns the non-

dominated ranks to individuals parents and offsprings. The loop between lines 10 and 14 adds

as many individuals as possible to the next generation, according to their non-dominance

ranks. If the number of individuals in the next generation is smaller than the population
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Algorithm 5: NSGA-II

Input:
Number of decision variables N
Population size M
Result: A set of non-dominated solutions S

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(N ,M)
4 while not (end condition) do
5 Qt ←− MAKE-NEW-POP(Pt)
6 Rt ←− Pt

⋃
Qt

7 F←− FAST-NONDOMINATED-SORT(Rt)
8 Pt+1 ←− ∅
9 i←− 1

10 while | Pt+1 | + | Fi |6M do
11 CROWDING-DISTANCE-ASSIGNMENT(Fi)
12 Pt+1 ←− Pt+1

⋃
Fi

13 i←− i+ 1

14 Sort(Fi) //according to the crowding distance
15 Pt+1 ←− Pt+1

⋃
Fi[1 : (M− | Pt+1 |)]

16 t←− t+ 1

17 S ←− Pt

size M , then further individuals are selected according to the descending order of crowding

distance in lines 15–16. The CROWDING-DISTANCE-ASSIGNMENT routine [107] in line

11 assigns a crowding distance to each individual as the sum of the distances between such

an individual and all the other individuals having the same Pareto dominance rank. Hence,

individuals having higher crowding distance are stated in less densely populated regions of

the search space. This mechanism is used in order to avoid the selection of individuals that

are too similar to each others.
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3.1. Introduction and Motivation

3.1 Introduction and Motivation

Researchers indicated that some 40% to 60% of the maintenance effort is devoted to under-

standing the software to be modified [115]. Indeed, before making changes, the software engi-

neers have to understand the behavior of the software being modified, its main functionalities,

its structure and the dependencies between its components (program comprehension) [111].

This task becomes much more complex when the individuals that have to make the changes

did not develop the software. Program comprehension is a prerequisite of any software main-

tenance activity because“software that is not comprehended cannot be changed” [147]. This

process requires to read the source code and its documentation to build a mental represen-

tation of the program to be understood and changed [70]. Individuals did not develop the

software should understand as quickly as possible where to make a change or a correction in

software. However, understanding source code is more difficult than understanding textual

document written in natural language because, for example, it is often difficult to trace the

evolution of software across different releases/versions if changes are not documented. Thus,

program comprehension can be tedious, error prone and time consuming in large software

systems, where the developer is requested to read (and comprehend) a large number of source

code lines. All these issues has led to a growing body of research works focused on the usage

of Information Retrieval (IR) techniques to support the comprehension of source code when

addressing software maintenance and development tasks.

All IR-based solutions to SE tasks, such as LSI [78] or LDA [79], require configuring

different components, such as type of pre-processors (e.g., splitting compound or expanding

abbreviated identifiers; removing stop words and/or comments), stemmers (e.g., Porter or

snowball), indexing schemata (e.g., term frequency - inverse document frequency), similarity

computation mechanisms (e.g., cosine, dot product, entropy-based), etc. Moreover, other

than these commons components, each IR method requires to calibrate a set of its internal

parameters. For example, the fast collapsed Gibbs sampling generative model for LDA

requires setting four internal parameters: the number of topics k, the number of iterations n,

the Dirichlet distribution parameters α and β [148]. Most of existing IR-based approaches

to SE tasks rely on ad-hoc methods to configure these solutions, components, and their

configurations. A systematic review of SE literature shows that a large number of papers

do not even provide the details on how certain IR-based techniques have been instantiated;

whereas the remaining set of papers use ad-hoc configurations, component settings, thus,

significantly underachieving potential of IR methods to solve SE tasks. In addition, this

makes the practical usage of IR-based processes quite difficult and it might hinder the usage

of such processes in industrial context. In other cases, the IR process is instantiated using

the same parameters and configurations that were originally designed and tested for natural

language corpora. This is because the underlying assumption was that source code (or other

software artifacts) and natural language documents exhibit similar properties.

Even though IR-based solutions was successfully used in natural language analysis com-

munity, applying it on software data, using the same parameter values used for natural

language text, did not always produce the expected results [80]. As in the case of machine
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learning and optimization techniques, a poor parameter calibration or wrong assumptions

about the nature of the data could lead to poor results [81]. Therefore, recent researches

have debate about the assumption that source code files are similar or not to documents

written in natural language. Hindle et al. [82] showed that text extracted from source code

is much more repetitive and predictable as compared to natural language text. According

to their recent empirical findings, “corpus-based statistical language models capture a high

level of local regularity in software, even more so than in English” [82]. In our previous

work we also demonstrate that during software maintenance and development, the devel-

opers typically use a technical language to describe a software system (its functionalities,

its architecture and the main dependencies between system components) [17]. Furthermore,

documents in traditional textual repository (such as on the web) are heterogeneous, while

software documents are much more homogeneous: for example a class is a crisp abstraction

of a domain/solution object, and should have few and clear responsibilities.

We conjecture that the (sometime) low performance of IR-based solution can be due

to the usage of the same parameters and configurations that were originally designed and

tested for natural language corpora. Starting from this conjecture, this chapter presents a

search-based approach for calibrating all the steps of an IR-process to achieve better (ac-

ceptable) performance on software engineering tasks using unsupervised metrics based the

quality of the clustering. The proposed solution, named LSI-GA, takes into account not only

task specific components and data sources (i.e., different parts of software artifacts related

to solving a particular SE task), but also internal properties of the IR model built from the

underlying dataset using a large number of possible components and configurations. We use

Genetic Algorithms (GAs) to effectively explore the search space of possible combinations of

instances of IR process components (e.g., pre-processors, stemmers, indexing schemata, simi-

larity computation mechanisms) to select the candidates with the best expected performance

for a given dataset used for a SE task. Noticeably, using LSI-GA the quality of a solution

(represented as a GA individual) is evaluated based on the quality of the clustering of the

indexed software artifacts. For this reason, it is unsupervised and task-independent, whereas

the instantiated process is dataset-specific. To provide a further evidence to our conjecture,

this chapter also uses the same unsupervised search-based approach for automatically cali-

brating the internal parameters of LDA, which is the most sophisticated IR methods used

for SE tasks, with a fixed pre-processing. In the following, this LDA-oriented approach is

referred to as LDA-GA to make a distinction between it and LSI-GA.

The contributions of this chapter can be summarized as follows:

• It introduces LSI-GA, an unsupervised search-based approach for automatically assem-

bling IR process on software text corpora using a GA. It also presents an unsupervised

search-based approach, named LDA-GA, to automatically calibrate the internal pa-

rameters of LDA.

• This chapter shows the generality and applicability of the proposed approaches to dif-

ferent software engineering tasks, named (i) traceability recovery, (ii) feature location,

(iii) bug report duplication and (iv) source code labeling.
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• An empirical study on LSI-GA demonstrates that IR processes instantiated by LSI-

GA outperform previously published results related to the same tasks and the same

datasets.

• An empirical study on LDA-GA shows that the LDA configurations obtained by LDA-

GA outperform previously reported results and existing heuristics for calibrating LDA.

The chapter is organized as follows. Section 3.2 summarizes background notions and

related work on IR methods and their application to SE tasks. Section 3.3 defines the problem

of finding a (near) optimal IR process as an optimization problem using the relationship

with the quality of clusters. Section 3.4 presents the LSI-GA approach for automatically

assembling IR process, while Section 3.5 introduces LDA-GA to automatically calibrate LDA

for software engineering tasks. Section 3.6 describes the empirical study and reports the

results obtained when applying LSI-GA in the context of (i) traceability recovery, (ii) feature

location and (iii) bug duplication. Section 3.7 describes the empirical study and reports

the results achieved when applying LDA-GA in the context of (i) traceability recovery, (ii)

feature location and (iii) source code labeling. Finally, Section 3.8 discusses the threats to

validity that could have affected our study while Section 3.9 reports conclusion and directions

for future work.

3.2 Background and Related work

IR methods were proposed and used successfully to extract and analyse textual informa-

tion in software artifacts focusing on specific software maintenance and development tasks.

Specifically, IR methods have been proposed in the literature to recover links between dif-

ferent types of software documents (or artifacts), such as between source code and external

documentation [149, 150, 151, 152, 151, 153], among requirements [151], requirements and

source code [150, 151, 153], and requirements and test cases [154]. IR methods have been also

used for feature location [155], in the context of software measurement to assess the quality of

identifiers and comments [156], conceptual cohesion [157] and coupling [158, 159] of classes,

as well as assessing and maintaining the quality of external software documentation [160].

In addition, IR techniques have been applied to several other tasks in the past few years,

such as bug fix assignment based on problem description reports, identification of duplicate

bug reports [161], estimating the time to fix a particular bug based on similar bug reports,

classification of software maintenance requests, providing recommendations for novice pro-

grammers, identifying developer contributions, mining concept keywords, identification of

changes from software repositories, and finding similar software applications.

In general, an IR process follows the steps described in Figure 3.1:

• Term extraction. Software artifacts are first indexed in order to identify keywords that

characterize the artifact contents. This step also prunes out elements that are not

relevant to the IR process, such as white spaces and most non-textual tokens from

the text (i.e., operators, special symbols, some numerals, etc.). Then, source code
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Figure 3.1: Outline of a generic IR Process to solve SE problems.

identifiers composed of two or more words are separated into their constituent words

since IR techniques may miss occurrences of concepts if identifiers are not split correctly

[162]. To split multi-word identifiers, most existing automatic software analysis tools

rely on coding conventions [74] or on more sophisticated natural language processing

methods (see e.g., [162, 163, 164, 165, 166]).

• Stop word removal. During artifact indexing a stop word function and/or a stop word

list are also applied to discard common words (i.e., articles, adverbs, etc) that are

not useful to capture the semantics of the artifact content [167, 168]. The stop word

function prunes out all the words having a length less than a fixed threshold, while the

stop word list is used to cut-off all the words contained in a given word list. Stop word

lists are language specific, for example, English has different stop words than Italian.

Generally, good results are achieved using both the stop word functions and lists.

• Morphological analysis. A more complicated document pre-processing is represented by

morphological analysis, like stemming. Stemming is the process of reducing inflected (or

sometimes derived) words to their stem, base or root form. There are several existing

stemming algorithms, one of the most popular stemmers for the English language is

the Porter stemmer [169].

• Term weighting. The terms extracted from the documents are stored in a m×n matrix

(called term-by-document matrix [167]), where m is the number of all terms that occur

within documents, and n is the number of documents in the repository. A generic

entry wi,j denotes a measure of the weight (i.e., relevance) of the ith term in the jth

document [167]. A widely used weighting schema is the tf-idf [167], which gives more

importance to words having a high frequency in a document (high tf ) and appearing

in a small number of documents, thus having a high discriminant power (high idf ). A

more sophisticated weighting schema is represented by tf-entropy [170], where the local

weight is represented by the term frequency scaled by a logarithmic factor, while the
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entropy of the term within the document collection is used for the global weight.

• Application of an algebraic model. Based on the term-by-document matrix representa-

tion, different IR methods can be used to measure the textual similarity for each pair

of software artifacts, such as VSM [167], LSI [78] and LDA [79].

• Use of a distance (or similarity) measures. The last step of the IR process aims at com-

paring documents, e.g., requirements and source code in traceability recovery, queries

and source code in feature location, bug report pairs in duplicate bug report detection.

This can be done using different similarity measures. For example, one can use the co-

sine similarity, the Jaccard similarity, or the Dice (symmetric or asymmetric similarity)

coefficient.

An IR process can be instantiated and used in different ways according to a specific

software engineering problem taken into account. In general, an IR process is used to compare

the textual corpus between different kinds of software artifacts (e.g., for traceability recovery),

or to retrieve software documents/atifacts that are related to specific queries (e.g., for feature

location or bug report duplication), or just to extract the main semantic concepts from the

source code to support the comprehension (e.g., source code labeling).

3.2.1 IR methods

Comprehensive analysis of available research papers reveals that probabilistic models [74,

171], VSM [167, 168, 172], and LSI [78] are the three most frequently used IR methods in

software engineering. Only in few cases different methods have been used [173, 174, 16].

Vector Space Model

In the Vector Space Model (VSM), artifacts are represented as vectors of terms (i.e., columns

of the term-by-document matrix) that occur within artifacts in a repository [167]. The text

similarity is computed using a specific distance function. Typically, the angle between two

vectors is used as a measure of divergence between the vectors, and cosine of the angle is

used as the numeric similarity (since cosine has the nice property that it is 1.0 for identical

vectors and 0.0 for orthogonal vectors). Let
−→
Di and

−→
Dj be two documents (or column vectors

of the term-by-document matrix), the corresponding textual similarity can be calculated as:

cosine(
−→
Di,
−→
Dj) =

−→
Di ·
−→
Dj

‖
−→
Di‖ · ‖

−→
Di‖

(3.1)

VSM does not take into account relations between terms. For instance, having “automobile”

in one artifacts and “car” in another artifact does not contribute to the similarity measure

between these two documents. The VSM has been used to recover traceability links among

requirements [175, 151, 176], requirements and source code [174, 74, 176, 177, 153], manual
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pages and source code [74, 177, 153], UML diagrams and source code [176, 178], test cases

and source code [176], and defect reports and source code [179].

Latent Semantic Indexing

Latent Semantic Indexing (LSI) [78] is an extension of the VSM. It was developed to over-

come the synonymy and polysemy problems, which occur with the VSM model [78]. In LSI

the dependencies between terms and between artifacts, in addition to the associations be-

tween terms and artifacts, are explicitly taken into account. For example, both “car” and

“automobile” are likely to co-occur in different artifacts with related terms, such as “motor”

and “wheel”. LSI assumes that there is some underlying or latent structure in word usage

that is partially obscured by variability in word choice, and uses statistical techniques to

estimate this latent structure. To exploit information about co-occurrences of terms, LSI

applies Singular Value Decomposition (SVD) [180] to project the original term-by-document

matrix into a reduced space of concepts, and thus limit the noise terms may cause. Basically,

given a term-by-document matrix A, it is decomposed into:

A = U · Σ · V T (3.2)

where U is the term-by-concept matrix, V the document-by-concept matrix, and Σ a diagonal

matrix composed of the concept eigenvalues. After reducing the number of concepts to k,

the matrix A is approximated with Ak = Uk · Σk · V Tk . Thus, each term and document is

represented by a vector in the k-space of concepts, using elements of V Tk . Also in this case,

the similarity between artifacts is measured as the cosine of the angle between the reduced

artifact vectors.

The truncated SVD captures most of the important underlying structure in the associa-

tion of terms and documents, yet at the same time it removes the noise or variability in word

usage that plagues word-based retrieval methods. Intuitively, since the number of dimensions

k is much smaller than the number of unique terms m, minor differences in terminology will

be ignored. The choice of k is critical: ideally, it is desirable to have a value of k that is

large enough to fit all the real structure in the data, but small enough to do not also fit the

sampling error or unimportant details. The proper way to make such a choice is an open

issue in the factor analysis literature.

LSI has been used to recover traceability links between requirements [151, 176], require-

ments and source code [174, 176, 152, 177, 153], manual pages and source code [74, 177, 153],

UML diagrams and source code [176, 152, 178], test cases and source code [176, 152, 181].

LSI has also been applied for feature location in source code [155], source code labeling

[182, 183] and bug report duplication [184].

Latent Dirichlet Allocation

In the probabilistic model, a source artifact is ranked according to the probability of being

relevant to a particular target artifact. It represents each document through a probability
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Figure 3.2: LDA process

distribution. This means that an artifact is represented by a random variable where the

probability of its states is given by the empirical distribution of the terms occurring in the

artifacts (i.e., columns of the term-by-document matrix). The empirical distribution of a

term is based on the weight assigned to such a term for a specific artifact. Probabilistic

models have been used to recover links between requirements and UML diagrams [171],

requirements and source code [185, 186, 74, 187], and manual pages and source code [74].

Latent Dirichlet Allocation (LDA) [79] is a probabilistic model that allows to fit a gen-

erative probabilistic model from the term occurrences in a corpus of documents. It takes

as input the term-by-document matrix and identifies the latent variables (topics) hidden in

the data and generates as output a k × n matrix θ, called topic-by-document matrix, where

k is the number of topics and n is the number of documents. A generic entry θij of such a

matrix denotes the probability of the jth document to belong to the ith topic. Since typically

k << m, LDA is mapping the documents from the space of terms (m) into a smaller space

of topics (k). The latent topics allow us to cluster them on the basis of their shared topics.

More specifically, documents having the same relevant topics are grouped in the same cluster,

and documents having different topics belong to different clusters.

Figure 3.2 provides a brief overview of how LDA shifts from a term-by-document matrix

into a topics space. LDA requires as input a set of hyper-parameters (i.e., a set of parameters

that have a smoothing effect on the topic model generated as output). In this work we used

the fast collapsed Gibbs sampling generative model for LDA because it provides the same

accuracy as the standard LDA implementation, yet it is much faster [148]. For such an

implementation, the set of hyper-parameters are:

• k, which is the number of topics that the latent model should extract from the data.

To some extent this is equivalent to the number of clusters in a clustering algorithm;

• n, which denotes the number of Gibbs iterations, where a single iteration of the Gibbs

sampler consists of sampling a topic for each word;
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• α, which influences the topic distributions per document. A high α value results in a

better smoothing of the topics for each document (i.e., the topics are more uniformly

distributed for each document);

• β, which affects the term’s distribution per topic. A high β value results in a more

uniform distribution of terms per topic.

Note that k, α, and β are the parameters of any LDA implementation, while n is an additional

parameter required by the Gibbs sampling generative model.

3.2.2 IR-based traceability recovery

IR-based traceability recovery aims at identifying candidate traceability links between dif-

ferent artifacts by relying on the artifacts’ textual content, that is exactly how IR techniques

aim at finding documents relevant to a given query. Traceability recovery works by apply-

ing IR techniques to compare a set of source artifacts used as queries by the IR method

against another set of artifacts considered as documents to retrieve. For example, for recov-

ering traceability links between use cases and source code classes, the use cases are used as

queries (or source artifacts) and the classes are used as target artifacts. Both source and

target artifacts are typically preprocessed by (i) removing special characters, (ii) splitting

identifiers, (iii) removing stop words that are common in the natural language used to write

the software documentation either keywords of the program language used when developing

the software and (iv) stemming. The standard tf-idf is the most used weighting schema

for the term-by-document in traceability, while VSM and LSI are among the most used IR

techniques. The cosine similarity between all the source artifacts and all the target artifacts

is then used to rank all possible pairs of artifacts which represents the potential candidate

links. Pairs having a similarity above a certain threshold (fixed by the software engineer),

or being in the topmost positions of the ranked list, have higher probability to be candidate

links. Therefore, based on a threshold, or based on the number of candidate links a developer

could reasonably analyze in the available time, the software engineer cuts and analyzes the

top-most part of the ranked list. Based on such an analysis, the software engineer can trace

a candidate link (i.e., classify it as true positive), or classifies the link as a false positive.

A set of tools that integrates facilities to manage traceability links among different types of

software artifacts was developed and evaluated recently [152]. In addition, a recent empirical

study highlighted none of these techniques sensibly outperforms the others [80].

Different enhancing strategies—acting at different steps in the process shown in Fig-

ure 3.1—have been proposed to improve the performances of traceability recovery methods.

In our previous work [17] we observed that the language used in software documents can be

classified as a technical language (i.e., jargon), where terms that provide more information

about the semantics of a document are the nouns [188]. Thus, we proposed to index the arti-

facts taking into account only nouns contained in software artifacts. In a further our previous

work we proposed the usage of smoothing filters to automatically remove noise from the tex-

tual corpus of artifacts to be traced [9, 2]. Huang et al. [189] and Gibiec et al. [190] noted
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that one issue which hinders the performances of IR techniques when applied to traceability

recovery is the presence of vocabulary mismatch between source and target artifacts. Thus,

they propose to use the artifacts to be traced as queries for web search engines and expands

the terms in the query artifacts with the terms contained in the retrieved documents before

indexing the artifacts. The term weighting could also take into account (i) the structure of

the artifacts [171]; and (ii) the importance of a term for a specific domain [191, 192, 175].

As for the latter, artifacts could contain critical terms and phrases that should be weighted

more heavily than others, as they can be regarded as more meaningful in identifying trace-

ability links. These terms can be extracted from the project glossary [191, 192] or external

dictionaries [175]. Such approaches generally improve the accuracy of an IR-based traceabil-

ity recovery tool. However, the identification of key phrases (as well as the use of external

dictionaries) is much more expensive than the indexing of single keywords.

The term weighting can be changed according to the classification performed by a software

engineer during the analysis of candidate links (feedback analysis) [151, 176]. If the software

engineer classifies a candidate link as correct link, the words found in the target artifact

increase their weights in the source artifact, otherwise, they decrease their weights. The

effect of such an alteration of the original source artifact is to “move” it towards relevant

artifacts and away from irrelevant artifacts, in the expectation of retrieving more correct

links and less false positives in next iterations of the recovery process.

3.2.3 IR-based feature location

The process of applying IR techniques to support feature location is similar to traceability link

recovery. In this context IR methods are used to compare a set of short textual descriptions

of the bugs or the change requests —used as queries— against a set of program elements

considered as documents to retrieve, such as classes or methods. For example, for locating

methods that are related to change requests, the change request are used as queries (or source

artifacts) and the classes’ methods are used as target artifacts. The queries can be formulated

manually by the developer, or they can be extracted from issue tracking systems —such as

Bugzilla— and in this case, the query can consist of the title (e.g., short summary), or the

combination of the title and the description of the issue. For the target artifacts, the typical

information associated with a method consists of comments, type, name, signature and body

and the information associated with a class consists of all the comments, methods and fields.

Both queries and target artifacts are typically preprocessed by (i) removing special characters,

(ii) splitting identifiers, (iii) removing stop words that are keywords of the program language

used when developing the software, (iv) stemming and (v) a weighting schemata (e.g., tf-idf).

Also for feature location, LSI is one of the most used techniques [155]. The similarity measure

is also in this case the cosine similarity. Using such a similarity measure, the list of target

artifacts is ranked descending and presented to the developer which manually investigates

these methods and decides if they are relevant or not to the query. A systematic survey of

this work related to feature location can be found in [193].

Marcus et al. [155] proposed an Information Retrieval (IR) based approach to concept
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location in 2004. This approach also combined with other feature location techniques, such

as dynamic analysis [194, 73], program analysis [195], and static analysis [196], cluster anal-

ysis [197]. Indeed, many feature location techniques have been combined with IR methods

because they allows the user to formulate natural language queries [198]. As for traceability

recovery, researchers proposed several enhancing strategies—acting at different steps in the

process shown in Figure 3.1– in order to improve the performances of IR-based approaches.

Lawrie at al. [199] suggested to perform vocabulary normalization by identifiers splitting and

identifiers expansion. Dit at al. [200] compared human splitting to conservative splitting

and found that no significant gains were realized by using perfect/human splitting. Gay at

al. [198] proposed an approach to augment information retrieval (IR) based concept location

via an explicit relevance feedback similarly as proposed in [151, 176] for traceability recov-

ery. Relevance feedback changes the term weighting of queries according to the classification

performed by a software engineer during the analysis of the ranked list.

3.2.4 IR-based bug report duplication

For the task of detecting duplicate bug reports, the primary source of information for con-

structing the corpus consists of the information extracted from issue tracking systems. Each

document of the corpus (i.e., each bug) typically consists of the title (e.g., short description

of the issue), the description, and in some cases by the project name, component name,

severity, priority, etc. In these documents, different weights could be assigned to the previ-

ously enumerated elements (e.g., title could be weighted more than description). The source

artifacts are new, unassigned bugs for which the developer is trying to find similar bugs, and

the target artifacts are existing bugs which were assigned to developers or resolved. Similarly

to the other tasks, the corpus is preprocessed using the standard steps (e.g., removing any

sentence punctuation marks, splitting identifiers, removing stop words and stemming). The

cosine similarity of an IR technique (e.g., VSM) between the source (i.e., new) bugs and the

target (i.e., existing) bugs is used to rank the list of bugs presented to the developer for the

manual inspection.

One of the earliest work on finding duplicate bug reports through IR methods is by

Runeson et al. [76] with the idea that bug reports with high similarity scores are likely to

be duplicated. They used a traditional IR process by (i) removing special characters, (ii)

removing stop words, (iii) stop word function and (iv) stemming. As weighting scheme

they used the simple term frequency tf, while as similarity measures the cosine, dice, and

jaccard. Wang et al. [161] used VSM with tf-idf weighting scheme and cosine similarity of the

composite feature vectors, then, they selected the top k similar reports as candidate duplicate

bug reports. Jalbert and Weimer [201] proposed the same IR process used by Wang et al.

but using the logarithmic weighting scheme logtf instead of tf-idf. More recently, Sureka

and Jalote [202] propose an approach that considers n-grams instead of word tokens to

characterize bug reports. Sun et al. [203] proposed a model based on a two-round stochastic

gradient descent to better fit duplicate bug report detection problem.

40



3.2. Background and Related work

3.2.5 IR-based source code labeling

For source code labeling, IR techniques have been used to identify keywords that properly

describe the artifact in source code identifiers and comments. Such a representation provides

a bird-eye’s view of the source code artifacts, that allows developers to look over software

components quickly, and make more informed decisions on which parts of the source code

they need to analyze in detail [204]. Indeed, many researchers have applied IR techniques to

automatically “label” software artifacts. For example, Kuhn et al. [183] used discriminant

words from LSI concepts to label software packages; Thomas et al. [205] used LDA to label

source code changes; Gethers et al. [206] used Relational Topics Model (RTM) to identify and

relate topics in high-level artifacts and source code. Maletic and Marcus [182] proposed the

combined use of semantic and structural information of programs to support comprehension

tasks. Semantic information, captured by LSI, refers to the domain specific issues (both

problem and development domains) of a software system, while structural information refers

to issues such as the actual syntactic structure of the program along with the control and data

flow that it represents. Components within a software system are then clustered together

using the combined similarity measure. Baldi et al. [207] applied LDA to source code to

automatically identify concerns. In particular, they used LDA to identify topics in the source

code. Then, they used the entropies of the underlying topic-over-files and files-over-topics

distributions to measure software scattering and tangling. Candidate concerns are latent

topics with high scattering entropy. Linstead et al. [208] used LDA to identify functional

components of source code and study their evolution over multiple project versions. The

results of a reported case study highlight the effectiveness of probabilistic topic models in

automatically summarizing the temporal dynamics of software concerns.

Hindle et al. [77] used LDA in an industrial context to relate requirements to code. They

performed an empirical study in order to verify whether the information extracted with LDA

matches the perception that program managers and developers have about the effort put

into addressing certain topics. The results indicated that in general the identified topics

made sense to practitioners and matched their perception of what occurred even if in some

particular cases practitioners had difficulty interpreting and labeling the extracted topics.

Recently, Medini et al. [209] used information retrieval methods and formal concept analysis

to produce sets of words helping the developer to understand the concept implemented in

execution traces. The authors performed both a qualitative as well as a quantitative analysis

of the proposed approach. The analysis revealed that the approach is quite accurate in

identifying topics in execution traces and in most cases the suggested labeling terms are

effective to help grasping the segment functionality. In our previous work [10, 1] we conducted

an empirical study involving 38 participants on labeling classes and we pointed out that IR

techniques might lead to poor results for some classes and good results for others. This

suggests the need of instantiate an appropriate IR process for source code labeling.
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3.2.6 Choosing the right IR process

The literature also reports approaches for calibrating specific stages of an IR process, or

parameters of specific algebraic IR techniques. Falessi et al. [210] empirically evaluated the

performance of IR-based duplicate requirement identification on a set of over 983 requirement

pairs coming from industrial projects. To this aim, they instantiated 242 IR processes,

using various treatments for stemming, term weighting, IR algebraic method, and similarity

measure. Their study shows how the performances of the duplicate requirement identification

significantly vary for different processes.

Cordy and Grant have proposed heuristics for determining the “optimal” number of

LDA topics for a source code corpus of methods, by taking into account the location of

these methods in files or folders, as well as the conceptual similarity between methods [211].

Cummins [212] proposed to use genetic programming (GP) to automatically build term

weighting formulae, using different combinations of tf and idf, that can be altered using

functions such as logarithm. The similarity between our approach and Cummins’ approach is

the use of search-based optimization techniques to calibrate IR processes. Their approach was

evaluated on a set of 35,000 textual documents, for a document search task. Their approach

focuses on term weighting only and it is supervised, as the fitness function evaluation requires

the availability of a training set (e.g., labeled traceability links).

Finding an LDA configuration that provides the best performance is not a trivial task.

Some heuristics have been proposed [211, 213]; however, these approaches focus only on

identifying the number of topics that would result in the best performance of a task, while

ignoring all the other parameters that are required to apply LDA in practice. Moreover, such

approaches have not been evaluated on real SE applications or have been defined for natural

language documents only, thus, they may not be applicable for software corpora. One such

technique is based on a heuristic for determining the “optimal” number of LDA topics for a

source code corpus of methods by taking into account the location of these methods in files

or folders, as well as the conceptual similarity between methods [211]. However, the utility

of this heuristic was not evaluated in the context of specific SE tasks. On a more theoretical

side, a non-parametric extension of LDA, called Hierarchical Dirichlet Processes [214], tries to

infer the optimal number of topics automatically from the input data. Griffiths and Steyvers

[213] proposed a method for choosing the best number of topics for LDA among a set of

predefined topics. Their approach consists of (i) choosing a set of topics, (ii) computing a

posterior distribution over the assignments of words to topics P (z|w, T ), (iii) computing the

harmonic mean of a set of values from the posterior distribution to estimate the likelihood

of a word belonging to a topic (i.e., P (w|T )), and (iv) choosing the topic with the maximum

likelihood. In their approach, the hyper-parameters α and β are fixed, and only the number

of topics is varied, which in practice, is not enough to properly calibrate LDA.

While a number of different SE tasks have been supported using advanced textual retrieval

techniques the common problem remains: the way an IR process is instantiated is based

on the assumption that the underlying corpus is composed of natural language text. In

our survey of the literature, the following SE tasks have been supported using IR-based
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approaches and all of these papers and approaches used ad-hoc heuristics to instantiate

and IR process, perhaps resulting in sub-optimal performance in virtually all the cases:

feature location [215], bug localization [216], impact analysis [217], source code labeling [10],

aspect identification [207], expert identification [218], software traceability [173, 219], test

case prioritization [220], and evolution analysis [205, 221].

With respect to all the works described above, this Chapter presents and evaluates a

search-based approach to instantiate a (near) optimal IR process. It also presents and evalu-

ates a search-based approach to find a (near) optimal LDA configuration. Also, with respect

to many other approaches, the approaches discussed in this Chapter are task independent

and does not require any oracle or training set to perform the calibration. In addition, the

outcome of the calibration only depends on the specific artifacts provided as inputs, while it

does not depend on the specific task

3.3 Relationship between Clustering Quality and Per-

formances of IR-based techniques

As explained in Section 3.2, the instantiation of an IR process for SE tasks requires to per-

form several steps, such as term extraction, morphological analysis, term weighting, similarity

computation, etc. For each step there is a plethora of possible choices (for example there are

several weighting schemata such as tf or tf-idf ), thus, the software engineer can keep one

specific sub-process against the others. Therefore, different choices correspond to different

instantiations of the IR process which might lead to different performances. Without a guid-

ance that supports the assembly, or with an ad-hoc calibration of the process, the obtained

performance may be sub-optimal.

Finding the best configuration of these parameters poses two problems. Firstly, we need

a measure that can be used to assess the performances of an IR process before applying it

to a specific task (e.g., traceability link recovery). This measure should be independent from

the supported SE task. In other words, we cannot simply train an IR process on the data

for one particular task, since obtaining such data means solving the task. For example, for

traceability link recovery, if we identify all the links to assess the quality of the IR process for

extracting the links themselves, then there is no need to have an IR-based model to recover

these links anymore. In other words, we need to build such a model on raw data (e.g., source

code and documentation) without having additional information about the links. Secondly,

we need an efficient way to find the best configuration of parameters, as an exhaustive analysis

of all possible combinations is impractical due to (i) the combinatorial nature of the problem

(i.e., the large number of possible configuration values for the IR process), as well as (ii) the

large amount of computational time required for even such a configuration.

IR methods, such as LSI or LDA, can be considered as a topic-based clustering technique,

which can be used to cluster documents in the topics space using the similarities between

their topics distributions. For example, LSI is a concept-based clustering technique, which

computes the linguistic similarity between source artifacts in the concepts space and clusters
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them according to their similarity [222]. This clustering partitions the set of documents

into concepts space that represents groups of documents using similar vocabulary. Thus,

when using an LSI-based IR process for software engineering tasks, we implicitly cluster

SE documents according to the terms/tokens extracted applying a given sequence of pre-

processing steps (i.e., stemming, stop word removal, tf-idf, etc.) and the number of concepts

used for modelling the concepts in space. Such different clusters can be obtained by using

(i) various numbers of latent concepts/topics used for modelling the concept/topic space and

(ii) various pre-processing techniques.

The conjecture is that there is a strong relationship between the performances obtained

by IR processes on software corpora and the produced quality of clusters. Thus, measuring

the quality of the produced clusters could provide some insights into the accuracy of IR-

based techniques when applied to software engineering tasks. Indeed, if the quality of the

clusters produced by an IR-process is poor, this means that the IR process was not able to

correctly extract the most important concepts from the software corpus and the documents,

which are more similar to each other, are assigned to different clusters (i.e., the IR process

assigns different dominant topics to neighbouring documents). We use the concept of a

dominant topic to derive the textual clustering generated by a particular IR process applied

on a term-by-document matrix. Formally, the concept of a dominant topic can be defined as

follows:

Definition 6. Let θ be the topic-by-document matrix generated by a particular IR process.

A generic document dj has a dominant topic ti, if and only if θi,j = max{θh,j , h = 1 . . . k}.

Starting from the definition of the dominant topic, we can formalize how an IR process

clusters documents within the topic space (the number of clusters is equal to the number of

topics) as follows:

Definition 7. Let θ be the topic-by-document matrix generated by a particular instance of an

IR process. A generic document dj belongs to the ith cluster, if and only if ti is the dominant

topic of dj.

Thus, we can define a cluster as a set of documents in which each document is closer (i.e.,

shares the same dominant topic) to every other document in the cluster, and it is further

from any other document from the other clusters. It is worth noting that the concept of a

dominant topic is specific to software documents only. Collections of natural language docu-

ments are usually heterogeneous, meaning that documents can contain information related to

multiple topics. In source code artifacts, heterogeneity is not always present, especially when

considering single classes. More specifically, a class is a crisp abstraction of a domain/solution

object, and should have a few, clear responsibilities. Hence, software documents should be

clustered considering only the dominant topic, assuming that each document is related to

only one specific topic.

To provide a graphical interpretation of the quality of clusters, Figure 3.3 shows two

different clustering models performed on the same set of documents (represented as points

in the graphs) in a two-dimensional vector space. The clustering showed in Figure 3.3-a is
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Figure 3.3: Examples of different textual clustering

worst than the clustering shown in Figure 3.3-b since documents that are really similar to

each other, they are assigned to different clusters. Indeed, by definition an optimal clustering

method should group similar documents to form a coherent cluster, while documents that

are different should be assigned to different clusters.

Different IR processes (i.e, different configurations) provide different clustering models

of the documents. However, not all clustering models that can be obtained by configuring

an IR-process are good. There are two basic ways to evaluate the quality of a clustering

structure: internal criteria, based on similarity/dissimilarity between different clusters and

external criteria, which use additional and external information (e.g., using judgement pro-

vided by users) [223]. Since the internal criterion does not require any manual effort and it

is not software engineering task dependent, we use the internal criteria for measuring the

quality of clusters. More specifically, we use two types of internal quality metrics: cohesion

(similarity), which determines how closely related the documents in a cluster are, and sep-

aration (dissimilarity), which determines how distinct (or well-separated) a cluster is from

other clusters [223]. There are several measures for cohesion and separation reported in the

literature [223] . The simplest way consists of measuring the cohesion of a cluster Ci as the

mean distance between all the documents in Ci, while the separation can be measured as

the mean distance between all the documents in Ci and all the documents assigned to the

other clusters. Since these two metrics are contrasting each other, we use a popular method

for combining both cohesion and separation in only one scalar value, called Silhouette coef-

ficient [223]. The Silhouette coefficient is computed for each document using the concept of

centroids of clusters. Formally, let C be a cluster; its centroid is equal to the mean vector of

all documents belonging to C:

Centroid(C) =
∑
di∈C

di/|C|
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Starting from the definition of centroids, the computation of the Silhouette coefficient consists

of the following three steps:

1. For each document di belonging to the cluster Ck, calculate the cohesion, named a(di),

as the maximum distance between the document di and the other documents in the

same cluster Ck.

a(di) = max
dj∈Ck

{dist(di, dj)}

2. For each document di belonging to the cluster Ck, calculate the separation, named

b(di), as the minimum distance from di to the centroids of the other clusters, i.e.,

clusters not containing di.

b(di) = min
Cj 6=Ck

{dist(di, Cj)}

3. For each document di, the Silhouette coefficient s(di) is then computed as follows:

s(di) =
b(di)− a(di)

max (a(di), b(di))

The value of the Silhouette coefficient ranges between -1 and 1. A negative value is

undesirable, because it corresponds to the case in which a(di) > b(di), i.e., the maximum

distance to other documents in the cluster is greater then the minimum distance to other

documents in other clusters. Vice versa a positive value is highly desirable, because it

corresponds to the case in which b(di) > a(di), i.e., the maximum distance to other documents

in the cluster is lower then the minimum distance to other documents in other clusters. For

measuring the distance between documents we used the Euclidean distance, since it is one

of the most commonly used distance functions for data clustering [223]. Figure 3.4 reports

two examples of Silhouette coefficient computed for two different documents: the first graph

(a) represents an example of good Silhouette coefficient, since di is close to its cluster and

very far the nearest document belonging to a different cluster. Instead, the second graph

(b) shows a Silhouette coefficient s(di) < 0, since the distance between di and the nearest

document belonging to a different cluster is lower than its distance from the centroid of its

cluster.

In the end, the overall measure of the quality of a clustering C = {C1, . . . , Ck} can be ob-

tained by computing the mean Silhouette coefficient of all documents. Let C = {C1, . . . , Ck}
be the clustering obtained using a particular IR process, and let M be an m × n term-by-

document matrix. The mean Silhouette coefficient is computed as:

s(C) =
1

n

n∑
i=1

s(di)

In this thesis, we used the mean Silhouette coefficient as the measure for predicting the

accuracy of an IR process in the context of specific software engineering tasks.
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Figure 3.4: Example of the Silhouette coefficients.

3.4 Finding a (Near) Optimal IR process

Starting from the conjecture that the higher the clustering quality produced by an IR process,

the higher its accuracy when used for software engineering tasks, we can formulate the

problem of finding the best IR process as an optimization problem: find the IR process

that maximizes the overall quality of the clustering measured using the mean Silhouette

coefficient. More precisely, we want to solve the following single-objective problem:

Problem 1. Finding a set of optimal steps of the IR process X = [xi, x2, . . . , nn] which

maximize the average Silhouette coefficient:

max s(C) =
1

n

n∑
i=1

s(di)

For solving such an optimization problem we used the single-objective GAs reported in

Section 2.5. An IR process consists of a sequence of given steps or components which naturally

lends itself to be represented as a chromosome. This chromosome (see Figure 3.5) is a vector,

where each gene denotes a phase of the IR process, and can assume as a possible value any

of the techniques/approaches available for that phase. Each chromosome is composed by six

genes [x1, x2, x3, x4, x5, x6], where:

• x1 is the first gene of the term extraction step which represents the kind of characters

to prune out (digit, special characters, etc.);

• x2 is the second gene of the term extraction step which denotes the technique used for

identifier splitting (Camel case splitting, etc.);

• x3 is the gene for the stop word removal step which represents the techniques applied

to discard common words (stop word list either stop word function);
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Figure 3.5: LSI-GA chromosome representation.

• x4 is the gene for the morphological analysis step, which represents a stemming algo-

rithm (Porter stemmer, Snowball stemmer, etc.);

• x5 is the gene which denotes the weighting scheme (tf, tf-idf, etc.);

• x6 it encodes the parameter settings for a given IR method.

While in principle an approach like LSI-GA could also search for the IR method (e.g.,

LSI, LDA or VSM) achieving the best performances, the fitness function we defined requires

at the moment the use of a IR method that clusters documents. For example, LSI [78] and

LDA [79] are two such techniques that represent documents using a fixed number of concepts

or topics respectively. For this reason, we only considered LSI, which already proves to be

very successful for investigated software engineering tasks [219][73]. In terms of calibration,

LSI requires to set the number of concepts (k) that is a positive integer value representing

the number of topics that the latent model should extract from the data. Thus, an individual

(or chromosome) is a particular IR configuration and the population is represented by a set

of different IR configurations.

The GA initial population is randomly generated, i.e., by randomly choosing the value

of each gene of each individual. The selection operator is the Roulette wheel selection, which

assigns to the individuals with higher fitness a higher chances to be selected. The crossover

operator is the single-point crossover, which, given two individuals (parents) p1 and p2,

randomly selects a position in the chromosome, and then creates two new individuals (the

offspring) o1 composed of the left-side of p1, and the right-side of p2, and o2 composed of

the left-side of p2 and the right-side of p1. The mutation operator is the uniform mutation,

which randomly changes one of the genes (i.e., one of the six IR parameter values) of an

individual, with a different parameter value within a specified range. The GA terminates

after a fixed number of generations or when the fitness function cannot be improved further

(i.e., GA converged). Our GA approach can be briefly summarized as (i) generating IR

configurations, (ii) using them to cluster documents, (iii) evaluating the cluster quality using

the Silhouette coefficient, and (iv) using that value to drive the GA evolution.

LSI-GA has been implemented in R [224] using the GA library. Every time an individual

needs to be evaluated, we process documents using features available in the lsa package which

allows applying all the pre-processing steps, while for computing the SVD decomposition we
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Table 3.1: Values of the genes (steps of the IR process) for LSI-GA.

Step Implementations

Character pruning
keep special characters and digits
remove special characters, keep digits
remove both special characters and digits

Identifier splitting
do not split
simple Camel Case split
Camel Case keep compound split

Stop word removal
do not remove stop words
English/Italian stop word removal + remove ≤ 2 char words
English/Italian stop word removal + remove ≤ 3 char words

Morphological analysis
no stemming
Porter stemming
Snowball stemming

Term weighting

Boolean
tf
tf-idf
logij = log

(
tfij + 1

)
tf-entropy

Algebraic model LSI
LSI k 10 ≤ k ≤ rank(TDM)

used the a fast procedure provided by the irlba package for large and sparse matrices. As for

the GA settings, we use a crossover probability of 0.8, a uniform mutation with probability

of 1/n, where n is the chromosome size (n = 6 in our case). We set the population size equals

to 50 individuals with elitism of two individuals. As stop condition for GA, we terminate the

evolution if the best fitness function value does not improve for 10 consecutive generations

or when reaching the maximum number of generations equals to 100 (which, however, was

never reached in our experiments). All such settings are commonly used in the genetic

algorithm community. In addition, to address the intrinsic randomness of GAs, for each task

and for each dataset we perform 30 independent runs, storing the best configuration and

the relative best fitness function value—i.e., the Silhouette coefficient—for each run. Finally,

among the obtained configurations, we consider the one that achieves the median fitness

function—across the 30 independent runs—for the best individual in the last generation.

Finally, Table 3.1 summarizes the possible values for each gene of the chromosome used in

our experimentation. Clearly, the number of possible values can easily be extended (e.g.

different stemming, different weighting schemas, etc.).

3.5 Finding a (Near) Optimal LDA Configuration

As explained in Section 3.2.1, LDA—and in particular its implementation based on fast

collapsed Gibbs sampling generative model—requires the calibration of four parameters, k,

n, α, and β. Without a proper calibration, or with an ad-hoc calibration of these parameters,
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LDA’s performance may be sub-optimal. Starting from the conjecture that the higher the

clustering quality produced by LDA, the higher the accuracy of LDA when used for software

engineering tasks, we can formulate the problem of finding the best LDA configuration as

an optimization problem: find the LDA’s configuration that maximizes the overall quality

of the clustering produced by LDA measured using the mean Silhouette coefficient. More

precisely, we want to solve the following single-objective problem:

Problem 2. Finding a set of optimal LDA’s parameters X = [k, n, α, β] which maximize

the average Silhouette coefficient:

max s(C) =
1

n

n∑
i=1

s(di)

For solving such an optimization problem we used the single-objective GAs reported in

Section 2.5. Individuals (solutions) are represented as arrays (chromosomes) with four real

numbers1 [k, n, α, β], where:

• k is a positive integer value which represents the number of topics that the latent model

should extract from the data. We set its upper bound equal to the total number of

documents in the dataset.

• n is a positive integer value which denotes the number of Gibbs iterations, where a

single iteration of the Gibbs sampler consists of sampling a topic for each word. We

set the maximum number of iterations equal to 400.

• α and β are two real hyperparameters which take values within the interval [0; 1].

Thus, an individual (or chromosome) is a particular LDA configuration and the population

is represented by a set of different LDA configurations. The selection operator is the Roulette

wheel selection, the crossover operator is the arithmetic crossover, while the mutation op-

erator is the uniform mutation. The proposed GA approach can be briefly summarized as

follows: (i) generating LDA configurations, (ii) using them to cluster documents, (iii) eval-

uating the cluster quality using the Silhouette coefficient, and (iv) using that value to drive

the GA evolution.

The LDA-GA has been implemented in R [224] using the topicmodels and GA libraries.

The former library provides a set of routines for computing the fast collapsed Gibbs sampling

generative model for LDA, while the latter is a collection of general purpose functions that

provides a flexible set of tools for applying a wide range of GA methods. For GA, we

used the following settings: a crossover probability of 0.8, a mutation probability of 0.1,

a population of 100 individuals, and an elitism of 2 individuals. As a stopping criterion

for the GA, we terminated the evolution if the best results achieved did not improve for

10 generations; otherwise we stopped after 100 generations. All the settings have been

calibrated using a trial-and-error procedure, and some of them (i.e., elitism size, crossover

1In other words we used the real encoding scheme

50



3.6. Empirical Evaluation of LSI-GA

and mutation probabilities) were the values commonly used in the community. To account

for GA’s randomness, for each experiment we performed 30 GA runs, and then we took

the configuration achieving the median final value of the fitness function, i.e., the median

Silhouette coefficient s(C).

3.6 Empirical Evaluation of LSI-GA

This section describes in details the design and the results of the empirical study we conducted

to evaluate the proposed LSI-GA approach. The study was conducted following the Goal-

Question-Metric paradigm by Basili et al.[225].

3.6.1 Research Questions

The goal of our study is to investigate whether LSI-GA allows to instantiate IR processes

that are able to effectively solve SE tasks, while the quality focus is represented by the perfor-

mances of the IR-based processes in terms of accuracy and completeness. The perspective is of

researchers interested in developing an automatic approach to assemble IR processes for solv-

ing specific SE tasks. The context of the study consists of three SE tasks, namely traceability

links recovery, feature location, and identification of duplicate bug reports. Specifically, the

study aims at addressing the following research questions (RQs) that have been addressed

in the context of the three different SE tasks considered in our study:

• RQ1: How do the processes instantiated by LSI-GA compare with those previously used

in literature for the same tasks? This RQ aims at justifying the need for an automatic

approach that calibrates IR processes for SE tasks. Specifically, we analyzed to what

extent the process instantiated by LSI-GA for solving a specific task is able to provide

better performances than a process with an ad-hoc setting. Our conjecture is that,

with a proper setting, the performances could be sensibly improved because in many

cases, the IR-based techniques have been severely under-utilized in the past.

• RQ2: How do the processes instantiated by LSI-GA compare with an ideal configu-

ration? We empirically identified the configuration that provided the best results as

compared to a specific oracle. For instance, in the case of traceability recovery, we

identified the configuration that provided the best performances in terms of correct

and incorrect links recovered. Clearly, one can build such a configuration only with

the availability of a labeled data set, by using a combinatorial search among different

treatments and by evaluating each combination against the oracle in terms of precision

and recall. We call such a configuration ideal, because it is not possible to build a

priori (i.e., without the availability of a labeled training set) a configuration providing

better performances than that. The performances achieved by the process instantiated

by LSI-GA are then compared with those achieved with the ideal configuration, to in-

vestigate how far off is the LSI-GA configuration from the best possible performances

that one can achieve.
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Table 3.2: Characteristics of the systems used for traceability recovery.

System Description
Artifacts

Type Number Total

EasyClinic
A software system used to manage a doctor’s
office developed by students

Use Cases 30
77

Code Classes 47

eTour
An electronic tourist guide developed by
students

Use Cases 58
174

Code Classes 116

iTrust A medical application
Code Classes 33

149
Java Server Page 116

To answer to the research questions above we considered three different scenarios named

traceability recovery, feature location and bug report duplication. Next section describes the

plan of the empirical study and the corresponding empirical results.

3.6.2 Scenario I: Traceability Recovery

The context of this scenario consists of software artifacts extracted from three projects,

namely: EasyClinic, eTour and iTrust. The first two systems were developed by the final

year Master’s students at the University of Salerno (Italy). The documentation, source code

identifiers, and comments for both systems are written in Italian. The last system is a

medical application used as a class project for Software Engineering courses at the North

Carolina State University2. All artifacts consisting of use cases and Java Server Pages are

written in English. Table 3.2 summarizes the characteristics of the considered software sys-

tems in terms of type, number of source and target artifacts. Other than the listed artifacts,

each repository also contains the traceability matrix built and validated by the application

developers. For different kinds of artifacts, the traceability matrices were developed at dif-

ferent stages of the development (e.g., requirement-to-code matrices were produced during

the coding phase). We consider such a matrix as the oracle to evaluate the accuracy of the

different IR configurations.

To answer to our research questions, we used an IR process with a specific input configu-

ration to recover traceability links between artifact pairs on the term-by-document matrices.

In all cases the term-by-document matrix is extracted using all the steps of the process

derived by encoded solutions obtained by GAs. To answer both the research questions we

performed three different traceability recovery activities:

• A1: recovering traceability links between use cases and source code classes for Easy-

Clinic. The total number of correct links is 83 while the number of all possible links is

1,410.

• A2: recovering traceability links between use cases and source code for eTour. The

total number of correct links is 246 while the number of all possible links is 6,728.

2http://agile.csc.ncsu.edu/iTrust/wiki/doku.php?id=tracing
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• A3: recovering traceability links between code classes and java server page for iTrust.

The total number of correct links is 58 while the number of all possible links is 3,828.

To answer RQ1, we compared the accuracy of recovering traceability links achieved

by the IR process assembled by LSI-GA with the accuracy achieved by LSI on the same

systems in the previously published studies where an “ad-hoc” corpus pre-processing and LSI

configuration were used [2, 152]. We also compared the accuracy of recovering traceability

links using different combinations of pre-processing steps3 (3 · 3 · 3 · 3 · 5=405) for a different

number of concepts for LSI. Specifically, we varied (using step 1) the number of concepts

from 10 to maximum number of topics, which is 77 for EasyClinic, 176 for eTour and 80

for iTrust. We also exercised all possible combinations of pre-processing steps with such

values. Thus, the total number of trials performed on EasyClinic, eTour and iTrust were

27,135 (it corresponds to the number of all possible preprocessing steps 405 multiplied by the

number of all possible number of topics 67), 67,230 and 32,400, respectively. With such an

analysis we are able to identify the configuration which provides the best recovery accuracy

(as compared with our oracle) between all the possible configurations aiming at estimating

the ideal configuration of the IR-based traceability recovery process. We then compared the

performances achieved with such an ideal configuration with the performances achieved with

the configuration identified by LSI-GA in order to answer RQ2.

Metrics

For both RQ1 and RQ2, the performances of the LSI-GA approach, of the baseline approach,

and of the ideal approach are evaluated and compared by using two well-known metrics in

the IR field, namely precision and recall [167]. Recall measures the percentage of links cor-

rectly retrieved, while precision measures the percentage of links retrieved that are correctly

identified:

recall =
| correct ∩ retrieved |
| tot. correct |

precision =
| correct ∩ retrieved |

| retrieved |

where correct and retrieved represent the set of correct links and the set of links retrieved

respectively. A common way to evaluate the performance of retrieval methods consists of

comparing the precision values obtained at different recall levels. This result is a set of

recall/precision points which are displayed in precision/recall graphs. In order to provide

a single value that summarizes the performance, we use the average precision, that can be

defined as the mean of the precision scores obtained for each correct link [167]. It can be

3For further details see Table 3.1.
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mathematically expressed as

AP =

n∑
i=1

xi preci

n∑
i=1

xi

where xi represents the binary correctness of ith link (i.e. xi = 1 if the ith is correct; xi = 0

otherwise) while preci denotes its precision value.

To provide statistical support to our research questions we used a statistical test to verify

whether the number of false positives retrieved by one method is statistically lower than the

number of false positives retrieved by another method. In other words, we compared the

false positives retrieved by method mi (e.g., LSI with a specific configuration) with the false

positives retrieved by method mj (e.g., LSI with another specific configuration) to test the

following null hypothesis:

There is no statistically significant difference between the number of false positives

retrieved by mi and mj

The dependent variable of our study is represented by the number of false positives retrieved

by the traceability recovery method for each correct link identified. Since the number of

correct links is the same for each traceability recovery activity (i.e., the data were paired),

we used the Wilcoxon Rank Sum test [226]. In all our statistical tests we consider p-values <

0.05 as statistically significant. Since this requires performing three tests for each system,

we adjusted the p-values using Holm’s correction procedure [227].

Empirical results

Figure 3.6 reports the precision/recall graphs obtained by LSI using (i) the ideal IR configura-

tion obtained in combinatorial search across 27,135 (EasyClinic), 67,230 (eTour) and 32,400

(iTrust) different configurations; (ii) the IR configuration identified by LSI-GA; and (iii) an

“ad-hoc” configuration (i.e., reference) used in a previous study, where LSI was used on the

same dataset and for the same traceability recovery task. For all three systems, LSI-GA is

able to obtain a precision/recall curves close to the ones yielded by the ideal configurations.

It is also important to highlight the ideal configurations are obtained using the oracles, thus,

they are used just to show the upper (ideal) bounds. If comparing the performance achieved

by LSI-GA with those of the reference configuration, we can observe a tangible improvement

in all cases. For example, on EasyClinic for a recall level smaller than 80%, using LSI-GA it is

possible to achieve an improvement of precision ranging between 50% and 15% with respect

to the reference configuration [2, 152]. A less evident improvement is achieved for the lowest

recall percentile (i.e., between 80% and 100%). A similar analysis can be performed for the

other two software systems where the improvements are even better: for example on iTrust

at recall level of 60% LSI-GA reaches 80% of precision against the 30% of the reference IR

configuration obtained at same level of recall.
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Figure 3.6: Traceability recovery: precision/recall graphs.

This scenario is also confirmed by the average precision obtained by the three different

treatments (Table 3.3). Indeed, the average precision obtained by LSI-GA is quite close to

the ideal one. In other words, the difference in terms of average precision with respect to

the ideal configuration is always lower than 3%. However, the improvement obtained with

respect to the reference configuration is of about 20% in terms of average precision. These

results are also confirmed by our statistical analysis. Table 3.12 reports the results of the

Wilcoxon test (i.e., the adjusted p-values) for all combinations of techniques; statistically

significant results are highlighted in bold face. As we can see, there is always statistical

significant difference between the performance obtained LSI-GA and he reference configura-

tions. However, for all the systems the ideal configurations (global optima) are statistically

better than the LSI-GA. Anyhow the precision/recall graph reported in Figure 3.6 reveal the

difference is relatively small especially if compared to the improvement earned with respect

to the reference approaches.

Table 3.5 reports the different IR pre-processing steps and the k values for LSI found by

the LSI-GA, and compares them with the ones generated by the ideal IR process and the

ones used by the baseline. As we can see in the majority of cases the pre-processing steps
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Table 3.3: Comparison of traceability recovery performances: average precision values.

System Ideal LSI-GA Reference [2, 152]
EasyClinic 64.79 64.68 46.78
eTour 50.18 47.32 30.93
iTrust 68.56 67.94 45.47

Table 3.4: Comparison of traceability recovery performances (precision): results of the
Wilcoxon test.

EasyClinic eTour iTrust
LSI-GA < Ideal 1 1 0.97
LSI-GA < Reference [2, 152] < 0.01 < 0.01 <0.01
Ideal < Reference [2, 152] < 0.01 < 0.01 < 0.01

chosen by LSI-GA are the same for the ideal/optimal IR with only few differences. If we

compare the reference IR processes with those instantiated by LSI-GA, one can notice that

LSI-GA often chooses a less aggressive term extraction (e.g., keeping digits) and stop word

removal (e.g., not filtering out short words). For the choice of the number of concepts/topics

to be used when applying LSI we observe that the k values provided by LSI-GA are quite

close to those utilized by the ideal IR process. Hence we can conclude that LSI-GA allows

us to instantiate an IR process that is close to the ideal one. It is also interesting to note

that not all the dataset require the same pre-processing steps (e.g., stopword list, stopword

function and stemming), confirming the findings of Falessi et al. [210] that there is no unique

IR process that can be efficiently applied to all the tasks and all the datasets.

3.6.3 Scenario II: Feature Location

In this scenario we consider two Java software systems, namely jEdit v4.3 that is an open-

source text editor for programmers, and JabRef v2.6 that is a bibliography reference manager.

Table 3.13 reports the system size (in KLOC), the number of source files and methods, and

the number of bugs and features to be located. These systems have been used in previous

studies on feature location [215, 228]. For these systems are available (i) the gold sets (i.e.,

mappings between source code and features) at method level granularity, (ii) the description

of the features from bug reports and (iii) execution traces.

To answer to our research questions, we used LSI with a specific input parameters to

extract topics from the source code and measuring the textual similarity between methods

and description of feature. Then, the list of methods are ranked by their similarity to the

description of the feature. In all cases the term-by-document matrix is extracted using all the

steps of the process derived by encoded solutions obtained by GAs. For RQ1, we compared

the performances obtained by the IR process assembled by LSI-GA with the performances

achieved by LSI on the same systems in a previously published study, where an “ad-hoc”

reference IR pre-processing and LSI were used [195]. The latter is used as a baseline. To
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Table 3.5: Comparison of different IR processes provided by LSI-GA, ideal and reference.

System Method k
Special Digit Term Stopword Stopword

Stemming
Weight

Chars Chars Splitting List Functions Schema

EasyClinic
Ideal 72 Remove Include Camel Case No No Porter tf-idf
LSI-GA 66 Remove Include Camel Case Yes No No tf-idf
Refer. 37 Remove Remove Camel Case Yes Yes Snowball tf-idf

eTour
Ideal 160 Remove Remove Camel Case No No Snowball tf-idf
LSI-GA 163 Remove Include No No Yes Snowball tf-idf
Refer. 87 Remove Remove Camel Case Yes Yes Snowball tf-idf

iTrust
Ideal 80 Remove Remove No Yes No Porter tf-idf
LSI-GA 69 Remove Include Camel Case Yes No Porter tf-idf
Refer. 40 Remove Remove Camel Case Yes Yes Snowball tf-idf

Table 3.6: Task 2 (feature location): characteristics of the datasets used in the experiment.

System Version KLOC Files Methods Features
jEdit 4.3 104 503 6,413 150
JabRef 2.6 74 579 4,607 39

address RQ2, we compare the process instantiated by LSI-GA with an “ideal” process, which

was determined by using a combinatorial approach similar as done for traceability recovery.

Specifically, we varied the number of topics from 100 to 1,500 with step 10 for both jEdit

and JabRef. We also applied all possible combinations of preprocessing steps considered in

this work. Thus, the total number of trials performed on both software systems consisted is

of 60,912. With such an analysis we are able to identify the configuration which provides the

best accuracy (as compared with our oracle) between all the possible configurations aiming

at estimating the ideal configuration of the IR-based traceability recovery process.

Metrics

In this scenario the performances of the IR processes were analyzed using the effectiveness

measure (EM) [73]. The EM estimates the number of methods a developer needs to analyze

before finding the first relevant method, and it is computed as the lowest rank of a relevant

method found in the list of methods sorted in a descendent order by their textual similarity

to the description of the feature of interest. A high EM value suggests bad performance

of the IR technique and a greater human effort, due to the large number of false positive

methods to be analyzed before finding a relevant one. In order to provide a single value that

summarizes the performance, we use the average effectiveness measure, that is equal to the

mean of the EM scores obtained for each feature to locate [73].

To provide statistical support to our research questions we used a statistical test to verify

whether the EM values obtained by one method mi (e.g., LSI with a specific configuration)

is statistically significantly lower than the EM values yielded by another method mj (e.g.,

LSI with another specific configuration) similarly as done in previous work [73, 193]. In other

words, we want to test the following null hypothesis:
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Figure 3.7: Box plots of the effectiveness measure for feature location on jEdit and JabRef.

There is no statistically significant difference between the EM values obtained by

mi and mj

The dependent variable of our study is represented by the EM values reached by the feature

location methods for each feature to be located. Since the number of features to be located is

the same for each instantiated IR process (i.e., the data were paired), we used the Wilcoxon

Rank Sum test [226]. In all our statistical tests we consider p-values < 0.05 as statistically

significant. Finally, the p-values are adjusted using Holm’s procedure.

Empirical results

Figure 3.7-a shows boxplots of the EM values for the jEdit system, that were computed from

three different IR process instances: (i) the ideal IR process obtained over 60,912 possible

configurations; (ii) the IR process assembled by LSI-GA; and (iii) the “ad-hoc” IR process

(i.e., the reference) used in a previous study [195]. First, we can observe that the EM values

obtained by LSI-GA are quite close to the ones obtained by the ideal IR process, thus,

LSI-GA was able to find a near optimal configuration. When comparing the performance

of LSI-GA with the reference, we observe that there is a substantial difference for all the

quartiles. For example, the median and mean EM values achieved by LSI-GA are 38 and

197, whereas the median and mean EM values achieved by the reference are 69 and 244,

respectively. Similar results are observed for the boxplots for JabRef shown in Figure 3.7-b.

The EM distribution provided by LSI-GA is comparable to the distribution obtained by the

ideal IR process. Moreover, LSI-GA provides EM values that are better than those provided

58



3.6. Empirical Evaluation of LSI-GA

Table 3.7: Comparison of feature location performances (EM): the results of the Wilcoxon
test.

jEdit JabRef

LSI-GA < Ideal 1 0.27
LSI-GA < Reference [195] < 0.01 0.40
Ideal < Reference [195] < 0.01 0.20

Table 3.8: Comparison of different IR processes provided by LSI-GA, ideal and reference.

System Method k
Special Digit Term Stopword Stopword

Stemming
Weight

Chars Chars Splitting List Functions Schema

jEdit
Ideal 1150 Remove Remove Camel Case

Keep-Comp.
Yes < 3 char. Snowball tf-idf

LSI-GA 911 Remove Remove Camel Case
Keep Comp.

Yes < 3 char. Snowball tf-idf

Reference 300 Remove Remove Camel Case Yes Yes Porter tf-idf

JabRef
Ideal 416 Remove Remove Camel Case Yes < 3 char. Snowball tf-idf
LSI-GA 390 Remove Remove Camel Case Yes < 3 char. Snowball tf-idf
Reference 300 Remove Remove Camel Case Yes Yes Porter tf-idf

by the reference IR preprocessing. Indeed, the median EM value produced by LSI-GA is

36, while the median EM values produced by the ideal and the reference are 30 and 58,

respectively.

To provide a statistical support to our preliminary results, the Wilcoxon Rank Sum test

was used to test if the difference between the effectiveness measures of two feature location

techniques is statistically significant or no. Table 3.7 reports the obtained adjusted p-values

for all combinations of the techniques. On jEdit, LSI-GA achieves significantly better results

than the reference process, while the ideal IR process performs significantly better than LSI-

GA. However, from the boxplots of Figure 3.7, we can observe that the difference between

LSI-GA and the ideal process is relatively small. Turning to JabRef, even if the boxplots

revealed a better EM distribution for both LSI-GA and ideal as compared to reference, the

results of the Wilcoxon tests indicate that these differences are not statistically significant.

This suggests that the “ad-hoc” configuration identified by Liu et al. [195] on the JabRef

is the one providing results very close to the best. However, the same “approach” did not

provide the same level of accuracy on jEdit, where the “ad-hoc” configuration is not able to

rich the same level of accuracy of both the ideal and LSI-GA configurations.

Table 3.5 reports the different IR pre-processing steps and the k values for LSI found

by the LSI-GA, and compares them with the ones generated by the ideal IR process and

the ones used in previous work [195]. As we can see for both the dataset the pre-processing

steps chosen by LSI-GA are the identical to those of the ideal/optimal IR: both used the

same term extraction process, the same term splitting, the same stop-word list and stop-

word functions, the same stemming algorithm and the same term weighting schema. For the

choice of the number of concepts/topics to be used when applying LSI we observe that the k

values provided by LSI-GA are not identical to those utilized by the ideal IR process. Hence
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we can conclude that LSI-GA allows us to instantiate an IR process that is close to the ideal

one.

3.6.4 Scenario III: Duplicated Bug Report

For this scenario, we use LSI to compute the textual similarity between new bug reports

and existing bug reports using their description. We used two different corpora, referred as

Short and 2ShortLong (as suggested by [161]). In the former case, each bug is characterized

by only the bug title, while in the latter we used both the title and the bug description (the

title is weighted twice as much as the bug description). Note that in both cases we combined

textual information with information belonging to execution traces.

Besides the textual similarity, as suggested by Wang et al. [161], for each bug report in

the analyzed corpus, we also generated an execution trace by following the steps to reproduce

the bug (such steps are available in the bug description). Using such information we build

a bug-to-method matrix, where each bug represents a column, and each method represents

a row. The matrix has binary values, i.e., a generic entry (i,j) is one, if the ith method in

the corresponding row appears in the execution trace of the jth bug; zero otherwise. Such

information can be used to identify bugs having similar execution traces. Such information

can complement textual similarity in order to identify duplicate bug reports, i.e., bugs having

similar execution traces are candidate to be the same bug. We then apply LSI also on the

bug-to-method matrix and we compute the similarity between each pair of bugs (in terms of

execution trace) using the Execution-information-based Similarity. The final similarity for

each pair of bugs report is given by averaging the textual similarity and the similarity of the

execution traces of the two bugs.

The design of our study is based on the study introduced by Wang et al. [161], but is

different in several important aspects. For example, Wang et al. used 220 bug reports of

Eclipse 3.0 posted on June 2004 and 44 duplicate pairs as well full execution traces with

method signatures. For our evaluation, we used 225 bugs (of the same system and posted

in the same period) with 44 duplicate pairs, and marked execution traces without method

signatures. For collecting the data, even though we followed the methodology described

in their approach, we do not have information about the exact set of bugs used by them.

Moreover, the execution traces we collected are most likely different since this was a manually

collecting process. In summary, we created a realistic reference approach for Task 3, however

this does not fully correspond to the one of Wang et al..

For each duplicate pair, we compute the similarity between the oldest submitted bug

(among those two) and the remaining 224 bug report in the corpus. Then, to address RQ1,

we compare the accuracy of identifying duplicated bug report achieved by the IR process

assembled by LSI-GA with the accuracy yielded by a “baseline” configuration produced by

using the preprocessing of Wang et al., and by applying LSI with an “ad-hoc” number of

concepts used in traceability link recovery, i.e., k = 50% of total number of documents [152].

To address RQ2 we compared the performances of IR process using different number of

topics (for LSI) and different pre-processing steps. In particular, we varied the number of
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topic from 10 to 200 with steps 1 for both the eclipse textual corpora. We also applied all

the possible combinations of the pre-processing steps experimented in this Chapter. Hence,

the total number of trials performed on both the corpora is 27,000. With such an analysis we

are able to identify the configuration which provides the best recovery accuracy between all

the possible configurations aiming at estimating the ideal configuration. We then compared

the performances achieved with such an ideal configuration with the performances achieved

with the configuration identified by LSI-GA in order to answer RQ2.

Metrics

In this scenario the performance of an IR process is measures using the recall rate (RR)

[161, 76]. For each bug report of interest, the list of the other bug reports is ranked according

to their similarity to that bug report, RR measures if a duplicated bug report is found in the

first t top most positions of the ranked list or not. Formally, this metric can be defined as:

RRt =
Nrecalled

Ntotal

where Nrecalled is the number of duplicate bug repots were found in first t position of the

suggested bug reports list, and Ntotal is the total number of duplicated bug report to be

found. We varied the suggested list size t from 1 to 25 and we stored the corresponding

RRt values. Higher RRt reveals a better ability of an IR process to find duplicated bug

report for the suggested list size t. We also used a statistical test to verify whether the RRt
values obtained by one method mi (e.g., LSI with a specific configuration) is statistically

significantly lower than RRt values yielded by another method mj (e.g., LSI with another

specific configuration). In other words, we want to test the following null hypothesis:

There is no statistically significant difference between the RRt values obtained by

mi and mj

The dependent variable of our study is represented by the RRt values reached by a method

for each duplicated bug to be identified. Since the number of duplicated bug is the same

for each instantiation of an IR process (i.e., the data were paired), we used the Wilcoxon

Rank Sum test [226]. In all our statistical tests we consider p-values < 0.05 as statistically

significant. Finally, the p-values are adjusted using Holm’s procedure.

Empirical results

Figure 3.8 reports the recall rate for the results produced by using different configurations,

i.e., LSI-GA, ideal and a reference configuration. The reference configuration is obtained

considering: (i) k equals to half the number of documents [152]; and (ii) by applying a

standard corpus preprocessing that is typical to bug duplicates [161] and other SE tasks

[195]. For both corpora (Short and 2ShortLong), LSI-GA achieved approximately the same

RR values as the ideal. Moreover, LSI-GA produces better results in terms of RR as compared
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Figure 3.8: Recall Rate graphs for Eclipse, with suggested list size raging between 1 and 25.

Table 3.9: Comparison of bug report duplication: the results of the Wilcoxon test.

Short Corpus 2ShortLong Corpus

LSI-GA < Ideal 1 0.66
LSI-GA < Reference < 0.01 0.22
Ideal < Reference < 0.01 0.64

to the reference. In particular, when the corpus consists of bug report titles only (i.e., Short),

the RR for LSI-GA is higher than the RR of the reference (i.e., a difference of over 10% for

a suggested list size varying from 1 to 19). When the textual corpus is represented by the

bug reports titles and their descriptions (i.e., 2ShortLong), the LSI-GA is generally better

(i.e., about 5% improvement) than the reference configuration, except when the suggested

list size ranges between 5 and 10. It is interesting to note that, when applying a properly

calibrated IR process (such as the one assembled by LSI-GA) on the Short corpus, produces

approximately the same results as considering the 2ShortLong corpus without calibration.

Table 3.9 reports the adjusted p-values of the Wilcoxon test for all combinations of the

techniques. Results indicate that on the Short corpus LSI-GA statistically outperforms the

reference. Moreover, there is no significant difference between LSI-GA and the ideal process

for the 2ShortLong corpus. However, the small improvement introduced by LSI-GA over

the reference configuration (see Figure 3.8) is not statistically significant. Also, there is no

statistical difference when comparing LSI-GA or the reference with the ideal configuration.

Table 3.10 reports the different IR pre-processing steps and the k values for LSI found

by the LSI-GA, and compares them with the ones generated by the ideal IR process and

the ones used by the baseline. We can observe a scenario that is quite similar to the ones

obtained for traceability recovery and feature location: in all the cases the pre-processing

steps chosen by LSI-GA and the ideal/optimal IR are identical. The only difference between

them is represented by k, i.e., the number of concepts/topics used for LSI. For the Short
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Table 3.10: Comparison of different IR processes provided by LSI-GA, ideal and reference
on Eclipse.

Corpora Method k
Special Digit Term Stopword Stopword

Stemming
Weight

Chars Chars Splitting List Functions Schema

Short
Ideal 169 Remove Include Camel Case Yes No Porter tf-idf
LSI-GA 172 Remove Include Camel Case Yes No Porter tf-idf
Reference 112 Remove Remove Camel Case Yes Yes Porter tf-idf

2ShortLong
Ideal 180 Remove Include Camel Case Yes No Porter tf-idf
LSI-GA 179 Remove Include Camel Case Yes No Porter tf-idf
Reference 112 Remove Remove Camel Case Yes Yes Porter tf-idf

corpus LSI-GA selected k = 172 latent concepts/topics while the ideal configuration has

k = 169 latent concepts/topics. For the 2ShortLong corpus LSI-GA selected k = 179 latent

concepts/topics against 169 latent topics of the ideal configuration. Hence, we can conclude

that LSI-GA allows us to instantiate an IR process that is close to the ideal one.

3.7 Empirical Evaluation of LDA-GA

This section describes in details the design and the results of the empirical study we conducted

to evaluate the proposed LDA-GA approach in the context of software engineering tasks. The

study was conducted following the Goal-Question-Metric paradigm by Basili et al.[225]. Raw

data and working data sets are available for replication purposes4.

3.7.1 Research Questions

The goal of the study is to evaluate LDA-GA in the context of three software engineering

tasks. The quality focus was ensuring better recovery performances, while the perspective

was both (i) of a researcher, that wants to find an optimal calibration of the LDA parameter;

and (ii) of a project manager, that might be interested to adopt the proposed approach

for solving specific SE tasks. The context of the study consists of three SE tasks, namely

traceability links recovery, feature location, and source code labeling. Specifically, the study

aims at addressing the following research questions (RQs) that have been addressed in the

context of the three different SE tasks considered in our study:

• RQ1: What is the impact of the configuration parameters on LDA’s performance in

the context of software engineering tasks? This research question aims at justifying the

need for an automatic approach that calibrates LDA’s settings when LDA is applied

to support SE tasks. For this purpose, we analyzed a large number of LDA configura-

tions for three software engineering tasks. The presence of a high variability in LDA’s

performances indicates that, without a proper calibration, such a technique risks being

severely under-utilized.

4http://www.distat.unimol.it/reports/LDA-GA
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Table 3.11: Characteristics of the systems used for traceability recovery.

System Description
Artifacts

Type Number Total

EasyClinic
A software system used to manage a doctor’s
office developed by students

Use Cases 30
77

Code Classes 47

eTour
An electronic tourist guide developed by
students

Use Cases 58
174

Code Classes 116

• RQ2: Does LDA-GA, our proposed GA-based approach, enable effective use of LDA in

software engineering tasks? This research question is the main focus of our study, and

it is aimed at analyzing the ability of LDA-GA to find an appropriate configuration for

LDA, which is able to produce good results for specific software engineering tasks.

We address both research questions in three different scenarios, representative of SE tasks

that can be supported by LDA: traceability link recovery, feature location, and software

artifact labeling. LDA was previously used in some of these tasks [10, 173, 220].

3.7.2 Scenario I: Traceability Recovery

The context of this scenario consists of different software artifacts from two projects, namely:

EasyClinic and eTour. Both systems were developed by the final year Master’s students at the

University of Salerno (Italy). The documentation, source code identifiers, and comments for

both systems are written in Italian. Table 3.11 reports the characteristics of the considered

software systems in terms of type, number of source and target artifacts. Other than the

listed artifacts, each repository also contains the traceability matrix built and validated by

the application developers. For different kinds of artifacts, the traceability matrices were

developed at different stages of the development (e.g., requirement-to-code matrices were

produced during the coding phase). We consider such a matrix as the oracle to evaluate the

accuracy of the different LDA configurations.

To answer to our research questions, we used LDA with a specific input parameters

configuration to recover traceability links between artifact pairs on the term-by-document

matrices. In all cases the term-by-document matrix is extracted following all the steps of the

process described in Section 3.2. Specifically, we used the following pre-process:

• Term extraction: each software artifact is pre-processed in order to filter non-textual

tokens (i.e., operators, special symbols, some numerals, etc.). The identifiers composed

of two or more words are separated into their constituent words using a tool that relies

on coding conventions.

• Stop-word removal : we used a stop word lists for Italian language. Such a list included,

other than Italian standard stop word lists, (i) programming language (C/Java) key-

words, (ii) recurring words in document templates (e.g., use case, requirement, or test

case template) and (iii) author names.
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• Stemming : we used Italian Snowball stemmer to reduce in inflected words to their

stem, base or root form.

• Term weighting : we used the tf − idf which is one of the most widely used weighting

scheme [167].

• Distance measure: we used the Hellinger distance function which is designed for prob-

abilistic models, like LDA [167].

To answer both the research questions we performed two different traceability recovery ac-

tivities:

• A1: recovering traceability links between use cases and source code classes for Easy-

Clinic. The total number of correct links is 83 while the number of all possible links is

1,410.

• A2: recovering traceability links between use cases and source code for eTour. The

total number of correct links is 246 while the number of all possible links is 6,728.

To address RQ1, we compared the accuracy of recovering traceability links using different

configurations for LDA. Specifically, we varied the number of topics from 10 to 100 with step

10 on EasyClinic, and from 10 to 200 with step 10 on eTour. We varied α and β from 0 to

1 with 0.1 increments, and we exercised all possible combinations of such values. We fixed

the number of iterations to 500, which resulted to be a sufficient number of iterations for

the model to converge. Thus, the total number of trials performed on EasyClinic and eTour

were 1,000 and 2,000, respectively. Clearly, although combinatorial, such an analysis is not

exhaustive, as it considers a discrete set of parameter values and combinations.

For RQ2, we compared the accuracy achieved by LDA when the configuration is de-

termined using LDA-GA with (i) the best accuracy achieved by LDA (determined when

answering RQ1) and (ii) the accuracy achieved by LDA on the same system in the previously

published studies where an “ad-hoc” configuration was used [219]. While the former com-

parison is more of a sanity check aimed at analyzing the effectiveness of the GA in finding a

near-optimal solution, the latter comparison was aimed at analyzing to what extent LDA-GA

is able to enrich the effectiveness and usefulness of LDA in the context of traceability link

recovery when properly calibrated.

Metrics

To answer to our research questions, we evaluated LDA’s recovery accuracy using we used

two well-known IR metrics: precision and recall [167]. Recall measures the percentage of

links correctly retrieved, while precision measures the percentage of links retrieved that are

correctly identified. A common way to evaluate the performance of retrieval methods consists

of comparing the precision values obtained at different recall levels. This result is a set of

recall/precision points which are displayed in precision/recall graphs. In order to provide
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Figure 3.9: Variability of performance achieved by LDA configurations for traceability link
recovery

a single value that summarizes the performance, we use the average precision which is the

mean of the precision scores obtained for each correct link [167].

To provide statistical support to RQ2 we used a statistical test to verify whether the

number of false positives retrieved by one method is statistically significantly lower than

the number of false positives retrieved by another method similarly as done in previous

work [9, 16, 17]. In other words, we compared the false positives retrieved by method mi

(e.g., LDA with a specific configuration) with the false positives retrieved by method mj

(e.g., LDA with another specific configuration) to test the following null hypothesis:

There is no statistically significant difference between the number of false positives

retrieved by mi and mj

The dependent variable of our study is represented by the number of false positives retrieved

by the traceability recovery method for each correct link identified. Since the number of

correct links is the same for each traceability recovery activity (i.e., the data were paired),

we used the Wilcoxon Rank Sum test [226]. In all our statistical tests we consider p-values <

0.05 as statistically significant.

Empirical results

To answer to RQ1, Figure 3.9 shows boxplots summarizing the average precision values

obtained using the 1,000 and 2,000 different LDA configurations on EasyClinic and eTour,

respectively. We used these boxplots to highlight the variability of the average precision

values across different configurations. As shown, the variability of LDA’s performance is

high: the average precision ranges between 11% and 55% on EasyClinic and between 7% and
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Figure 3.10: Traceability recovery: precision/recall graphs.

43% on eTour. For EasyClinic, more than 75% of the different LDA configurations obtained

an average precision lower than 45% (see first three quartiles in Figure 3.9). Moreover, only

a small percentage of the configurations executed in the combinatorial search (about 3.6%)

obtained an average precision greater than 50%. In the end, only one of them achieved

the highest value, 52%. Similarly for eTour, the configurations placed in the first three

quartiles (about 75% of the set) obtained an average precision lower than 40%, while less

than 1% of the total amount of executed configurations in the combinatorial search (2,000

configurations) achieved an average precision greater than the 40%. Only one configuration

achieved the highest average precision (47%).

In summary, for RQ1 we can assert that for traceability recovery, LDA shows high vari-

ability. Thus, LDA’s efficiency for establishing links between software artifacts depends on

the particular configuration P = [n, k, α, β] used to derive latent topics. Indeed, “bad” con-

figurations can produce poor results while “optimal” configurations (which represent a small

portion of all possible LDA configurations) can lead to very good results.

For what concerns RQ2, Figure 3.10 reports the precision/recall graphs obtained by LDA

using (i) the best configuration across 1,000 and 2,000 different configurations executed in

the combinatorial search; (ii) the configuration identified by LDA-GA; and (iii) an “ad-hoc”

configuration used in a previous study where LDA was used on the same repositories [80].

For both EasyClinic and eTour, LDA-GA was able to obtain a recovery accuracy close to the

accuracy achieved by the optimal configuration across 1,000 and 2,000 different configurations

executed in the combinatorial search. In particular, for EasyClinic LDA-GA returned exactly

the configuration identified by the combinatorial search (i.e., the two curves are perfectly

overlapped) while on eTour the two curves are comparable. Moreover, the average precision

achieved by the configuration provided by LDA-GA is about 41%, which is comparable with

the average precision achieved with the optimal configuration, which is about 43% (only a
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Table 3.12: Results of the Wilcoxon test for traceability recovery.

EasyClinic eTour
LDA-GA < Combinatorial 1 1
LDA-GA < Oliveto et al. [80] < 0.01 < 0.01
Combinatorial < Oliveto et al. [80] < 0.01 < 0.01
Combinatorial < LDA-GA 1 < 0.01

Table 3.13: Characteristics of the systems used in feature location.

System KLOC Classes Methods Features
jEdit 104 503 6,413 150
ArgoUML 149 1,439 11,000 91

small difference of 2%). Among 2,000 different configurations tried for the combinatorial

search, only five configurations obtained an average precision comparable or greater than the

one achieved by LDA-GA, i.e., the configurations obtained by LDA-GA belong to the 99%

percentile for the distribution reported in Figure 3.9. Finally, comparing the performance

achieved by LDA-GA with the performance reached by other LDA configurations used in

previous work [80], we can observe that the improvement is very substantial for both software

systems.

Table 3.12 reports the results of the Wilcoxon test (i.e., the adjusted p-values) for all

combinations of the techniques (statistically significant results are highlighted in bold face).

As we can see, there is no statistically significant difference between the performance ob-

tained by LDA-GA and the combinatorial search for EasyClinic. However, for eTour the

combinatorial search performs significantly better than LDA-GA. However, considering the

precision/recall graph reported in Fig. 3.10, we can observe that the difference is relatively

small.

3.7.3 Scenario II: Feature Location

The context of this scenario is represented by two software systems, jEdit v4.3 and ArgoUML

v0.22. jEdit is an open-source text editor for programmers, while ArgoUML is a well known

UML editor. Table 3.13 reports the characteristics of the considered software systems in

terms of number of classes, number of methods, as well as KLOC and the number of features

to be located. These software systems have been used in previous studies on feature location

[215, 228]. For these systems are available (i) the gold sets (i.e., mappings between source

code and features) at method level granularity, (ii) the description of the features from bug

reports and (iii) execution traces. For jEdit the gold sets were generated via analysis of the

SVN commits submitted between releases 4.2 and 4.3. The issue identifiers from the SVN

logs were extracted, and were mapped to issues from the issue tracking system. On the other
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hand, the changes from the SVN commits were mapped to the methods from the source code

that were modified by that commit [193]. Similar analysis was performed to generate the

gold sets for ArgoUML version 0.22.

To answer RQ1, we compared the effectiveness measure of LDA using different configu-

rations. Specifically, we varied the number of topics from 50 to 500 with step 50 for both

ArgoUML and jEdit. We varied α and β from 0 to 1 with 0.1 increments. Similarly to

the traceability task, we fixed the number of iterations to 500. We exercised all possible

combinations of such values. Thus, the total number of trials performed on both software

systems consisted of 1,000 different LDA combinations. For RQ2, similarly to the previous

scenario, we compared the performance achieved by LDA-GA with (i) the best performance

achieved by LDA when answering RQ1 and (ii) the performance obtained by LDA using the

source locality heuristic proposed by Grant and Cordy for the feature location task [211].

Metrics

The performance of LDA in this scenario was analyzed using the effectiveness measure

(EM) [73]. Given a feature of interest, this measure estimates the number of methods a

developer needs to inspect before finding a method relevant to that feature in the ranked

list. The goal of each technique is to assist the developer such that she needs to look at fewer

methods. The effectiveness can be regarded as an inverse measure: the lower the rank of the

first method is, the better the result becomes [73].

A common way to evaluate the performance of feature location methods consists of com-

paring the distribution of the EM values. This result is a set EM values (each one for

each feature) which are displayed through boxplots. In order to provide a single value that

summarizes the performance, we use the average effectiveness measure, that can be defined

as the mean of the EM scores obtained for each feature to locate [73].

To provide statistical support to RQ2 we used a statistical test to verify whether the EM

values obtained by one method mi (e.g., LDA with a specific configuration) is statistically

significantly lower than EM values yielded by another method mj (e.g., LDA with another

specific configuration) similarly as done in previous work [73, 193]. In other words, we want

to test the following null hypothesis:

There is no statistically significant difference between the EM values obtained by

mi and mj

The dependent variable of our study is represented by the EM values reached by the feature

location method for each feature to be located. Since the number of feature location is the

same for each feature location (i.e., the data were paired), we used the Wilcoxon Rank Sum

test [226]. In all our statistical tests we consider p-values < 0.05 as statistically significant.

Empirical results

Figure 3.11 shows the boxplots summarizing the variability of the average effectiveness mea-

sure (EM) values obtained using 1,000 different LDA configurations. As in the previous task,
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Figure 3.11: Variability of performance achieved by LDA configurations for feature location.

the feature location results show high variability in their EM, which ranges between 472 and

1,416 for ArgoUML and between 145 and 600 for jEdit. For ArgoUML, we observed that

more than 90% of different configurations produced an average EM ranging between 600

and 1,200, while only a small percentage (about 3%) produced an optimal average EM lower

than 600. Within this small number of optimal configurations only one configuration obtains

the lowest (i.e., the best) EM of 472. Similarly, for jEdit, 95% of different configurations

produced an average EM that ranges between 200 and 1,600, while only one achieved the

smallest average EM of 148. These results for RQ1 suggest that without a proper calibration,

the performance of LDA risks of being unsatisfactory.

For RQ2, Figure 3.12-a shows boxplots for ArgoUML of the EM values achieved by three

different configurations: (i) the best configuration obtained by a combinatorial search across

1,000 different LDA configurations (combinatorial search); (ii) the configuration obtained

using LDA-GA; and (iii) the best configuration obtained using the source locality heuristic

[211]. First, we can note that the configuration obtained via LDA-GA is exactly the same

as the one obtained from the combinatorial search, thus LDA-GA was able to find the best

configuration (i.e., with the lowest average EM). Comparing the performance of LDA-GA

with the source locality heuristic, we can observe that for the first two quartiles, there is no

clear difference (the median values are 107 and 108 for LDA-GA and source locality heuristic

respectively). Considering the third and fourth quartiles, the difference becomes substantial:

the third quartile is 467 for LDA-GA and 689 for the previous heuristic, while for the fourth

quartiles we obtained 4,603 for LDA-GA and 7,697 for source locality heuristic. Overall,

LDA-GA reached an average EM equal to 473, as opposed to EM equal to 707 obtained

using the source locality heuristic.

Boxplots for jEdit are shown in Figure 3.12-b. It shows the boxplots of the effectiveness

measure values achieved by three different configurations, two of them derive from a priori
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(a) ArgoUML (b) jEdit

Figure 3.12: Box plots of the effectiveness measure for feature location for ArgoUML and
jEdit.

Table 3.14: Results of the Wilcoxon test on feature location performances.

jEdit ArgoUML
LDA-GA < Combinatorial 0.09 1
LDA-GA < Source Locality Heuristic [211] 0.02 0.02
Combinatorial < Source Locality Heuristic [211] 0.02 0.02

approach (LDA-GA and the heuristic by Grant and Cordy) while the remaining one is the

configuration obtained by an a posteriori search consisting in the best across 1,000 different

configurations aimed at find the global optimum. First, we can note that the configuration

by LDA-GA close to the best configuration obtained by the combinatorial search, thus the

proposed approach turned out to be able to find a near optimal configuration in terms

of effectiveness measure. Comparing the performance of the proposed approach with that

obtained by a previous heuristic, we can observe that for all the quartiles there is a clear

difference: the median (q2/4) for LDA-GA is 26.5 while for the heuristic is 51.5. The third

quartile q3/4 is 98.5 for LDA-GA against q3/4 = 197 of Grant-Cordy, while for the fourth

quartile we obtained q4/4 = 3, 297 for LDA-GA and q4/4 = 3, 372 for Grant-Cordy. Such an

analysis is confirmed by the average effectiveness measure: for LDA we reached an average

EM equals to 154, against 234 obtained by the Grant and Cordy’s heuristic.

Wanting to provide a statistical support to our preliminary results, the Wilcoxon Rank

Sum test was used to test if the difference between the effectiveness measures of two feature

location techniques is statistically significant or no. We also verify whether there is or no

significant difference with the best configuration obtained by the combinatorial search as

sanity check. Table 3.14 reports the results of the Wilcoxon test (i.e., the adjusted p-values)
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Table 3.15: Characteristics of the systems used in source code labeling.

System KLOC Classes Sampled classes
JHotDraw 29 275 10
eXVantage 28 348 10

for all combinations of the techniques (statistically significant results are shown in bold face).

As we can see, there is no statistical difference between the performance obtained by LDA-GA

and the combinatorial search. Based on the results of the statistical tests, we can assert that

LDA-GA is able to find the optimal or the near-optimal configurations. Moreover, LDA-GA

significantly outperforms the previously published source locality heuristic (p-value< 0.02).

3.7.4 Scenario II: Source Code Labeling

In this scenario, we used LDA to automatically “label” source code classes using represen-

tative words. Specifically, we extracted topics from a single class (using LDA), and then

we ranked all the words characterizing the extracted topics according to their probability in

the obtained topic distribution. The top 10 words belonging to the topic with the highest

probability in the obtained topic distribution were then used to label the class [10].

The goal of the study is to analyze whether the LDA configuration obtained by LDA-GA

improves the performances of LDA-based automatic source code labeling. The quality focus

was ensuring better labeling performances, while the perspective was both (i) of a researcher,

that wants to find an optimal calibration of the LDA parameter; and (ii) of a project manager,

that might be interested to adopt the proposed approach to summarize the source code.

The study was conducted on 10 classes from JHotDraw and 10 classes from eXVantage.

The former is an open-source drawing tool, and the latter is a novel testing and generation

tool. Their characteristics are summarized in Table 3.15. For the sampled classes, we had

user-generated labels from a previously published work [10], and these represented our “ideal”

labels. Specifically, the gold sets are obtained through an experiment in which we asked 38

subjects5 to describe classes taken from the two software systems using at most ten words

extracted from the source code and comments. Finally, for each class we consider as gold set

the set of words that were used by at least the 50% of the subjects6. Then, we analyzed to

what extent the highest weighted words indexed using various LDA configurations overlap

with those identified by humans.

Also in this scenario, in order to address RQ1 we compared the recovery accuracy of LDA

using different settings. Specifically, we varied the number of topics from 10 to 50 with step

10 for both JHotDraw and eXVantage. As for α and β, we varied them between 0 and 1 by

increments of 0.1. We fixed the number of iterations to 500 as in the previous two tasks. We

5The subjects were selected among the Bachelor’s Students in Computer Science of the University of
Molise and the Master’s Student in Computer Science of the University of Salerno.

6Further details on this controlled experiment can be found in [1].
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exercised all possible combinations of such values. Thus, the total number of trials performed

on JHotDraw and eXVantage was 500 on both systems.

For RQ2, we compared the accuracy achieved by LDA-GA with (i) the best accuracy

achieved by LDA while iterating through the parameters and (ii) the accuracy achieved by

LDA reported by De Lucia et al. [10, 1].

Metrics

As overlap measure we used the asymmetric Jaccard measure [167]. Formally, let K(Ci) =

{t1, . . . , tm} and Kmi
(Ci) = {t1, . . . , th} be the sets of keywords identified by subjects and

the technique mi, respectively, to label the class Ci. The overlap was computed as follows:

overlapmi
(Ci) =

|K(Ci) ∩Kmi
(Ci)|

Kmi(Ci)

Note that the size of K(Ci) might be different from the size of Kmi(Ci). In particular, while

the number of keywords identified by LDA is always 10 (by construction we set h = 10), the

number of keywords identified by subjects could be more or less than 10 (generally it is 10,

but there are few cases where the number is different). For this reason, we decided to use

the asymmetric Jaccard to avoid penalizing too much the automatic method when the size

of K(Ci) is less than 10.

Clearly, each selected class has an own overlap value; thus, each automated labeling

technique provides different values whose number is equal to the number of classes. In order

to provide a single value that summarizes the performance, we use the average overlap value

(AO), that can be defined as the mean of the overlap values obtained for each class to be

labeled.

Empirical results

For RQ1, Figure 3.13 shows boxplots for the average percentage overlap (AO) values obtained

using 500 different LDA configurations. Even if in this case the corpus of documents (the

total number of classes and the vocabulary size) is really small, as compared to the size of the

repository considered for the other tasks, LDA also shows a high variability of performances,

ranging between 18% and 66% on JHotDraw, and between 13% and 77% on ExVantage. For

JHotDraw, it can be noted how, more than 72% of the different configurations obtained an

AO value ranging between 25% and 55%, while only a small percentage (about 1%) obtains

an optimal AO greater than 60%. Within this small number of optimal configurations, only

one achieves the highest AO of 64%. Similarly, for ExVantage the majority (about 79%) of

the different configurations obtained an AO ranging between 10% and 70%, while only one

configuration achieved the highest AO of 77%.

For RQ2, Table 3.16 reports the statistics of the overlap between the user-based labeling

and the automatic labeling obtained using (i) LDA-GA; (ii) the best configuration achieved

using the combinatorial search, i.e., the configuration which has the higher percentage overlap
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Figure 3.13: Variability of performance achieved by LDA configurations for labeling.

among 500 different configurations; and (iii) the LDA configuration used in the previous work

[10] for the same task. For both systems, LDA-GA obtains a percentage overlap with the

user labeling that is close to the combinatorial search, with a difference from the best LDA

configuration (obtained by the combinatorial search) of about 3% for ExVantage and 1%

for JHotDraw. For ExVantage, among the 500 different LDA configurations computed in

the combinatorial search, only 12 configurations have an average overlap greater or equal to

74.33%. We can also observe that there are only small differences for the median and second

quartile between LDA-GA and the global optimum, while for the other quartiles there is no

difference. Similarly, among 500 different configurations evaluated for JHotDraw, only one

configuration is comparable with LDA-GA. By comparing the quartile values obtained for

JHotDraw, we can note that the difference between LDA-GA and the combinatorial search

optimum is about 2%-3% on average. Finally, we can observe how the performances of LDA

configured using LDA-GA are significantly better than those reported in the previous work

[10] (where α and β were set to default of 50/k and 0.1 respectively). For ExVantage we

obtain an improvement in terms of mean overlap of about 14-20%, while for JHotDraw we

get an improvement of about 5-6%.

3.8 Threats to Validity

Threats to construct validity concern the relationship between theory and observation. For

the investigated software engineering tasks, we evaluated the performances of LSI-GA, LDA-

GA and alternative approaches using well-established metrics, namely precision and recall,

effectiveness measure and Recall Rate, and oracles already used and validated in previous
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Table 3.16: Average Overlap between automatic and manual labeling.

exVantage
LDA De Lucia et al. [10]

LDA-GA Combinatorial n = M n = M/2 n = 2
Max 100% 100% 100% 100% 100%
3rd Quartile 95% 95% 71% 70% 69%
Median 67% 70% 59% 60% 54%
2nd Quartile 60% 67% 34% 50% 41%
Min 50% 50% 0% 0% 40%
Mean 74% 77% 52% 56% 60%
St. Deviation 19% 17% 31% 34% 23%

JHotDraw
LDA De Lucia et al. [10]

LDA-GA Combinatorial n = M n = M/2 n = 2
Max 100% 100% 100% 100% 100%
3rd Quartile 81% 82% 73% 70% 66%
Median 71% 75% 65% 61% 56%
2nd Quartile 47% 50% 46% 45% 41%
Min 14% 14% 0% 38% 29%
Mean 65% 66% 59% 60% 59%
St. Deviation 28% 26% 28% 20% 24%

studies [215, 228, 229, 219, 161]. Finally, we used as baseline of comparison performances

achieved using IR processes and calibrations used in previous papers. As for detecting du-

plicate bug reports, it was not possible to fully replicate the approach of Wang et al. [161]

due to the unavailability of all the required information. However, subsection 3.6.4 explains

the details and the rationale for using a baseline for comparison for such a task. For the

labeling task, we compared LDA-based labeling with a user-generated labeling, using, again,

the dataset previously verified and published [10].

Threats to internal validity are related to co-factors that could have influenced our results.

We limited the influence of GA randomness by performing 30 GA runs, and considering the

configuration achieving the median performance. Threats to conclusion validity concern the

relationship between treatment and outcome. To support our claims, we used non-parametric

statistical tests (i.e., Wilcoxon rank sum test).

Threats to external validity concern the generalization of our results. It is highly desir-

able to replicate the studies carried out on the experimented scenarios on other datasets.

Secondly, we consider only a subset of the possible treatments for the various phases such as

term extraction, stop words removal, stemming, and term weighting. Although the chosen

treatments are well representative of most of the ones used in literature, it is worthwhile to

investigate further possibilities.
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3.9 Conclusion and Future Work

The application of IR techniques to software engineering problems requires a careful con-

struction of a process consisting of various phases, i.e., term extractions, stop word removal,

stemming, term weighting, and application of an algebraic IR method. Each of these phases

can be implemented in various ways, and requires careful choice and settings, because the

performances significantly depend on such choices [210].

This chapter investigated a search-based approach to automatically assemble a (near)

optimal IR process when solving software engineering problems such as traceability link

recovery or feature location. Noticeably, the proposed approach is unsupervised and task

independent, as it evaluates the extent to which the artifacts can be clustered after being

processed. We applied the proposed approach—named LSI-GA—to three software engineer-

ing tasks, namely traceability link recovery, feature location, and detection of duplicate bug

reports. Results of our empirical evaluation indicate that: for traceability recovery and

feature location, the IR processes assembled by LSI-GA significantly outperform those as-

sembled according to what previously done in literature. While for duplicate bug report

detection, the obtained results do not always significantly improve the performances of the

baseline approach, as such a baseline is already close to the ideal optimum. Moreover, in

most cases, the performances achieved by LSI-GA are not significantly different from the

performances of an ideal IR process that can be built by considering all possible combina-

tions of treatments for the various phases of the IR process, and by having a labeled training

set available (i.e., by using a supervised approach).

In this chapter we also proposed a similar search-based approach for calibrating LDA,

named LDA-GA. We also conducted several experiments to study the performance of LDA

configurations based on LDA-GA with those previously reported in the literature (i.e., exist-

ing heuristics for calibrating LDA) and a combinatorial search. The results obtained indicate

that (i) applying LDA to software engineering tasks requires a careful calibration due to its

high sensitivity to different parameter settings, that (ii) LDA-GA is able to identify LDA

configurations that lead to higher accuracy as compared to alternative heuristics, and that

(iii) its results are comparable to the best results obtained from the combinatorial search.

Work-in-progress aims at extending the proposed approach in various ways. First, we

plan to use a more sophisticated evolutionary algorithm, employing genetic programming

(GP) to assemble different phases in different ways, including creating ad-hoc weighting

schemata [212] or extracting ad-hoc elements from artifacts to be indexed, e.g., only specific

source code elements, only certain parts-of-speech. Also, we plan to also optimize the choice

of the most appropriate IR algebraic method, also in cases for which such a method does

not imply document clustering. Finally, we plan to incorporate into the adopted solution

encoding schema some enhancing strategies that have been proposed in order to improve the

performances of IR methods when applied to software engineering task, such as smoothing

filters [9, 2], part of speech-tagger [17] and relevance feedback [151, 176].

76



Chapter 4

Multi-Objective Cross-project

Defect Prediction

Contents
4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . 79

4.2 Background and Related work . . . . . . . . . . . . . . . . . . . 80

4.2.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Cross-project defect prediction . . . . . . . . . . . . . . . . . . . . 84

4.3 MODEP: Multi-Objective Defect Predictor . . . . . . . . . . . 86

4.3.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Multi-Objective Defect Prediction Models . . . . . . . . . . . . . . 87

4.3.3 Training the Multi-Objective Predictors using Genetic Algorithms 92

4.4 Design of the Empirical Study . . . . . . . . . . . . . . . . . . . 93

4.4.1 Definition and Context . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.3 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.4 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.5 Implementation and Settings of the Genetic Algorithm . . . . . . . 98

4.5 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.1 RQ1: How does MODEP perform compared to single-objective pre-

diction? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.2 RQ2: How does MODEP perform compared to the local prediction

approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5.3 Benefits of MODEP as Compared to Single-Objective Defect Pre-

dictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 111

77



Multi-Objective Cross-project Defect Prediction

4.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 112

78



4.1. Introduction and Motivation

4.1 Introduction and Motivation

Finding and fixing defective software components is a very important activity for development

organizations in order to increase the reliability of the software itself. However, because of

the limited amount of resources (people and time) only some components can be adequately

tested and eventually fixed before spreading the new release. Therefore, approaches for defect

prediction have been used to identify software modules having a high likelihood to exhibit

fault, and that should therefore be better analyzed and tested.

Turban et al. [84] and Zimmermann et al. [85] found that cross-project defect prediction

does not always work well. The reasons are mainly due to the projects’ heterogeneity, in

terms of domain, source code characteristics (e.g., classes from a project can be intrinsically

larger or more complex than those of another project), and process organization (e.g., one

project exhibits more frequent changes than another) [86, 87]. Hence, traditional prediction

models cannot be applied out-of-the-box for cross-project prediction. Recently, a study by

Brahman et al. [88] pointed out that cross-project defect predictors do not necessarily work

worse than within-project predictors. It depends on the evaluation metrics that are used to

analyse the performances of the models. Indeed, even if the cross-project strategy is worst

than within-strategy when considering the prediction accuracy, from the cost effectiveness

point of view the scenario is quite different: cross-project defect prediction models become

quite competitive when considering the inspection cost. Specifically, they allow to pursue a

good compromise between the number of defect-prone artifacts that the model predict, and

the amount of code—i.e., LOC of the artifact predicted as defect-prone—that a developer

needs to analyze/test to discover such defects. However, in [88] the prediction models are

built using the same methodology used for traditional classification models, while the cost-

effectiveness is considered only when evaluating the performances of the built models.

Stemming from the considerations by Brahman et al. [88] this chapter proposes to shift

from the single-objective defect prediction model—which recommends a set of likely defect-

prone artifacts and tries to minimize the prediction error—towards multi-objective defect

prediction models. We use the NSGA-II algorithm [107] to train machine learning predic-

tors. Such an algorithm evolves the coefficients of machine learning models (in our work

a logistic regression or a decision tree, but the approach can be applied to other machine

learning techniques) to build Pareto fronts of predictors that (near) optimize the two con-

flicting objectives of cost and effectiveness. In such a context, the cost is represented by

the cumulative LOC of the entities (classes in our study) that the approach predict as likely

defect-prone. However, without loss of generality, one can also model the testing cost, con-

sidering other aspects (such as cyclomatic complexity, number of method parameters, etc)

instead of LOC. As effectiveness measure, we use either (a) the proportion of actual defect-

prone classes among the predicted ones, or (b) the proportion of defects contained in the

classes predicted as defect-prone out of the total number of defects. In essence, instead

of training a single model minimizing the prediction error, we obtain a set of predictors,

whose performance are Pareto-efficient [230] in terms of cost-effectiveness. Therefore, for a

given budget (i.e., LOC that can be reviewed or tested with the available time/resources)

79



Multi-Objective Cross-project Defect Prediction

the software engineer can choose a predictor that (a) maximizes the number of defect-prone

classes tested (which might be useful if one wants to ensure that an adequate proportion of

defect-prone classes has been tested), or (b) maximizes the number of defects that can be

discovered by the analysis/testing.

The proposed approach, called MODEP (Multi-Objective DEfect Predictor), has been

applied on 10 datasets from the PROMISE1. The results achieved show that (i) the MODEP

is more effective than single-objective predictors in the context of a cross-project defect

prediction, i.e., it identifies a higher number of defects at the same level of inspection cost; (ii)

MODEP provides software engineers the ability to balance between different objectives; and

(iii) finally, MODEP outperforms a local prediction approach based on clustering proposed

by Menzies et al. [86].

The chapter is organized as follows. Section 4.2 summarizes background notions and

related work on defect prediction giving particular attention to cross-project strategy. Sec-

tion 4.3 formulates the problem of finding cost-effective defect prediction models as multi-

objective problem and describe the MODEP approach. Section 4.4 describes the empirical

study aimed at evaluating MODEP, while Section 4.5 reports the obtained results. Finally,

Section 4.6 discusses the threats to validity that could have affected our study. Section 4.7

outlines directions for future work.

4.2 Background and Related work

Even if it is not possible a priori to know where exactly the defects are, there are several

factors that can correlate with the likelihood of a software component to be defect-prone.

For example, the complexity is one of the most investigated factor, since the defect proneness

increases with the number of entities and the number of interaction and dependencies between

them. Other factor can be (i) the likelihood of components to violate requirements, (ii) high

change rate of requirements and source code, (iii) the quality of the development process [111].

The idea of defect prediction approaches is that by having bug and change databases available

it is possible to train mathematical model that automatically relate defects to the possible

factors.

A generic defect prediction approach follows the steps shown in Figure 4.1:

• Data extraction: the first step consists of extracting predictors (e.g. software metrics)

from the software to be predicted (test set). Different predictors can be extracted,

such as object-oriented metrics, e.g. the Chidamber and Kemerer (CK) metrics [231],

process metrics [232], history based metrics [233, 234], structural metrics [89].

• Data preprocessing : once the predictors are extracted, they are preprocessed in order

to address the problem of data heterogeneity either to normalize the data.

• Choosing the training set : once a set of software metrics is extracted, it is necessary

to choose the past data to be used for training machine learning techniques. There

1https://code.google.com/p/promisedata/
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Figure 4.1: Building a defect prediction model.

are two main strategies: the first strategy, named within-project strategy, consists of

training a classification/regression model on past data of the same software project;

with a second strategy, named cross-project strategy, the prediction model is trained on

past data belonging to different software projects with different domains and it is used

to predict the defect proneness of entities belonging to a new project [84, 85, 86, 87].

• Mathematical model : in this step a machine learning technique is used to build a

prediction model which relates software metrics and defect-proneness of components

from the training set.

• Prediction: the mathematical model built on training set is then used for predicting

the defect proneness of components belonging to the test set.

All previous studies focused on one or more of the steps in figure 4.1. The majority of

them focused on (i) finding the software metrics or predictors which correlate with the defect

proneness of software components; (ii) proposing/comparing machine learning techniques;

(iii) proposing/comparing within-project and cross-project strategies. The most relevant

works are described in the next sub-sections.

4.2.1 Metrics

From a design metrics perspective, there have been studies involving the Chidamber/Kemerer

(CK) metric suite [231] which can be considered as indicator of product quality. The CK

metric suite consists of seven metrics, that are designed for object oriented programs:

• Lines of code (LOC): this simple metric measures the number of non-commented lines

of code for each software component (e.g., in a class).
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• Weighted Methods per Class (WMC): it measures the complexity of a class by the

number of methods contained in that class including public, private and protected

methods.

• Coupling Between Objects (CBO): it is equal to the number of classes coupled to a given

class. This coupling can occur through class member variables, function parameters,

classes defined locally in class member function bodies, return types, and exceptions.

• Depth of Inheritance (DIT): it measures the maximum class inheritance depth for a

given class.

• Number Of Children (NOC): it measures the number of classes inheriting from a given

parent class.

• Response For a Class (RFC): it measures the number of methods that can be invoked

for an object of given class.

• Lack of Cohesion Among Methods (LCOM): it counts the sets of methods in a class

that are not related through the sharing of some of the class’s fields.

The CK metric suite was used by Basili et al. [235] to predict the fault-proneness of

eight student projects, by Briand et al. [236] for an industrial case study. However, further

predictors have been proposed and investigated in literature. Moser et al. [232] considered

process metrics for defect prediction including code churn, past bugs and refactoring, number

of authors, file size and age, etc. Other works on process metrics were conducted by Ostrand

et al. [233] and Kim et al. [234]. Arisholm et al. [89] proposed twelve structural metrics.

Shin et al. [237] investigated the usefulness of the call structure of the program and found

that it provided noticeable improvement in prediction accuracy, but only marginally im-

proved the best model based on history and non-calling structure code attributes. Marcus et

al. [157] proposed new measure for the cohesion of classes in object-oriented software systems

based on the analysis of the unstructured information embedded in the source code, such

as comments and identifiers. Specifically, they used the textual similarity between classes

computed using LSI for defect prediction on several C++ systems, including Mozilla. Ar-

naoudova et al. [238] argued that the use of the same identifiers in different contexts may

increase the risk of faults. Thus, they investigated this conjecture using a measure com-

bining term entropy and term context coverage to study whether certain terms increase the

odds ratios of methods to be fault-prone. Pinzger et al. [239] empirically investigated the

relationship between the fragmentation of developer contributions and the number of post-

release failures. They represented developer contributions with a developer-module network

called contribution network. Then, they used network centrality measures to measure the

degree of fragmentation of developer contributions. Wolf et al. [240] analyzed the network of

communications between developers to understand how they are related to defect proneness

of software components. Their results indicate that developer communication plays an im-

portant role in the quality of software integrations. Bacchelli et al. [241] integrated different
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repositories, such as configuration management systems, bug tracking systems, and mailing

lists to trace the evolution of software. They introduce metrics that measure the popularity

of source code artifacts, i.e. the amount of discussion they generate in e-mail archives, and

showed a significant correlation to the defects found in the system. An extensive analysis of

the different software metrics and approaches used for defect prediction can be found in the

survey by D’Ambros et al. [242].

4.2.2 Machine Learning Techniques

Several machine learning techniques have been used in literature for defect prediction, such

as logistic regression [235, 243, 83], Support Vector Regression (SVR) [244], Radial Basis

Function Network (RBF Network) [245], multi-layer perceptron (MLP) [246], Bayesian net-

work [247, 248], decision trees [249] and decision tables [250]. For example, Basili et al. [235],

Gyimothy et al. [243] and by Nagappan et al. [83], used logistic regression to relate product

metrics to class defect-proneness for within-project strategy. Recently, it has been also used

in several works on cross-project defect prediction, as for example by Zimmermann et al.

[85] which is one of the earliest work on cross-project strategy and by Brahman et al. [88].

Zimmermann and Nagappan [244] used Support Vector Machines (SVM) using linear, poly-

nomial, and radial basis function (RBF) as kernels. Ceylan et al. [246] considered another

neural network model, called Multilayer Perceptron (MLP), with the principal component

analysis for dimensionality reduction. Felton at al. [251] suggested to use Bayesian networks

for defect prediction showing how Bayesian networks provide accurate results for software

quality for real world projects. In another study by Felton at al. [247] Bayesian Networks

were used for incorporating empirical data and expert judgement in a combined approach.

Okutan and Yildiz [248] used Bayesian networks to train models on the set of software metrics

used in Promise data repository [248].

A general prediction model can be viewed as a function F : Rn → R, which takes as

input a set of predictors and returns a scalar value—ranging within the interval [0; 1]—that

measures the likelihood that a specific software entity is defect-prone. Thus, a defect predic-

tion model uses a training set (that come from the same project either other projects) with

various predictors of the available software entities (files, modules, binaries etc.) as indepen-

dent variables (Rn) and return the corresponding defect proneness. The prediction model

which best fits this training set (or equivalently the model which minimize the prediction

error) is then used to predict the future defect proneness of new the entities via the set of

the corresponding predictors. The estimated defect proneness of new entities is then used

to rank such entities in order to identify the most defect-prone entities to be investigated

in quality assurance activities. In some cases a fixed cut point µ is used to cut the ranked

list and provide the software engineer with the top-µ ranked entities (these entities are the

estimated defect prone entities). The difference between the various machine learning tech-

niques depends on the specific function F that is used to map the predictors to the estimated

defect proneness.

For example, with multivariate logistic regression model the function F is the logit func-
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tion which takes as input a set of predictors and returns a scalar value which measures the

estimated defect proneness of software modules taken in consideration. With the Radial

Basis Function (RBF) Network [252], the function F is Gaussian function used to activate

the hidden layer of the corresponding neural network2.

4.2.3 Cross-project defect prediction

As any supervised prediction approach, defect prediction models require the availability

of enough data about defects occurred in the history of a project, as also pointed out by

Nagappan et al. [83]. For this reason, such models are difficult to be applied on new projects

for which limited or no historical defect data is available. To overcome this limitation,

several authors [84], [85], [86], [87] have suggested the application of cross-project strategy

for defect prediction, i.e., using data from other projects to train machine learning models,

and then perform a prediction on a new project. The earliest works on such a topic provided

empirical evidence that simply using projects in the same domain does not help build accurate

prediction models [85, 253]. For this reason, Zimmermann et al. [85] identified a series of

factors that should be evaluated before selecting the projects to be used for building cross-

project predictors. However, also using such guidelines the choice of the training set is not

trivial, and there might be cases where projects from the same domain are not available.

The main problem of cross-project defect prediction is the heterogeneity of data: It

appears that every project has its own individual factors that make specific modules prone

to defects and others unlikely to fail [111]. Several approaches have been proposed in the

literature to mitigate such a problem. Turban et al. [84] used nearest-neighbor filtering to

fine tune cross-project defect prediction models. Unfortunately, such a filtering only reduces

the gap between the accuracy of within- and cross-project defect prediction models. Cruz

et al. [254] studied the application of a data transformation for building and using logistic

regression models. They showed that simple log transformations can be useful when measures

are not as spread as those measures used in the construction. Nam et al. [255] applied a

data normalization (z-score normalization) for cross-project prediction in order to reduce

data coming from different projects to the same interval. This data pre-processing is also

used in Chapter 4 to reduce the heterogeneity of data. Turban et al. [256] analyzed the

effectiveness of prediction models built on mixed data, i.e., within- and cross-project. Their

results indicated that there are some benefits when considering mixed data. Nevertheless,

the accuracy achieved considering project-specific data is greater than the accuracy obtained

for cross-project prediction.

Menzies et al. [86] observed that prediction accuracy may not be generalizable within

a project itself. Specifically, data from a project may be crowded in local regions which,

when considered at a global level, may lead to different conclusions in terms of both quality

2A Radial Basis Function Network is a neural network with three layers: (i) the input layer which cor-
responds to the predictors, i.e., software metrics; (ii) the output layer which maps the outcomes to predict,
i.e., the defect proneness of entities; (iii) the hidden layer used to connect the input layer with the output
layer [252].
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control and effort estimation. For this reason, they proposed a “local prediction” that could

be applied to perform cross-project or within-project defect prediction. In the cross-project

defect prediction scenario, let us suppose we have two projects, A and B, and suppose one

wants to perform defect prediction in B based on data available for A. First, the approach

proposed by Menzies et al. [86] clusters together similar classes (according to the set of

identified predictors) into n clusters. Each cluster contains classes belonging to A and classes

belonging to B. Then, for each cluster, classes belonging to A are used to train the prediction

model, which is then used to predict defect-proneness of classes belonging to B. This means

that n different prediction models are built. The results of an empirical evaluation indicated

that conclusions derived from local models are typically superior and more insightful than

those derived from global models. The approach proposed by Menzies et al. [86] is used in

Chapter 4 as experimental baseline. A wider comparison of global and local models has been

performed by Bettenburg et al. [87], who compared (i) local models, (ii) global models, and

(iii) global models accounting for data specificity. Results of their study suggest that local

models are valid only for specific subsets of data, whereas global models provide trends that

are too general to be used in the practice.

All these studies suggested that cross-project prediction is particularly challenging and,

due to the heterogeneity of projects, prediction accuracy might be poor in terms of precision,

recall and F-score. Brahman et al. [88] argued that while broadly applicable, such measures

are not well-suited for the quality-control settings in which defect prediction models are used.

They show that, instead, the choice of prediction models should be based on both effectiveness

(e.g., precision and recall) and inspection cost, which they approximate in terms of number

of source code lines that need to be inspected to detect a given number/percentage of defects.

By considering such factors, they found that the accuracy of cross-project defect prediction

is adequate, and comparable to within-project prediction from a practical point of view.

Arisholm et al. [90] also suggested to measure the performance of prediction models

in terms of cost and effectiveness for within-project prediction: a good model is the one

that identifies defect-prone files with the best ratio between (i) effort spent to inspect such

files, and (ii) number of defects identified. Once again, the cost was approximated by the

percentage of lines of code to be inspected, while the effectiveness was measured as the

percentage of defects found within the inspected code. However, they used classical predicting

models (classification tree, PART, Logistic Regression, Back-propagation neural networks) to

identify the defect-prone classes. Arisholm and Briand [89] used traditional logistic regression

with a variety of metrics (history data, structural measures, etc.) to predict the defect-

proneness of classes between subsequent versions of a Java legacy system, and used the

cost-effectiveness to measure the performance of the obtained logistic models.

In previous studies, cost-effectiveness has been only used to assess the quality of a pre-

dictor, and they still relies on single-objective predictors (such as the logistic regression)

which, by definition, find a model that minimizes the fitting error. With respect to all the

works described above, this Chapter presents and evaluates a search-based approach to build

multi-objective defect prediction models that take into account multiple criteria. Specifically,

85



Multi-Objective Cross-project Defect Prediction

for the first time we formulate the defect prediction problem as a multi-objective problem,

then we apply search algorithms to produce a Pareto front of (near) optimal prediction

models—instead of a single model as done in the past—with different effectiveness and cost

values.

4.3 MODEP: Multi-Objective Defect Predictor

As every defect prediction approach, MODEP follows all the steps of the process described

in Section 4.2. First, a set of predictors (e.g., product [235, 243] or process metrics [232])

is extracted for each class of a software project. The computed data is then preprocessed

or normalized in order to reduce the effect of data heterogeneity. Such preprocessing step

is particularly useful when performing cross-project defect prediction, as data from different

projects (and in some case in the same project) have different properties [86]. Since a

prediction model generally does not explicitly consider the local differences between different

software projects when it tries to predict defects across projects, its performances can be

unstable [86]. Once the data have been preprocessed, a machine learning technique is used

to build a prediction model. In this chapter we evaluated two machine learning techniques,

named logistic regression and decision trees, however other techniques can be applied without

loss of generality.

4.3.1 Data Preprocessing

In cross-project defect prediction the software projects, that are used as training and test

sets, are often heterogeneous because they exhibit different software metric distributions. For

example, the average number of lines of code (LOC) of classes, which is a widely used (and

obvious) defect predictor variable, can be quite different from a project to another. Hence,

when evaluating predicting models on a software project with a software metric distribution

that is different with respect to the data distribution used to build the models themselves, the

predicting accuracy can be compromised [86]. In MODEP we perform a data standardization,

i.e., we convert metrics into a z distribution, in order to reduce the effect of heterogeneity

between different projects. Specifically, given the value of the metric mi computed on class

cj of project P , denoted as mi(cj , P ), we convert it into:

m̃i(cj , P ) =
mi(cj , P )− µ(mi, P )

σ(mi, P )

In other words, we subtract from the value of the metric mi the mean value µ(mi, P ) obtained

across all classes of project P , and divide by the standard deviation σ(mi, P ). Such a

normalization transforms the data belonging to different projects to fall within the same

range, by measuring the distance of a data point from the mean in terms of the standard

deviation. The standardized data set has mean 0 and standard deviation 1, and it preserves

the shape properties of the original data set (same skewness and kurtosis). A similar approach
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was applied by Gyimothy et al. [243]. However, they used such preprocessing to reduce

metrics to the same interval before combining them for within-project prediction, whereas

we use it to reduce the effect of project heterogeneity in cross-project prediction. Recently,

the usefulness of data normalization for cross-project prediction was also shown by Nam et

al. [255], demonstrating how the predicting accuracy of a prediction model can be better

when trained on normalized data.

4.3.2 Multi-Objective Defect Prediction Models

As explained in Section 4.2 a defect prediction model is a mathematical function/model

F : Rn → R, which takes as input a set of predictors and returns a scalar value that

measures the likelihood that a specific software entity is defect-prone. Specifically, a model F

combines the predictors into some classification/prediction rules through a set of scalar values

A = {a1, a2, . . . , ak} that is used to performs a specific combination. The number of scalar

values and the type of classification/prediction rules depend on the model/function F itself.

During the training process of the model F an optimization algorithm is used to find the set of

values A = {a1, a2, . . . , ak} that provides the best prediction of the outcome. For example,

with linear regression techniques the predictors are combined through linear combination

where the scalar values A = {a1, a2, . . . , ak} are the linear combination coefficients. In this

traditional formulation a solution is represented by only one (unique) set A of values, which

minimizes only one objective function: the root-mean-square error (RMSE) [257]. Formally,

the traditional defect prediction problem can be formulated as follows:

Problem 3. Let {c1, c2, . . . , cn} be the set of classes and let F be a specific machine learn-

ing model based on a set of combination coefficients A = {a1, a2, . . . , ak}. Find the set of

coefficients A which minimizes root-mean-square error:

minRMSE =

√√√√ n∑
i=1

(FA(ci)−DefectProne(ci))2 (4.1)

where FA(ci) and DefectProne(ci) have value in {0; 1} and represent the predicted defect-

proneness and the actual defect-proneness of ci.

Specifically, the objective function measures the number of classes that are erroneously

classified within the training set: (i) defect-prone classes classified as non defect-prone (false

negatives) and (ii) defect-free classes classified as defect-prone ones (false positives). However,

focusing only on the prediction error might be not enough for building an effective and

efficient prediction model. In fact, for the software engineer—who has to test/inspect the

classes classified as defect-prone—the predicting error does not provide any insights on the

effort required to analyze the identified defect-prone classes (that is a crucial aspect when

prioritizing QA activities). Indeed, larger classes might require more effort to detect defects

than smaller ones, because in the worst case the software engineer has to inspect the whole

source code. Furthermore, it would be more useful to analyze early classes having a high
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likelihood to be affected by more defects. Unfortunately, all these aspects are not explicitly

captured by traditional single-objective formulation of the defect prediction problem.

For this reason, we suggest to move from this single-objective formulation of defect pre-

diction towards a multi-objective one. The idea is to measure the goodness of a defect

prediction models in terms of cost-effectiveness, that are by definition two contrasting goals.

More precisely, we provide a new (multi-objective) formulation of the problem of finding

defect prediction models:

Problem 4. Given a set of classes {c1, c2, . . . , cn} and given a specific machine learning

model F based on a set of combination coefficients A = {a1, a2, . . . , ak}. Finding a set of

values A = {a1, a2, . . . , ak} that (near) optimizes the following objective functions:

max effectiveness(A) =

n∑
i=1

FA(ci) ·DefectProne(ci)

min cost(A) =

n∑
i=1

FA(ci) · LOC(ci)

(4.2)

where FA(ci) and DefectProne(ci) have value in {0, 1} and represent the predicted defect-

proneness and the actual defect-proneness of ci, respectively, while LOC(ci) measures the

number of lines of code of ci.

In this formulation of the problem, we measure the effectiveness in terms of the number

of actual defect-prone classes predicted as such. However, defect-prone classes could have

different density of defects. In other words, there could be classes with only one defect and

other classes with several defects. Thus, could be worthwhile—at the same cost—to focus

the attention on classes having a high defect density. For this reason, we propose a second

formulation of the problem:

Problem 5. Given a set of classes {c1, c2, . . . , cn} and given a specific machine learning

model F based on a set of combination coefficients A = {a1, a2, . . . , ak}. Finding a set of

values A = {a1, a2, . . . , ak} that (near) optimizes the following objective functions:

max effectiveness(A) =

n∑
i=1

FA(ci) ·DefectNumber(ci)

min cost(A) =

n∑
i=1

FA(ci) · LOC(ci)

(4.3)

where DefectNumber(ci) denotes the actual number of defects in the class ci.

In both formulations, cost and effectiveness are two conflicting objectives, because one

cannot increase the effectiveness (e.g., number of defect-prone classes correctly classified)

without increasing (worsening) the inspection cost3. We do not to consider precision and

3In the ideal case the inspection cost is increased by the cost required to analyze the new classes classified
as defect-prone.
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Figure 4.2: Graphical interpretation of Pareto dominance.

recall as the two contrasting objectives, because precision is less relevant than inspection

cost—although proportional to it—when choosing the most suitable predictor.

Solving the multi-objective defect prediction problems defined above requires to find

the set of solutions which represent optimal compromises between cost and effectiveness

[135]. Hence, the goal becomes to find a multitude of optimal sets of decision coefficients

A, i.e., a set of optimal predicting models. In the multi-objective paradigm, the concept

of optimality is based on Pareto dominance relation between solutions [135]. Specifically, a

solution (represented by a vector of values Ai) dominates another solution Aj (also written

Ai ≥p Aj) if and only if the values of two objective functions (effectiveness and cost) satisfy:

cost(Ai) ≤ cost(Aj) and effectiveness(Ai) > effectiveness(Aj)

or

cost(Ai) < cost(Aj) and effectiveness(Ai) ≥ effectiveness(Aj)

Conceptually, the definition above indicates that Ai is better than Aj if and only if, at the

same level of effectiveness, Ai has a lower inspection cost than Aj . Alternatively, Ai is better

than Aj if and only if, at the same level of inspection cost, Ai has a greater effectiveness

than Aj . Figure 4.2 provides a graphical interpretation of Pareto dominance in terms of

effectiveness and inspection cost in the context of defect prediction. The solutions A and B

highlighted in Figure 4.2 are Pareto-optimal since there is no other solution that provides a

better effectiveness at the same cost and vice-versa. All solutions in the line-pattern rectangle

(C, D, E) are dominated by B, because B is better in terms of both cost and effectiveness.

Finally, all solutions in the gray rectangle (A and B) dominate solution C.

Among all the possible solutions, we are interested in finding all the solutions that are not
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dominated by any other solution (Pareto optimal set) and the corresponding objective vectors

(containing the values of two objective functions effectiveness and cost) which form the Pareto

frontier. Identifying a Pareto frontier is particularly useful because the software engineer can

use the frontier to make a well-informed decision that balances the trade-offs between the two

objectives. In other words, the software engineer can choose the solution with lower inspection

cost or higher effectiveness on the basis of the resources available for inspecting the predicted

defect-prone classes. The two multi-objective formulations of the defect prediction problem

can be applied to any predicting model, by identifying the Pareto optimal decision vectors

that can be used to combine the predictors in classification/predicting rules. In this Chapter

we provide a multi-objective formulation of two widely used models, i.e., logistic regression

and decision trees. The details of both multi-objective logistic regression a multi-objective

decision tree are reported in the following two subsections.

Multi-Objective Logistic Regression

One of the most used machine learning techniques for predicting the defect proneness of

software entities is multivariate logistic regression, a generalization of the linear regression

to binary classification, i.e. either a file is defect-prone or it is not in our case. For example,

it was used by Zimmermann et al. [85] in the first work on cross-project defect prediction.

Let C = {c1, c2, . . . , cn} be the set of classes in the training set and let P be the corre-

sponding class-by-predictor matrix, i.e., a m×n matrix, where m is the number of predictors

and n is the number of classes in the training set, while its generic entry pi,j denotes the

value of the ith predictor for the jth class. The mathematical function used for regression is

called logit :

logit(cj) =
eα+β1 pj,1+···+βm pj,m

1 + eα+β1 pj,1+···+βm pj,m
(4.4)

where logit(cj) is the estimated probability that the jth class is defect-prone, while the scalars

(α, β1, . . . , βm) represent the linear combination coefficients for the predictors pj,1, . . . , pj,m.

The larger the absolute value of a coefficient βi, the stronger the effect of the corresponding

predictor pi on the likelihood of a defect being detected in the entity cj [235]. Using the logit

function, it is possible to define a defect prediction model as follows:

FA(cj) =

{
1 if logit(cj) > 0.5;

0 otherwise.

In the traditional single-objective formulation of the defect prediction problem, the predicted

values FA(cj) are compared with the actual defect-proneness of the classes in the training

set, in order to find the set of decision scalars (α, β1, . . . , βn) which minimizes the RMSE.

Since the equation (4.4) cannot be solved analytically, the maximum likelihood [257] proce-

dure is used to estimate the coefficients that minimize the prediction error, i.e. the difference

between the predicted probability P (cj) and the observed outcome values. Maximum likeli-

hood estimation is an iterative procedure that starts with arbitrary values of coefficients for
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Figure 4.3: Decision tree for defect prediction.

a set of predictors and determines the direction and size of change in the coefficients that will

maximize the likelihood of obtaining the observed values. The residuals for the predictive

model based on those coefficients are then tested and another determination of direction and

size of change in coefficients is made. This procedure repeats until each coefficient converges

to a steady value. Clearly, such a method balances between the capability of the approach to

identify defect-prone components (true positive), and the limited number of false positives.

This single-objective model can be converted in a multi-objective logistic regression model

by using the same logit function, but searching for multiple sets of Pareto optimal coefficients

which optimizes (i) the inspection cost, and (ii) the effectiveness of the prediction (that can be

the number of defective classes or defect density). In this way, we can yield a set of logistic

models that provide (near) optimal compromises between the two contrasting objectives.

In particular, given a solution A = (α, β1, . . . , βm) and the corresponding prediction values

FA(cj) computed applying the equation 4.4, we can evaluate the Pareto optimality of A using

the cost and effectiveness functions (according to the equations 4.2 or the equations 4.3).

Once obtained the set of Pareto optimal defect prediction models, the software engineer

can select the one that she considers the most appropriate and uses it for predicting the

defect-proneness of other classes.

Multi-Objective Decision Trees

Decision trees are also widely used for defect prediction and they are generated according

to a specific set of classification rules [258, 85]. A decision tree has, clearly, a tree structure

where the leaf nodes are the predicting outcomes (class defect-proneness in our case), while

the other nodes, often called as decision nodes, contain the decision rules. Each decision

rule is based on a predictor pi, and it partitions the decision in two branches according to a
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specific decision coefficient ai. In other words, a decision tree can be viewed as a sequence

of questions, where each question depends on the previous questions. Therefore, a decision

corresponds to a specific path on the tree. Figure 4.3 shows a typical example of decision

tree used for defect prediction. Each decision node has the form if pi < ai, while each leaf

node contains 1 (defective class) or 0 (non defective class). When a given instance has to be

classified, the tree is traversed from the root node to bottom until a leaf node is reached. The

decision about which branch to follow is performed at each node of the tree on the basis of

the test condition on the predictor pi corresponding to that node. Finally, each leaf node is a

linear regression model associated to obtain the predicting outcome. Hence, the classification

of a given instance is performed by following all paths for which all decision nodes are true

and summing the predicting values that are traversed along the corresponding path.

The process of building a decision tree consists of two main steps: (i) generating the

structure of the tree, and (ii) generating the decision rules for each decision node according

to a given set of decision coefficients A = {a1, a2, . . . , ak}. Several algorithms can be used to

build the structure of a decision tree [259] that can use a bottom-up or a top-down approach.

In this Chapter we use the ID3 algorithm developed by Quinlan [260], which applies a top-

down strategy with a greedy search through the search space to derive the best structure of

the tree. In particular, starting from the root node, the ID3 algorithm uses the concepts

of Information Entropy and Information Gain to assign a given predictor pi to the current

node4, and then to split each node in two children, partitioning the data in two subsets

containing instances with similar predictors values. The process continues iteratively until

no any further split affects the Information Entropy.

Once the structure of the tree is built, the problem of finding the best decision tree

in the traditional single-objective paradigm consists of finding for the all decision nodes

the set of coefficients A = {a1, a2, . . . , ak} which minimizes the root square prediction error.

Similarly to the logistic regression, we can move from the single objective formulation towards

a multi-objective one by using the two-objective functions reported in equations 4.2 or 4.3.

Specifically, we propose to find a multiple sets of decision coefficients A = {a1, a2, . . . , an}
that (near) represent optimal compromises between (i) the inspection cost, and (ii) the

prediction effectiveness. Note that MODEP only acts on the decision coefficients, while it

uses a well-known algorithm, i.e., the ID3 algorithm, for building the tree structure. This

means that the set of decision trees on the Pareto front have the same structure but different

decision coefficients.

4.3.3 Training the Multi-Objective Predictors using Genetic Algo-

rithms

The problem of determining the coefficients for the logistic model or for the decision tree can

be seen as an optimization problem with two conflicting objective functions. In MODEP we

decided to solve such a problem using a multi-objective GA. The first step for the definition

4A predictor pi is assigned to a given node nj if and only if the predictor pi is the larger informational
gain with respect to the other predictors.
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of a GA is the solution representation. In MODEP, a solution (chromosome) is represented

by a vector of values. For the logistic regression, the chromosome contains the coefficients of

the logit function. Instead, the decision coefficients of the decision nodes are encoded in the

chromosome in the case of decision trees. For example, a chromosome for the decision tree

reported in Figure 4.3 is A = {a1, a2, a3, a4} which is the set of decision coefficients used to

make a decision on each decision node.

Once the model coefficients are encoded as chromosomes, the multi-objective genetic algo-

rithm is used to determine them. Among all the variants of MOGAs that have been proposed

in literature, we used NSGA-II [107] that is one of the most popular. A detailed description

of NSGA-II and its behavior (as well as its pseudo-code) is described in Section 2.6. It is

worth noting that we apply NSGA-II for defining decision/coefficient values on the train-

ing set, obtaining a set of non-dominated solutions that provide different effectiveness and

cost values (on the classes in the training set). After that, each Pareto-optimal solution

can be used to build a model (based on logistic regression or decision tree) for predicting

defect-prone classes on other classes.

4.4 Design of the Empirical Study

This section describes the study we conducted to evaluate the proposed multi-objective

formulation of the defect prediction problem. The description follows a template originating

from the Goal-Question-Metric paradigm [225].

4.4.1 Definition and Context

The goal of the study is to evaluate MODEP, with the purpose of investigating the benefits

introduced by the proposed multi-objective prediction in a cross-project context. The reason

why we focus on cross-project prediction is because (i) this is very useful when project history

data is missing and challenging at the same time [85]; and (ii) as pointed out by Brahman et

al. [88], cross-project prediction may turn out to be cost-effective while not exhibiting high

precision values.

The quality focus of the study is the capability of the proposed approach to highlight likely

defect-prone classes in a cost-effective way, i.e., recommending the QA team to perform a

cost-effective inspection of classes giving much priority to classes that have a higher defect

density and in general to maximize the number of defects identified for a given cost. The

perspective is of researchers aiming at developing a better, cost-effective defect prediction

model, also able to work well for cross-project prediction, where the availability of project

data does not allow a reliable within-project defect prediction.

The context of our study consists of 10 Java projects where information on defects is

available. All of them come from the Promise repository5. A summary of the project

characteristics is reported in Table 4.1. All the datasets report the actual defect-proneness

5https://code.google.com/p/promisedata/
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Table 4.1: Java projects used in the study.

Name Release Classes Defect-prone classes (%)
Ant 1.7 745 166 22%
Camel 1.6 965 188 19%
Ivy 2.0 352 40 11%
Jedit 4.0 306 75 25%
Log4j 1.2 205 189 92%
Lucene 2.4 340 203 60%
Poi 3.0 442 281 64%
Prop 6.0 661 66 10%
Tomcat 6.0 858 77 9%
Xalan 2.7 910 898 99%

of classes, plus a pool of metrics used as predictors, i.e., LOC and the Chidamber & Kemerer

Metric suite [231], namely Weighted Method Count (WMC), Depth of Inheritance Tree

(DIT), Number of Children (NOC), Coupling Between Objects (CBO), Response for Classes

(RFC), and Lack of Cohesion of Methods (LCOM).

4.4.2 Research Questions

In the context of our study we formulated the following research questions:

RQ1 How does MODEP perform compared to single-objective prediction? This research

question aims at evaluating, from a quantitative point of view, the benefits introduced

by the multi-objective definition of a cross-project defect prediction problem. We will

evaluate multi-objective predictors based on logistic regression and decision trees. Also,

we consider models producing Pareto fronts of predictors (i) between LOC and num-

ber of predicted defect-prone classes, and (ii) between LOC and number of predicted

defects.

RQ2 How does MODEP perform compared to the local prediction approach? This research

question aims at comparing the cross-project prediction capabilities of MODEP with

those of the approach—proposed by Menzies et al. [86]—that uses local prediction to

mitigate the heterogeneity of projects in the context of cross-project defect prediction.

We consider such an approach as a baseline for comparison because it is considered as

the state-of-the-art for cross-project defect prediction.

In addition, we provide qualitative insights about the practical usefulness of having Pareto

fronts of defect predictors instead of a single predictor. Also, we will highlight how, for a

given machine learning model (e.g., logistic regression or decision trees) one can choose the

appropriate rules (on the various metrics) that leads towards a prediction achieving a given

level of cost-effectiveness.
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4.4.3 Variable Selection

Our evaluation studied the effect of the following independent variables:

• Machine learning algorithm: both single and multi-objective prediction techniques are

implemented using logistic regression and decision trees. We used the logistic regression

and the decision tree implementations available in MATLAB [261]. The glmfit routine

was used for training the logistic regression model with binomial distribution and using

the logit function as generalized linear model, while for the decision tree model we used

the classregtree class to built decision trees.

• Objectives (single vs. multi-objective prediction): the main goal of RQ1 is to compare

single-objective models with multi-objective predictors. The former is a traditional

machine learning technique in which the model is built by fitting data in the training

set. The latter, as explained in Section 4.3.2, are a set of Pareto-optimal predictors

built by a multi-objective GA, achieving different cost-effectiveness tradeoffs.

• Training (within-project vs. cross-project prediction): we compare the prediction capa-

bility in the context of within-project prediction with those of cross-project prediction.

The conjecture we want to test is wether the cross-project strategy is comparable/better

than the within-project strategy in terms of cost-effectiveness when using MODEP.

• Prediction (local vs. global): we consider—within RQ2–both local prediction (using

the clustering approach by Menzies et al. [86]) and global prediction.

In terms of dependent variables, we evaluated our models using (i) code inspection cost,

measured as the KLOC of the of classes predicted as defect-prone (as done by Brahman at al.

[88]), and (ii) recall, which provides a measure of the model effectiveness. In particular, we

considered two granularity levels of recall by counting (i) the number of defect-prone classes

correctly classified; and (ii) the number of defects:

recallclass =

n∑
i=1

FA(ci) ·DefectProne(ci)

n∑
i=1

DefectProne(ci)

recalldefect =

n∑
i=1

FA(ci) ·DefectNumber(ci)

n∑
i=1

DefectNumber(ci)

where FA(ci) denotes the predicted defect proneness of the class ci, DefectProne(ci) measures

its actual defect proneness and DefectNumber(ci) is the number of defects in ci. Hence, the

recall metric computed at class granularity level corresponds to the traditional recall metric
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which measures the percentage of defect prone classes that are correctly classified. The recall

metric computed at defect granularity provides a weighted version of recall where the weights

are represented by the number of defects in the classes. The idea of this metric is that at

the same level of inspection cost, it would be more effective to inspect early classes having a

higher defect density, i.e., classes, that are affected by a higher number of defects.

During the analysis of the results, we also report precision to facilitate the comparison

with other models:

precision =

n∑
i=1

FA(ci) ·DefectProne(ci)

n∑
i=1

F (ci)

It is important to note that precision, recall and cost were reported according to the

prediction of defect-prone classes. It is advisable not to aggregate them with the prediction

of non-defect-prone classes: a model with high (overall) precision (say 90%) when the number

of defect-prone classes is very limited (say 5%), performs worse than a constant classifier.

Similar considerations can be done considering the cost instead of the precision: a model with

lower cost (lower number of KLOC to analyze), but with a limited number of defect-prone

classes might not be effective.

We use a cross-validation procedure [262] to compute precision, recall and inspection cost.

Specifically, for the within-project prediction, we used a 10-fold cross validation implemented

in MATLAB by the crossvalind routine, which randomly partitions a software project into

10 equal size folds; we used 9 folds as training set and the 10th as test set. This procedure

was performed 10 times, with each of the fold used exactly once as the validation data. For

the cross-project prediction, we applied a similar procedure, removing each time a project

from the set, training on 9 projects and predicting on the 10th one.

4.4.4 Analysis Method

To address RQ1, we compare the performance of MODEP with those of the single objective

(i) within project (ii) and cross-project predictors. For both MODEP and the single objective

predictors, we report the performance of logistic regression and decision trees. Also, we

analyze the two multi-objective models separately, i.e., the one that considers as objectives

cost and defect-prone classes, and the one that consider cost and number of defect. In order

to compare the experimented predictors, we first visually compare the Pareto fronts (more

specifically, the line obtained by computing the median over the Pareto fronts of 30 GA runs)

and the performance (a single dot in the cost-effectiveness plane) of the single-objective

predictors. Then, we compare the recall and precision of MODEP and single-objective

predictors at the same level of inspection cost. Finally, by using the precision and recall

values over the 10 projects, we also statistically compare MODEP with the single objective

models using the two-tailed Wilcoxon paired test [263] to determine whether the following

null hypotheses could be rejected:
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• H0R : there is no significant difference between the recall of MODEP and the recall of

the single-objective predictor.

• H0P : there is no significant difference between the precision of MODEP and the preci-

sion of the single-objective predictor.

Note that the comparison is made by considering both MODEP and the single-objective

predictor implemented with logistic regression and decision tree, and with the two different

kinds of recall measures (based on the proportion of defect-prone classes and of defects).

In addition, we use the Wilcoxon test, because it is non-parametric and does not require

any assumption upon the underlying data distribution; also, we perform a two-tailed test

because we do not know a priori whether the difference is in favor of MODEP or of the

single-objective models. For all tests we assume a significance level α = 0.05, i.e., 5% of

probability of rejecting the null hypothesis when it should not be rejected.

To address RQ2, we compare MODEP with the local prediction approach proposed by

Menzies et al. [86]. In the following, we briefly explain our re-implemented of the local

prediction approach using the MATLAB environment [261] and, specifically, the RWeka and

cluster packages. The prediction process consists of three steps:

1. Data preprocessing : we preprocess the data set as described in Section 4.3.1.

2. Data clustering : we cluster together classes having similar characteristics (correspond-

ing to the WHERE heuristic by Menzies et al. [86]). We use a traditional multidimen-

sional scaling algorithm (MDS)6 to cluster the data and using the Euclidean distance

to compute the dissimilarities between classes. We use its implementation available in

MATLAB with the mdscale routine and using as number of iterations it =
√
n, where

n is the number of classes in the training set (such a parameter is the same used by

Menzies et al. [86]). As demonstrated by Yang et al. in [264] such an algorithm is

exactly equivalent to the FASTMAP algorithm used by Menzies et al. [86], except

for the computation cost. FASTMAP approximates the classical MDS by solving the

problem for a subset of the data set, and by fitting the remainder solutions [264]. A

critical factor in the local prediction approach is represented by the number of clusters

to be considered. To this aim, we used a widely-adopted approach from the cluster

literature, i.e., the Silhouette coefficient [223]. The Silhouette coefficient is computed

for each class to be clustered using the concept of cluster centroid7. Based on this

approach, in our study we found a number of clusters k =10 to be optimal.

3. Local prediction: finally, we perform a local prediction within each cluster identified

using MDS. Basically, for each cluster obtained in the previous step, we use classes

from n − 1 projects to train the model, and then we predict defects for classes of the

6Specifically we used a metric based multidimensional scaling algorithm, where the metric used is the
Euclidean distance in the space of predictors.

7The definition of Silhouette Coefficient is described in previous chapters. Thus, in this chapter we do not
re-propose it. For the definition we remind Section 3.3.
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remaining project. We use an association rule learner to generate a predicting model

according to the cluster-based cross-project strategy (WHICH heuristic by Menzies

et al. [86]). We used a MATLAB’s tool, called ARMADA8, which provides a set of

routines for generating and managing association rule discovery.

4.4.5 Implementation and Settings of the Genetic Algorithm

MODEP has been implemented using MATLAB Global Optimization Toolbox (release R2011b).

In particular, the gamultiobj routine was used to run the NSGA-II algorithm, while the rou-

tine gaoptimset was used to set the GA parameters. We used the GA configuration typically

used for numerical problems [135]:

• Population size: we choose a moderate population size with p = 200.

• Initial population: for each software system the initial population is uniformly and

randomly generated within the solutions space. Since such a problem in unconstrained,

i.e., there are no upper and lower bounds for the values that the coefficients can assume,

the initial population was randomly and uniformly generated in the interval [−10; 10]n,

where n is the length of the chromosomes.

• Number of generations: we set the maximum number of generation equal to 400.

• Selection: we used the tournament selection operator, with tournament size k = 4, as

default for the MATLAB implementation of NSGA-II.

• Crossover operator: we use the arithmetic crossover [261] with probability Pc = 0.60,

which is one of the most used crossover operator for real-coded problem.

• Mutation function: we use a uniform mutation function with probability pm = 1/n

where n is the size of the chromosomes (solutions representation).

• Stopping criterion: if the average Pareto spread is lower than 10−8 in the subsequent

50 generations, then the execution of NSGA-II is stopped. The average Pareto spread

measures the average distance between individuals of two Pareto fronts obtained by two

subsequent generations. Thus, the average Pareto spread is used to measure whether

the obtained Pareto front does not change across generations (i.e., whether NSGA-II

converged).

The algorithm has been executed 30 times on each object program to account the inherent

randomness of GAs [265]. Then, we select a Pareto front composed of points achieving the

median performance across the 30 runs.

8http://www.mathworks.com/matlabcentral/fileexchange/3016-armada-data-mining-tool-version-1-4
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4.5 Study Results

This section discusses the results of our study aimed at answering the research questions

formulated in Section 4.4.2.

4.5.1 RQ1: How does MODEP perform compared to single-objective

prediction?

In this section we compare MODEP with a single-objective defect predictor. We first discuss

the results achieved when using as objective functions inspection cost and number of defect-

prone classes classified as such. Then, we discuss the results achieved when considering as

objectives inspection cost and number of defects (over the total number of defects) contained

in the defect-prone classes classified as such.

MODEP based on inspection cost and defect-prone classes.

Figures 4.4 and 4.5 show the Pareto fronts achieved by MODEP (using logistic regression

and decision trees), when predicting defect-prone classes—and optimizing the inspection cost

and the number of defect-prone classes identified—on each of the 10 projects after training

the model on the remaining 9. The plots also show, as single points: (i) the single-objective

cross-project logistic regression and decision tree predictors (as a black triangle for logistic

regression, and gray triangle for decision trees); and (ii) the single-objective within-project

for logistic and decision tree predictors (a black square for the logistic and a gray square for

the decision tree), where the prediction has been performed using 10-fold cross-validation

within the same project.

A preliminary analysis indicates that, generally, the solutions (sets of predictors) provided

by MODEP (based on logistic regression or decision tree) dominate the solutions provided by

both cross- and within-project single objective models. This means that the Pareto optimal

predictors provided by MODEP are able to predict a larger number of defect-prone classes

with a lower inspection cost. Only in two cases MODEP is not able to overcome the single-

objective predictors. Specifically, for Tomcat the single-objective solutions (both cross- and

within- project) are quite close to the Pareto fronts provided by MODEP based on decision

trees, while for Camel the within-project decision tree dominates the solutions obtained by

MODEP.

In order to provide a deeper comparison of the different prediction models, Table 4.2 com-

pares the performances of MODEP with those of the cross project single-objective predictors

(both logistic and decision tree predictors) in terms of precision and recallclass. Specifi-

cally, the table reports the recallclass and the precision of the two models for the same level

of inspection cost. Results indicate that the logistic model MODEP always achieves bet-

ter recallclass levels. In particular, for 5 systems (Ant, Log4j, Lucene, Poi, and Prop) the

recallclass is greater (of at least 10%) than the recallclass of the single-objective predictors.

However, the precision generally decreases, even if in several cases the decrement is negligible.
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Figure 4.4: Performances of predicting models achieved when optimizing inspection cost and
number of defect-prone classes.
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Figure 4.5: Performances of predicting models achieved when optimizing inspection cost and
number of defect-prone classes.
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Table 4.2: MODEP vs. single-objective predictors when optimizing inspection cost and
number of defect-prone classes identified. Single-objective predictors are also applied using
a within-project training strategy.

System Metric
Logistic Dtree Logistic Dtree

SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 167 167 - 121 121 - 101 101 - 104 104 -
Recallclass 0.77 0.90 +0.13 0.49 0.68 +0.19 0.39 0.60 +0.21 0.43 0.60 +0.17
precision 0.43 0.21 -0.22 0.50 0.17 -0.33 0.68 0.52 -0.16 0.35 0.15 -0.20

Camel
Cost 93 93 - 83 83 - 13 13 - 33 33 -
Recallclass 0.54 0.59 +0.05 0.57 0.57 - 0.09 0.09 - 0.25 0.25 -
precision 0.26 0.27 +0.01 0.37 0.37 - 0.54 0.54 - 0.33 0.33 -

Ivy
Cost 74 74 - 75 75 - 28 28 - 38 38 -
Recallclass 0.83 0.90 +0.07 0.72 0.90 +0.18 0.25 0.40 +0.15 0.35 0.52 +0.17
precision 0.27 0.11 -0.16 0.22 0.21 -0.01 0.50 0.06 -0.44 0.37 0.07 -0.30

jEdit
Cost 121 121 - 95 95 - 66 66 - 85 85 -
Recallclass 0.64 1.00 - 0.49 0.97 +0.38 0.33 0.84 +0.51 0.49 0.91 +0.42
precision 0.42 0.25 -0.19 0.66 0.24 -0.42 0.66 0.22 -0.44 0.50 0.23 -0.27

Log4j
Cost 30 30 - 20 20 - 38 38 - 35 35 -
Recallclass 0.42 0.96 +0.54 0.41 0.85 +0.44 0.99 0.99 - 0.92 0.99 +0.07
precision 0.94 0.92 -0.02 0.93 0.92 -0.01 0.92 0.92 - 0.93 0.92 -0.01

Lucene
Cost 83 83 - 66 66 - 86 86 - 81 81 -
Recallclass 0.53 0.97 +0.44 0.62 0.94 32 0.77 0.99 +0.22 0.73 0.95 +0.13
precision 0.80 0.59 -0.21 0.63 0.59 -0.04 0.74 0.60 -0.14 0.74 0.59 -0.15

Poi
Cost 102 102 - 96 96 - 120 120 - 104 104 -
Recallclass 0.53 0.98 +0.45 0.64 0.96 +0.32 0.90 1.00 +0.10 0.83 0.96 +0.13
precision 0.87 0.63 -0.24 0.73 0.63 -0.10 0.79 0.64 -0.15 0.81 0.64 -0.23

Prop
Cost 76 76 - 107 107 - 74 74 - 104 104 -
Recallclass 0.69 0.91 +0.22 0.83 0.97 +0.14 0.87 0.90 +0.03 0.82 0.95 +0.13
precision 0.67 0.62 -0.05 0.81 0.63 -0.18 0.77 0.61 -0.16 0.83 0.63 -0.20

Tomcat
Cost 214 214 - 241 241 - 64 64 - 54 54 -
Recallclass 0.82 0.82 - 0.84 0.86 +0.02 0.18 0.29 +0.11 0.18 0.18 -
precision 0.21 0.08 -0.13 0.22 0.08 -0.14 0.58 0.04 -0.53 0.59 0.59 -

Xalan
Cost 285 285 - 158 158 - 429 429 - 428 428 -
Recallclass 0.38 0.95 - 0.36 0.81 +0.45 6 1.00 1.00 - 0.99 1.00 +0.01
precision 1 0.99 -0.01 0.99 0.98 -0.01 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

The same considerations also apply when MODEP uses decision trees.

We also compare MODEP with the single-objective predictors trained using a within-

project strategy. This analysis is necessary to analyze to what extent MODEP trained with

a cross-project strategy is comparable/better than single-objective predictors trained with a

within-project strategy in terms of cost-effectiveness. Table 4.2 reports the achieved results in

terms of precision and recallclass for the same level of inspection cost. Not surprisingly, the

within-project logistic predictor achieves, for 7 out of 10 projects (Ant, Ivy, jEdit, Lucene,

Poi, Prop, and Tomcat), a better precision. Instead, the precision is the same for both

logistic-based models for Log4j, Camel, and Xalan. Similarly, the within-project decision

tree predictor achieves, for 9 out of 10 projects, a better precision. However, the difference

between the precision values achieved by MODEP and the single-objective predictor are

lower then 5% on 4 projects. Thus, the within-project single-project predictors achieve—for

both logistic and decision tree—better precision than MODEP trained with a cross-project

strategy. These results are consistent with those of a previous study [85], and show that, in

general, within-project prediction outperforms cross-project prediction (and when this does

not happen, performances are very similar). However, although the precision decreases,
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MODEP is able to generally achieve higher recallclass values using both the machine learning

algorithms. This means that—for the same cost (KLOC)—the software engineer has to

analyze more false positives, but she is also able to identify more defect-prone classes.

All these findings are also confirmed by our statistical analysis. As for the logistic regres-

sion, the Wilcoxon test indicate that the precision of MODEP is significantly lower (p-value

= 0.02) than for the single-objective, but at the same time the recallclass is also significantly

greater (p-value < 0.01) than for the single-objective. Similarly, for the decision tree we

also obtained a significant difference in terms of both precision (it is significantly lower using

MODEP, with p-value < 0.01) and recallclass (it is significantly higher using MODEP with

p-value < 0.01). Thus, we can reject both the null hypotheses, H0R in favor of MODEP and

H0P in favor of the single-objective predictors. This means that, for the same inspection cost,

MODEP achieves a lower prediction precision, but it increases the number of defect-prone

classes identified, with respect to the single-objective predictors.

MODEP based on inspection cost and number of defects.

Figure 4.6 and 4.6 show the Pareto fronts produced by MODEP when optimizing inspection

cost and number of defects. Also in this case, the models were evaluated on each of the 10

projects after training the model on the remaining 9.

A preliminary analysis shows that, also when considering the number of defects as ef-

fectiveness measure, MODEP dominates the solutions provided by both cross- and within-

project single objective models, using either logistic regression or decision trees. This means

that the Pareto-optimal predictors provided by MODEP are able to predict classes having

more defects with a lower inspection cost. Only in few cases, i.e., for Tomcat and Ivy,

the single-objective solutions (both cross- and within-project) are quite close to the Pareto

fronts provided by MODEP while only in one case, i.e., for Ant, the within-project logistic

regression dominates the solutions achieved by MODEP.

As done for the previous two-objective formulation of the defect prediction problem,

Table 4.3 reports the performances, in terms of precision and recalldefect achieved by the

experimented defect prediction models for the same inspection costs. Results indicate that

MODEP is able to provide better performance than the corresponding single-objective pre-

dictors in terms of number of predicted defects—i.e., contained in the classes identified as

defect-prone—at the same cost. Specifically, in 8 out of 10 projects, and for both logistic

regression and decision trees, the number of defects contained in the classes predicted by

MODEP is greater than for defect-classes predicted by the single-objective predictors. The

only exceptions are represented by Tomcat for the logistic regression and by Camel for the

decision trees, where the number of defects is the same for both MODEP and single-objective

cross-project predictors. In summary, also when formulating the multi-objective problem in

terms of cost and number of defects, MODEP is able to increase the number of defects in the

predicted classes. However, the prediction achieved with single-objective predictors provides

a higher precision. We also compare MODEP with single-objective defect predictors trained

using a within-project strategy (see Table 4.3). Results indicate that MODEP is able to
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Figure 4.6: Performances of predicting models achieved when optimizing inspection cost and
number of defects.
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Figure 4.7: Performances of predicting models achieved when optimizing inspection cost and
number of defects.
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Table 4.3: MODEP vs. single-objective predictors when optimizing inspection cost and
number of defects identified. Single-objective predictors are also applied using a within-
project training strategy.

System Metric
Logistic Dtree Logistic Dtree

SO-C MO Diff SO-C MO Diff SO-W MO Diff SO-W MO Diff

Ant
Cost 167 168 - 121 121 - 101 101 - 104 104 -
recalldefects 0.85 0.85 - 0.64 0.64 - 0.57 0.48 -0.09 0.51 0.49 -0.03
precision 0.43 0.43 - 0.50 0.56 +0.06 0.68 0.25 -0.43 0.35 0.30 -0.05

Camel
Cost 93 92 -1 83 83 - 13 13 - 33 33 -
recalldefects 0.74 0.75 +0.01 0.67 0.62 -0.05 0.15 0.15 - 0.30 0.30 -
precision 0.26 0.26 - 0.37 0.28 -0.09 0.54 0.50 -0.04 0.33 0.32 -0.01

Ivy
Cost 74 74 - 75 75 - 28 28 - 38 38 -
recalldefects 0.89 0.93 +0.04 0.79 0.80 0.01 0.29 0.30 +0.01 0.39 0.45 +0.06
precision 0.27 0.11 -0.16 0.22 0.16 -0.06 0.71 0.45 -0.26 0.37 0.35 -0.02

jEdit
Cost 121 121 - 95 95 - 66 66 - 85 85 -
recalldefects 0.64 1.00 +0.36 0.49 0.97 +0.48 0.33 0.84 +0.51 0.49 0.93 +0.44
precision 0.42 0.24 -0.20 0.66 0.24 -0.42 0.66 0.22 -0.44 0.50 0.23 -0.27

Log4j
Cost 30 30 - 20 20 - 38 38 - 35 35 -
recalldefects 0.51 0.90 +0.39 0.42 0.79 +0.37 0.98 1.00 +0.02 0.92 0.98 +0.06
precision 0.94 0.93 -0.01 0.93 0.92 -0.01 0.92 0.92 - 0.93 0.92 0.01

Lucene
Cost 83 83 - 66 66 - 86 86 - 81 81 -
recalldefects 0.67 0.94 +0.27 0.56 0.79 +0.23 0.84 0.95 +0.11 0.24 0.87 +0.63
precision 0.80 0.59 -0.21 0.63 0.58 -0.05 0.74 0.55 -0.19 0.74 0.57 -0.17

Poi
Cost 102 102 - 96 96 - 120 120 - 104 104 -
recalldefects 0.67 0.89 +0.22 0.64 0.90 +0.26 0.92 1.00 +0.08 0.58 0.92 +0.34
precision 0.87 0.63 -0.16 0.73 0.63 -0.10 0.77 0.63 -0.14 0.81 0.64 -0.17

Prop
Cost 76 76 - 107 107 - 112 112 - 104 104 -
recalldefects 0.67 0.92 +0.25 0.67 0.98 +0.31 0.91 0.99 +0.08 0.84 0.96 +0.12
precision 0.67 0.62 -0.05 0.81 0.63 -0.19 0.77 0.61 -0.16 0.83 0.59 -0.24

Tomcat
Cost 214 214 - 241 241 - 64 64 - 54 54 -
recalldefects 0.86 0.83 -0.03 0.56 0.83 +0.27 0.28 0.28 - 0.11 0.22 +0.11
precision 0.22 0.08 -0.14 0.22 0.09 -0.13 0.58 0.04 -0.54 0.59 0.04 -0.55

Xalan
Cost 285 285 - 158 158 - 429 429 - 428 428 -
recalldefects 0.38 0.70 0.32 0.37 0.78 +0.41 1.00 1.00 - 0.99 1.00 +0.01
precision 1 0.99 -0.01 0.99 0.99 - 0.99 0.99 - 0.99 0.99 -

SO-C: Single-Objective Cross-project; SO-W: Single-Objective Within-project; MO: Multi-Objective

better prioritize classes with more defects than the single-objective models. Indeed, for the

logistic model, at same level of cost MODEP classifies as defect-prone classes having more

defects than the classes classified as defect-prone by the within-project single objective lo-

gistic regression. For 4 out of 10 projects (Ant, Camel, Ivy, and Tomcat), the recalldefects is

(about) the same, while for the other projects the difference in favor of MODEP ranges be-

tween +1% and +48% in terms of recalldefects for the same amount of source code to analyze

(KLOC), mirroring an increase of the number of defects contained in the classes identified as

defect-prone ranging between +11 and +121 defects. The only exception to the rule is repre-

sented by Ant where the within-project single-objective predictor identifies a higher number

of defects as compared to MODEP. Once again, MODEP provides an improvement in num-

ber of defects but also a general (often slight) decrement of precision. For what concerns

the decision trees, we can observe that the results achieved are even better. MODEP pre-

dicts classes having more defects than those predicted by the single-objective within project

prediction for 8 out of 10 projects. In this case, the difference in terms recalldefects ranges

between +1% and +63% with a corresponding increase of number of defects ranging between

+3 and +401. Also for the decision tree predictor, there is a slight decrement of the precision

for all the projets (lower than 6% in 50% of cases).
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Also in this case, the statistical analysis confirmed our initial findings. Considering the

logistic regression, the precision is significantly lower (p-value = 0.02) while, at the same

cost, the recalldefects significantly increases (p-value = 0.02). Similarly, for the decision

tree we also obtained a significant decrement in terms of precision using MODEP (p-value

= 0.03) but at the same inspection cost value we also achieved a statistically significant

increase of recalldefects (p-value < 0.01). Thus, we can reject both the null hypotheses, H0R

in favor of MODEP and H0P in favor of the single-objective predictors.

4.5.2 RQ2: How does MODEP perform compared to the local pre-

diction approach?

Table 4.4: MODEP vs. local predictors when optimizing inspection cost and number of
defect-prone classes predicted.

System Metric Local MO-Logistic MO-DTree

Ant
Cost 132 132 - 132 -
RecallClasses 0.62 0.74 +0.12 0.66 +0.04
Precision 0.32 0.28 -0.04 0.17 -0.15

Camel
Cost 68 68 - 68 -
RecallClasses 0.34 0.33 -0.01 0.34 -
Precision 0.26 0.28 +0.02 0.17 -0.15

Ivy
Cost 59 59 - 59 -
RecallClasses 0.68 0.78 +0.10 0.78 +0.10
Precision 0.25 0.20 -0.05 0.10 -0.15

jEdit
Cost 104 104 - 104 -
RecallClasses 0.56 0.97 +0.41 0.85 +0.44
Precision 0.46 0.24 -0.22 0.22 -

Log4j
Cost 28 28 - 28 -
RecallClasses 0.52 0.94 +0.42 0.94 +0.42
Precision 0.94 0.92 -0.02 0.92 -0.02

Lucene
Cost 73 73 - 73 -
RecallClasses 0.42 0.95 +0.43 0.95 +0.43
Precision 0.80 0.58 -0.22 0.59 -0.21

Poi
Cost 85 85 - 85 -
RecallClasses 0.62 0.66 +0.64 0.93 +0.43
Precision 0.88 0.62 -0.26 0.59 -0.21

Prop
Cost 91 91 - 91 -
RecallClasses 0.66 0.96 +0.30 0.94 +0.28
Precision 0.85 0.63 -0.21 0.62 -0.23

Tomcat
Cost 201 201 - 201 -
RecallClasses 0.68 0.81 +0.13 0.73 +0.05
Precision 0.22 0.08 -0.14 0.08 -0.14

Xalan
Cost 201 201 - 201 -
RecallClasses 0.68 0.81 +0.13 0.73 +0.05
Precision 0.22 0.08 -0.14 0.08 -0.14

Local: Local Prediction; MO: Multi-Objective
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Table 4.5: MODEP vs. local predictors when optimizing inspection cost and number of
defects predicted.

System Metric Local MO-Logistic MO-DTree

Ant
Cost 132 132 - 132 -
RecallDefects 0.66 0.63 -0.03 0.58 -0.08
Precision 0.32 0.18 -0.13 0.64 +0.32

Camel
Cost 68 68 - 68 -
RecallDefects 0.46 0.49 +0.03 0.47 +0.01
Precision 0.26 0.29 +0.03 0.29 +0.03

Ivy
Cost 59 59 - 59 -
RecallDefects 0.48 0.66 +0.18 0.66 +0.18
Precision 0.25 0.09 -0.16 0.14 -0.11

jEdit
Cost 104 104 - 104 -
RecallDefects 0.56 0.97 +0.39 0.97 +0.39
Precision 0.46 0.24 -0.22 0.24 -0.22

Log4j
Cost 28 28 - 28 -
RecallDefects 0.56 0.90 +0.34 0.91 +0.35
Precision 0.94 0.92 -0.02 0.92 -0.02

Lucene
Cost 73 73 - 73 -
RecallDefects 0.57 0.99 +0.42 0.87 +0.44
Precision 0.80 0.59 -0.21 0.56 -0.24

Poi
Cost 85 85 - 85 -
RecallDefects 0.65 0.85 +0.20 0.87 +0.22
Precision 0.88 0.63 -0.25 0.59 -0.21

Prop
Cost 91 91 - 91 -
RecallDefects 0.70 0.89 +0.19 0.87 +0.17
Precision 0.85 0.63 -0.22 0.69 -0.16

Tomcat
Cost 201 201 - 201 -
RecallDefects 0.71 0.75 +0.04 0.78 +0.07
Precision 0.22 0.08 -0.14 0.13 -0.09

Xalan
Cost 201 201 - 201 -
RecallDefects 0.73 0.75 +0.03 0.73 +0.05
Precision 0.22 0.08 -0.14 0.08 -0.14

Local: Local Prediction; MO: Multi-Objective

In this section we compare the performance of MODEP with an alternative method for

cross-project predictor, i.e., the “local” predictor based on clustering proposed by Menzies

et al. [86]. Table 4.4 shows recallclass and precision—for both approaches—at the same

level of inspection cost. Results indicate that, at the same level of cost, MODEP is able

to identify a larger number of defect-prone classes (higher recallclass values). Specifically,

the difference in terms of recallclass ranges between +13% and +64%. There is only one

exception, represented byCamel, for which the recallclass value is slightly worse (-1%). We

can also note that in the majority of cases MODEP achieves a lower precision, ranging

between 2% and 22% except for Jedit where it increases of 1%.

These findings are supported by our statistical analysis. Specifically, the Wilcoxon test

indicates that the differences are statistically significant (p-value < 0.01) for both recallclass
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and precision. Such results are not surprising since the local prediction model where designed

to increase the prediction accuracy over the traditional (global) model in the context of cross-

project prediction.

Table 4.4 shows recalldefect and precision—for both MODEP and the local prediction

approach—at the same level of cost. We can observe that MODEP is able to identify a larger

number of defects (higher recalldefect values), mirroring a better ability to identify classes

having a higher density of defects. The difference, in terms of number of defects, ranges

between +3% and +44%. There is only one exception, represented by Ant, for which the

recalldefect value is slightly lower (-3%). At the same time, the results reported in Table 4.4

also show that, in the majority of cases, MODEP achieves a lower precision, raging between

-3% and -25%, with the only exception of Camel where it increases by 3%. Also in this case,

the Wilcoxon test highlight that the differences in terms of recalldefect and precision are

statistically significant (p-value < 0.01).

4.5.3 Benefits of MODEP as Compared to Single-Objective Defect

Predictors

Besides the quantitative advantages highlighted in RQ1, including the performance achieved

for cross-project prediction, MODEP has also the advantage of providing the software en-

gineer with the possibility to make choices to balance between prediction effectiveness and

inspection cost.

A single-objective predictor (either logistic regression or decision trees) provides a single

model that classifies a given set of classes as defect-prone or not. This means that, given the

results of the prediction, the software engineer should inspect all classes classified as defect-

prone. Depending on whether the model favours a high recall or a high precision, the software

engineer could be asked to inspect a too high number of classes (hence, an excessive inspection

cost), or the model may fail to identify some defect-prone classes. Truly, a mono-objective

model could still rank classes based on their defect-proneness likelihood (e.g., estimated with

a logistic regression model). However, even in this case a multi-objective model has the

advantage of allowing the software engineer to choose the most suitable trade-off between

cost and effectiveness.

Let us now consider some examples from the projects we studied in our study. In some

of them—such as Ivy or Tomcat—a cross-project single-objective logistic regression reaches

a high recall and a low precision, whereas for others—such as Log4j or Xalan—it yields a

relatively low recall and a high precision. MODEP, instead, allows the software engineer

to understand, based on the amount of code she can analyze, the level of recall (i.e., the

percentage of defect-prone classes identified) that can be achieved, and therefore to select

the most suitable predictors. For example, for Xalan, achieving a recall of 80% instead of 38%

means analyzing about 132 KLOC instead of 13 KLOC (see Figure 4.5-e). In this case, the

higher additional cost can be explained because most of the Xalan classes are defect-prone;

therefore achieving a good recall means analyzing most of the system, if not the entire system.

Let us suppose, instead, to have only a limited time available to perform code inspection. For
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Table 4.6: The first 10 Pareto optimal models obtained by MODEP (using logistic regression)
on Log4j.

Training Set Test Set Logistic Coefficients
Cost Recallclasses Cost Recallclasses Scalar WMC DIT NOC CBO RFC LCOM LOC

0 0% 0 0% -0.91 0.26 -0.03 -0.55 -0.08 -0.06 -0.11 -0.65
0 0% 0 0% -0.84 0.04 -0.02 -0.14 -0.01 -0.02 0.05 -0.40

2,330 1% 0 0% -0.52 0.05 -0.01 -0.29 -0.11 -0.09 -0.01 -0.45
8,663 3% 46 6% -0.47 -0.30 -0.02 -0.10 0.03 0.04 -0.03 -0.39
10,033 3% 133 6% -0.42 0.10 -0.02 -0.25 -0.03 -0.04 -0.06 -0.73
18,089 6% 401 18% -0.41 0.13 -0.01 -0.34 -0.03 -0.05 -0.08 -0.50
25,873 8% 512 20% -0.36 -0.03 -0.02 0.00 0.04 -0.02 0.13 -0.56
33,282 8% 608 22% -0.32 -0.06 -0.02 -0.06 0.04 -0.03 0.11 -0.49
43,161 10% 837 26% -0.32 -0.03 -0.02 0.01 0.04 -0.02 0.12 -0.55
57,441 13% 1384 31% -0.32 -0.05 -0.01 0.00 0.03 -0.01 0.02 -0.54

Ivy, as indicated by the multi-objective decision tree predictor, we could choose to decrease

the inspection cost from 32 KLOC to 15 KLOC if we accept a recall of 50% instead of 83%

(see Figure 4.4-c).

A similar analysis can be performed when considering the number of defects instead of

the number of defect-prone classes as measure of the effectiveness of the prediction models.

Specifically, MODEP allows the software engineer to analyze the trade-off between cost and

percentage of defects contained in the classes identified as defect-prone, and then to select

the predictors that best fit the practical constraints (e.g., limited time for analyzing the

predicted classes). For example, let us assume to have enough time/resources to inspect the

Xalan source code. In this case, by selecting a predictor that favors recall over precision,

we can achieve a recall (percentage of defects) of 80% instead of 40% by analyzing about

200 KLOC instead of 50 KLOC (see Figure 4.7-e). Let us suppose, instead, to have only a

limited time available to perform code inspection. For Ivy, as indicated by the multi-objective

decision tree predictor, we could choose to decrease the inspection cost from 80 KLOC to 40

KLOC if we accept to identify defect-prone classes containing 50% of the total amount of

defects instead of 83% (see Figure 4.6-c).

A further interesting property of MODEP is that software engineers can understand

the relationship between the predictors and the desired outcome, i.e., inspection cost and

prediction effectiveness, and how small changes of the coefficients affect the prediction. For

example, let us consider the first 10 solutions belonging to the Pareto front obtained when

using the multi-objective logistic regression to predict the defect-proneness of the classes

for Log4j (the training set is composed by all the other projects). Table 4.6 reports the

decision coefficients of the 10 solutions belonging to the Pareto front and the corresponding

performance on both training and test sets. The data shows that the DIT and RFC predictors

slightly affect the outcome since their coefficients (weights) are smaller than those of the

remaining predictors. Furthermore, their small variation does not seem to affect the results

(the variation is lower than ±0.01). Conversely, the scalar value is strongly related to the

outcome: the higher the scalar value, the higher the number of the classes predicted as defect-

prone, and then the higher the recallclass values. Also, the LOC predictor has the largest
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absolute value, therefore it is the most influential predictor for the logistic models. A similar

analysis can be performed on the decision rules that can be obtained from the multi-objective

decision tree. However, since they produce more than 300 decision rules (coefficients), they

are not reported for the sake of space. Last, but not least, it is important to point out that

such a kind of analysis cannot be performed using the single-objective approach since they

provide only one prediction model. Thus, for the single-objective approach it is impossible to

determine how performances change varying the predictor variable coefficients and it does not

help the software engineer to understand the relationship between predictors and outcome

(prediction).

In summary, we can conclude stating that MODEP allows the software engineer to choose

predictor that better suit the need for maximizing the amount of defect-prone classes to in-

spect (or the amount of classes with the highest number of defects), given the time/resources

available. Also, by looking at the matrix of coefficients (e.g., Table 4.6) it is possible to

understand what predictor variables lead towards a higher cost and/or a higher recall.

4.6 Threats to Validity

This section discusses the threats that could affect the validity of MODEP evaluation and of

the reported study.

Threats to construct validity concern the relation between theory and experimentation.

Some of the measures we used to assess the models (precision and recall) are widely adopted

ones. We computed recall in two different ways, i.e., (i) as percentage of defect-prone classes

identified as such by the approach, and (ii) as percentage of defects the approach is able to

highlight. In addition, we use the LOC to be analyzed as a proxy indicator of the analy-

sis/testing cost, as also done by Brahman et al. [88]. We are aware that such a measure

is not necessarily representative of the testing cost especially when black-box testing tech-

niques or object-oriented (e.g., state-based) testing techniques are used. Also, another threat

to construct validity can be related to the used metrics and defect data sets. Although we

have performed our study on widely used data sets from the PROMISE repository, we cannot

exclude that they can be subject to imprecision and incompleteness.

Threats to internal validity concern factors that could influence our results. We mitigated

the influence of the GA randomness when building the model by repeating the process

30 times and reporting the median values achieved. Also, it might be possible that the

performances of the proposed approach and of the approaches being compared depend on the

particular choice of the machine learning technique. We evaluated the proposed approach

using two machine learning techniques—logistic regression and decision trees—that have

been extensively used in previous research on defect prediction (e.g., Basili et al. [235]

and Gyimothy et al. [243] for the logistic, Zimmermann et al. [85] for the decision tree).

We cannot exclude that specific variants of such techniques would produce different results,

although the aim of this Chapter is to show the advantages of the proposed multi-objective

approach, rather than comparing different machine learning techniques.
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Threats to conclusion validity concern the relationship between the treatment and the

outcome. In addition to showing values of cost, precision and recall, we have also statistically

compared the various model using the Wilcoxon, non-parametric test, indicating whether

differences in terms of cost and precision are statistically significant.

Threats to external validity concern the generalization of our findings. Although we

considered data from 10 projects, the study deserves to be replicated on further projects.

Also, it is worthwhile to use the same approach with different kinds of predictor metrics,

e.g., process metrics or other product metrics.

4.7 Conclusion and Future Work

This chapter proposed a novel formulation of the defect prediction problem. Specifically, it

proposed to shift from the single-objective defect prediction model—which recommends a set

or a ranked list of likely defect-prone artifacts and tries to achieve an implicit compromise

between cost and effectiveness—towards multi-objective defect prediction models. The pro-

posed approach, coined as MODEP (Multi-Objective DEfect Predictor), produces a Pareto

front of predictors (in our work a logistic regression or a decision tree, but the approach can

be applied to other machine learning techniques) that allows to achieve different trade-offs

between the cost of code inspection—measured in terms of KLOC of the source code arti-

facts (class)—and the amount of defect-prone classes or number of defects that the model

can predict (i.e., recall). In this way, for a given budget (i.e., LOC that can be reviewed

or tested with the available time/resources) the software engineer can choose a predictor

that (a) maximizes the number of defect-prone classes tested (which might be useful if one

wants to ensure that an adequate proportion of defect-prone classes has been tested), or (b)

maximizes the number of defects that can be discovered by the analysis/testing.

MODEP has been applied on 10 datasets from the PROMISE repository. The results

indicated that:

1. While cross-project prediction is worse than within-project prediction in terms of pre-

cision and recall (as also found by Zimmermann et al. [85]), MODEP allows to achieve

a better cost-effectiveness than single-objective predictors trained with both a within-

or cross-project strategy;

2. MODEP outperforms a state-of-the-art approach for cross-project defect prediction

[86], based on local prediction among classes having similar characteristics. Specifically,

MODEP achieves, at the same level of cost, a significantly higher recall (based on both

the number of defect-prone classes and the number of defects).

3. Finally, instead of producing a single predictor MODEP, allows the software engineer

to choose the configuration that better fits her needs, in terms of recall and of amount

of code she can inspect. In other words, the multi-objective model is able to tell

the software engineer how much code one needs to analyze to achieve a given level

of recall. Also, the software engineer can easily inspect the different models aiming
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at understanding what predictor variables lead towards a higher cost and/or a higher

recall.

In summary, MODEP seems to be particularly suited for cross-project defect prediction,

although the advantages of such a multi-objective approach can also be exploited in within-

project predictions.

Future work aims at considering different kinds of cost-effectiveness models. As said, we

considered LOC is a proxy for code inspection cost, but certainly is not a perfect indicator

of the cost of analysis and testing. Alternative cost models, better reflecting the cost of

some testing strategies (e.g., code cyclomatic complexity for white box testing, or input

characteristics for black box testing) must be considered. Last, but not least, we plan to

investigate whether the proposed approach could be used in combination with—rather than

as an alternative to—the local prediction approach [86].
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5.1 Introduction

After changes are made to the software, it is necessary to test the new components added

during the maintenance activities or re-testing the unchanged parts. Thus, software testing

plays an important role in both software development and maintenance because it allows to

gain confidence that the software behaves as intended. Regression testing is performed by

re-running past test cases in order to verify whether changes have not endangered the system

behavior and the system integrity has not been compromised. During this validation and

verification process, some past test cases have to be selected, others have to be updated (test

suite optimization). Finally, new test cases should be written in order to test new software

components developed during the development process or during software maintenance ac-

tivities (test data generation). In general, writing and updating test cases is a human-based

process: testers have to read the specifications, decide what to test and which strategy to

use when writing test case. Thus, this process is extremely costly, difficult and error-prone.

In order to reduce the high cost of manual test data generation and at the same time to

increase the reliability of the testing processes researchers have tried to automate it. The

simplest way to make such an automatism consists of testing/running a software program

by considering all possible combinations of data inputs and preconditions, but it is imprac-

ticable/unfeasible. For these reasons many researchers reformulate the problem of test data

generation as an optimization problem in order to guide the generation of input data ac-

cording to specific testing criteria. The choice of the testing criterion to consider depends

on the purpose and the type of testing being automated. For example, the tester would

generate test cases in order to verify non-functional properties, such as the execution times

(non-functional criteria). For safety tests, she would be interested in generating test cases

for simulating error conditions derived from pre- and post-conditions (safety criteria). For

automating structural testing, test cases are generated in order to maximize the number of

executed elements of the program structure, thus, using some structural testing criteria. All

works on these search-based topics are generally referred to as Search Based Software Testing

(SBST) and nowadays they cover 54% of the overall literature of SBSE [47, 48, 49, 50].

Automatic techniques have been also used for regression testing, whose goal is to verify

that software that has been modified still continues to match the specification and new

changes have not introduced errors into unchanged parts, endangering their behaviors [27].

To this aim, an automated tool can be used to re-testing the whole software system by

executing all the existing test cases in the test suite. Then, an automated comparison of the

testing results obtained before and after changes (before and after a maintenance activities)

can help to automatically identify defects inadvertently introduced by changes. However,

since during the software life cycle the test suite tends to grow, this strategy might be too

expensive and unfeasible, especially for large systems. For example, Do et al. [266] reported

that a regression test suite containing over 30,000 functional test cases, requires over 1,000

machine hours to execute. This estimation considers only the running time of the regression

testing and does not consider the time required by testers to oversee this regression testing

process, set up test runs, monitor testing results, and maintain testing resources such as test
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cases, oracles, and automation utilities.

To reduce the effort of regression testing several strategies have been proposed in literature

by optimizing existing test suites in different ways [27]. A first way to reduce the cost

of regression testing, named as test suite minimization or test suite reduction, consists of

reducing the size of the test suite by removing test cases that are redundant with respect to

some testing criteria, such as code coverage [34, 267, 35, 268, 97, 269, 104, 65]. A second

strategy is the test case selection which is aimed at selecting a subset of the test cases that can

be used to test the changed parts of the software under test [99, 98, 270, 68, 11]. Finally, test

case prioritization is another strategy to optimize an existing test suite by ordering the test

cases with the purpose of first executing those revealing faults earlier [96, 101, 102, 271, 68].

All these techniques are widely referred as to test suite optimization problems.

This second part of the thesis focuses on software testing with particular attention to test

data generation and test suite optimization. Evolutionary algorithms, and GAs in particular,

have been widely and extensively exploited in literature for trying to automate both these

activities. Along with their strengths, testing techniques based on evolutionary algorithm

have a set of challenges and open issues. We highlight that one of these issues is the genetic

drift, or loss of diversity. Sections 5.2 provides a brief summary of the main related work and

background notions about test data generation. Section 5.3 describes background and related

work on regression testing. Section 5.4 highlights limitations and open issues of evolutionary

testing techniques.

5.2 Test data generation

The earliest work in SBST was proposed by Miller and Spooner [39] in the context of struc-

tural testing for generating test data consisting of floating-point inputs. Their research direc-

tion inspired several later research works that proposed various techniques for automated test

data generation, including symbolic execution [272, 273], random algorithms [274], constraint

solving [275], the chaining method [276, 277], and evolutionary testing [47, 142, 28, 21]. All

techniques for structural testing fall in two main categories: static and dynamic structural

test data generation. Static techniques are based on the analysis of the internal struc-

ture of the program, without executing the program itself. For example, symbolic execu-

tion [272, 273, 278] consists of assigning symbolic values to variables in order to derive through

mathematical/abstract methods the conditions necessary for traversing specific paths in the

program [278, 279]. Although promising results have been obtained, these techniques have

many problems [45]: scalability, non-linear predicates, non-primitive data types, loops, ar-

rays, etc.

The opposite of static/symbolic testing consists of analyzing the behavior of the program

during its execution with a given input. With dynamic structural test data generation the

program under test is executed with some input and the results are analysed via program

instrumentation. Duran and Ntafos [280] investigate the usage of random testing as dynamic

approach. They simply executes the program with random inputs and then observes the
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executed/covered elements in the program structure. Despite it simplicity, this techniques

does not provide good performance where the number of inputs covering a particular struc-

tural element are very few in number compared to the size of the input domain. Thus, it

is generally used as a baseline for evaluating the performance of other search algorithms.

Chen et al. [281] proposed an adaptive version of this technique (ART) in order to improve

the performances of random testing. However, a recent study by Arcuri and Briand [282]

revealed that ART is inefficient even on trivial problems, preventing its practical use in most

situations.

A way to make faster and more reliably an automated test data generation is to use some

guidance measure to a search algorithm [67]. According to Ferguson and Korel [277] this

guidance can be provided in the form of a problem-specific fitness function, which can be

utilized by optimization algorithms, such as Hill Climbing, Simulated Annealing or Evolu-

tionary algorithms [67]. As result, a large body of research works has been reported where

different meta-heuristic techniques have been applied to address the problem of test data

generation [45]. The application of Evolutionary Algorithms to test data generation, of-

ten referred to as Evolutionary Testing, has been intensively investigated for the purpose

of structural testing [47, 142, 28, 21]. Among all evolutionary algorithms, in this thesis we

focused on the application of GAs since they are particularly popular flavor of evolutionary

algorithm quite often and successfully adopted by the testing community [47, 142, 28, 21].

As explained in Section 2.3, there are two key factors that have to be defined in order

to apply GAs to test data generation problem: (i) solution encoding or representation of

candidate solutions as chromosomes; (ii) defining a fitness function to guide the search toward

promising areas of the search space. The next subsections provide background notions about

structural analysis and solution encoding for software testing. It is also provides a brief

discussion about some fitness functions that have been used by different authors in SBST.

5.2.1 Structural testing and basic concepts

A program P can be considered as a function P : I ← O, where I represents the set of all

possible data inputs while O is the set of all possible outputs. In particular, I is the set of

all values that are assigned to the input variables of P , where an input variable of P is a

variable that either appears as input parameter of P or in a its input statement (e.g., the

variable x in Pascal statement read(x)). The execution of a program P with a specific data

x (this process is usually denoted by P (x)), implies a specific execution sequence of structural

elements in P (either branches and statements). Clearly, different data input might derive

different output data and different execution sequences of elements in P . Therefore, the

intuitive goal of SBST approaches is to generate data input (test cases) which allows to

execute all the elements in P , thus, it is necessary to analyse the structure of P and its

tested elements.

To make such an analysis, structural testing techniques use the control flow graph (CFG)

which is a graphical representation of a program. A CFG for a program P is a directed graph

G = (N,E, s, e) where:
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Nodes Instructions

s int tri_type(int a, int b, int c)

{
1 if (a > b)

2-4 { int t = a; a = b; b = t; }

5 if (a > c)

6-8 { int t = a; a = c; c = t; }

9 if (b > c)

10-12 { int t = b; b = c; c = t; }

13 if (a + b <= c)

{

14 type = NOT_A_TRIANGLE;

}

else

{

15 type = SCALENE;

16 if (a == b && b == c)

{

17 type = EQUILATERAL;

}

18 else if (a == b || b == c)

{

19 type = ISOSCELES;

}

}

e return type;

}

s

1

2-4

5

6-8

9

10-12

13

15

16

18

19

e

17 14

Figure 5.1: Example of triangle classification program

• N is a set of nodes in the graph. Each node n ∈ N is a statement in the program or a

basic block (a set of uninterrupted consecutive sequence of statements with no jumps).

• E is a set of edges in the graph. Each edge, e = (ni, nj) ∈ E, represents a transfer of

control from node ni to node nj .

• s denotes the unique entry node to the graph.

• e is the unique exit node to the graph.

Nodes corresponding to decision statements (for an example an if or a while statement) are

referred to as branching nodes. Outgoing edges from these nodes are referred to as branches.

The condition determining whether a branch is traversed is referred to as the branch predicate.

In order to traverse a specific edge it is necessary to hold the condition (branch predicate)

of the corresponding outgoing edge.

An example of a control flow graph for the triangle classification program can be seen

in Figure 5.1. This program takes as input three positive integer values (that represent the
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lengths for the sides of a triangle) and decides if the triangle is isosceles, scalene, equilateral,

or invalid. In the triangle example, branching nodes are nodes 1, 5, 9, 13, 16 and 18. The

edge (16,17) is traversed if and only if the input values (a, b, c) satisfy the branch conditions

of node 16 (a==b and b==c).

A path p through a CFG is a sequence of nodes p = 〈n1, n2, . . . , nm〉, such that each pair

of consecutive nodes (ni, ni+1) are connected through a directed edge from ni to ni+1, i.e, ∀i,
1 ≤ i < n, (ni, ni+1) ∈ E. Whenever the execution of P (x) traverses all the edges in a path

p, we say that x traverses/covers p. A path is said to be feasible if there exists an input for

which the path is traversed, otherwise the path is said to be infeasible. If a path begins with

the entry node and ends with the exit node is called as complete path. Otherwise it is called

as incomplete path or a path segment. For the triangle program in Figure 5.1 the sequence

p = 〈s, 1, 5, 9, 13, 14, s〉 is a feasible and complete path within the corresponding CFG (this

path can be traversed using the following input data: a=0, b=0 and c=0).

A definition node is a node in the CFG that modifies the value of a program variable

v, e.g, nodes containing an assignment statement or an input statement. In the example of

Figure 5.1, nodes 14, 15, 17, 19 are definition nodes for the variable type. An use node in a

CFG is a node that uses a variable program v, e.g, nodes containing an assignment statement,

an output statement, or a branch predicate expression. For the example in Figure 5.1, node

1 is an use node for the variable a. A definition-clear path with respect to variable program

v is a path that does not modify v (it contains nodes/statements not modifying v). In the

triangle example, the path p = 〈13, 15, 16, 17〉 is a definition-clear path for the variables a, b

and c.

5.2.2 Coverage criteria and flag problem

The CFG representation is used to keep track of the program elements that are executed

(traversed) during the execution of the program itself. Thus, CFG and dynamic analysis can

be used to rigorously describes which parts of program are tested. This has led toward a

definition of many test coverage metrics according to the type of code elements that should

be covered/tested. Below is reported a list of the most used coverage criteria [283, 284]:

• Statement coverage. With this criterion, the goal of structural testing is to execute all

statements in the CFG.

• Branch coverage, which aims at executing all branches in the CFG. This means that

the condition of an if statement must be evaluated to both true and false branches.

• Condition coverage. Using this criterion, all clauses within each condition of the CFG

must be executed to both true and false branches.

• Multiple-condition coverage. All combinations of clauses within each condition of the

CFG must be executed using truth values.

• Path coverage. With this criterion, the goal of structural testing is to traverse all paths

in the CFG.
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(b) Fitness landscape for flag condition if (a>=k)

Figure 5.2: Example of flag landscape. The y-axis measures the branch coverage while the
x-axis represents the input space.

Statement coverage is the weakest criterion because it does not reveal faults that can

be exposed by specific paths in the CFG (or specific sequences of statements). The other

criteria are stronger then statement coverage, however, some of them can be unfeasible

for large/complex program (e.g., path coverage and condition-coverage criteria). For these

reasons the branch coverage criterion is the most used criterion in structural testing [45].

Coverage criteria are the most intuitive fitness functions that could be considered when

formulating the problem of automatic test data generation as optimization problem: finding

the set of data input to a program P in order to maximize a coverage criterion. However,

despite its simplicity this formulation does not provide any guidance to the search algorithm

for structures, which are generally covered by chance. A typical example to explain this

problem is represented by branch predicates that are only true when an input variable has

to be a specific value from a large domain [45]. For example, suppose we want to test the

true branch of the condition statement if (a==k), where a is an input variable while k is a

numeric constant value. In this case within the space of all possible input values for a, there

is only one value that allows to traverse the true branch of the condition (flag problem).

If we use the branch coverage criteria as fitness function there is no guidance from lower

fitness to higher fitness as shown in Figure 5.2-a. The flag problem is even presents when

considering a less strong condition (e.g., if (a>=k)). As shown in Figure 5.2-b, in this case

the corresponding fitness landscape is a step function with no guidance, thus, the true branch

can be covered only by chance.

To overcome flag problems, previous works [279, 285, 39] have suggested to define the

fitness function in terms of program predicates and using coverage criteria as stop-condition

for a search process: generate input data (test cases) until the maximum coverage is reached

or the coverage is not improved further within a specific amount of time.
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5.2.3 Solution Encoding for Test Data Generation

As any SBSE approach to solve an engineering problem, the first step consists of encoding a

candidate solution for test data generation in a form that is suitable for search algorithms,

and GAs in particular. In our case, a candidate solution is a test case, which is represented

as a set of input values (input vector) for input variables of the program P to be tested.

Input variables x1, . . . xk are variables that either appear as input parameter of P or in a

its input statement. More formally, an input vector I is a vector I = (x1, x2, . . . , xk) of

input variables to P . The domain of a generic input variable xi, denoted as Dxi is the set

if all possible values that xi can assume (i.e, Dxi characterizes the feasible region for the

variable xi). Then, the domain of a program P is the cross product of the domains of all

input variables DP = Dx1×Dx2×· · ·×Dxk. Thus, a candidate solution to a program P is a

single instance of the program domain and can be viewed as a single point in a k-dimensional

space. This representation of candidate solutions lends itself to be encoded as chromosome

for genetic algorithms.

In a unit testing scenario, a test case t is not only an input vector I but it is a program

that executes the program P with input I. Thus, other than containing the input data,

a test case requires a set of statements (instructions) written in a target language (e.g., in

Java) that allows one to encode optimal solutions for the addressed problem. Thus, a test

data generator tool must be able to map an input vector with the corresponding statements

that use such input variables in the test case. Typically, evolutionary algorithms have no

understanding of programs, statements, objects, and so on. Therefore, a means of encoding

must be defined which allows the representation of a test program as a basic type value

structure with which an evolutionary algorithm can work [286].

According to [287, 142] a test case is a sequence of statements t = {s1, s2, . . . , sl} of length

l. A statement consists of the following essential components: (i) target object, (ii) methods

and (iii) parameters/vaiables. These are the only information that should be encoded in the

genotype of candidate solutions. For object-oriented program languages, each statement in

a test case belongs to one of the following five different categories [287, 142]:

• Primitive statements represent numeric, boolean, string variables, as for example int

var = 1. Other primitive statements are those defining arrays of any type (e.g.,

Object[] var1 = new Object[10]). For these primitive statements a test data genera-

tor tool have to define/store the values and the types of variables. An array definition

also involves the definition of a set of values of the component type of the array, whose

number is equal to the length of the array.

• Constructor statements generate new instances of any given class; e.g., Object obj

= new Object(). For these statement a test data generator tool have to define/store

the type and the values of the input parameters/values of the constructor.

• Field statements access public member variables of objects, e.g., int var = l.size.

For these statements values and type have to be managed.
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• Method statements invoke methods on objects or call static methods, e.g., boolean

flag = string.substring(3). For these statements values, type and returned values

have to be managed.

• Assignment statements assign values to array indices or to public member variables of

objects, e.g., var[0] = new Object() or var.attribute = 2.

For each of the above statement type the solution encoding schema have to store input data

values (e.g., numeric values, string, etc.) and language based information (target object,

methods name, parameters name, etc.). A detailed description of the mechanism that can be

used to manage the encoding and decoding of target objects, methods and type of parameters

can be found in [286], while further details about the chromosome representation of candidate

solutions in object-oriented programming can be found in [28]. For these solution encoding

schemata, the genetic operators (crossover and mutation operators) should be able to modify

not only the input data values but also the language based information (e.g, by replacing a

call to a method m1 with a call to another method m2 in a specific statement of the encoded

test case). Further details on genetic operators for evolutionary test data generation can be

also found in [28].

5.2.4 Fitness functions for test data generation

To automate software test data generation using evolutionary algorithm, the problem must

first be transformed into an optimization task. Basically, there are three approaches that

differ in the type of information used when building the objective function: branch-distance-

oriented, control-oriented, or combined approaches. In general, the fitness function is defined

as a function f to minimise, where f(t) = 0 if and only if the target branch is covered when

a test case t is executed.

Branch-distance oriented approach

With branch distance approach the fitness function f is typically defined in terms of program

predicates. Specifically, it measures how distant the executed control flow is away from

traversing the desired (target) path or branch when using a given input data. For example,

consider a branch condition if (a==b) that needs to be executed traversing the true branch;

the condition is converted in a numerical objective function to be optimized using abs(a-b).

This objective function measures how the input data a and b are close to satisfy the true

branch of the corresponding condition. The lower the branch distance value, the closer the

true branch to being traversed, and the closer the input data to the required test data.

Tracey et al. [288, 289] proposed a set of objective functions for relational predicates

inspired by the original objective functions defined by Korel [276]. Table 5.1 reports the

branch distance for each type of possible conditions. In general, for each condition in the

CFG the branch distance f takes as input a set of input values I, and it evaluates a numerical

expressions on the basis of the actual values in I. This function f works fine for expressions
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Table 5.1: Tracey’s objective functions for relational predicates. k can be any arbitrary
positive constant value.

Predicate Objective function f
Boolean if TRUE then 0 else K
a == b if abs(a− b) = 0 then 0 else abs(a− b) +K
a 6= b if abs(a− b) 6= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) +K
a ≤ b if a− b ≤ 0 then 0 else (a− b) +K
a > b if b− a < 0 then 0 else (b− a) +K
a ≥ b if b− a ≥ 0 then 0 else (b− a) +K
not a Negation is moved inwards and propagated over a
A ∧B f(A) + f(B), where A and B are two clauses
A ∨B min{f(A), f(B)}, where A and B are two clauses

involving numbers (e.g., integer, float and double) and boolean values. For other types of

expressions, such as an equality comparison of pointers/objects and strings, more complex

branch distance functions have been defined in literature [67, 48, 290]. Finally, given a specific

target path or branch to be traversed and a set of input values I, the final objective function

is measured as the sum of all branch distance values encountered in the path traversed when

running the program with input data I.

Given the branch distance as fitness function, a search algorithm is executed to find input

data that satisfies a target element in the CFG at once, and the search process continues

until all the elements are covered/traversed according to a specific coverage criterion (or the

maximum coverage values cannot be further improved). Xanthakis et al. [285] used GAs

to generate test data for paths in the CFG not covered by random search. In this work

the selection of the path to be considered during the search process is performed by the

tester. Jones et al. [26] removed the problem of selecting specific path by considering branch

coverage and computing the fitness function as the branch distance of the required branch.

One of the main problems of the branch-distance oriented approach regards the presence

of the flag problem for conditions involving a boolean value, then it is either false or true.

For this kind of predicated there is no guidance (gradient) for search algorithms since the

branch distance would assume only two different values. To alleviate the flag problem several

authors have suggested to use testability transformations [47, 50] and more sophisticated

fitness functions [49].

Control oriented approach

With control-oriented approach the fitness function is typically defined in terms of nodes

that need to be executed in order to test the desired program element. Jones et al. [26]

considered as objective function the difference between the number of actual and desired

executed instructions. Pargas et al. [20] defined an objective function that measures the

number of program elements executed as intended when running a program with a specific
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Nodes Instructions
s example(int i, int j)

{

1 if (i >=10 && i<= 20)

{

2 if (j >= 0 && j <= 10)

{

3 // target statement

}

}

}

Figure 5.3: Objective function landscape by Pargas et al. [20] for a simple program.

input data. Thus, they used statement and branch coverage by analysing the structure of

the CFG during program execution. As pointed out in [45], the measure used by Pargas et

al. is equivalent to the number of critical branches successfully avoided by the input data.

A critical branch for a given target node is the edge in the CFG which leads the execution

path away from the target node. If control flow is driven down a critical branch, there is no

prospect of the target being reached.

More formally, let I be the set of input values used to execute a program P ; let dependent

be the number of dependent nodes that should be executed for the current target element in

the CFG; let executed be the number of dependent nodes successfully executed as intended

when running P with input I. The objective function proposed by Pargas et al. [20], can be

computed as follows:

min f(I) = (dependent− executed) (5.1)

A disadvantage of the objective function [26, 20] based on control-oriented analysis is that

they do not give any guidance during the search process. Indeed, since the fitness function

does not consider the distance of branch predicates, all input data executing the same de-

pendent nodes in the CFG have the same fitness value. For example, let us to consider the

simple program in Figure 5.3-a. Suppose we choose the node 3 as the target node. This

node is control dependent on node 2 and node 1. The corresponding landscape obtained by

applying the approach by Pargas et al. [20] has three plateaux (flat or step landscape), as

shown in Figure 5.3-b. For input data satisfying the same branch predicates, no guidance is

given.

Combined approach

To overcome the limitations of the previous approaches, Wegener et al. [21] proposed a

combined approach that condenses branch distance and control-based approach in only one

objective function. More formally, let I be the set of input values used to execute a program

P ; let dependent be the number of dependent nodes that should be executed for the current
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Nodes Instructions
s example(int i, int j)

{

1 if (i >=10 && i<= 20)

{

2 if (j >= 0 && j <= 10)

{

3 // target statement

}

}

}

Figure 5.4: Objective function landscape by Wegener et al. [21] for a simple program.

target element in the CFG; let executed be the number of dependent nodes successfully

executed as intended when running P with input I. The objective function proposed by

Wegener et al. [21] has the following definition:

min f(I) = (dependent− executed− 1) +m branch dist (5.2)

The factor (dependent − executed − 1) is named approach level and measure the number

of the target’s control dependent nodes that were not executed by the path for the input

I. The approach level is the number of the target’s control dependent nodes that were not

executed by the path for a given input. When the execution of a test case diverges from

the target branch at some approach level, the branch distance is computed. Specifically,

the factor m branch dist is the branch distance value scaled in the range [0, 1]. This factor

measures how close the input data I is to executing the required branch for descending

the next approach level. For example, let us to consider the same program reported in

Figure 5.3-a. If we consider the node 3 as target node, the resulting objective function

landscape is shown in Figure 5.4. As we can see, adding the branch distance to the approach

level prevents the formation of flat landscape. In this thesis we consider as objective function

the combined approach by Wegener et al. [21], since it allows to overcome some limitations

of the other objective functions previously described. The combination of approach level

and branch distance is also the widely used objective function in literature for test data

generation [21, 47, 142, 28, 21].

5.3 Test suite optimization

In general, solving test suite optimization problems involves (i) choosing a testing criterion

to be satisfied and (ii) using an optimization technique to select/order the test cases on

the basis of the chosen criterion. For example, widely used criteria are code coverage [96],

program modification [100], execution cost [101], fault history information [68], etc. Hemmati
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et al. [291] suggest to use test case diversity as test criterion to be optimized when selecting

test cases. Recently, researchers have also suggested that a combination of multiple—often

contrasting—criteria can be more useful than the individual criteria [97, 104, 68, 103, 105]

for regression testing.

Once a set of test criteria has been chosen in a multi-criteria paradigm, an optimization

algorithm has to be used to select/order the test cases. An exhaustive search of the subsets of

test suite which are optimal according to multiple testing criteria should analyse 2n possible

subsets of the test suites, where n is the size of the original test suite. For example, a

systems with 100 test cases has a huge search space represented by 2100 ≈ 1030 possible

sub-test suites to be analyzed. This number is much greater than the estimated age of the

universe expressed in seconds1.

Since the exhaustive search is unfeasible for practical purpose, approximation algorithms

have been used to deal with regression testing in an acceptable time. All the approxima-

tion algorithms proposed in literature fall in two categories: deterministic or classical and

search-based approaches. A complete survey of such approaches can be found in [27]. The

following subsections provide a discussion of the most relevant related work and approaches.

In particular, Section 5.3.1 provides a formal definition of regression testing problems. Sec-

tion 5.3.2 provides an overview on traditional approaches to test suite optimization, while

Section 5.3.3 focuses on search-based approaches.

5.3.1 Problems definition

Approaches aiming at reducing the effort of regression testing include test suite minimization

(or reduction), test case selection, and test case prioritization. These approaches as generally

referred to as test suite optimization approaches for regression testing.

Test Suite Minimization

The goal of the test suite minimization problem (TSM) consists of reducing the size of the

test suite by deleting test cases that are redundant with respect to some coverage criteria,

such as code coverage, branch coverage, data flow, dynamic program invariants or call stacks

[34]. According to Rothermel at al. [268], the problem can be formalized as follows:

Definition 8. Let T = {t1, . . . , tn} be a test suite; let R = {r1, . . . , rm} be a set of

test requirements that must be satisfied with the aim at providing a desirable coverage of the

program entities; let {T1, T2, . . . , Tk} be subsets of T one associated with each of the test

requirement ri such that any one of the test cases tj belonging to Ti can be used to test the

requirement ri.

Problem: find a representative set T ′ of test cases from T that satisfies all the test

requirements {r1, . . . , rm}.

1According to recent estimation, the age of the universe is (4.354± 0.012)× 1017seconds.
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Finding the minimal subset T ′ ⊆ T which satisfies all the test requirements (e.g., code

coverage criterion) is NP-complete, because the minimal hitting set problem can be reduced

to it in polynomial time2.

Test Case Prioritization

Test Case Prioritization (TCP) is aimed at ordering test cases for maximize some desired

properties. It involves the execution of the test cases in a given order and terminating

the testing process at some arbitrary point chosen by the decision maker [27]. The formal

definition was provided in Rothermel et al. [293], which is the following:

Definition 9. Let T be a test suite, and PT be a set of permutation of T ; let f : PT −→ R
be a function from PT to real number.

Problem: to find T ′ ∈ PT such that ∀ T ′′, T ′′ ∈ PT , T ′′ ∈ PT , T ′′ 6= T ′, [f(T ′) ≥ f(T ′′)].

The function f is the mathematical description of the test criterion to be optimized, while

PT is the set of all the possible permutation of T . The ideal ordering of test cases is the one

that maximize the real fault detection rate but it can not be known to the tester in advance

until the test case are executed in a given ordering. Hence, the ordering criteria generally

depend on surrogates, which are in some way correlated with the fault detection rate. Code

coverage is widely used as prioritization criterion [293, 101, 294], such as branch coverage,

statement coverage, etc. The idea is that an ordering which executes first test cases with

higher code coverage, also early covers the whole code increasing the probability of early

detecting faults. Other prioritization criteria were also used instead the structural coverage,

such as interaction [295], clustering-based [296], and requirement coverage [297].

Test Case Selection

Test case selection (TCS) focuses on selecting a subset from an initial test suite in order to

test software modifications, i.e. to test whether unmodified parts of a program still continue

to work correctly after changes involving other parts. The formal definition of the TCS

problem, provided by Rothermel and Harrold [270], is the following:

Definition 10. Let P be an application program and P ′ be a modified version of P and let

T be the original test suite developed for testing P .

Problem: select a subset of test cases T ′ ⊆ T with which to test P ′.

TCS problem essentially consists of two main steps: (i) identifying the affected but not

modified parts, which typically involves a white-box static analysis of the program code [27];

and (ii) selecting test cases, which involves the identification of a subset of a test suite that

is able to test the unmodified parts of a program (i.e., a minimized test suite that has the

potential to detect defects introduced by changes).

2It is also the dual problem of the minimal set cover problem [292]
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5.3.2 Test Suite Optimization with Traditional Approaches

With TSM strategy the size of the test suite is reduced by deleting test cases that are redun-

dant with respect to some coverage criteria [268], such as code coverage, branch coverage,

data flow, dynamic program invariants or call stacks [34]. Since the minimal subset of a

test suite is NP-complete, several heuristics have been applied to deal with this problem

[34, 35, 36]. Harrold et al. [34] used the traditional greedy algorithm for the minimal hitting

set problem, with the worst case execution time of O (| T | ·max | Ti |), where | T | represents

the size of the original test suite, while max | Ti | denotes the cardinality of the largest group

of test cases which is able to cover all the test requirements {r1, . . . , rm}. This algorithm

starts with an empty subset of the test suite and iteratively adds the test case that provides

the higher coverage among the remaining test cases. The process will continue until the

maximum coverage is not reached.

Since the set cover problem is the dual of the minimal hitting set [292], Chen and Lau

[36] proposed a variant of the greedy algorithm that is known to be an effective heuristic for

the Set Covering Problem (SCP). However, an empirical comparison between the two greedy

approaches suggested that none of the two techniques is able to outperform the other. Offutt

et al. also treated the test suite minimization problem as a SCP [35], proposing different

variants of the greedy approach with different test cases ordering criteria instead of the fixed

ordering of the original greedy approach [27]. Offutt et al. [35] used greedy approaches

with different test case ordering criteria instead of the fixed ordering of the original one. An

empirical comparison of greedy approaches suggested that none of them is able to outperform

the others [35].

Further work based on greedy approaches considered other coverage criteria than the code-

level structural coverage criteria used by Harrold et al. [34], Offutt et al. [35], and Chen et al.

[36]. For example, Marré and Bertolino [298] formulated the TSM problem as the problem of

finding a minimal spanning set over the decision-to-decision graph. McMaster and Memon

[269] proposed a test suite minimization technique based on call-stack coverage. Black et al.

[97] considered a bi-criteria approach that takes into account two testing criteria: (i) code

coverage and (ii) past fault detection history. They combined the two objectives by applying

a weighted-sum approach, and used Integer Linear Programming (ILP) optimization to find

subsets, then reducing the multi-objective problem to a single-objective one. Finally, several

studies have been focused on the effect of test suite minimization on the ability of a test suite

to detect faults, since a smaller test suite might have a lower effectiveness. Rothermel et al.

[299] have highlighted how the fault-detection ability of the reduced test suite was worsened,

while Wong et al. [300] have shown that the fault detection ability of the reduced test suite

was preserved.

In TCP the ordering criterion depends on surrogates which are in some way correlated

with the fault detection rate, such as code coverage [101, 293, 294], interaction coverage

[295], clustering-based coverage [296], and requirement coverage [297]. According to the cho-

sen surrogate, the ordering of the test cases is computed using a greedy algorithm, since the

ordering by which the test cases are selected by the algorithm also mirrors the ordering to
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execute them. Greedy algorithms have also been used to solve a bi-criteria TCP problem by

conflating two objectives (coverage and cost) in only one function (coverage per unit cost)

to be maximized by applying the weighted-sum approach [101, 102]. Rothermel et al. [293]

compared different prioritization techniques based on different coverage testing criteria (sur-

rogates) to the random prioritization. An empirical study performed the Siemens benchmark

demonstrates that the random prioritization is worse than the non-random orderings, where

the performance are measured as the ability to early detect faults. This empirical study was

extended by Elbaum et al. [301] considering further testing criteria with different granularity,

such as statement coverage or function coverage. Do et al. [302] also provide a further em-

pirical evidence on the usefulness of coverage-based prioritization against a random ordering

of test cases using the java unit test framework (JUnit).

Test case selection (TCS) focuses on selecting a subset from an initial test suite to test

software changes, i.e., to test whether unmodified parts of a program still continue to work

correctly after changes involving other parts [270]. The identification of the modified parts

of software can be performed using different techniques, including Integer Programming [99],

symbolic execution [303], data flow analysis [98], dependence graph based techniques [267],

and flow graph-based approaches [270]. The details of the different selecting approaches

differ based on how a specific technique defines, seeks and identifies changes in the program

under test [27]. Once the test cases covering the unmodified parts of programs are identified

using a given technique, optimization algorithm—i.e., additional greedy—can be used to

select a minimal set of such test cases according to some testing criteria—e.g., statement

coverage—with the purpose of reducing the cost of regression testing.

As it has been previously pointed out by Yoo and Harman [68, 103], test suite mini-

mization, test case selection and test case prioritization are strongly related to each others.

For example, both test suite minimization and test case selection involve the selection of

elements (test cases) from a test suite (starting set) that best satisfy the testing criteria

(e.g., code coverage) [304]. Test case prioritization is also highly related to test case selection

[68, 103, 100], since an optimal ordering can be applied to the test cases aiming at reduc-

ing the cost of regression testing. For instance, Srivastava and Thiagarajan [100] combine

prioritization and test case selection. Specifically, they first detect the unmodified parts of

software by comparing the binary code before and after changes. Hence, a greedy algorithm

is used to order test cases but only according to the coverage of unmodified parts.

5.3.3 Search-based Test Suite Optimization

Test case selection, test suite minimization, and test case prioritization can be viewed as

multi-objective problems, were the goal is to select a Pareto-efficient subset of the test suite,

based on multiple test criteria [68, 103]. Recently, Sampath et al. [105] provide an analysis on

the benefit of combining multiple criteria for regression testing, showing that the combined

(hybrid) criterion often outperformed their constituent individual criteria.

Let T = {t1, . . . , tn} be a test suite and F = {f1, . . . , fm} a set of objective functions,

i.e., the mathematical descriptions of test criteria to be satisfied during the selection of
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test cases. The multi-objective test suite optimization problem can be defined as follows

[68]: selecting a subset T ′ ⊂ T such that T ′ is the Pareto-optimal set with respect to the

objective functions in F . The optimality of solutions are measured by the concepts of Pareto

optimality and Pareto dominance that are generally used in multi-objective optimization (see

Section 2.3).

Yoo and Harman [68, 103] considered two and three contrasting test criteria: code cover-

age and execution time in the two-objective formulation; then, they added the fault history

information as third criterion in the three-objective formulation. They also evaluated dif-

ferent optimization algorithms to find Pareto-optimal sub-sets of the test suite: additional

greedy algorithms and a multi-objective genetic algorithms called NSGA-II [107]. The ad-

ditional greedy algorithms were applied by using the traditional weighted sum approach to

conflate all the objectives in only one function to be optimized: a cost cognizant version of the

additional greedy algorithm was used for the two-objective formulation, while the weighted

sum of code coverage per unit time and fault coverage per unit time was considered for the

three-objective formulation. The empirical comparison between MOGAs and greedy algo-

rithms did not reveal a clear winner among them, and in some cases the MOGAs were not

able to outperform the greedy algorithms [68]. Furthermore, the combination between these

two kinds of algorithms was not always useful to reach better results [103]. Also, greedy

algorithms—which perform well for single-objective formulations—are not always Pareto-

efficient in the multi-objective paradigm, motivating the use of meta-heuristic techniques

[68, 103]. Similar considerations have also been provided by Li et al. [305], who investigated

many meta-heuristics algorithms for the single-objective formulation, including hill climbing

algorithms, GAs, additional greedy algorithms, and two-optimal greedy algorithms.

5.4 Diversity and population drift

There are two main factors in the search process based on GAs: selective pressure and popu-

lation diversity [137]. The selective pressure is important for driving the GA toward an opti-

mum, while population diversity is crucial for ensuring that the solution space is adequately

explored. A low selection pressure makes the search equivalent to a random search process,

reducing the ability to exploit promising regions of the search space over other regions [137].

A scarcely diversified population can cause a premature stagnation of the search, thus increas-

ing the probability to be trapped in a local optimum. This phenomenon, called premature

convergence, is a critical problem when dealing with GAs [306]. Such a phenomenon is ob-

servable in Genetic Algorithms (GAs) when the genetic operators (crossover and mutation)

are unable to produce an offspring which outperforms its parents. This happens because in-

dividuals that have already been found during the search process can be regenerated again,

while other parts of the search space can be left unexplored. The population diversity is

crucial also to obtain a wider Pareto front in multi-objective problems. Indeed, the goals of

a multi-objective optimization are (i) to guide the search towards the Pareto-optimal front

and (ii) to maintain population diversity in trade-off fronts [106]. However, when applying
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a GA for solving multi-objective problems, it is generally difficult to preserve the diversity

of the individuals across different generations. Indeed, a multi-objective GA tends to create

a limited number of groups of solutions (niches), which are close to each other in the search

space, leaving the rest of the search space unexplored. Better diversified Pareto fronts will

contain a wider range of solutions that, when recombined through the crossover operator,

are more likely to lead towards a better achievement of the optimization objectives.

Selective pressure and population diversity are two conflicting factors [307]. Maintaining

population diversity can affect the selective pressure, while increasing selective pressure can

lead a faster loss of population diversity. Selective pressure can be guaranteed by traditional

genetic operators, such as selection and crossover operation that allows to exploit the search

space by looking for nearby better solutions. While mutation and random initialization are

generally used to guarantee an adequate level of exploration. Mutation can help to reduce

the population drift, i.e., if the mutation rate is high it will diversify the population, but at

the same time it will prevent convergence and the solutions will remain at a certain distance

to the optimum with higher probability [91]. For these reasons several methods have been

proposed in order to promote diversity between the selected test cases by acting on different

components of the GA, i.e., (i) by modifying the fitness function, (ii) by adding new similarity-

based fitness functions, and (iii) by promoting diversity during the selection process. For

example, widely used diversity-preserving mechanisms are fitness sharing [136, 144], crowding

distance [308], restricted tournament selection [309], rank scaling selection [310].

Niching methods, based on the mechanism of natural ecosystems, is one of the first meth-

ods to deal with the population drift [136, 311]. For example, the fitness sharing method

[136, 312] is used to force an individual to share its fitness with other individuals occupying

the same niche. This means that each individual’s fitness value is decreased by an amount

proportional to the number of similar individuals in the population. Recently Della Cioppa

et al. [313, 314] provided a further investigation on the role of fitness sharing and its parame-

ters on the performance of GAs. Another approach to reduce the loss of diversity is based on

replacement strategies, which insert new individuals in the population by replacing similar

individuals (crowding method). In the standard crowding method [311, 315], an offspring

replaces the most similar individuals taken from a subpopulation of size cf (crowding factor)

randomly drawn from the global population. Mahfoud [308] improved the standard crowding

schema by introducing competition between children and parents of identical niches: each

child replaces the nearest parent if it has higher fitness. The concept of crowding distance is

also used by NSGA-II [107] when selecting individuals belonging to the same Pareto rank.

Harik et al. [309] proposed the Restricted Tournament Selection (RTS) to adapt stan-

dard tournament selection for multimodal optimization. RTS picks a candidate replacement

individual that is closest to the new child from a random sample of cf individuals (as in

standard crowding). After the determination of the closest individual to the candidate child,

a competition is held based on fitness between the child and selected individual. The one

having the best fitness is then selected for inclusion in the solution population. Rank scaling

[144], instead, ranks the individuals according to their raw objective value. This avoids the
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possibility of a small number of highly fitted individuals dominating the reproduction process.

A further mechanism to maintain diversity consists of using multiple sub-population evolved

in parallel. For example Jie et al. [316] suggest to use a dual-population single-objective

GA to evolve in parallel two populations, the first one for exploiting the search space and

second one to preserve diversity. Multi-population mechanisms have been also used with

MOGAs. For example VEGA [143] uses different sub-population, each one for each objective

function. In all the multi-population based GAs, the multiple sub-populations are evolved

in parallel and periodically a migration schema is used to merge chromosomes from different

sub-populations. The number and size of the sub-populations can be fixed and kept un-

changed across generations [317] or can modified generation by generation [316]. However,

the performance of these GAs are sensitive to the migration policy, migration rates and size

of the sub-populations [316].

In the context of software testing, the problem of loss of diversity has been considered as

an intrinsic problem of GAs and then the majority of previous research works used the same

diversity preserving technique used by the evolutionary computation community. There have

been research efforts aimed at increasing diversity among test cases following varying criteria

for measuring similarity between test cases. One such approach [92] relies on sampling the

program data-state, by tracing variables via intensive instrumentation, and looking for test

cases that result in a different state. Another approach [93] for measuring diversity among

test cases was proposed based on the notion of Information Distance. In order to address

the problem of loss of diversity, Battiti et al. [318] proposed to check for the repetition of

solutions and added this scheme to the Tabu Search algorithm. With the new Tabu scheme,

called Reactive Tabu Search, an appropriate size of the tabu list is learned in an automated

way by reacting to the occurrence of cycles. If a diversity loss is diagnosed, i.e., several

individuals are similar (or identical) to each other, then the search is diversified by making

a number of random moves proportional to the moving average of the cycle length.

The multi-objective GA used by Yoo and Harman [68, 103] (i.e., NSGA-II) is of particular

interest in the context of test case diversity since it uses the concept of crowding distance to

decide which solutions (set of selected test cases) have to be selected for the next generation

(in this case the diversity is promoted during the selection process). In particular, the

crowding distance measures how a solution (set of selected test cases) is far from the rest

of the population [319]—according to the objective functions—and then giving to diversified

solutions higher probability to survive. From the test suite optimization point of view, this

means that having a particular coverage criterion, the crowding distance will promote set of

test cases that are diversified according to the corresponding coverage criterion. NSGA-II

also selects individuals on the basis of a rank scaling function—similar to the one used by

Hemmati et al. [310]—where the ranks of the individuals are obtained according to the

dominance ranking produced by the non-dominated sorting algorithm.

In our previous work [11] we proposed to add diversity as a further objective function in

a multi-objective paradigm in order to preserve diversity. In particular, a density function

has been added, with the aim of ensuring diversity between the individuals of the population
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according to the statement coverage criterion. Results indicated the usefulness of diversity

to improve multi-objective GAs. Hemmati et al. [291] proposed to use test case diversity as

the unique objective function to be optimized3, by using similarity measures between test

cases to maximize diversity among the selected test cases. Diversity is calculated using a

similarity (or dissimilarity) measure between pairs of test cases, according to a given encoding

of test cases as a sets or sequences of elements, where the encoding is generated by applying

a coverage criterion on a test model [320]. For example, using the UML state machine-based

testing, a test case can be viewed a sequence of state identifiers, then two test cases differ

from each other if they have two diverse sets/sequences of state identifiers. Once a measure

of distance is defined, an optimization algorithm can be applied to select diversified test cases

until the maximum coverage level is reached or a sufficient amount of test cases is selected.

Hemmati et al. also provided a set of strategies to select test cases such as Adaptive Random

Testing (ART) [281] and single-objective GAs. Among the different selection strategies, GAs

turned out to be the most effective technique for similarity-based test case selection [291].

Further studies [310, 320] also confirmed that the diversity plays an important role to increase

the ability to detect faults and evolutionary algorithms also turned out to be most efficient

for such an objective function.

The main disadvantage of previous approaches for test case diversity [11, 291, 310, 320]

is that they use a density/distance function according to a given coverage criterion. In

a multi-objective paradigm where multiple coverage criteria can be used, such approaches

require to add a diversity function for each coverage criterion, thus increasing the number of

objective functions to be (near) optimized. As noted by Köppen et al. [321], the performance

of MOGAs rapidly decreases for an increasing number of objective functions. Thus, it is

preferable to promote diversity without adding further objective functions, while acting on

other steps of the evolution process, such as the selection mechanism or the generation of

new individuals.

5.5 Improving evolutionary testing by diversity injec-

tion

Existing approaches try to guarantee the population diversity considering information about

each generation separately. Considering only the diversity of the current population might

not guarantee the exploration of new unexplored regions, since several regions can be revis-

ited numerous times. In this thesis we present a novel diversity preserving technique that

introduces diversity by exploring areas of the search space which are different from those tra-

versed so far, based on the direction through which the population as a whole has evolved.

The movements of individuals across different generations —called evolution directions—

are caught using SVD [322], which gives an estimate of where the search is going to. Thus,

3Hemmati et al. [291] considered diversity in a single-objective paradigm without taking into account
further important test case selection criteria, such as the execution cost.
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diversity is introduced by replacing the worst individuals (individuals with the lowest fit-

ness values) with new individuals from orthogonal evolution directions that will explore new

search regions. The formal definition of evolution directions and how to estimates such direc-

tions through SVD are reported in Section 6.2. Finally, the proposed strategy was integrated

within the main loop of GAs and MOGAs as described in Section 6.2.2.

To provide a preliminary evidence of the benefits of the proposed SVD-based diversity

preserving techniques, Chapter 6 reports the results of an empirical study conducted on

numerical benchmark test problems (15 single-objective and 12 multi-objectives benchmark

test problems) generally used by the evolutionary computation community to test search

algorithms. After this preliminarily evaluation, the usefulness of SVD-based technique for

single-objective GAs will be further investigated in the context of evolutionary test data

generation in Chapter 7. Finally, Chapter 8 will apply the proposed technique in the context

of multi-objective test suite optimization.
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Chapter 6

Improving genetic algorithms

through diversity injection
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6.1 Introduction

The effectiveness of GAs can be seriously impacted by genetic drift, a phenomenon that takes

place when a population (set of candidate test cases) is dominated by a small set of similar

individuals that lead GAs to converge to a sub-optimal solution and to stagnate, without

reaching the desired objective. Depending on the difficulty of the current search target and

the type of selection scheme in use, it can happen that nearly all the candidate individuals

in the search become too similar. Consequently, genetic operators simply recombine genetic

material among these similar individuals and generate offsprings quite similar to their parents.

During recent and past years, different kinds of techniques have been proposed to deal with

population drift (or genetic drift) [91, 306] in order to avoid premature convergence toward

local optima. Several approaches have been proposed to improve the efficiency of GAs in

terms of convergence rate and solution accuracy, such as parameters tuning [323, 324, 325],

niching and fitness sharing [313, 314, 312, 136, 311], distance crowding [315, 107], multi-

population algorithms [317, 316]. All these techniques aim at guaranteeing the population

diversity considering information about each generation individually, without reducing the

likelihood to regenerate individuals that have already been considered in the search process.

In this chapter, we propose the usage of a linear algebra technique, the Singular Value

Decomposition (SVD) [322], to estimate the evolution directions of a population across differ-

ent generations to promote the exploration of unexplored regions by creating new individuals

with orthogonal evolution directions. In this context, for evolution direction we intend the

direction along which the best individuals of a population are evolving in the genotype space

across two different generations, independently from the objective space of the fitness func-

tion(s). Such an independence allows us to design a preserving diversity techniques that

can be applied to both single-objective and multi-objective problems. This chapter gives the

following contributions:

• We define the concept of evolution directions of a population across different genera-

tions, independently from the nature of the objective space (i.e., if there is only one

or more than one objective to be optimized); such evolution directions are estimated

through linear algebra theorems and SVD.

• We also describe a set of linear algebra operations to inject new individuals with or-

thogonal evolution directions thus increasing diversity during the search process. Such

a diversity preserving mechanism is also integrated within the main loop of single-

objective GAs and NSGA-II.

• We provide a preliminary evaluation of the usefulness of the enhanced single-objective

GAs, named SVD-GA, by solving 15 single-objective benchmark test functions and

comparing its performance with the standard GA with a distance-crowding schema

and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [326, 327] which is

one of the fastest algorithm for numerical problems.
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• We evaluated the usefulness of the enhanced NSGA-II, named SVD-NSGA-II, by solv-

ing 12 multi-objectives benchmark test problems and comparing its performance with

the original NSGA-II.

The chapter is organised as follows. Section 6.2 describes how to apply SVD to estimate

the evolution directions and how generate orthogonal individuals. Section 6.2.2 describes

how to integrated SVD-based diversity mechanisms into the main loop of GA and NSGA-II,

presenting SVD-GA and SVD-NSGA-II. Experiments carried out on the proposed algorithms

follow in Sections 6.3 and 6.3. The conclusions of this chapter can be found in Section 6.5.

6.2 Injecting Diversity using SVD

In this section we present a sophisticated diversity-preserving technique based on linear

algebra operations to introduce diversity during the search process by periodically injecting

new diversified individuals. Specifically, first we estimate the directions along which the

population is evolving and then we use such directions to generate new orthogonal individuals.

The idea is that injecting diversity the capability of GAs (either MOGAs) to escape from

local optimal regions will increase avoiding population drift.

6.2.1 Estimating the evolution directions using SVD

Principles of linear algebra1 can be used to analyse which part of the search space is explored

by a population at a given generation t. Indeed, it can be possible to measure whether two

or more individuals are exploring the same search space region by using the concept of

orthogonality.

Definition 11. Let us to consider for simplicity two solutions x = {xi, . . . , xn} and y =

{yi, . . . , yn}. The two solutions are said to be orthogonal (or linear independent) if and only

if their inner product is equal to zero, i.e. if

〈x · y〉 = x1y1 + · · ·+ xnyn = 0

otherwise they are said to be linear dependent.

The lower the absolute value of the inner product, the higher the distance between x and

y within the search space. Clearly, this analysis can be generalized for more than two single

solutions: if all individuals in a given population are mutually orthogonal2, this means that

they are exploring different regions and there are not individuals that explore the same region.

Vice versa, if all individuals are linear dependent to each other, then, they are exploring the

same region of the search space (equivalently the maximum number of linear independent

1In this section we assume a familiarity with the basic terminology of linear algebra and refer the reader
to [322] for a more complete coverage.

2A set of vectors V is mutually orthogonal if and only if all pairs of vector x and y in V are orthogonal.
Formally ∀x, y ∈ V, 〈x · y〉 = 0
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individuals is zero). Hence, the number of regions explored by a population is equals to the

maximum number of linear independent individuals, or the maximum number of individuals

mutually orthogonal. The directions along which the individuals show the most of variation

indicate which directions or regions are actually explored.

All these information can be captured using matrix linear operations. The idea is that a

population of solutions P obtained by a GA (or a multi-objective GA) at a given generation

t can be viewed as an m× n matrix:

Pt =


p1,1 p1,2 . . . p1,n
p2,1 p2,2 . . . p2,n

...
...

. . .
...

pm,1 pm,2 . . . pm,n


where n is the number of decision variables, m is the population size, while the generic

entry pi,j denotes the value of the jth decision variable for the ith individual. The maximum

number of linearly independent individuals (rows in Pt) corresponds to the rank of the matrix

Pt, hence, the rank is equal to the number of explored directions. To derive which are such a

directions we can use the Singular Value Decomposition (SVD). According to linear algebra

theorem a rectangular matrix can always be factorized through SVD [328]:

Theorem 1. Let Pt be an m × n matrix. Let r be the rank of Pt, then there exist (i) an

m× r matrix U , (ii) an r × n matrix V and (iii) an r × r diagonal matrix Σ such that

Pt = Ut × Σt × V T

=

 u1,1 . . . u1,r
...

. . .
...

um,1 . . . um,r

×
 σ1 . . . 0

...
. . .

...

0 . . . σr

×
 v1,1 . . . v1,r

...
. . .

...

vn,1 . . . vn,r


T

In this factorization the m rows of Ut are the left singular vectors while the n rows of

Vt are right singular vectors. Finally, Σt is a r × r diagonal matrix whose diagonal entries

are non negative and in descending order (σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0). This decomposition

contains several interesting information:

• The number of singular values r is the rank of the matrix Pt, hence, the number of

singular values is equals to the number of directions explored by the individuals in Pt.

• The column vectors of Vt are the main directions along which the individuals show the

most of variation. Thus, they measure which regions (or directions) are explored by

the individuals in Pt.

• The diagonal elements of Σ represent the importance of each main direction of the

population distribution.
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Population  V1 V2 

(a) Interpretation of the columns vectors of Vt

Population  v1 δ1  v2 δ2  

(b) Interpretation of matrix multiplication Σt · Vt

Figure 6.1: Geometrical interpretation of SVD applied to a population P aiming at estimating
evolution directions.

• Since the diagonal elements σi are in descending order, the corresponding vectors V =

{v1, v2, . . . , vn} are sorted according to their importance. Thus, the population exhibits

the first largest variation along the direction v1, the second largest variation along the

direction v2, and so on.

Figure 6.1-a shows the geometrical meaning of SVD decomposition for a population in a

two-dimensional space, and the corresponding column vectors of Vt. It can be noted how the

right singular values of V (i.e., the column vectors v1 and v2 in the figure) represent the main

directions (eigenvectors) along which the population is distributed. It is also important to

note that v1 and v2 are two orthonormal vectors, thus they represent only the main directions

of P , without bringing information about how important they are. Such information is pro-

vided by the diagonal elements σ1 and σ2 in Σ, that measure the importance (eigenvalues) of

the main directions for such a population (see Figure 6.1-b). As it can be seen in the example

of Figure 6.1, the population exhibits the largest variation along v1 (σ1 ≥ σ2 ) confirming the

theoretical definition of SVD. In summary, the SVD applied to a single population Pt allows

to measure (i) how the individuals are distributed in the search space; (ii) whether more

solutions are exploring the same directions of the search space; (iii) how many independent

directions are actually explored.

Two different populations have two different SVD factorizations because they explore

different directions of the search space. Thus, a population at generation t might have a

different SVD factorization with respect to the directions of the same population considered

at generation t + k . If the two SVD factorizations are identical then the population is

unchanged across the k generations; otherwise, if the two factorizations are different this

means that the population itself is changed to explore (to evolve towards) different directions

of the search space. We defines this changes between generations t and t + k as evolution

directions and they measure the directions along which the population is evolved during these
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Algorithm 6: ORTHOGONAL-VECTORS

Input:

A m× n matrix V ;
Result: A matrix V

o
;

1 begin
2 foreach Column i ∈ {1, . . . , n} do
3

−→v ⊥i ←− reverse-order(−→v i)
4 randomly multiply by -1 bm/2c of elements in −→v ⊥i
5 if m mod 2 6= 0 then
6 randomly set to zero one of dm/2e unmodified element in −→v ⊥i

k generations. The estimation of the evolution directions can be performed by comparing

the two corresponding factorizations {Σt, Vt} at generation t and {Σt+k, Vt+k} at generation

t+ k.

Definition 12. Let Pt =
(
Ut · Σt · V Tt

)
and Pt+k =

(
Ut+k · Σt+k · V Tt+k

)
be the two SVD

factorizations of a population obtained at two different generations t and t+k. The evolution

directions can be estimated through the following two matrices:

V = Vt+k − Vt Σ = Σt+k − Σt

where V estimates the direction along which the population is evolving, and Σ measures the

magnitude of its evolution.

In other words, V is a rotating factor because it measures how the population is rotated

during the k generations, while Σ is a scaling factor because it measures how the population

is rotated during the k generations. If both V and Σ are zero matrix it means that Pt and

Pt+k are identical and the population is not changed. If V = 0 and Σ 6= 0, this means

that Pt+k is not rotated with respect to Pt but its individuals are translated in the search

space. Finally, if V 6= 0 and Σ = 0, this means that Pt+k is rotated with respect to Pt or,

equivalently, that the individuals changed their trajectories during the last k generations.

6.2.2 Generating orthogonal individuals

The evolution directions defined in the previous section can be used to force the evolution

along different directions by injecting new individuals with orthogonal evolution directions in

the last population Pt. The steps needed to inject diversity during the evolution are reported

in Algorithm 7. The algorithm takes as input two populations Pt and Pt+k obtained by a GA

at generations t and t+ k and produce as output a new population P ∗ obtained by injecting

diversity in population Pt+k. The first two steps of the algorithm (2)-(3) select 50% of the

best individuals from the two input populations, P
′

t and P ′t+k respectively. The selection

of the best 50% of individuals is performed using the native selection operator used by the
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Algorithm 7: SVD-ORTH-INJECT

Input:
A population Pt
A population Pt+k
Result: A new population P ∗t+k

1 begin
2 P ′t ←− 50% of best individuals of Pt
3 P ′t+k ←− 50% of best individuals of Pt+k
4 [Ut, St, Vt]←− svd(P ′t )
5 [Ut+k, St+k, Vt+k]←− svd(P ′t+k)

6 V ←− Vt+k − Vt //Evolution directions

7 Σ←− Σt+k − Σt //Shifting operator
8 //Generate orthogonal evolution directions

9 V
o ←− ORTHOGONAL-VECTORS(V )

10 //Generate new orthogonal individuals

11 P o ←− Ut+k ·
(
Σt+k + Σ

)
·
(
Vt+k + V

o
)T

12 Push unfeasible individuals in P o back to the feasible reagion
13 P ∗ ←− P ′t+k ∪ P o

specific GA to select the best solution at each iteration of its main loop. For example, if we

used NSGA-II, then the 50% of best individuals are selected using the fast non-dominated

sorting algorithm and the crowding distance [107]. While with single-objective GAs the

selection is performed through the tournament selection operator.

Hence, SVD is applied in steps (4)-(5) to decompose each of these two sub-populations as

P ′ =
(
U · Σ · V T

)
for identifying and ordering the dimensions (axes) along which the indi-

viduals exhibit most of the variation. In steps (6)-(7) the algorithm computes the evolution

directions according to Definition 12. Starting from V and Σ, it is possible to generate a

new set of individuals P o as reported in line (11) with orthogonal directions as compared

to directions of the current population. The factor
(
Σt+k + Σ

)
is the shifting operator that

allows us to create new individuals that are Σ-shifted in the search space, while the factor

(Vt+k + V
o
) is the orthogonal operator which creates the new individuals with orthogonal

evolution directions, i.e., new individuals which explore new sub-spaces. The matrix V
o

computed at line (9) is a matrix whose column vectors are unit and orthogonal with respect

to column vectors of V , i.e., voi is orthogonal to vi for i = 1 . . . n. Since the number of all

possible orthogonal column vectors is infinite, a good choice would be to randomly generate

such vectors. We have chosen the simple method shown in Algorithm 6 [5]. Such an algo-

rithm creates orthogonal vectors in a simple way. Given a vector −→v i, its orthogonal vector

can be computed by (i) creating a new vector −→v oi with the same elements in −→v i but in

reverse order, and (ii) multiplying 50% of its elements by -1. If the number of elements in
−→v oi is odd, then we randomly set to zero one of its unmodified element in order to ensure the
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Algorithm 8: SVD-GA.

Input:
Number of variables N
Population size M
SVD interval k
Result: A solution S to the problem

1 begin
2 t←− 0 // current generation
3 generate initial population Pt
4 old←− t
5 while not (stop condition) do
6 //main loop of a GAs
7 generate offsprings Qt using crossover and mutation
8 select P (t+ 1) from P (t) and Q(t)
9 t←− t+ 1

10 if t mod k = 0 then
11 Pt ←− SVD-ORTH-INJECT(Pold, Pt)
12 old←− t

13 S ←− best individual of Pt

orthogonality with −→v i (lines 5-6 in Algorithm 6). The remaining issue to solve is that the

orthogonal individuals generated using SVD might be violate one or more constraints of the

optimization problem. To address this issue, we push these unfeasible individuals p∗ back

into the feasible region in line 11 of Algorithm 7.

In summary, applying Algorithm 7 we obtain a new population P ∗ that contains some

new orthogonal individuals computed by SVD. As it can be noted such an algorithm works by

comparing the sets of solutions obtained at two different generations, i.e., without modifying

any evolutionary genetic operator or objectives to be optimized, as niched GA does. More-

over, the proposed SVD-based technique estimates the evolution direction within the search

space or genotype, thus the use of SVD does not require further fitness function evaluations.

6.2.3 Integrating SVD with genetic algorithms

This subsection describes how to integrate the SVD-based mechanism into the main loop

of single-objective GA and NSGA-II. Algorithm 8 outlines the pseudo-code of the single

objective GA enhanced with the proposed diversity preserving mechanism, we refer to this

algorithm as SVD-GA. First and foremost, in line 3 a randomly and uniformly distributed

population Pt is created. Then, the main loop of the SVD-GA algorithm first includes k

iterations of the original GA, i.e. lines 7-8. During these k iterations the usual selection,

recombination, and mutation operators are used to create new solutions and to select the

solutions that have to survive for the next iterations. Then, every k generations we apply the
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Algorithm 9: SVD-NSGA-II

Input:
A test suite of size N
Population size M
SVD interval k
Result: A set of non-dominated solutions S

1 begin
2 t←− 0 // current generation
3 Pt ←− RANDOM-POPULATION(N ,M)
4 old←− t
5 while not (end condition) do
6 Qt ←− MAKE-NEW-POP(Pt)
7 Rt ←− Pt

⋃
Qt

8 F←− FAST-NONDOMINATED-SORT(Rt)
9 Pt+1 ←− ∅

10 i←− 1
11 while | Pt+1 | + | Fi |6M do
12 CROWDING-DISTANCE-ASSIGNMENT(Fi)
13 Pt+1 ←− Pt+1

⋃
Fi

14 i←− i+ 1

15 Sort(Fi) //according to the crowding distance
16 Pt+1 ←− Pt+1

⋃
Fi[1 : (M− | Pt+1 |)]

17 t←− t+ 1
18 if t mod k = 0 then
19 Pt ←− SVD-ORTH-INJECT(Pold, Pt)
20 old←− t

21 S ←− Pt

SVD-based preserving technique on the past and current populations Pold and Pt respectively

by invoking Algorithm 8. This algorithm requires to select the best 50% of individuals from

the two populations. In this case the selection is performed through the tournament selection

operator.

Algorithm 9 outlines the pseudo-code of the NSGA-II enhanced with the proposed di-

versity preserving mechanism, we refer to this algorithm as SVD-NSGA-II. The algorithm

starts by generating a randomly and uniformly distributed population Pt. Then, the main

loop of the SVD-GA algorithm first includes k iterations of the original GA, i.e. lines 7-8.

During these k iterations the usual recombination, and mutation operators are used to create

offsprings while the selection is applied by using the fast non-dominated sorting algorithm

and the crowding distance. The difference with NSGA-II is that every k generations we

apply the SVD-based preserving technique on the past and current populations Pold and Pt
respectively. The selection of the best 50% of individuals in Algorithm 9 is performed using
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the fast non-dominated sorting algorithm and the crowding distance [107]. Specifically, we

add as many individuals as possible to the set of best individuals, according to their non-

dominance ranks. If the number of best individuals is smaller than 50% of the population

size M/2, then further individuals are selected from the next dominant rank according to

the descending order of crowding distance.

6.2.4 SVD complexity

The SVD of a matrix P is typically computed in two steps [322]. In the first step, the matrix is

reduced to a bi-diagonal matrix3. The computational complexity of this

step is O(m · n2), assuming that m > n. In the second step, an iterative method is ap-

plied to compute the SVD of the bi-diagonal matrix. This method requires O(n) iterations,

where each iteration has a complexity of O(n). Thus, the overall cost of SVD is O(m · n2)

[328].

SVD is a factorization of a real or complex matrix, with many useful applications in

different fields. In numerical analysis, the SVD provides a measure of the effective rank of a

given matrix [322], while in statistics and time series analysis, the SVD is particularly useful

tool for finding least-squares solutions and approximations [329]. The properties of SVD can

be successfully used in image processing for compression and noise reduction [330], as well

as in Information Retrieval to deal with linguistic ambiguity issues [78].

SVD has also been employed for characterizing protein molecular dynamics trajectories

[331]. Similar to this work, we propose to integrate SVD in a GA to (i) estimate the evo-

lution direction of a population and (ii) add to the population individuals with different

characteristics, allowing the GA to explore many search sub-spaces in parallel.

6.3 Empirical study on single-objective GAs

This section reports the design and results of the numerical experiments we conducted to

analyze the benefits of SVD-GA for single-objective problems. Specifically, we compared

SVD-GA with the single-objective GA and with the Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [326, 327]. The implementation of all the algorithms is based on the

MATLAB’s Global Optimization Toolbox [261]. SVD-GA is implemented by customizing

the MATLAB’s routine ga while the singular value decomposition is computed by using the

routine svd. For the evolution strategy we use the MATLAB implementation of CMA-ES4,

restarted with increasing population size [332].

The three algorithms have been experimented on 8 multimodal and 7 unimodal bench-

mark functions [333, 334, 335, 22] reported in Table 6.1. For some of them the Matlab

implementation is available online5. Functions f1 − f8 are multimodal functions where the

3A bi-diagonal matrix is a matrix with non-zero entries along the main diagonal and either the diagonal
above or the diagonal below.

4http://www.lri.fr/∼hansen/cec2005.html
5http://www.maths.uq.edu.au/CEToolBox/node3.html
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Table 6.1: Single-objective test functions used in our numerical experiment. The functions
f7, f8, f9, f14, f15 come from CEC 2008 Special Session [22].

Test Function n Solution Space fmin
Rastrigin’s function 50 [−5.12; 5.12]n 0
Ackley’s function 50 [−32; 32]n 0
Griewangk’s function 50 [−600; 600]n 0
Generalized penalized function 1 50 [−50; 50]n 0
Generalized penalized function 2 50 [−50; 50]n 0
Shifted Rastrigin’s function 50 [−5; 5]n -330
Shifted Ackley’s function 50 [−32; 32]n -140
Shifted Griewangk’s function 50 [−600; 600]n -180
Sphere model 50 [−100; 100]n 0
Schwefel’s Problem 2.22 50 [−10; 10]n 0
Schwefel’s Problem 2.21 50 [−100; 100]n 0
Schwefel’s Problem 1.2 50 [−100; 100]n 0
Schwefel’s sin root function 50 [−512; 512]n -418.98
Shifted Sphere model 50 [−100; 100]n -450
Shifted Schwefel’s Problem 2.21 50 [−100; 100]n -450

number of local minima increases exponentially with the problem dimension (i.e., the num-

ber of independent variables). Instead, functions f9 − f15 are high-dimensional unimodal

problems that, because of their convexity, cause poor or slow convergence of the optimiza-

tion algorithms toward a single global minimum. The functions f6 − f8 and the functions

f14 − f15 are shifted benchmark functions provided for the CEC 2008 Special Session and

Competition on Large Scale Global Optimization [22]. All the benchmark functions con-

sidered in our case study are deemed to be representative of difficult classes of problems

for many optimization algorithms (including evolutionary algorithms) [333, 334, 335]. It is

worth noting that for unimodal functions, it is more useful to analyze the convergence rates

than the final results of fitness function. Instead, for multimodal function, the final results

are much more important since they represent the ability of an optimization algorithm to

escape from local optima and moves toward (near) global optimum. For all benchmark func-

tions we set the problem dimension (n) to 50 and 100 in order to increase the difficulty in

obtaining the global optimum. Note that previous works usually set such a number to 30

optimum [333, 334, 335].

6.3.1 Data Collection and Analysis

We run the three algorithms 50 times on each test function to address their randomness

natures. Since optimal values of all the test functions are known, for each run, we stored the

best (minimum) function error values (f(x)− f∗(x)) at varying number function evaluations

(5×102, 5×103, 5×104, 5×105 respectively) similarly as done in [22]. Once all the data are

collected, we computed the descriptive statistics of the best function error values achieved in

149



Improving genetic algorithms through diversity injection

each run, i.e., median, mean, and standard deviation of the best function error values.

We also statistically compare the results achieved by SVD-GA and the other two al-

gorithms on each test functions. The statistical analysis is used to test the following null

hypothesis:

There is no difference between the error values achieved by SVD-GA and GA (or

CMA-ES) when solving the test problem fi.

where i = 1 . . . 15. To compare samples from two data sets (e.g., the best values achieved in

each run by the SVD-GA and GA) and test our hypothesis, we use the Wilcoxon Rank Sum

test [226].

In all our statistical tests we consider p-values < 0.05 as statistically significant, i.e., we

accept a 5% chance of rejecting a null hypothesis when it is true [226]. However, since three

pairwise tests are necessary (simple GA vs SVD-GA, GA vs. CMA-ES, and SVD-GA vs.

CMA-ES), we reject the null hypothesis if all p-values are smaller than 0.05
3 = 0.016, i.e., we

correct p-values using the Bonferroni correction [226].

For the experimented GAs, we adopted the following parameter settings or scheme as

done in previous studies (for example [336, 337]):

• Population size: we choose a moderate population size. Specifically, we set p = 100.

• Initial population: for each of test function the initial population is uniformly and

randomly generated within the solution spaces reported in Table 6.1.

• Selection: we used the tournament selection operator as default for the MATLAB

implementation.

• Crossover operator: we use the arithmetic crossover [261] with probability Pc = 0.60.

• Mutation operator: we use a uniform mutation operator with probability Pm = 1/n

where n is the number of independent variables such that, on an average, one variable

gets mutated per individual [337].

• Stopping criterion: if the fitness value of the best individual cannot be further

optimized in the subsequent 50 generations, then the execution of the GA is stopped.

In addition, we set the maximum number of function evaluations equals to 500,000.

• Elitism: the number of individuals in the current generation that are guaranteed to

survive to is 2.

6.3.2 Empirical Results

Table 6.2 reports the descriptive statistics of the error values achieved by GA, CMA-ES and

SVD-GA for multimodal test functions when the number of independent variables was set to

n = 50 (results obtained for n = 100 are reported in Appendix A). Comparing the perfor-

mances of SVD-GA with GA, we can note that the proposed diversity preserving technique
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Table 6.2: Function error values achieved on multimodal test functions by GA, SVD-GA,
and CMA-ES when n=50. Values shown in bold face for comparisons where the Wilcoxon
Rank Sum test indicates a statistically significant difference.

f Eval.
GA SVD-GA CMA-ES

Median Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev.

f1

5× 102 3.65e+2 3.67e+2 3.00e+1 1.45 6.83e+1 1.13e+2 1.03e+3 1.03e+3 1.29e+2
5× 103 9.82e+2 9.97e+1 1.33e+1 0 8.40 1.70e-1 3.14e+2 3.27e+2 5.43e+1
5× 104 1.44e+1 1.48e+1 3.46 0 0 0 4.98e+1 5.65e+1 2.12e+1
5× 105 2.81e-2 6.09e-1 8.17e-1 0 0 0 2.98 3.66 1.45

f2

5× 102 1.52e+1 1.51e+1 7.40e-1 3.20e-1 5.91e-1 7.47e-1 2.16e+1 2.16e+1 8.23e-2
5× 103 5.94 6.06 7.90e-1 1.51e-14 3.19e-14 4.01e-14 2.16e+1 2.16e+1 6.05e-2
5× 104 4.78e-2 5.38e-2 1.70e-2 4.44e-15 4.87e-15 3.13e-15 2.16e+1 2.16e+1 8.92e-2
5× 105 4.78e-2 5.37e-2 1.69e-2 4.44e-15 4.87e-15 3.13e-15 2.00e+1 2.07e+1 8.04e-1

f3

5× 102 1.38e+2 1.40e+2 2.84e+1 2.06e-1 3.78e-1 3.44e-1 6.40e+2 6.36e+2 1.67e+2
5× 103 4.62 4.94 1.34 0 0 0 2.73e-3 3.36e-3 3.54e-3
5× 104 3.56e-2 3.79e-2 1.17e-2 0 0 0 4.44e-16 4.79e-16 3.11e-16
5× 105 1.25e-4 5.89e-3 6.77e-3 0 0 0 3.33e-16 3.64e-16 2.55e-16

f4

5× 102 2.67e+6 3.25e+6 2.12e+6 7.02e-1 7.46e-1 1.73e-1 1.28e+1 6.66e+5 3.24e+6
5× 103 1.15e+1 1.17e+1 3.80 1.52e-3 1.69e-3 6.49e-4 7.61 2.60e+1 9.03e+1
5× 104 1.07e-4 5.35e-4 1.49e-3 1.95e-23 2.90e-23 2.34e-23 1.18e-5 9.95e-1 1.48
5× 105 6.20e-8 6.05e-8 2.06e-8 9.42e-33 9.42e-33 1.40e-48 3.15e-17 2.34e-16 6.34e-16

f5

5× 102 1.38e+7 1.68e+7 1.18e+7 5.88 6.09 1.32 4.54e+1 4.68e+5 1.41e+6
5× 103 1.06e+2 1.58e+2 2.39e+2 9.29e-2 9.41e-2 4.06e-2 4.20e-1 1.09e+5 3.79e+5
5× 104 1.61e-3 3.14e-3 3.77e-3 7.05e-22 1.35e-21 2.44e-21 6.16e-7 3.17e-3 7.22-3
5× 105 2.15e-6 2.29e-6 1.32e-6 1.35e-32 1.35e-32 5.59e-48 1.21e-17 4.32e-17 9.80e-17

f6

5× 102 6.48e+2 6.50e+2 4.43e+1 6.40e+2 6.42e+2 4.07e+1 9.80e+2 9.88e+2 1.28e+2
5× 103 1.53e+2 1.55e+2 2.36e+1 1.03e+2 1.05e+2 1.72e+1 3.50e+2 3.59e+2 6.43e+1
5× 104 1.07e+1 1.09e+1 2.58 9.99e-1 9.79e-1 8.90-1 7.06e+1 6.79e+1 1.98e+1
5× 105 1.90e-3 2.92e-1 5.35e-1 6.12e-8 1.17e-7 1.69e-7 3.98 3.93 1.97

f7

5× 102 2.00e+1 2.00e+1 2.64e-1 2.01e+1 2.00e+1 8.58 2.16e+1 2.16e+1 7.30e-2
5× 103 8.15 8.15 9.23e-1 8.22 8.18 1.70e+1 2.16e+1 2.16e+1 6.31e-2
5× 104 3.34e-1 6.01e-1 5.33e-1 4.86e-3 4.94e-3 5.70e+1 2.16e+1 2.14e+1 4.42e-1
5× 105 2.57e-3 2.71e-3 6.52e-4 2.91e-5 2.83e-5 0 2.00e+1 2.06e+1 7.73e-1

f8

5× 102 6.93e+2 7.06e+2 8.95e+1 9.93e-1 8.29e-1 3.89e-1 6.33e+2 7.00e+2 3.13e+2
5× 103 1.28e+1 1.31e+1 3.44 0 1.36e-14 2.03e-14 1.87e-3 3.17e-3 4.14e-3
5× 104 8.86e-2 9.65e-2 2.98e-2 0 3.41e-15 9.43e-15 2.84e-14 2.84e-14 0
5× 105 4.15e-4 6.07e-3 8.37e-3 0 0 0 0 0 0

turns out to be very useful for multimodal problems having many local optima. Indeed,

the results show that SVD-GA provides error values that are several orders of magnitude

lower than those obtained by the standard GA, demonstrating a better ability to explore

the search space with notable lower probability to be trapped in local optima. Moreover,

SVD-GA also demonstrates its superiority over CMA-ES. Indeed, on 7 out of 8 multi-modal

functions, SVD-GA achieved a median/mean error value several order of magnitude better

the those achieved with CMA-ES. Particularly interesting is the difference—in terms of error

values—between SVD-GA and CMA-ES for the Ackley’s function (f2) and its shifted version

f7 with global optimum on bounds. Such a function has an exponential number of local

minima and only one global optimum. For all the independent runs, CMA-ES was trapped

in a local optimum (with f(x) ≈ 21) after few function evaluations. Even if the algorithm

was restarted with an incremental population size, it still quickly converged toward the same
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Table 6.3: Function error values achieved on unimodal test functions by GA, SVD-GA, and
CMA-ES when n=50. Values shown in bold face for comparisons where the Wilcoxon Rank
Sum test indicates a statistically significant difference.

f Eval.
GA SVD-GA CMA-ES

Median Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev.

f9

5× 102 1.45e+4 1.48e+4 2.84e+3 8.52e-1 3.39 5.33 6.28e+4 6.65e+4 2.41e+4
5× 103 3.84e+2 4.00e+2 1.11e+2 2.88e-24 1.87e-22 5.47e-22 1.04e-4 1.68e-4 1.39e-4
5× 104 1.88e-2 1.94e-2 5.11e-3 1.24e-156 3.35e-147 1.29e-146 5.49e-16 5.86e-16 1.87e-16
5× 105 3.82e-5 4.29e-5 1.30e-5 0 0 0 5.30e-16 5.62e-16 1.85e-16

f10

5× 102 7.14e+1 7.05e+1 7.18 1.07 1.39 3.27e-1 4.80e+41 3.51e+46 1.27e+47
5× 103 9.85 9.33 2.07 1.77e-12 4.10e-11 6.35e-12 3.25e+32 6.33e+43 2.45e+44
5× 104 7.27e-2 7.57e-2 1.25e-2 1.00e-75 6.24e-71 1.82e-75 9.98e+2 9.99e+2 2.32e+2
5× 105 4.47e-3 4.42e-3 1.32e-3 8.79e-256 3.64e-253 0 7.76e-11 8.40e-11 1.97e-11

f11

5× 102 2.82e+4 3.02e+4 9.73e+3 4.91e+2 1.03e+4 2.10e+4 1.58e+1 6.02e+1 1.01e+2
5× 103 6.52e+3 6.88e+3 2.11e+3 3.58e-2 1.34e+1 4.17e+1 3.27 1.01e+1 1.84e+1
5× 104 2.43e+2 2.64e+2 7.48e+1 2.58e-38 8.91e-28 4.42e-27 8.59e-8 1.18e-3 3.70e-3
5× 105 3.33 3.52 1.15 7.92e-157 1.49e-133 7.33e-133 4.20e-17 4.21e-17 5.53e-17

f12

5× 102 4.22e+1 4.22e+1 4.62 6.91e-1 1.24 1.80 2.63e+2 2.70e+2 4.34e+1
5× 103 2.54e+1 2.56e+1 3.87 3.56e-10 5.69e-4 2.03e-3 5.84e+1 6.42e+1 3.06e+1
5× 104 2.23 2.42 5.69e-1 4.12e-34 1.48e-15 7.40e-15 1.98e-1 3.14e-1 2.63e-1
5× 105 9.04e-2 9.31e-2 2.09e-2 2.30e-76 1.02e-39 5.10e-39 1.66e-2 3.43e-2 7.02e-2

f13

5× 102 2.65e+2 2.64e+2 1.69e+1 2.61e+2 2.61e+2 1.51e+1 5.08e+3 5.48e+3 2.90e+3
5× 103 8.35e+1 8.48e+1 1.30e+1 6.28e+1 6.22e+1 8.64 3.00e+2 3.02e+2 1.03e+1
5× 104 1.41e-1 9.82e-1 1.52 9.09e-13 1.78e-12 3.22e-12 2.96e+2 2.96e+2 6.83
5× 105 5.15e-5 5.28e-5 2.20e-5 7.39e-13 6.91e-13 9.24e-14 2.97e+2 2.97e+2 4.24

f14

5× 102 9.05e+4 8.93e+4 7.89e+3 8.55e+4 8.68e+4 1.14e+4 7.73e+4 8.66e+4 3.31e+4
5× 103 1.31e+3 1.37e+3 2.89e+2 6.04e+2 6.48e+2 2.08e+2 1.50e-4 2.10e-4 1.92e-4
5× 104 7.78e-2 8.39e-2 2.70e-2 4.61e-4 4.70e-4 2.29e-4 5.68e-14 5.91e-14 1.14e-14
5× 105 1.84e-4 1.91e-4 4.85e-5 2.84e-8 3.06e-8 1.44e-8 0 0 0

f15

5× 102 3.34e+6 4.20e+6 2.97e+6 9.92e+5 1.79e+6 1.74e+6 3.06e+1 1.04e+2 2.24e+2
5× 103 2.63e+4 2.70e+4 6.11e+3 2.51e+4 2.54e+4 6.73e+3 1.53e+1 2.39e+2 8.12e+2
5× 104 1.22e+3 1.35e+3 4.01e+2 5.25e+2 5.60e+2 1.38e+2 7.47e-9 2.08e-4 1.00e-3
5× 105 2.18e+1 2.45e+1 9.09 9.26e-1 1.07 4.74e-1 0 0 0

local optimum. Similarly, GA was trapped in a local optimum (with f(x) ≈ 4.78 ·10−2) after

several function evaluations. Differently from the other algorithms, SVD-GA is able to cross

the valley among the local optima and reaches near optimal solutions. A similar scenario

occurs with the Rastrigin’s function (f1 and its shifted version f6), which is a non-linear

multimodal function. Also in this case CMA-ES turned out to be unable to converge to the

global optimum, being trapped in a local optimum (in this case the restarting strategy with

incremental population is still inefficacious), while SVD-GA achieved near-optimal solutions.

Thus, from the comparison of all the algorithms, SVD-GA is the best one (consistent results

have been also obtained with n = 100 as reported in Appendix A).

Table 6.3 shows the descriptive statistics of the error values achieved by GA, CMA-

ES, and SVD-GA for unimodal test functions (functions f9 − f15) when the number of

independent variables was set to n = 50. We can observe that SVD-GA achieves error

values that are several orders of magnitude lower than those obtained by GA with the same

number of function evaluations. A particular case is represented by the function f12, that is

a convex unimodal function. For such a function, the convergence speed of GA is very low.

In particular, after 104 function evaluations, the mean error value achieved by SVD-GA is
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lower than 10−2, while GA provides mean error values greater than 30. Comparing CMA-

ES and SVD-GA, the achieved results reveals that there is no a clear winner among them.

For functions f9-f13 SVD-GA obtains better performances when the number of function

evaluations is high. Similar considerations can done for other functions—such as f10 and

f13. Vice versa, for the functions f14 and f15, the winner algorithm is CMA-ES, that is

able to converge towards the unique global optimum. In addition, CMA-ES is much faster

than SVD-GA. This is not surprising, since for CMA-ES the adaptation follows a natural

gradient approximation of the expected fitness [326, 327], while SVD-GA does not use any

approximation of it. However, for unimodal functions SVD-GA demonstrated to be able to

compete with CMA-ES, and to be sometimes faster than it. Consistent results have been

also obtained with n = 100 as reported in Appendix A.

In summary, SVD-GA is able to significantly improve both convergence speed and opti-

mality of GA for both multimodal and unimodal functions. Moreover, SVD-GA outperforms

the restarted CMA-ES with increasing population for multimodal functions, demonstrating

its ability to escape from local optima, because of the diversity introduced by orthogonal sub-

populations. Finally, SVD-GA turned out to be competitive with CMA-ES for highly convex

unimodal functions.

6.4 Empirical study on MOGAs

For the multi-objective problems, we compared the multi-objective SVD-NSGA-II with the

NSGA-II as defined by Deb et al. [107]. The implementation of all the algorithms is based on

the MATLAB’s Global Optimization Toolbox [261]. For the NSGA-II algorithm, we used the

routine gamultiobj, while parameter values (see sub-section 6.4.2) are set using gaoptimset.

Also, the multi-objective SVD-NSGA-II is implemented in MATLAB by customizing the

routine gamultiobj.

For the numerical experimentation, we selected 7 two-objectives and 8 three-objectives

benchmark problems reported in Tables 6.4 and 6.5, respectively. Problems MOP1 and

MOP2 are well-known two-objective problems introduced by Schaffer [143] and by Fonseca

[338]. Since the optimum x∗ for the first objective f1 is not the optimum for the second ob-

jective f2 and vice versa, the Pareto optimal set consists of more than one solution, including

the solution that minimize each objective individually. Functions S ZDT1, S ZDT2, S ZDT4

and S ZDT6 are shifted benchmark functions of the well-known test suite ZDT [339] pro-

vided for the CEC 2007 Special Session and Competition on Real Parameter Multi-objective

Optimization [340]. For these problems, the global optimum has different parameter values

for different variables/dimensions and the global optimum is not located in the centre of the

search space (i.e., the problems are not symmetric). Since from the competition there is

no shifted formulation of the ZDT3 problem, we used its traditional formulation [339]. In

addition, since all the selected benchmark problems are scalable to any number of decision

variables, we set the problem dimension (n) to 50 and 100 in order to evaluate the perfor-

mance of the different algorithms with increasing difficulty in converging to the real Pareto
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Table 6.4: Two-objectives test problems used in our numerical experiment. The number of
variables is n = 50, 100.

Test Function Solution Space
Schaffer’s Problem (MOP1) [−105; 105]
Fonseca Problem (MOP2) [−2; 2]
Shifted ZDT1 ref. [340]
Shifted ZDT2 ref. [340]
ZDT3 [0; 1]2

Shifted ZDT4 ref. [340]
Shifted ZDT6 ref. [340]

Table 6.5: Three-objectives test problems used in our numerical experiment.

Test Function N. Variables Solution Space
DTLZ1 10, 20 [0; 1]n

DTLZ2 50, 100 [0; 1]2 × [−100; 100]n−2

DTLZ3 10, 20 [0; 1]n

DTLZ4 50, 100 [0; 1]2 × [−10; 10]n−2

DTLZ6 50, 100 [0; 1]2 × [0; 10]n−2

front.

The three-objectives problems, DTLZ1-DTLZ4 and DTLZ6 are selected from the DTLZ [341]

test suite. Such problems are widely adopted to test the ability of evolutionary algorithms to

control both (i) the convergence speed toward the true Pareto-optimal front and (ii) main-

taining a widely distributed set of solutions. For all problems, we used the three-objective

formulations and two different problem dimensions as reported in Table 6.5.

6.4.1 Data Collection and Analysis

To analyse the performance of the various algorithms we used the Inverse Generational

Distance (IGD) metric. Formally, let P ∗ be the optimal Pareto front, and let P be the

approximation of the optimal Pareto front obtained by an evolutionary algorithm, the IGD

measure can be defined as follows:

IGD(P, P ∗) =

∑
v∈P∗ dist(v, P )

| P ∗ |

where dist(v, P ) denote the minimum Euclidian distance between the optimal point v ∈ P ∗
and the approximated front P . In this way, the IGD is able to measure both convergence

(proximity to the optimal/real Pareto front) and diversity of the approximated front P . We

run the two experimented algorithms (i.e., NSGA-II and SVD-NSGA-II) 50 times on each

test function. For each run, we stored the IGD values achieved after 5×102, 5×103, 5×104,

5 × 105 functions evaluations, as done in [22]. Once collected all data, we computed the
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descriptive statistics (i.e., median, mean, and standard deviation) of the IGD values achieved

in each run. The IGD metric can be easily computed since for all the objective functions the

true optimal is known a priori. However, since the Pareto optimal front contain an infinite

number of solutions, we approximated the fronts by selecting a finite number of solutions

uniformly distributed along the corresponding front. For functions S ZDT1-S ZDT6 we used

the Pareto frontier provided by Huang [340], while for MOP1 and MOP2 we approximated

the real Pareto frontiers with 200 distinct solutions uniformly distributed along the fronts.

Finally, since the DTLZ problems have three objectives to be optimized, we approximated

the corresponding true Pareto fronts with 1,000 distinct uniformly-distributed solutions.

We also statistically compare the results achieved by SVD-NSGA-II and NSGA-II on

each test functions. The statistical analysis is used to test the following null hypothesis:

There is no difference between the best values achieved by SVD-NSGA-II and

NSGA-II when solving the test problem f .

To statistically compare the IGD values obtained by the two algorithms and to test our

hypotheses, we use the Wilcoxon Rank Sum test [226]. In all our statistical tests we consider

p-values < 0.05 as statistically significant, i.e., we accept a 5% chance of rejecting a null

hypothesis when it is true [226].

6.4.2 GA Parameter Settings

For both NSGA-II and SVG-NSGA-II we adopted the following parameter settings or scheme

as done in previous studies (for example [107, 337]):

• Population size: we choose a large population size P = 200 since we are interested

in achieving a wide set of Pareto optimal solutions.

• Initial population: for each test problem, the initial population is uniformly and

randomly generated within the solution spaces reported in Table 6.4.

• Selection: we used the tournament selection operator with tournament size equals to

2 as default for the MATLAB implementation of NSGA-II.

• Crossover operator: we use the arithmetic crossover [261] with probability Pc = 0.60.

• Mutation operator: we use a uniform mutation operator with probability Pm = 1/n

where n is the number of independent variables [107].

• Stopping criterion: if the average spread of non-dominated solutions cannot be

further optimized in the subsequent 50 generations, then the execution of the GA is

stopped [261].

• Pareto fraction: the percentage of solutions used for approximating the Pareto front

(the set of non dominated solutions at each generation) was set to Pf = 0.5.
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Table 6.6: IGD values achieved by SVD-NSGA-II and NSGA-II for n=50. Values shown
in bold face for comparisons where the Wilcoxon Rank Sum test indicates a statistically
significant difference.

f Func. Eval.
NSGA-II SVD-GA

Median Mean St. Dev. Median Mean St. Dev

MOP1

2 · 105 2.80e+3 6.54e+4 1.20e+5 1.28e-1 1.42e-1 3.99e-2
3 · 105 2.80e+3 6.54e+4 1.20e+5 1.04e-1 1.04e-1 4.18e-3
4 · 105 2.79e+3 6.54e+4 1.20e+5 1.01e-1 1.01e-1 5.77e-3
5 · 105 2.78e+3 6.54e+5 1.20e+5 9.64-1 9.66e-2 8.23e-3

MOP2

2 · 105 5.83e-1 5.54e-1 9.28e-2 5.23e-2 5.36-2 3.67e-3
3 · 105 5.56e-1 5.09e-1 1.08e-1 4.60e-2 4.66e-2 1.87e-3
4 · 105 5.10e-1 4.58e-1 1.12e-1 4.60e-2 4.59e-2 1.50e-3
5 · 105 4.57e-1 4.08e-1 1.13e-1 4.52e-2 4.47e-2 1.91e-3

Shifted ZDT1

2 · 105 3.10e-2 3.59e-2 1.58e-2 1.39e-2 1.50e-2 5.24e-2
3 · 105 2.153-2 2.54e-2 1.25e-2 7.67e-3 7.89e-3 9.49e-4
4 · 105 1.923-2 2.30e-2 1.16e-2 6.88e-3 6.88e-3 3.65e-4
5 · 105 1.813-2 2.20e-2 1.14e-2 4.21e-3 4.39e-3 4.70e-4

Shifted ZDT2

2 · 105 2.54e-1 3.14e-1 2.64e-1 1.91e-2 2.47e-2 1.45e-2
3 · 105 2.38e-1 3.04e-1 2.69e-1 9.43e-3 1.00e-3 2.13e-3
4 · 105 2.36e-1 3.02e-1 2.70e-1 7.47e-3 7.70e-3 8.42e-4
5 · 105 2.35e-1 3.02e-1 2.71e-1 5.03e-3 5.21e-3 8.04e-4

ZDT3

2 · 105 2.17e-2 2.59e-2 1.17e-2 1.15e-3 1.13e-3 2.40e-4
3 · 105 1.76e-2 2.21e-2 1.08e-2 1.07e-3 1.07e-3 1.83e-4
4 · 105 1.68e-2 2.11e-2 1.06e-2 1.06e-3 1.05e-3 1.81e-4
5 · 105 1.65e-2 2.07e-2 1.04e-2 1.06e-3 1.02e-3 1.58e-4

Shifted ZDT4

2 · 105 6.93e+1 7.47e+1 1.14e+1 4.46e+1 5.86e+1 4.82e+1
3 · 105 3.87e+1 4.02e+1 1.01e+1 1.24e+1 2.82e+1 6.55e+1
4 · 105 2.46e+1 2.39e+1 6.64e 5.32 6.51 3.92
5 · 105 1.85e+1 1.93e+1 4.45 1.88 2.79 2.24

Shifted ZDT6

2 · 105 1.29e-1 1.70e-1 1.52e-1 6.79e-2 7.30e-2 2.24e-2
3 · 105 4.67e-2 1.08e-1 1.33e-1 1.51e-2 1.57e-2 2.61e-3
4 · 105 3.13e-2 9.84e-2 1.34e-1 1.03e-2 1.03e-2 9.12e-4
5 · 105 3.12e-2 9.77e-2 1.35e-1 8.83e-3 8.91e-3 5.22e-4

6.4.3 Empirical Results

Table 6.6 reports mean, median and standard deviation of the IGD metrics achieved using

NSGA-II and multi-objective SVD-NSGA-II for the two-objective test problems with problem

size n = 50 (the results for n = 100 are reported in Appendix A). From the analysis of the

results, we can note that SVD-NSGA-II is able to converge faster toward the real Pareto

fronts for all the two-objective problems. Indeed, median, mean and standard deviation of

IGD values achieved by SVD-NSGA-II are always smaller than those of NSGA-II. Moreover,

the Wilcoxon rank sum test reveals that such differences are statistically significant.

To provide a visual comparison, we also show examples of simulation results when using

NSGA-II and SVD-NSGA-II for some of the two-objective test problems. Figure 6.2-a shows

the non-dominated solutions obtained by the two algorithms after 5 · 105 function evaluation

on the MOP1 test problem. Such a problem has a huge search space, while the Pareto

optimal front is located in a small region of the whole search space. This problem is usually

used for measuring the speed of an evolutionary algorithm to converge to the Pareto optimal
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(b) MOP2 problem when n = 50

Figure 6.2: NSGA-II vs. SVD-NSGA-II on MOP test functions

front. The Figure clearly demonstrates the abilities of SVD-NSGA-II in converging to the

true front, while NSGA-II is quite far from the Pareto-optimal region. Figure 6.2-b shows

the non-dominated solutions obtained by the two algorithms, as well as the corresponding

Pareto optimal front, for the MOP2 problem. This problem has a single non-convex Pareto-

optimal front with a large and non-linear trade-off curve, which poses challenge to find and

maintain the entire front uniformly distributed. SVD-NSGA-II is better than NSGA-II in

terms of convergence and distribution of the solutions, demonstrating to be less affected by

the exponential factor of the two objectives, which increases the difficulty to converge toward

the real Pareto front.

Figure 6.3-a shows the Pareto fronts obtained by the two algorithms on the shifted SZDT1

test problem. As we can see, NSGA-II was not able to maintain enough diversified non-

dominated solutions in the final population and the distribution of the solutions is worst if

compared to that obtained in the final population of SVD-NSGA-II. Figure 6.3-b shows the

results achieved on the shifted ZDT2 test problem, which has a non-convex optimal Pareto

front. We can observe that SVD-NSGA-II produced a front of solutions very close to the

optimal fronts, while NSGA-II provides only one non-dominated solution. The ZDT3 problem

is interesting because it has five discontinuous regions in the Pareto-optimal front. Figure 6.3-

c shows all non-dominated solutions obtained after 5 ·105 function evaluations with NSGA-II

and SVD-NSGA-II when n = 50. From a distribution point of view, there is no difference

between the two algorithms: solutions are well distributed for both algorithms. However, the

solutions of SVD-NSGA-II are closer to the Pareto optimal front than the ones obtained by

NSGA-II. The problem ZDT4 (see Figure 6.3-d) has an exponential number of different local

Pareto-optimal fronts in the search space, and only one among them corresponds to the real

Pareto front. On this problem, both NSGA-II and SVD-NSGA-II get stuck at different local

Pareto-optimal sets, but the convergence and the ability to find a diverse set of solutions

are definitely better with SVD-NSGA-II. Finally, Figure 6.3-e shows that SVD-NSGA-II—
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(c) ZDT3 test problem when n = 50
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(e) Shifted ZDT6 test problem when n = 50

Figure 6.3: NSGA-II vs. SVD-NSGA-II on shifted ZDT6 when n = 50.

compared to NSGA-II—is able to achieve a better distributed set of non-dominated solutions

for ZDT6.
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Table 6.7: IGD values achieved by SVD-NSGA-II and NSGA-II on the DTLZ test suite.
Values are shown in bold face for comparisons where the Wilcoxon Rank Sum test indicates
a statistically significant difference.

f n Func. Eval.
NSGA-II SVD-NSGA-II

Median Mean St. Dev. Median Mean St. Dev

DTLZ1 10

2 · 105 9.52e+2 9.17e+2 2.11e+2 2.56 2.61 6.24e-1
3 · 105 7.14e+2 7.11e+2 1.94e+2 1.34 1.27 4.19e-1
4 · 105 5.36e+2 6.24e+2 2.20e+2 5.15e-1 5.90e-1 3.26e-1
5 · 105 4.96e+2 5.26e+2 1.80e+2 1.40e-1 1.83e-1 1.73e-1

DTLZ2 50

2 · 105 6.63e+1 1.08e+2 1.21e+2 7.25e-2 7.36e-2 3.26e-3
3 · 105 4.01 5.82 4.27 7.12e-2 7.22e-2 3.71e-3
4 · 105 5.84e-1 6.50e-1 3.26e-1 7.05e-2 7.10e-2 2.38e-3
5 · 105 1.42e-1 1.71e-1 6.21e-2 5.45e-2 5.79e-2 7.70e-3

DTLZ3 10

2 · 105 7.36e+2 7.39e+2 5.96e+1 5.41 5.39 1.42
3 · 105 6.14e+2 6.24e+2 3.95e+1 2.83 3.00 1.07
4 · 105 5.35e+2 5.37e+2 5.37e+1 1.22 1.37 5.75e-1
5 · 105 4.84e+2 4.82e+2 4.74e+1 5.26e-1 6.08e-1 4.89e-1

DTLZ4 50

2 · 105 6.99 9.17 7.18 6.71e-2 6.70e-2 2.05e-3
3 · 105 5.74 7.55 6.88 6.78e-2 6.77e-2 2.24e-3
4 · 105 4.13 6.37 6.73 6.59e-2 6.65e-2 3.29e-3
5 · 105 2.77 5.46 6.54 5.03e-2 5.27e-2 6.05e-3

DTLZ6 50

2 · 105 1.25e+1 1.22e+1 2.06 8.54e-2 3.82e-1 3.85e-1
3 · 105 8.41 8.27 1.91 8.40e-2 3.82e-1 3.83e-1
4 · 105 6.34 6.46 1.76 8.13e-2 3.81e-1 3.84e-1
5 · 105 5.45 5.51 1.70 7.00e-2 3.56e-1 3.93e-1

Table 6.7 reports mean, median and standard deviation of the IGD metrics achieved using

NSGA-II and SVD-NSGA-II for the three-objectives test problems. The results are also

collected at varying function evaluation thresholds. We can observe that, also for the three-

objective problems, SVD-NSGA-II outperforms NSGA-II. Indeed, the median and mean

IGD values (and the corresponding standard deviation values) achieved by SVD-NSGA-II

are always smaller than those obtained by NSGA-II. To provide a visual comparison, we

also show examples of simulation results when using NSGA-II and SVD-NSGA-II for some

of the three-objective test problems (complete results are reported in Appendix A). All the

considered problems have different peculiarities, since they have been designed for testing

different abilities of evolutionary algorithms [341], such as convergence speed and distribution

of non-dominated solutions.

Figure 6.4 shows the set of non-dominated solutions obtained after 5 ·105 function evalua-

tions using NSGA-II and SVD-NSGA-II for the DTLZ1 problem with n = 10. The difficulty

in this problem is to converge to the real Pareto front because the search space contains(
118 − 1

)
sub-optimal fronts. The figure shows that NSGA-II is able to maintain solutions

that are uniformly distributed in decision search space but very far from the optimal front

which is really smaller (it is the black point near the origin of axis). Instead, SVD-NSGA-II is

able to obtain uniformly distributed solutions near to the real Pareto front. Similar analysis
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Figure 6.4: NSGA-II vs. SVD-NSGA-II on DTLZ1 and DTLZ2 when n = 10.

can be performed for all the other three-objective problems as shown by the results reported

in Figures 6.4, and 6.5. Particularly interesting is the DTLZ6 test problem because it has

four disconnected Pareto-optimal regions in the search space and it was designed for testing

the ability of MOGAs to maintain sub-populations in different Pareto-optimal regions. For

such a problem SVD-NSGA-II reached a set of solutions close to the Pareto optimal front

and such a solution are well distributed in all the four disconnected Pareto-optimal regions.

Instead, NSGA-II provided solutions that are far from the optimal front and cover only two

out of four disconnected Pareto-optimal regions.

In summary, SVD-NSGA-II is able to achieve significantly improved convergence speed

and distribution of the solution with respect to NSGA-II for both two-objectives and three-

objectives test problems.
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Figure 6.5: NSGA-II vs. SVD-NSGA-II on DTLZ3, DTLZ4 and DTLZ6 when n = 50.

6.5 Conclusion

This Chapter presents SVD-GA and SVD-NSGA-II, i.e. a single-objective GA and NSGA-II

extended with a novel diversity-preserving technique based on Singular Value Decomposi-
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tion (SVD). In SVD-GA and SVD-NSGA-II, SVD is used to estimate the current evolution

directions of a population across different generations and to promote the exploration of

unexplored regions by creating new individuals with orthogonal evolution directions.

The effectiveness of SVD-GA has been evaluated by solving 15 single-objective benchmark

test problems with varying problem dimensions, while the effectiveness of SVD-NSGA-II has

been evaluated by solving 12 multi-objective benchmark test problems with varying problem

dimensions. The results achieved on two empirical studies indicate the superiority of the

proposed algorithms if compared to their original versions.

After the preliminarily evaluation performed in this Chapter, the usefulness of SVD-GA

will be further investigate in the context of evolutionary test data generation in Chapter 7.

While SVD-NSGA-II will be furthermore investigated in the context of multi-objective test

suite optimization in Chapter 8.
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7.1 Introduction

The application of search-based techniques for automated test case generation has received

considerable attention in recent years from the testing community. As a result, a large

body of research works has been reported where different meta-heuristic techniques have

been applied to address the problem of test data generation [45]. Evolutionary techniques

in particular, and specifically GA, have been intensively investigated for the purpose of

structural testing [47, 142, 28, 21]. In evolutionary test case generation [21], candidate

test cases are encoded into a population of individuals (solutions). These individuals are

then evaluated by executing them against the System Under Test (SUT) and their fitness

(goodness) is measured with respect to a given criterion, e.g., branch coverage. Evolutionary

operators such as selection, crossover and mutation are then used to evolve a new generation

of individuals with better qualities than their parents. The process is repeated for several

generations either until the criterion is satisfied or the fixed search budget is finished.

Various aspects of evolutionary test data generation, such as selection methods, crossover

and mutation operators, fitness evaluation schemes, etc., have been studied in the literature

[45], while the problem of genetic drift has been discussed as an issue related with GAs in

general [7, 91]. Previous work treated the problems of diversity considering simple heuristics

promoting diversity between individuals within the same generation [92, 93]. Hence, new

offsprings might explore regions that have been explored in previous generations while new

potential regions can still remain unexplored, increasing the likelihood to reach sub-optimal

solutions. To address this issue this Chapter investigates the usage of further diversity pre-

serving mechanism to prevent the problem of loss of diversity. Specifically, the goal of this

Chapter is to evaluate the SVD-GA algorithm proposed in Chapter 6 in the context of evo-

lutionary test data generation. Such an algorithm —through the estimation of the evolution

directions via Singular Value Decomposition (SVD)— is able to augment the population di-

versity, by periodically introducing new individuals with orthogonal (unexplored) evolution

directions.

This chapter gives the following contributions:

1. For the first time, the SVD-based GA is applied to the problem of test case generation,

addressing the problem of stagnation during the search process for test input data. To

the best of our knowledge, it is the first attempt to explicitly address the genetic drift

problem in evolutionary testing.

2. It introduces three variants of SVD-based GA in order to further improve the process

of injecting diversity over the basic SVD-GA proposed in Chapter 6.

3. It describes the implementation of these three variants of SVD-GA. The implementation

is actually available as an extension of the search based testing tool EvoSuite.

4. The evaluation is performed on 17 non-trivial publicly available programs extracted

from well-known libraries. The achieved results show that with the appropriate appli-

cation of diversification techniques, the effectiveness and efficiency of GAs in structural
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Nodes Instructions

s example2(int a, int b)

{

1 if (a == b)

{

2 if (b == 2)

{

3 // target statement

}

}
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Figure 7.1: Objective function landscape by Wegener et al. [21] for the program example1.

test data generation can be greatly improved. In particular, effectiveness (coverage) was

significantly improved in 47% of the subjects and efficiency (search budget consumed)

was improved in 85% of the subjects on which effectiveness remains the same.

Sections 7.2 and 7.3 present the proposed diversification techniques and their implemen-

tation, respectively. Sections 7.4 and 7.5 present the design and the results achieved in our

empirical study, while the discussion of the threats that could affect the results achieved

is reported in Section 7.6. Finally, Section 7.7 points out future works and concludes the

Chapter.

7.2 Diversifying the Exploration

The problem of loss of diversity is particularly critical for hard-to-cover branches, for which

there are only few values, which allow to traverse the hard branches within the space of all

possible input value (large search space but relative small optimal space). For example, let

us to consider the simple program shown in Figure 7.1-a. The goal is to execute the true

branch of the branching node 2, whose branch predicate is (b == 2). Unless both a and

b are equal to 2 the objective function computed using the combination of approach level

end branch distance is greater than zero. As we can see from the corresponding objective

landscape shown in Figure 7.1-b, the objective function contains many local optima and it

does not provide any guidance to GAs toward the global optimum (a=b=2) because the fitness

landscape around it is flat.

Aside from problems of local optima and plateaux appearing in the objective function

landscape, the branch distance in some case might guide the search far from the search

region containing the global optimum. Let us to consider for example the program shown in

Figure 7.2-a. and suppose we want to test the node 5 (i.e., the true branch of the branching

node 4), whose branch predicate is b == 0. Unless a is equal to zero, the objective function

computed using the combination of approach level and branch distance is greater than zero.
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Nodes Instructions

s example2(int a)

{

1 if (a == 0)

2 b=0;

else

3 b=1/a

4 if (b==0)

5 // target statement

}

Figure 7.2: Objective function landscape by Wegener et al. [21] for the program example2.

Moreover, the objective function guides the search away from b=0 because increasing values

of a will decrease values of b but also will guide the search far from the global optimum that

is reached when a=0. A further problem can occur in evolutionary test data generation with

nested branch conditions, because satisfying a specific branch condition may lead to violate

one of the previous branch condition in the same path. In this cases, once input data is

found for one or more of the conditions, the chances of finding input data that also satisfy

subsequent conditions decreases [67]. This might lead to poor search performance of GAs.

In all these cases, maintaining an adequate level of diversity in the search is a key factor

for the effectiveness of a GA. Indeed, a scarcely diversified population can make the genetic

operators (crossover and mutation) unable to produce offspring outperforming their parents,

with a tendency of guiding the search toward some local optimum. Taking into account the

randomness of search space exploration introduced by the mutation and crossover operators,

in Chapter 6 we propose the usage of SVD to estimate the directions (evolution directions)

along which the best individuals in the population are evolving across different generations.

Once estimated, these directions are used for promoting the exploration of new regions

in the search space, by introducing new individuals with orthogonal evolution directions.

In Chapter 6 we also demonstrate the superiority of the resulting SVD-GA over standard

GA with distance crowding and Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) [326, 327] which is one of the fastest algorithm for numerical problems.

In this chapter, we suggest to use the same algorithm, the SVD-GA, in the context of

evolutionary test data generation. In particular, starting from its basic definition, we extend

the algorithm proposing three variants, in order to make the SVD-based GA more suitable

for the test data generation problem:

• History aware SVD-GA;

• Reactive exploration

• Combination of the two variants above.
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These extensions are motivated by the fact that the basic SVD-GA relies on the existence

of one or more “directions” of evolution across two different generations. Usually in test

data generation there are only few input vectors, which cause the coverage of hard-to-cover

branches and the fitness landscape around them is often flat. Thus, the associated lack of

variation in fitness values leaves the search with no evolution directions (or zero directions),

resulting in a high likelihood of failure to find orthogonal test data using the SVD scheme

alone. From a preliminary exploratory investigation of SVD-based GA for structural testing,

we have noticed that this case is quite common. Hence, to effectively utilize the potential

of SVD-based GA in the context of testing, we need to amend this problem. Next subsec-

tions describe the three extensions proposed in this chapter to overcome the problem of null

evolution direction.

7.2.1 Basic SVD-GA

In the basic formulation of SVD-GA, the evolution directions are estimated by comparing

the SVD decompositions of a population P before and after k generations. Formally, let

Pt and Pt+k be two different populations generated by GA at generations t and t + k,

respectively (where k is a user defined parameter). SVD is computed on both populations,

resulting in matrices that represent evolution directions and magnitudes: Pt = (Ut · Σt · Vt)
and Pt+k = (Ut+k · Σt+k · Vt+k) where V ∈ Rn×n and Σ ∈ Rm×n. The column vectors of

V represent the main directions in which the population is distributed while the diagonal

matrix Σ represents the importance of each direction in V . Computing V = Vt+k − Vt gives

a precise indication of the directions of evolution of the population, while Σ = Σt+k − Σt
indicates their magnitude. New individuals in orthogonal spaces are generated as follows1:

P ∗t+k = Ut+k · (Σt+k + Σ) ·
(
Vt+k + (V

o
)
)T

(7.1)

Once the new orthogonal individuals are generated, the worst individuals in the last gener-

ation Pt+k are replaced by these news individuals, thus, introducing diversification through

new individuals having orthogonal and potentially unexplored directions.

7.2.2 History Aware SVD-GA

Orthogonal exploration of the search space relies on the fact that there is a “direction” of

evolution in the search between the individuals in the populations at times t and t+ k. The

first extension of SVD-based GA is represented by a history aware approach, in which we

consider not only the population at generation t and t + k, but also the history of older

populations encountered during evolution. Specifically, if V , computed between Pt+k and

Pt, gives a zero matrix (i.e. the there is no evolution direction), we compute V between

population Pt+k and population Pt−k, Pt−2k, Pt−3k, . . . , until we achieve a non-zero direction

matrix or we consume the available history entirely. In other words, we propose to compute

1For further details, see Chapter 6.
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the evolution directions starting from the last generation t+k going back across the previous

generations until we reach a non-null evolution direction (or we exhaust the history). For

practical purposes, we consider a bounded history of snapshots: Pt, Pt−k, Pt−2k, . . . , Pt−hk,

with h ≥ 0 a small, user defined constant. In our empirical experiments, the value h = 10

gives reasonably good results. In the following, this approach is referred to as H-OV-GA, i.e.

History aware SVD-GA.

7.2.3 Reactive GA

Another way to ensure diversity in the exploration of the search space consists of taking a

random direction, rather than an orthogonal direction, when null evolution direction. In this

variant, we compute the evolution direction V by comparing the SVD decomposition between

Pt+k and Pt, similarly as done for the basic SVD-GA. However, differently from H-OV-GA,

if the current evolution direction is null —which happens when V = 0 holds— we consider

such a scenario as an indicator of stagnation and a random walk is taken from the actual

state by generating a random direction matrix, which is used instead of V
o

in equation 7.1.

More precisely, if V = 0 then new individuals are generated by modifying Equation 7.1 as

follows:

P ∗t+k = Ut+k · (Σt+k + Σ) · (Vt+k +Rand)T (7.2)

where Rand ∈ Rn×n is a randomly generated matrix representing a new random direction.

Otherwise, the search continues normally without any random or reactive exploration. In the

following, this approach is referred to as R-GA, i.e Reactive GA because when the stagnation

is identified through SVD, GA reacts by taking a random walk in the search space.

7.2.4 Reactive SVD-GA

While the two approaches discussed in the previous sub-sections are expected to improve

over the basic algorithm in diversifying the search, their combined effect could be even

better than either of them applied separately. Thus, we propose yet another SVD-based GA

variant which combines the history aware approach with the reactive exploration. Specifically,

we first compute the direction matrix V between the current populations Pt+k and Pt, as

previously discussed. If this direction matrix is non-zero, we compute an orthogonal matrix

V
o

and generate a new population by applying Equation 7.1. Otherwise, if the direction

matrix V is equal to zero —i.e. there is no evolution direction— we generate a random

direction matrix and generate a new population by applying Equation 7.2. In the following,

this approach is referred to as R-OV-GA.

7.3 Implementation

While the proposed orthogonal exploration approach can be applied to any numeric program,

whether it is object oriented or not, for the sake of demonstration we present the implemen-
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tation of the technique in the context of object-oriented programs. Specifically, we assume

the goal is to achieve full branch coverage of a Class Under Test (CUT).

In this chapter we consider object-oriented programs with either numeric primitive input

data (i.e., as int, double and long variables), boolean variables and arrays/matrices of

primitive types (i.e., arrays of int, double, long and boolean). We plan to extend our

approach to variable size input vectors and to non-numeric data as part of our future work.

To simplify the application of SVD-GA and its variants to object-oriented programs, we make

the assumption that any method invocation sequence necessary to prepare the class under

test for the execution of the method under test is performed inside the class constructor.

In other words, we suppose that the constructors of the class under test instantiate the

required objects and attribute before executing a method under test that requires them as

precondition. If no such constructor exists, we define one constructor just for the purposes

of testing.

Solution encoding. Let us to consider a generic class Class under test having a con-

structor Class(...) with i input parameters, and a method method(...) to be tested with

j input parameters. A candidate solution (test case) is encoded in two parts: a genotype

used to store the input data and a phenotype that store the statements of the corresponding

test case. Specifically, the genotype is a numerical vector of size n = i + j which represents

the set of numeric values that have to be generated by a GA. The phenotype is a sequence of

Java statements (instantiated with the input values stated in the genotype) that are actually

executed against the class under test via JUnit. Consequently, all test cases for the method

method are represented as vector of the same size n = i + j, while a population of m test

cases (individuals) can be represented as an m × n numerical matrix that lends itself to be

used for computing the SVD decomposition (for H-OV-GA, R-GA and OV-GA).

For a generic class C having more constructors (C1, . . . , Cs) and more methods (m1, . . . ,

mr), we first randomly select one constructor (e.g. C1) and one method (e.g. m1) from the

pool. Thus, we statically generate the corresponding phenotype with two statements: a call

to the selected constructor C1 and a call to selected method m1. Once the phenotype is built,

we construct the corresponding genotype as an input vector which store both the parameters

for C1 and parameter for m1. Thus, we run GA (or H-OV-GA, R-GA and R-OV-GA) in

order to find the set of genotypes, which allows to cover all the branches of the method

under test m1. The test cases are then written instantiating the (unique) phenotype with

the parameters stored in the genotypes obtained by GA. The process is then repeated for

each pair of methods and constructors in C until all methods and all constructor have been

tested.

When the method under test m is not a publicly visible method (e.g., it is a private

method), we select a public method m’ which (directly or indirectly) calls m, if one exists.

Otherwise, the target is deemed unreachable. If m is a static method, then the individual will

be composed of only the j parameters of m. The actual test case will then be composed of

statements for instantiating the class, followed by an invocation of method m on the instance,

or simply the static invocation of m, if it is a static method.
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public class A {
private int a, b, c;

public A (int a, int b, int c) {
this.a = a;

this.b = b;

this.c = c;

}

public void m1(int x){
...

}

public static int m2 (double d1, double d2, double[] d3){
...

}
}

Figure 7.3: An example of class under test

For example consider the class A in Figure 7.3 and a target method m1. A candidate

solution could have the genotype equal to (3, 4, 5, 0) while the corresponding phenotype

test case is:

A A0 = new A (3, 4, 5);

A0.m1 (0);

For a target method m2, a candidate solution could be (10.5, 12.0, 12.0, 0.5, 1.25)

(arrays are instantiated with a fixed, predefined length) with the corresponding test case:

double[] double0 = new double[3];

double0[0] = 12.0;

double0[1] = 0.5;

double0[2] = 1.25;

int int0 = A.m2 (10.5, 12.0, double0);

Objective function. Fitness evaluation is based on the combination of approach level

and branch distance metrics [45] in which the test case associated with an individual is

executed against the instrumented CUT. Approach level measures how many control branches

away the current individual is from hitting the target branch, while branch distance measures

how far it is from making the branch condition true, where the considered branch is the first

one which makes the target no longer reachable. After the execution, the fitness of each

individual is computed as the sum of the approach level and the normalized branch distance.
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Algorithm 10: Main algorithm

1 begin
2 while total budget not finished do
3 for every target not covered do
4 budget← total target/uncovered targets;
5 solution← generateSolution(target, budget);
6 suite← suite ∪ solution;

7 return suite

This value is minimized, with value zero associated with the target branch being covered by

the individual. A detailed description this fitness function can be found in Section 5.2.3.

Search process. The search process is described in Algorithm 10 which distributes the

available test case generation budget (measured in number of statements executed) across

the targets yet to be covered and relies upon generateSolution to obtain an input vector to

cover the selected target. The routine generateSolution corresponds to the specific genetic

algorithm run in order to find the test case to cover the target target using a specific search

budget budget. For the proposed variants to SVD-GA, generateSolution includes the common

steps performed in evolutionary testing (generation of an initial random population and

its evolution by selection, mutation and crossover, depending on the fitness values of the

individuals). In addition to such steps, the algorithm periodically (after k generations, with

k a user defined parameter) performs orthogonal diversification of the population. Based

on a history of length h, an orthogonal population P ∗t is produced and is used to replace

the individuals with lowest fitness values. New individuals are generated according to the

specific instance of the generateSolution algorithm, which can be either H-OV-GA, R-GA or

R-OV-GA.

Genetic operators. Genetic operations are applied to the vector representation of an

individual. In particular, crossover between two individuals is performed by exchanging

portions of the vectors representing the genotype. Mutation on an individual changes one or

more values from the vector. Each value in the vector is subject to mutation with probability

1/len where len is the length of the vector representing the genotype. The actual mutation

operation performed on a value selected for mutation could be one of the following three

operations depending on their respective probabilities:

• negate: it changes the sign of a double, long or int variable; it also changes the value

of boolean variable (similar to bit-flip mutation);

• increment: a randomly generated delta value is added/subtracted to/from the value;

• replace from pool: replace by a randomly selected value from a pool of previously used

values.

Elitism is used, so as to ensure that the elite of each generation is preserved.
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Table 7.1: Subjects used in our study.

No. Name Origin Methods
Coverage

Goals
1 ArithmeticUtils Apache Commons Math 10 99
2 Arrays Java Collections 8 75
3 Beta Apache Commons Math 11 90
4 CreditCardValidator Apache Commons Valid. 4 32
5 Complex Apache Commons Math 29 126
6 FastMath Apache Commons Math 3 60
7 Fraction Apache Commons Math 28 108
8 IPAddressValidator Apache Commons Valid. 3 243
9 LUDecomposition JAMA library 8 76

10 KolmogorovSmirnov Apache Commons Math 6 50
Distribution

11 QRDecomposition JAMA library 6 72
12 Quadratic [46, 342] 1 7
13 RootsOfUnity Apache Commons Math 6 27
14 SaddlePointExpansion Apache Commons Math 3 16
15 Sort SIR 15 70
16 Tomorrow [46, 342] 1 107
17 TriangularDistribution Apache Commons Math 13 50

Tool. Our prototype tool for the branch coverage testing of Java classes is implemented

as an extension of the EvoSuite [287] tool and is available for download from www.evosuite

.org/orthogonal-ga.

7.4 Empirical Evaluation

This section describes the study we conducted aiming at evaluating whether the performance

of evolutionary test case generation improves when the employed GA is enriched with or-

thogonal and/or reactive exploration mechanisms. The quality focus of the study is the

effectiveness and the efficiency of the test case generation process based on the proposed ap-

proach compared to standard GA (St-GA hereafter), while the perspective is of researchers

aiming at developing more effective automatic testing tools, that could be used by software

engineers for reducing the time/cost required for testing a software system.

7.4.1 Subjects

The experimental study is performed on 17 publicly available Java classes with numerical

input data type. Table 8.2 shows the characteristics of the classes considered in our study in

terms of number of methods and number of coverage goals (i.e., branches).
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Most of the classes (9) were extracted from the open source Apache.commons.math li-

brary, which contains several mathematical and statistical Java classes addressing the most

common problems not available in the Java standard libraries or in Commons Lang2. We

also considered 2 classes extracted from the Apache.commons.validator library, which con-

tains classes for checking the validity of input data. The class Sort was extracted from the

Software artifact Infrastructure Repository (SIR) [343] and it implements different sorting

algorithms, such as insertion sort and quick sort. Quadratic and Tomorrow are two classes

widely used in previous studies on evolutionary test case generation [46, 342]. Finally, LUDe-

composition and QRDecomposition were extracted from the JAva MAtrix (JAMA) library,

which provides a suite of classes for performing linear algebra operations3, while Arrays was

extracted from the well-known Java Collections framework.

Whenever necessary, minor manual adjustments were performed on the classes for the

purpose of the study, making sure that the classes are not significantly changed. Most of the

modifications are superficial and they concern methods with non-numeric parameters, which

are currently not supported by our prototype tool. In such cases, either a public wrapper

method is added in which we pass a fixed value for the non-numeric parameters, or we simply

drop the method if it is trivial (for e.g. a setter method).

7.4.2 Research Questions

In the context of our study, we formulated the following research questions:

• RQ1: Does orthogonal and/or reactive exploration improve the effectiveness of evo-

lutionary test case generation? This is the main research question of our study. Specif-

ically, we aim at evaluating to what extent the proposed orthogonal and/or reactive

exploration mechanisms improve the effectiveness (coverage) of GA-based test case

generation.

• RQ2: Does orthogonal and/or reactive exploration improve the efficiency of evolu-

tionary test case generation? With this second research question, we aim to analyze to

what extent the proposed approaches are able to reduce the cost required for reaching

the highest coverage.

Note that we analyze the efficiency of the proposed approach only when we do not observe

a significant improvement in terms of effectiveness. This is because during evolutionary test

case generation a budget (maximum cost) is fixed a priori. Thus, every test suite generated

within such a budget is acceptable from the point of view of the efficiency. This means that

efficiency plays a secondary role compared to the effectiveness. In other words, a solution

with a better effectiveness and a higher cost (within the available budget) is preferred to

another solution with a reduced cost but worse effectiveness. On the other hand, when the

2http://commons.apache.org/math/
3http://math.nist.gov/javanumerics/jama/
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effectiveness (coverage) is the same, the technique with highest efficiency (lower execution

time) is preferable.

In order to answer our research questions, we compared test case generation based on

St-GA with the following variants (defined in Section 7.2):

• GA with history aware orthogonal exploration (H-OV-GA): St-GA enriched with the

orthogonal exploration mechanism based on SVD and spanning the history of popula-

tions generated over time.

• GA with reactive exploration (R-GA): St-GA enriched with the reactive exploration

mechanism based on stagnation analysis (i.e., lack of evolution direction).

• GA with both orthogonal and reactive exploration (R-OV-GA): St-GA enriched with

the combination of the previous two variants, H-OV-GA and R-GA.

7.4.3 Metrics and Data Analysis

The effectiveness of the different approaches (RQ1) was measured in terms of branch cover-

age:

Coverage =
#covered branches

#total branches to be covered

while the efficiency (RQ2) in terms of consumed search budget (number of statements exe-

cuted) during the search for test data. The higher the coverage, the better the effectiveness of

the test data generation technique. Vice versa, the lower the number of executed statements

required to reach the best coverage, the higher the efficiency of a technique.

All the approaches have been executed 100 times on each class to account for the inherent

randomness in GA. Then we collected the branch coverage and the number of statements

executed to reach the best coverage for each run, within a given maximum budget limit of

time/cost (see Section 7.4.4).

In order to provide statistical support for the results, we performed statistical tests to

check whether the effectiveness (or efficiency) achieved by one of the novel approaches (e.g.,

R-OV-GA) is significantly better than that reached by St-GA. Specifically, we used the

Wilcoxon Rank Sum test [226] to test the following null hypotheses:

• H01 : there is no difference between the effectiveness of H-OV-GA/R-GA/R-OV-GA

and St-GA.

• H02 : there is no difference between the efficiency of H-OV-GA/R-GA/R-OV-GA and

St-GA.

For H01 (effectiveness), the dependent variable is represented by the number of branches

covered by an evolutionary test data generation algorithm over the 100 independent runs.

Instead, for H02 (efficiency) the dependent variable is represented by the number of executed

statements. Results are intended as statistically significant at α = 0.05. Since this requires
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performing three tests for each subjects, we adjusted the p-values using Holm’s correction

procedure [227].

Besides testing the null hypotheses, it is of practical interest to estimate the magnitude

of the difference, in terms of branch coverage or consumed budget, achieved by the different

methods. For this purpose, we use the Cohen d effect size [344], which measures the magni-

tude of the effect of the different algorithms on the dependent variables. It is defined as the

difference between the means, divided by the standard deviation of the differences between

the coverage (number of statements) values achieved by two GA variants (e.g., St-GA and

R-OV-GA)

d =
mean(CoverageGA1

)−mean(CoverageGA2
)

stdev(CoverageGA1
− CoverageGA2

)

The effect size is considered large for d ≥ 0.8, medium for 0.5 ≤ d < 0.8 and small for

0.2 ≤ d < 0.5 [344]. This provides a classification (large, medium, small) of the magnitude

of the difference, thus, it is quite easy to be interpreted.

7.4.4 GA Parameter Settings

To set the parameters of the St-GA algorithm and of the variants investigated in this study,

we conducted a preliminary set of runs, aimed at assessing the sensitivity of subjects and

techniques to the parameters. The same configuration was used for all the experimented vari-

ants (St-GA, H-OV-GA, R-GA and R-OV-GA), since no major sensitivity to the parameters

was observed.

With regards to subjects, for most of the parameters a consistently similar set of values

was used for all subjects, since the observed sensitivity was minor. However, for two param-

eters (Population size and SVD-frequency), some major differences were observed. Hence,

we group the subjects into two and use a different value for each group. The specific values

of the important parameters we used in our experiments are shown below:

• Population size: we choose moderate population sizes of 20 for one group of subjects

and 40 for the other.

• Initial population: for each subjects the initial population is uniformly and randomly

generated within the search space [−2048, 2048]N .

• Search budget: we restrict the search budget to a maximum number of 10E+6 exe-

cuted statements or a maximum of 30 minutes of computation time for fitness evalua-

tions. For subjects LUDecomposition and QRDecomposition however, because of their

complexity, we used a higher budget limit of 10E+7.

• Crossover: we use single point fixed crossover with probability Pc = 0.75.

• Mutation: we use a uniform mutation function with probability Pm = 1/len where

len is the dimension of the vector representing the individual.
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• Selection function: rank selection is used with bias = 1.7.

• Elitism: the number of individuals in the current generation that are kept alive across

the next generation is 1.

• SVD-frequency: orthogonal sub-populations are generated by SVD every k genera-

tions where k = 1 for one group of subjects and k = 2 for the other. This parameter

does not apply to St-GA.

• SVD-proportion: the proportion of individuals in the current population to be con-

sidered for estimating the evolution directions is set to PSV D = 0.25.

• Historic Data: the number of generations to be considered for detecting evolutionary

stagnation is h = 10.

The settings have been calibrated using a trial-and-error procedure, and some of them (i.e.,

crossover and mutation probabilities) are values commonly reported in the literature.

7.5 Analysis of the Results

This section discusses the results of our study in light of the research questions formulated

in the previous section.

7.5.1 RQ1: Does orthogonal and/or reactive exploration improve

the effectiveness of evolutionary test case generation?

Table 7.2 reports the mean branch coverage values (over 100 independent runs) achieved by

St-GA, H-OV-GA, R-GA and R-OV-GA for all the subjects. The table reports both (i) the

mean number of branches and (ii) the mean percentage of the total branches covered by each

algorithm.

As we can see, in 8 out of 17 cases the mean coverage value achieved by R-OV-GA is

higher then that achieved by St-GA (with an improvement ranging between 0.20% and 20%).

Only on SaddlePointExpansion and TriangularDistribution the effectiveness of all the

experimented approaches is comparable and no clear winner can be identified. It is worth

noting that on the other classes (5 out of 17) there is no difference between the experimented

methods, because all the approaches achieved 100% of branch coverage.

From the analysis of the results, it also emerges that the mechanism that combines

the orthogonal exploration and the reactive exploration (R-OV-GA) often turned out to

be more effective than either of the two mechanisms taken individually, i.e., H-OV-GA

and R-GA. Indeed, in only 4 cases (i.e., when testing Arrays, SaddlePointExpansion,

TriangularDistribution and KolmogorovSmirnovDistribution) R-GA and H-OV-GA

achieved a (slightly) better coverage than R-OV-GA. However, in two of these cases all

the algorithms achieved almost the same level of coverage and none of the experimented

algorithms is able to achieve 100% coverage.
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Table 7.2: Average coverage values achieved by St-GA, R-OV-GA, H-OV-GA and R-GA over
100 independent runs. Values in bold face turned out to be the best against those achieved
by the other algorithms for the same CUT.

Class under test
St-GA H-OV-GA R-GA R-OV-GA

Cov Cov % Cov Cov % Cov Cov % Cov Cov %
ArithmeticUtils 85.81 86.68% 85.89 86.76% 85.77 86.64% 85.93 86.80%
Arrays 60.20 80.27% 62.46 83.28% 59.74 79.65% 62.02 82.69%
Beta 76.91 85.46% 76.93 85.48% 76.98 85.53% 77.00 85.56%
Complex 73.39 58.25% 78.59 62.37% 78.56 62.35% 78.77 62.52%
CreditCardValidator 30.39 94.97% 31.41 98.16% 30.43 94.63% 31.69 98.90%
FastMath 36.83 61.38% 38.82 64.70% 37.48 62.47% 40.20 67.00%
Fraction 88.37 81.82% 88.41 81.86% 88.39 81.84% 88.48 81.93%
KolmogorovDistribution 37.93 75.86% 39.07 78.13% 37.70 75.40% 37.06 74.13%
IPAddressValidator 243.00 100.00% 243.00 100.00% 243.00 100.00% 243.00 100.00%
LUDecomposition 53.55 70.46% 57.76 76.12% 56.12 73.84% 60.93 80.18%
QRDecomposition 53.04 73.67% 61.94 86.03% 56.83 78.93% 66.64 92.56%
Quadratic 7.00 100.00% 7.00 100.00% 7.00 100.00% 7.00 100.00%
RootsOfUnity 27.00 100.00% 27.00 100.00% 27.00 100.00% 27.00 100.00%
SaddlePointExpansion 14.00 87.50% 14.00 87.50% 14.01 87.56% 14.00 87.50%
Sort 70.00 100.00% 70.00 100.00% 70.00 100.00% 70.00 100.00%
Tomorrow 106.90 99.99% 106.90 99.99% 107.00 100.00% 107.00 100.00%
TriangularDistribution 42.33 84.66% 42.57 85.14% 42.24 84.48% 42.55 85.10%

It is important to note that the occurrence of no or a marginal improvement in terms of

coverage does not necessary indicate that the proposed techniques are not useful. Indeed, by

inspecting the code of such subjects, we noted that often it is impossible to achieve a higher

coverage, since the uncovered branches are not reachable. For instance, let us consider the

class Beta where R-OV-GA seems to be able to improve branch coverage just by 0.1% as

compared to St-GA. By inspecting the code, we noticed that this is the highest possible

coverage, since the uncovered branches cannot be covered by any input. Figure 7.4 shows an

example of unreachable branch. The private method logGammaMinusLogGammaSum contains

an if instruction for checking the validity of the first input parameter a. This private method

is called by the public method logBeta which independently performs exactly the same

control before calling the private method. Hence, the method logGammaMinusLogGammaSum

will never throw the NumberIsTooSmallException because, on the basis of the method

visibility, the public method logBeta, which is the only caller, will never pass an invalid

parameter to it.

Figure 7.5-a shows a boxplot of the experimented methods for one of the subjects: QRDe-

composition. It can be seen from the boxplot that the distribution of coverage values obtained

by R-OV-GA over all the independent runs is substantially higher then the distribution

achieved by all the other methods. Specifically, in more than 95% of independent runs R-

OV-GA achieved a coverage value ranging between 92% and 97%. Vice versa, St-GA reached

a coverage value lower than 80% in the majority of all the independent runs. H-OV-GA and

R-GA turned out to be quite better than St-GA, but significantly worse than R-OV-GA.

To provide a further evidence of the benefits introduced by diversity, Figure 7.5-b compares

177



Test Data Generation

private static double logGammaMinusLogGammaSum (double a, double b)

throws NumberIsTooSmallException {
if (a < 0.0) {

throw new NumberIsTooSmallException(a, 0.0, true);

}
...

}

public static double logBeta(double p, double q) {
if (Double.isNaN(p) || Double.isNaN(q) || (p <= 0.0) || (q <= 0.0)) {

return Double.NaN;

}
...

final double a = FastMath.min(p, q);

final double b = FastMath.max(p, q);

...

return logGammaMinusLogGammaSum(a, b);

...

}

Figure 7.4: Example of unreachable branch for Sort.

the best fitness values achieved by the four experimented algorithms for QRDecomposition.

It can be seen how R-OV-GA, R-GA and H-OV-GA converge more quickly toward better

solutions, while St-GA has a lower convergence rate and is still trapped in some local op-

tima after 23 generation. Finally, R-OV-GA seems to be able to combine the orthogonal

exploration and reactive exploration showing a better ability to find better solutions than its

constituents, i.e. H-OV-GA and R-GA.

All these considerations are also supported by the statistical analysis. Table 7.3 reports

the results of the Wilcoxon tests (after correcting the p-values using Holm’s correction) and

the Cohen d effect size. As we can see, in 8 out of 17 cases R-OV-GA provides a statistically

significant improvement in terms of effectiveness, while for the remaining cases there is no

statistically significant difference between the experimented methods. However, in 5 out of

17 cases it is impossible to improve the coverage since St-GA (as well as the other variants)

achieves 100% of coverage. This means that R-OV-GA is able to improve the coverage in

70% of cases where improvement is possible.

As for the magnitude of the improvement, when comparing R-OV-GA with St-GA the

effect size is generally large and only in two cases it is medium and small, respectively. It is

worth noting that in the cases where there is no statistically significant difference between

St-GA and R-OV-GA, the effect size is always positive. This means that R-OV-GA never

reached a coverage value lower than St-GA. Similar considerations can be derived from the

comparison of H-OV-GA and St-GA. When comparing St-GA and R-GA, Table 7.3 reveals
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Figure 7.5: Comparison of St-GA, H-OV-GA, OV-GA and R-GA over on QRDecomposition.

that the reactive exploration is able to significantly improve the effectiveness of St-GA with an

effect size that varies over the tested classes, ranging from very large (d� 1) to small. There

are also four cases where the effect size is negative, indicating that the reactive exploration

taken individually does not always improve (sometimes marginally worsens) the effectiveness

of GA.

In summary, for RQ1 we can assert that the proposed mechanisms for increasing the

population diversity (and reducing the stagnation probability) are able to improve the effec-

tiveness of GA-based evolutionary test case generation. In addition, among the different

variants of diversification mechanisms, R-OV-GA (that combines orthogonal and reactive

exploration mechanisms) turned out to be the best.

7.5.2 RQ2: Does orthogonal and/or reactive exploration improve

the efficiency of evolutionary test case generation?

In cases where there was no statistically significant improvement of effectiveness, we analyzed

the search budget consumed by each technique and investigated whether there is any im-

provement in terms of efficiency. Table 7.4 reports the mean number of statements executed

by St-GA, R-GA, H-OV-GA and R-OV-GA for reaching the best coverage. As one can see

from the table, in the majority of the cases (6 out of 7 cases) R-OV-GA reached the best

mean efficiency, with a cost reduction ranging from 20% to 80% on average over 100 indepen-

dent runs. This means that the combined application of orthogonal and reactive exploration

achieves the same coverage as St-GA, but with a cost reduction of about 40% on average

(which indicates a substantial improvement in terms of efficiency). The only exception is

represented by the class Fraction, where the cost is slightly higher.

The analysis of the results also reveals that H-OV-GA and R-GA are not able to make
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Table 7.3: P-values achieved using Wilcoxon Rank Sum test with Holm’s correction and
Cohen d effect sizes. We use S, M, and L to indicate small, medium and large effect sizes
respectively.

Class under test
H-OV-GA¡St-GA R-GA¡St-GA R-OV-GA¡St-GA

p-value Cohen d p-value Cohen d p-value Cohen d
ArithmeticUtils 0.31 0.08 0.48 -0.05 0.17 0.13
Arrays < 0.001 0.83 (L) 0.87 -0.05 < 0.001 0.77 (M)
Beta 0.6 0.03 0.04 0.09 0.006 0.12
Complex < 0.001 4.35 (L) < 0.001 6.58 (L) < 0.001 6.70 (L)
CreditCardValidator < 0.001 1.29 (L) 0.30 -0.09 <0.001 1.90 (L)
FastMath < 0.001 0.78 (L) 0.04 0.22 (S) < 0.001 1.21 (L)
Fraction 0.89 0.02 0.89 -0.01 0.89 0.07
IPAddressValidator - - - - - -
LUDecomposition 0.04 0.75 (M) 0.01 0.66 (M) < 0.001 0.96 (L)
KolmogorovDist. 0.44 0.06 0.40 0.01 0.49 0.08
QRDecomposition < 0.001 1.82 (L) 0.20 0.14 < 0.001 2.94 (L)
Quadratic - - - - - -
RootsOfUnity - - - - - -
SaddlePointExp. - - - - - -
Sort - - - - - -
Tomorrow 0.48 0.01 - - 0.48 0.01
TriangularDist. 0.01 0.26 (S) 0.24 -0.09 0.01 0.26 (S)

statistically significant improvements as compared to St-GA in terms of efficiency. Indeed,

for H-OV-GA the amount of consumed budget is reduced in 5 out 7 cases, while it is increased

in the remaining 2 cases. Similarly, R-GA showed a reduction in terms of consumed budget

in only 4 out of 7 cases. Figure 7.6 shows a boxplot of the consumed search budget by the

experimented methods for one of the subjects: the class Sort. The boxplot shows that the

distribution of cost values obtained by R-OV-GA over all the independent runs is quite lower

then the distribution achieved by all the other methods. Specifically, the budget consumed

by R-OV-GA is lower than the budget required by the other algorithms for the majority

(about the 75%) of the runs.

To provide statistical support for the above considerations, Table 7.5 reports the results

of the Wilcoxon tests (after correcting p-values using the Holm’s correction) and the corre-

sponding Cohen d effect size. As we can see, from the point of view of efficiency R-OV-GA

outperforms St-GA in a statistically significant way in 6 out 7 cases, with an effect size that

is large (d > 0.8) in the majority of the cases. In the remaining case, the Wilcoxon test re-

veals that the difference is not statistically significant, even if the corresponding effect size is

marginally positive. As expected, for H-OV-GA and R-GA there is a statistically significant

difference in only few cases: 4 out of 7 cases and 2 out of 7 cases, respectively.

In summary, for RQ2 we can assert that R-OV-GA is able to obtain the same effec-

tiveness as St-GA but with a cost reduction of about 40% on average. Among the different

variants of exploration mechanisms proposed, R-OV-GA provides the best efficiency as com-
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Table 7.4: Average budget consumed by St-GA, R-OV-GA, H-OV-GA and R-GA over 100
independent runs (the percentage variations with respect to St-GA are also shown). Values
in bold face turned out to be the best (lowest) against those achieved by the other algorithms
for the same CUT.

Subject
St-GA H-OV-GA R-GA R-OV-GA
Cost Cost Var % Cost Var % Cost Var %

Fraction 290606 301099 +4.36% 336645 +15.84% 308619 +6.20%
IPAddressValidator 330590 223959 -32.25% 343652 +3.95% 190848 -42.27%
KolmogorovDist. 56340 48003 -14.80% 37138 34.08% 36539 -35.15%
Quadratic 2116 1555 -26.51% 2260 +6.81% 1458 -31.10%
RootsOfUnity 7112 6633.3 -6.74% 6087.41 -14.41% 4531 -36.24%
SaddlePointExpansion 70822 71381 +0.79% 66120 -6.64% 54725 -22.73%
Sort 581837 574848 -1.20% 569851 -2.06% 464132 -20.23%
Tomorrow 405251 76388 -81.15% 371080 -8.43% 76032 -81.24%

Table 7.5: P-values achieved using Wilcoxon Rank Sum test with Holm’s correction and
Cohen d effect sizes. Also, we use S, M, and L to indicate small, medium and large effect
sizes respectively.

Class under test
H-OV-GA ¡ St-GA R-GA ¡ St-GA R-OV-GA ¡ St-GA

p-value Cohen d p-value Cohen d p-value Cohen d
Fraction 0.89 0.11 0.89 0.18 0.89 0.04
IPAddressValidator < 0.001 0.53 (M) 0.61 -0.05 < 0.001 0.89 (L)
KolmogorovDist. 0.86 0.03 0.11 0.29 0.03 0.40 (S)
Quadratic < 0.001 0.55 (M) < 0.001 0.42 (S) < 0.001 0.98 (L)
RootsOfUnity < 0.001 0.20 (S) < 0.001 0.42 (M) < 0.001 0.83 (L)
SaddlePointExp. 0.89 0.08 1 0.04 0.02 0.27 (S)
Sort 0.84 0.02 0.84 0.04 < 0.001 0.72 (M)
Tomorrow < 0.001 4.73 (L) 0.10 0.18 < 0.001 4.98 (L)

pared to R-GA and H-OV-GA.

7.6 Threats to validity

This section discusses the threats that could affect the validity of the evaluation of the

proposed approach.

Threats to construct validity concern the relation between theory and experimentation.

In order to evaluate the performance of the experimented techniques we used branch coverage

and number of statements executed. These metrics provide a good indication of effectiveness

and efficiency in the context of test data generation and are widely adopted in the related

literature. Another threat to the construct validity can be related to the manual adjustments

performed on the classes for the purpose of the study. However, such changes did not affect

the external behavior of the classes and they were performed only because the current version

of our prototype does not support non-numeric parameters.

181



Test Data Generation

●

●

●

St−GA H−OV−GA R−GA R−OV−GA

2
e
+

0
5

4
e
+

0
5

6
e
+

0
5

8
e
+

0
5

B
u

g
d

e
t 

(S
ta

te
m

e
n

ts
 C

o
n

s
u

m
e

d
)

Figure 7.6: Comparison of the budget consumed by St-GA, H-OV-GA, OV-GA and R-GA
over 100 independent runs on Sort.

Threats to internal validity concern factors that could influence our results. We mitigated

the influence of the GA randomness when generating the test suite by repeating the process

100 times and reporting the average performance achieved. Another threat is represented

by the approach used to compute orthogonal vectors in the SVD-based GA. In fact, there is

no unique way to generate orthogonal vectors and the specific method that is selected might

affect the performance of SVD-GA. In order to mitigate such an issue we report—in Section

7.2—the algorithm used to compute the orthogonal column vectors. The setting of the GA

parameters represents another threat. To define such parameters we conducted a preliminary

set of runs, aimed at assessing the sensitivity of subjects and techniques to the parameters.

We observed no major sensitivity. Thus, the detailed configuration reported in this Chapter

could be used as a good starting point when using the proposed approach on Java classes

having features comparable to those of the classes used in our study.

Threats to conclusion validity concern the relationship between the treatment and the

outcome. In addition to showing values of branch coverage and number of statements exe-

cuted, we have also statistically compared the effectiveness and efficiency of the experimented

methods using the Wilcoxon non-parametric test, indicating whether differences in terms of

effectiveness and efficiency are statistically significant. In addition, we also used the Cohen’s

effect size to estimate the magnitude of the difference.

Threats to external validity concern the generalization of our findings. Although we con-

sidered data from 17 Java classes extracted from well known and publicly available libraries,

the study should be replicated on further programs to corroborate our results. If we con-

sider similar studies published in the related literature, the one presented in this Chapter is

comparable or larger.
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7.7 Conclusion and future work

Evolutionary test data generation is one of the most widely explored approaches to automate

the testing process. Along with its strengths, it has a set of challenges and open issues. One

of these issues is the loss of diversity between test cases during the search process for hard-

to-cover branches. This chapter proposed the integration of a diversification technique based

on SVD-GA and reactive exploration of the search space, with the principal objective of

avoiding the search being dominated by a small set of similar individuals. To this aim, this

chapter presented three improved variants of the basic GA, which are the history aware

SVD-GA, reactive GA, and combined history aware and reactive SVD-GA in the context of

evolutionary test data generation.

Experimental studies on 17 Java classes extracted from widely used open source libraries

showed strong, statistically significant improvements. The proposed diversification schemes

improve over basic GA in terms of effectiveness, i.e., branch coverage achieved, and effi-

ciency, i.e., search budget consumed. In particular, the combined application of the reactive

and SVD-based schemes resulted in the best overall improvement. The combined method

significantly improved effectiveness in 8 of the tested classes, while it significantly improved

efficiency in 6 out of 7 tested classes where the effectiveness was not significantly improved.

Based on the quite promising results obtained by the empirical study reported in this

Chapter, we intend to address a number of remaining issues in our future work. Specifically,

we plan to support orthogonal exploration of search spaces with non-numeric data types

(e.g. strings) as well as an arbitrary number of method call sequences as part of our future

extension. For such an extension, the non-numeric types and the method call sequences need

to be mapped to a vector space in which a meaningful notion of evolution direction can be

defined. An idea to proceed along these directions involves mapping a variable size sequence

(of method calls) to fixed size feature vectors, which represent the frequency of occurrence of

each feature in an individual. Similarly, feature vectors can be used to represent strings of

arbitrary length by extracting pairwise Longest Common Substrings (LCS) from the strings

into a feature set and encoding each string as a feature vector containing each feature (LCS).

SVD will then be applied to the feature vectors, so as to explore orthogonal regions in the

space of feature vectors.

In a similar vein, since the current approach considers vectors of fixed size, we intend to

investigate an extension of our technique that is able to address vectors of variable dimensions

by using complex number for representing variable length candidate solutions.

Finally, the current prototype implementation is meant only to show the feasibility of the

proposed approach and it addresses the issue of diversity in populations from the research

perspective. However, to produce a tool that can be used by test engineers for actual testing

activities, there are several enhancements that should be made. For instance, incorporating

special and boundary values (e.g. null, NaN, Infinity, . . . ) into the initial population would

help to cover trivial error-checking branches, that remain otherwise uncovered. We plan to

integrate all our future extensions and enhancements of our implementation into the publicly

available tool EvoSuite.
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8.1 Introduction and Motivation

A way to reduce the cost of regression testing consists of selecting or prioritizing subsets of test

cases from a test suite according to some criteria. For example, widely used criteria are code

coverage [34, 96, 97], program modification [98, 99, 100], execution cost [68, 101, 102], or past

fault information [97, 68, 103]. Previous studies have highlighted that when using multiple

criteria the optimization of test suite is more effective than when using individual ones [97,

104, 68, 103, 105]. The simplest way to combine different criteria is to conflate all the criteria

in a single-objective function to be optimized [34, 96, 101, 102]. Although such an approach

is widely used when solving multi-objective optimization problems, this may produce less

optimal results compared to Pareto-efficient methods. The test suite optimization problems

have been also treated using Pareto-efficient multi-objective genetic algorithms (MOGAs) to

deal with multiple and contrasting objectives [68, 103]. However, empirical results indicated

that in some cases MOGAs provide better solutions. However, there is no a clear winner

between single-objective approaches and MOGAs [68] and their combination is not always

useful to achieve better results [103].

The poor performance of MOGAs when applied to test suite optimization can be due to

the phenomenon of genetic drift, i.e., a loss of diversity between solutions, which affects not

only single-objective GAs but also MOGAs. In such a scenario MOGAs can prematurely

converge within some sub-optimal region [109, 345, 106, 346, 136]. Promoting diversity be-

tween test cases is a key factor to improve the optimality of GAs [106]. An intuitive strategy

to promote diversity consists of adding a diversity-aware fitness function to maximize the

diversity with respect to a coverage criterion, as done in our previous work [11] for code cov-

erage. Hemmati et al. [291, 310] also suggest to use test case diversity (based on UML state

machine coverage) as unique test criterion to be optimized when selecting test cases. How-

ever, different coverage criteria might require different diversity-based objective functions,

one function for each coverage criterion. Since the performance of MOGAs rapidly decreases

for an increasing number of objective functions [321], it is preferable to promote diversity

without adding further objective functions. Moreover, the approach used by Hemmati et

al.[291, 310] is single-objective, and does not provide trade-offs between diversity and test

execution cost.

Stemming from these considerations, this Chapter investigates the usage of the SVD-

NSGA-II algorithm proposed in Chapter 6 (used for solving multi-objective numerical prob-

lems) in the context of test suite optimization problem. Such an algorithm —through the

estimation of the evolution directions via Singular Value Decomposition (SVD)— is able to

augment the population diversity, by periodically introducing new individuals with orthog-

onal (unexplored) evolution directions. Specifically, this Chapter presents a variant of the

basic SVD-NSGA-II algorithm for binary problems which incorporates a generative algorithm

to build a diversified initial population, based on orthogonal design [108]. SVD-NSGA-II and

orthogonal exploration are two diversity mechanisms that can be applied for any test suite

optimization problem and independently of the number of test criteria or objectives to be

taken into account.
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The usefulness of the proposed diversity mechanisms is analysed through an empirical

study conducted on 11 real world open-source programs. Results show that the proposed

algorithm outperforms both traditional MOGAs and greedy algorithms. Unlike previous

work on multi-criteria regression test case selection [68, 103, 11], which compared meta-

heuristics and greedy algorithms only from an optimization point of view, in this Chapter

also introduces a performance metric to evaluate the ability of the selected test cases to

reveal faults (effectiveness) in a multi-objective paradigm. To the best of knowledge, this

is a premier work where for the first time test selection techniques are compared in terms

of testing effectiveness. This required the definition of a novel metric to measure the cost-

effectiveness of test suite that is inspired by the traditional hypervolume metric widely used

for numeric multi-objective problems [110].

Summarising, the contributions of this Chapter are:

1. It introduces a new MOGA, called DIV-GA (DIversity based Genetic Algorithm) which

integrates, for the first time, SVD and orthogonal design into MOGAs to solve multi-

criteria test case selection problems. The proposed approach addresses the problem of

diversity independently of the number and the kind of test criteria.

2. It evaluates DIV-GA on a set of open-source programs extracted from the Siemens suite,

the European Space Agency suite and GNU open-source distribution. The selected

programs were also used in many previous work [268, 36, 299, 104, 300, 68, 65, 11, 103].

3. It compares DIV-GA with previous techniques: greedy algorithms and NSGA-II, which

where used in [68, 65, 11, 103]. The comparison is made by both (i) optimality and (ii)

effectiveness point-of-view. To this aim it introduces the cost-effectiveness hypervolume

metric ICE to measure the effectiveness of the different algorithms, inspired by the

traditional hypervolume metric widely used for numeric multi-objective problems [110].

The Chapter is organized as follows. Section 8.2 presents DIV-GA a variants of SVD-

NSGA-II which is combined with the orthogonal design, and describes how to integrate such

operators into the main loop of MOGAs. Section 8.3 describes the design of the empirical

study conducted to evaluate the benefits of the proposed algorithm. Results are reported

and discussed in Section 8.4, while Section 8.5 provides a discussion of the threats that could

affect the validity of the results. Section 8.6 concludes the Chapter.

8.2 Injecting Diversity in Multi-Objective Test Suite Op-

timization: DIV-GA

The SVD-NSGA-II algorithm introduced in Chapter 6 injects diversity by periodically gen-

erating new individuals having orthogonal evolution directions that hopefully explore new

regions of the search space never explored before. Thus, in this way it prevents the phe-

nomenon of loss of diversity and reduces the probability to prematurely converge toward
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Algorithm 11: ORTHOGONAL-POPULATION

Input:
The size of the test suite n; The size of the initial population m;
Result: An initial population P0 of m individuals.

1 begin
2 Generate an Hadamard (square) matrix Hk of size k = 2dlog2 ne, where dlog2 ne

denotes the smallest integer number greater than log2 n
3 Sort the rows of Hk in ascending order
4 Delete the first column from Hk

5 Select the first m rows and the first n columns from Hk to obtain a new matrix L
of size m× n

6 Convert L in a binary matrix Lm(2n)
7 P0 ←− Lm(2n)

local optimal Pareto frontier. However, maintaining diversity during the evolution (across

generations) is not the only factor which affects the performance of GAs. Indeed, the func-

tion used to generate an initial population plays an important role since it performs an initial

sampling of the search space [347]. A well-distributed and well-diversified initial population

makes the exploration more effective and favors GA convergence toward global optima [347].

Instead, a poorly diversified initial population can compromise the convergence speed and the

optimality of the search space because any search algorithm (including SVD-NSGA-II) start

its search process in a disadvantaged way. This issue becomes particularly critical for prob-

lems where the search space is too large if compared to the size of the population [135]. This

is especially true for the test case selection problem, where searching the optimal subset—

according to multiple testing criteria—of a test suite of size n requires the are analysis of 2n

possible solutions.

Generally, the initial population is randomly and uniformly generated in the search space.

However, for binary problems it is possible to easily generate individuals that are diversified

using the concept of orthogonality between binary solutions. According to Zhang et al. [348],

statistical methods such as experimental design can be used to improve the optimality and

the convergence speed of GAs. A generic solution of the test suite minimization problem is an

array of binary digits X = {x1, . . . , xn} where xi is equal to 1 if the i-th test case is selected,

0 otherwise. Then, each element xi can be considered as a two-level factor1 which affects the

outcome of the fitness function. Hence, the problem of generating a well-distributed initial

population for GAs is equivalent to the problem of finding a (small) representative sample

of all the possible combinations between factors (test cases) for a given experiment.

Because of such an equivalence, we propose to use the orthogonal arrays methodology

designed by Montgomery et al. [108] for experimental design, to generate an initial population

for GAs. Several numeric algorithms can be used to generate such orthogonal arrays, such as

1A two-level factor is a factor assuming only two possible values [108]. In our case xi ∈ {0, 1}.

188



8.2. Injecting Diversity in Multi-Objective Test Suite Optimization: DIV-GA

Table 8.1: Orthogonal arrays L4(23) for three test cases where there are four combinations
of test cases (factors). The row vectors of such a matrix L4(23) can be used as an initial
binary population for GAs.

Combination Test Case 1 Test Case 2 Test Case 3
1st 0 0 0
2nd 0 1 1
3rd 1 0 1
4th 1 1 0

1

2

1

2

1

2

(1,0,1)

(0,0,0)

(0,1,1)

(1,1,0)
TC1 TC2

TC3

Figure 8.1: Graphical representation of the orthogonal arrays L4(23) for three test cases.

the row-exchange algorithm or the coordinate-exchange algorithm [108]. They use an iterative

search algorithm which incrementally changes the entries of an initial random design matrix

X to minimize | (XTX)−1 |. This is equivalent to maximize the determinant of (XTX), i.e.,

the differential Shannon entropy of the set of arrays [349].

In this Chapter, we use the Hadamard matrices to build the orthogonal arrays, since

such a methodology is particularly efficient for generating two-level orthogonal arrays [350],

i.e. the ones required for binary problems such as the test case selection problem. Let N

be the size of the test suite and let M be the number of individuals to be generated, we

generate the orthogonal arrays (or equivalently the initial population for GAs) using the

steps reported in Algorithm 11. Step (2) and step (3) have been implemented using the

hadamard and the sortrows routines, respectively, available in MATLAB [261]. The two

steps (4)-(5) simply require to manage the size of the matrix, while step (5) converts the

matrix L with values ∈ {−1, 1} into a new matrix Lm(2n) with values ∈ {0, 1}. We propose

to use the row vectors of such a matrix Lm(2n) as individuals of an initial population for

GAs, where its generic entry Li,j is equal to 1 if the jth test case is selected by the ith

individual, 0 otherwise (step 6 in Algorithm11). Table 8.1 reports an example of a set of

four orthogonal arrays generated using the Hadamard matrices for a test suite with three

test cases. The orthogonality of such arrays implies that (i) all the test cases occur the same

189



Multi-Objective Test Suite Optimization

number of times; (ii) the combinations uniformly cover the whole search space; and (iii) such

combinations constitute a set of arrays with minimal mutual information [108]. Hence—

as shown in Figure 8.1—the selected combinations are uniformly scattered throughout the

space of all possible combinations. The solutions are also well diversified, since the Hamming

distance2 for each pair of solution is equal to 2, which is the maximum distance for sequences

of three bits.

As suggested by Zhu et al. [351], all these properties make the orthogonal arrays suitable

to be used as initial population for GAs, guaranteeing the minimal mutual information

between individuals and a scattered uniformly sampling of the search space. It is important

to note that the orthogonal arrays used by Zhu et al. [351] have more than two-level factors

and have been used to solve real-coded numerical problems, while we use two-level orthogonal

arrays since test case selection is a multi-objective problem whose solutions are binary arrays.

Moreover, we suggest to use a generative approach to build the orthogonal arrays based on

Hadamard matrices, which is more efficient for binary populations [350] than the iterative

algorithm proposed by Zhu et al. [351].

8.2.1 The DIV-GA algorithm

Algorithm 12 reports the novel DIV-GA, the variant of SVD-NSGA-II that integrates the

mechanism to promote diversity in the initial population and during the evolution process.

First and foremost, in line 3 a uniformly distributed population P0 is created trough the

orthogonal design method, as described in Section 8.2. Then, the main loop of the DIV-GA

algorithm first includes k executions of the NSGA-II algorithm, i.e. loop between lines 7–18.

During these k generations the usual selection, recombination, and mutation operators are

used to create offsprings and the new population is created by selecting the best solutions be-

tween parents and offsprings. Then, every k generations we apply our SVD-based preserving

technique on the past and current populations Pold and Pt respectively.

Finally, the DIV-GA algorithm takes as an input the parameter k, which represents the

temporal distance (in terms of number of iterations of the GA) between the two populations

on which SVD has to be computed. As shown in [109], the injection of orthogonal individuals

through SVD drastically reduces the number of iterations and the total convergence time of

a GA, despite the cost of computing SVD. In other words, the lower the value of k, the

higher the convergence speed of the GA. Therefore, in principle, SVD could be applied at

each iteration (k = 1). However, in case the best individuals of two subsequent populations

do not change, the SVD might have no effect and then the cost of computing SVD is not

compensated by the benefits of injecting orthogonal individuals. In other words, the higher

the value of k, the higher the probability that the best individuals of the two populations

differ and then the higher the probability that SVD has effect on escaping from local optima.

A systematic study on identifying the effects of k on the performances of a GA has not

been done yet and is out of the scope of this work. However, previous studies indicate that

2The Hamming distance between two binary strings of the same length is equal to the number of positions
for which the corresponding binary digits are different.
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Algorithm 12: DIV-GA.

Input:
A test suite of size N
Population size M
SVD interval k

1 begin
2 t←− 0
3 Pt ←− ORTHOGONAL-POPULATION(N ,M)
4 old←− t
5 while not (stop condition) do
6 //main loop of NSGA-II
7 Qt ←− MAKE-NEW-POP(Pt)
8 Rt ←− Pt

⋃
Qt

9 F←− FAST-NONDOMINATED-SORT(Rt)
10 Pt+1 ←− ∅
11 i←− 1
12 while | Pt+1 | + | Fi |6M do
13 CROWDING-DISTANCE-ASSIGNMENT(Fi)
14 Pt+1 ←− Pt+1

⋃
Fi

15 i←− i+ 1

16 Sort(Fi) //according to the crowding distance
17 Pt+1 ←− Pt+1

⋃
Fi[1 : (M− | Pt+1 |)]

18 t←− t+ 1
19 if t mod k = 0 then
20 Pt ←− INJECT-DIVERSITY(Pold, Pt)
21 old←− t

22 S ←− Pt

k = 2 provides generally good results both in real-coded numerical problems [109] and for

evolutionary test data generation [5]. Thus, we also set k = 2.

8.3 Empirical Evaluation

The goal of this study is to evaluate DIV-GA, with the purpose of solving the test case se-

lection problem. The quality focus of the study is represented in terms of three—possibly

conflicting—objectives which are pursued when performing test case selection, namely in-

creased code coverage capability, decreased execution cost, and increased past fault coverage.

The context of the study consists of 11 open-source and industrial programs available

from the Software-artifact Infrastructure Repository (SIR) [343]: space, an interpreter for

Array Description Language, developed by European Space Agency; six GNU open-source

programs bash, flex, grep, gzip, sed and vim; four programs of the Siemens suite, namely
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Table 8.2: Programs used in the study.

Program LOCH # of Test Cases Description
bash 59,846 1,200 Shell language interpreter
flex 10,459 567 Fast lexical analyser
grep 10,068 808 Regular expression utility
gzip 5,680 215 Data compression program
printtokens 726 4,130 Lexical analyzer
printtokens2 520 4,115 Lexical analyzer
schedule 412 2,650 Priority scheduler
schedule2 374 2,710 Priority scheduler
sed 14,427 360 Non-interactive text editor
space 6,199 13,583 European Space Agency program
vim 122,169 975 Improved vi editor

printtokens, printtokens2, schedule, and schedule2.

Table 8.2 reports the characteristics of the 11 programs, and specifically their size (in

terms of LOCH) and the size of the available test suites (in terms of number of test cases).

As it can be noticed, the size of the selected programs ranges between 374 and 122,169

LOCH, while the number of test cases between 215 and 13,583. The selection of these

programs was not random. They have been used in previous work on regression testing and

especially when experimenting techniques for the selection and prioritization of test suites

[268, 104, 65, 68, 11, 103, 36, 299, 300], hence allowing us—wherever possible—to compare

results.

In this study, we compare the performance of DIV-GA with two alternative test case

selection techniques: (i) one based on additional greedy algorithm used by Rothermel et al.

[293], and (ii) one based on NSGA-II [107] used by Yoo and Harman [27, 68].

8.3.1 Research Questions

The study aims to provide empirical evidence to answer the following research questions:

• RQ1: To what extent does DIV-GA produce near optimal solutions, compared to al-

ternative test case selection techniques? This research question aims at evaluating to

what extent the proposed DIV-GA algorithm is able to produce a larger number of

near optimal solutions, if compared to alternative, state-of-the-art test case selection

techniques, namely additional greedy and NSGA-II. Note that, due to the NP-complete

nature of the test case selection problem, there is no solver able to find the exact op-

timal solutions with efficient computational cost, and all the experimented algorithms

can provide only near-optimal solutions.

• RQ2: What is the cost-effectiveness of DIV-GA, compared to alternative test case selec-

tion techniques? The purpose of this research question is to evaluate the performance
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of DIV-GA—in comparison with alternative techniques—from a cost-effectiveness per-

spective. This reflect the software engineer’s needs to optimize/reduce a test suite

without compromising the ability to detect source code defects.

The following subsections describe all the experimented algorithms and the evaluation

mechanisms performed to answer the aforementioned research questions.

8.3.2 Test Selection Objectives

We consider three different test case selection criteria, used in previous work [97, 27, 65],

namely: (i) statement coverage, (ii) execution cost of test cases, and (iii) past fault coverage.

Statement coverage criterion. We measure statement coverage using the gcov tool

part of the GNU C compiler (gcc). Specifically, we measure statement coverage, as also done

by Yoo et al. [65]:

cov(X) =
1

m

m∑
i=1

φi

where m is the total number of code statements to be covered and φi is equal to 1 if the ith

test case is covered by at least one selected test case in X, 0 otherwise.

Execution cost criterion. As for the execution cost, in principle we could just measure

the test case execution time. However, performing such a measure is not an easy task, be-

cause the measure depends on several external factors such as different hardware, application

software, operating system, etc. We address this issue by counting the number of executed

elementary instructions in the code, instead of measuring the actual execution time. This

is consistent with what was done in previous work on multi-objective test case selection

[27, 68]. We use the gcov tool to measure the execution frequency of every basic block

(elementary instruction) composing each statements. When encountering a function call,

gcov counts the instructions actually executed when invoking the function; also, complex

statements may count as multiple elementary instructions (e.g., the for statement counts

as three instructions, i.e., the initialization, the condition, and the increment). Hence, the

computational cost of each test case is approximated by summing the execution frequencies

of all the executed basic blocks. Starting from these execution frequencies, the execution cost

criterion is defined as follows:

cost(X) =

n∑
i=1

xi · cost(ti)

where cost(ti) represents the execution frequency of the ith test case.

Past fault coverage criterion. For the third test criteria, each program has several

faulty versions available from the SIR dataset [343]. SIR provides also information about

which test cases are able to reveal these faults. Such information can be used to assign a

past fault coverage value to each test case subset, computed as the number of known past
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faults that this subset is able to reveal in the previous version. Specifically, starting from

this history information, the past fault coverage (fault) achieved by a solution X can be

measured as follows:

fault(X) =
1

m

m∑
i=1

fi

where m represents the number of test cases, while fi is equal to 1 if the ith past fault is

covered by at least one selected test case in X, 0 otherwise.

Using the three test case selection criteria described above, we examine two and three-

objectives formulations of the test case selection problem. In particular, we consider the

two-objective problem taking into account code coverage and execution cost as contrasting

goals, similarly to what done in previous work [27, 68, 11]. Formally, the two-objective test

case selection problem can be defined as follows:

Problem 6. Two-objective Test Case Selection Problem: finding a set of optimal solutions

X which maximizes the code coverage and minimizes the execution cost:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(ti)

For the three-objective formulation, we add past fault detection history as a further

objective, as also done in previous work [97, 68, 27]. The three-objective test case selection

problem can be defined as follows:

Problem 7. Three-objective Test Case Selection Problem: finding a set of optimal solutions

X which maximizes the code coverage, maximizes the past fault coverage and minimizes the

execution cost:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(ti)

max fault(X) =
1

h

h∑
i=1

ϕi

Note that, besides the test case selection criteria defined above, it is possible to formulate

other criteria, e.g., based on data-flow coverage or even functional requirements just providing

a clear mapping between tests and criterion-based requirements. However, it is important

to highlight that the goal of this work is not to analyse which set of test criteria is the most

effective for regression testing. The formulations are used to illustrate how the proposed

diversity-preserving technique can be applied to any number and kind of testing criteria to

be satisfied.
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Algorithm 13: Cost cognizant (or two-objective) Additional Greedy.

Data:
A program P
A test suite T = {t1, . . . , tn}
Result: A set of sub-test suites S.

1 begin
2 C ←− ∅ // covered elements
3 S ←− ∅ // selected test cases
4 while C ≤ P do

5 Compute fi =
| Sk − C |
costi

for each ti ∈ T

6 ti ←− test case in T with minimum fi
7 Add ti to solution C ←− C

⋃
tj

8 T ←− T − {tj}
9 Add S to the Pareto set

8.3.3 Experimented Algorithms

For the two-objective formulation of the test case selection problem, we compare the following

optimization algorithms:

• The two-objective DIV-GA which uses SVD and orthogonal design to promote diversity

between the selected test cases.

• The two-objective additional greedy algorithm used by Yoo and Harman [68] and by

Rothermel et al. [293], which considers at same time both coverage and cost by maxi-

mizing the coverage per unit of time of the selected test cases (cost cognizant additional

greedy). Algorithm 13 reports its pseudo-code. In particular, let P be a program and

T be the set of test cases t1, . . . , tn; such an algorithm starts with an empty set of

test cases (line 3 of Algorithm 13) and iteratively picks the test case having the best

additional coverage per unit cost (lines 5-6 of Algorithm 13). The process ends when

the maximum code coverage is reached.

• The two-objective NSGA-II, used by Yoo and Harman [68] for finding a set of non-

dominated solutions that maximizes coverage while minimizing the cost of the selected

test cases. The NSGA-II pseudo-code is reported in Algorithm 12 in Chapter 2.

Similarly, for what concerns the three-objective formulation of the test case selection

problem, we compare the following optimization algorithms:

• The three-objective DIV-GA.

• The three-objective additional greedy algorithm used by Yoo and Harman[68], which

conflates code coverage, execution cost and past coverage in one objective function to be
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Algorithm 14: Three-objectives Additional Greedy.

Data:
A program P
A test suite T = {t1, . . . , tn}
Result: A set of sub-test suites S.

1 begin
2 C ←− ∅ // covered elements
3 S ←− ∅ // selected test cases
4 while C ≤ P do

5 Compute fi =
0.5× | Sk − C | +0.5× faulti

costi
for each ti ∈ T

6 ti ←− test case in T with minimum fi
7 Add ti to solution C ←− C

⋃
tj

8 T ←− T − {tj}
9 Add S to the Pareto set

minimized, as highlighted in Algorithm 14. Such an algorithm is similar to Algorithm 13

with the only difference that at each iteration it picks the test case having the best

additional code and past faults coverage per unit cost (lines 5-6 of Algorithm 14).

• The three-objective NSGA-II used by Yoo and Harman [68] for finding a set of non-

dominated solutions that maximizes code coverage and past fault coverage, while min-

imizing the cost of the selected test cases.

All the algorithms have been implemented using MATLAB Global Optimization Tool-

box [261] (release R2011b). In particular, we use the gamultiobj routine which implements

an island version of NSGA-II algorithm3. The DIV-GA algorithm is also implemented by

customizing the gamultiobj routine, while the computation of the orthogonal arrays4 is per-

formed using the rowexch routine, which implements the row-exchange algorithm to generate

m orthogonal arrays (m is the size of the initial population) of n factors (test cases) with

2-level ({0, 1}). For both NSGA-II and DIV-GA we use the same parameters typically used

for numerical problems [319]. Specifically:

• Population size: since the search space of the test case selection problem is larger for

programs with a larger test suite, we use different population sizes according the size

of the test suites to be optimized, as shown in Table 8.3.

• Initial population: for NSGA-II the initial population is randomly generated within

the solution space. For DIV-GA, the initial population is composed of the orthogonal

arrays as explained in section 8.2.

3The island version of NSGA-II has been used in previous works [103, 103, 11] with the name of vNSGA-II.
4Orthogonal design used for generating the initial population of DIV-GA.

196



8.3. Empirical Evaluation

Table 8.3: Configurations of NSGA-II and DIV-GA for the programs used in the study.

System Population size # of generations
bash 400 2,000
flex 400 1,000
grep 200 1,000
gzip 300 500
printtokens 200 500
printtokens2 200 500
schedule 200 500
schedule2 200 500
sed 300 1,000
space 400 1,000
vim 400 2,000

• Number of generations: the maximum number of generations varies according to

the size of the test suites to be optimized, similarly to what done for the population

size. The values are reported in Table 8.3.

• Crossover function: we use a multi-point crossover, called scattered crossover with

probability pc = 0.50.

• Mutation function: we use a bit-flip mutation function with probability pm = 1/n,

where n is the size of the test suite (or equivalently n is the size of the chromosomes).

• Stopping criterion: the average change of the Pareto frontiers is lower than 108 for

100 subsequent generations, or the maximum number of generations is reached.

• SVD frequency: orthogonal sub-population are generated by SVD every five gener-

ation, i.e. k = 5. This parameter applies only for DIV-GA.

The setting of GA parameters has been performed using a MATLAB’s routine, called

gaoptimset, which allows to create a list of options to set all parameters. To make faster

the execution time of GAs we also used the vectorized option of gaoptimset, which allows to

compute the fitness values for all individuals in the current population at once using a single

fitness function call. To this aim we reformulate the computation of the test case selection

criteria as matrices multiplications as previously done in [65]. Further details about the

formulation of test criteria as matrix operations are reported in Appendix B. Both NSGA-II

and DIV-GA have been executed 30 times for each program under study, in order to account

for their inherent randomness [265].

8.3.4 Evaluation Metrics

A simple way to evaluate the optimality of a multi-objective optimization algorithm consists

of comparing its set of yielded solutions with those of the actual Pareto frontier. However, it
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is impossible to know a priori the actual Pareto frontier of the test case selection problem,

because for large test suites it is unfeasible to compute the global optimal solution using an

exhaustive search. In order to perform an a posteriori evaluation of the obtained Pareto

frontiers, we construct a hybrid frontier by combining the best parts of the different frontiers

achieved by all the algorithms (in all the runs), and considering only the solutions that are

not dominated by the combined frontier. We call such a hybrid frontier reference Pareto

frontier [68].

Formally, let P = {P1, . . . , Pn} be the set of n different Pareto frontiers, the reference

Pareto frontier Pref is defined as follows:

Pref ⊆
n⋃
i=1

Pi

where Pref is the maximal set of non-dominated solutions obtained by all the Pareto frontiers,

i.e. ∀p ∈ Pref @q ∈ Pref : q � p. Thus, Pref helps to compare the global optimality of the

different algorithms on the basis of the Pareto frontiers they produce.

We perform a comparison of the different algorithms by estimating two metrics widely

used in global optimization problems:

• Size of Pareto frontier, that represents the number of non-dominated solutions obtained

by each Pareto frontier Pi.

• Number of non-dominated solutions, that is the number of solutions that are not dom-

inated by the reference Pareto frontier Pref . Formally, it can be defined as the cardi-

nality of the set P ∗i = {p ∈ Pi : @q ∈ Pref : q � p}. In other words, by definition of

Pref , P ∗i is the subset of Pi contained in the reference Pareto frontier Pref .

These two metrics were used to answer RQ1.

We also statistically analyze the obtained results, to check whether the differences between

the solutions produced by two different algorithms are statistically significant or not. In

particular, the values of the two employed metrics achieved by three algorithms over different

independent runs were statistically compared using the Welch’s t test [226] for both the multi-

objective formulations (as done in previous work [68, 11]). Welch’s t-test is generally used to

test two groups with unequal variance, e.g., in our case the variance of the number of non-

dominated solutions produces by the additional greedy and NSGA-II or DIV-GA is different5.

Significant p-values indicate that the corresponding null hypothesis can be rejected in favor

of the alternative hypothesis, i.e., that one of the algorithms produced a Pareto frontier of

larger size. In all our statistical tests we reject the null hypotheses for p-values < 0.05 (i.e.,

we accept a 5% chance of rejecting a null hypothesis when it is true [226]).

We preventively verify the applicability of the Welch’s t-test on our data by performing the

Wilk-Shapiro normality test. Such a test indicates a non significant deviation from normality

5Since the additional greedy is a deterministic algorithm, the variance over 30 independent runs is zero.
Conversely, because of the random inheritance of GAs, both NSGA-II and DIV-GA do not reach a zero
variance.

198



8.3. Empirical Evaluation

(p-value > 0.05). Since we apply the Welch’s t-test multiple times, we adjust the p-values

using the Holm’s correction procedure [227]. This procedure corrects the p-values resulting

from n tests by sorting them in ascending order of values and multiplying the smallest by n,

the next by n− 1, and so on.

Other than testing the hypotheses, we also estimated the magnitude of the difference

between performances achieved by two algorithms. To this aim, we used the Cohen d effect

size [226]. For dependent samples (to be used in the context of paired analyses, as in our

study) the Cohen d effect size is defined as the difference between the means (M1 and M2),

divided by the standard deviation of the (paired) differences between samples (σD):

d =
M1 −M2

σD

The effect size is considered small for 0.2 ≤| d |< 0.5, medium for 0.5 ≤| d |< 0.8 and large

for | d |≥ 0.8 [344].

To address (RQ2), we analyze the capability of optimized test suites—which may be

composed of a smaller number of test cases than the original one—to detect faults. Since each

algorithm provides more than one solution—i.e., more than one (near) optimal compromise

between cost and coverage—to the best of our knowledge, there is no metric used in previous

work to compare the effectiveness of two or more different sub-test suites. A simple way

to perform such a comparison consists of plotting the percentage of faults detected by each

solution provided by a given algorithm and the corresponding execution cost. This allows to

graphically compare two or more Pareto frontiers, showing the percentage of detected faults

at same level of execution cost.

In order to quantify the effectiveness of each Pareto frontier, we also use the hyper-

volume metric, generally used to measure the volume enclosed between a Pareto frontier

P = {p1, . . . , pn} with respect to an ideal/optimal Pareto frontier R [352, 110]. In other

words, the hypervolume measures the closeness of P to the ideal frontier R: the lower the

hypervolume value, the better the optimality of the solutions in P [352]. Generally, the

hypervolume can be computed within the space of the objectives to be optimized, or using

external utility functions selected by the decision maker. In our case, we suggest to revisit

the hypervolume metric by taking into account as external utility functions (i) the cost (ii)

and the percentage of faults revealed by each solution (sub-set of the test suite) in the Pareto

frontier. Hence, the goal is to measure how a Pareto frontier P is optimal from cost and

effectiveness point of view. In this context, the ideal frontier R is represented by an ideal

set of solutions (sub-test suites) that are able to reveal all the faults for any level of execu-

tion cost. According to the proposed utility functions, the weighted hypervolume indicator

becomes a bi-dimensional indicator as shown in Figure 8.2.

Without loss of generality, let P = {p1, . . . , pn} be a set of solutions, i.e., subsets of test

cases. Let f(pi) be the percentage of faults revealed by the solution pi ∈ P and let cost(pi)

be the corresponding execution cost. Let , R = {r1, ..., rn} be the corresponding ideal set of

solutions, i.e. subsets of test cases that are able to reveal all faults at varying execution cost
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Figure 8.2: Hypervolume metric based on cost and effectiveness of the sub-test suites.

(cost(ri) = cost(pi) and f(ri) = 1 for each ri). The hypervolume enclosed by these points

can be easily computed as the sum of rectangles of width [cost(pi+1)− cost(pi)] and height

[f(ri)− f(pi)], and then it is equal to:

IH(P ) = cost(p1) +

+

n∑
i=1

[cost(pi+1)− cost(pi)] · [1− f(pi)] (8.1)

Figure 8.2 provides a graphical interpretation for the cost-effectiveness hypervolume of a

given Pareto frontier. The hypervolume metric is an inverse function: the lower the value,

the better the average effectiveness of all the sub-test suites stated in the Pareto frontier6.

Starting from the cost-effectiveness hypervolume metric, we can express it as percentage of

the area (hypervolume) under the ideal/optimal frontier R as follows:

ICE(P ) =
IH(P )

c(pn)
(8.2)

Such a metric measures the (cost-cognizant) weighted average percentage of faults detec-

tion loss of a Pareto frontier, i.e., the identified (near) optimal subsets of test suite.

8.4 Empirical Results

This section discusses the results of our study with the aim of answering the research questions

formulated in Section 8.3.1.

6The hypervolume measures the closeness of the Pareto frontier P to the ideal effectiveness: all the
solutions stated in P are able to reveal all the faults.
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8.4.1 RQ1: To what extent does DIV-GA produce near optimal

solutions, compared to alternative test case selection tech-

niques?

Table 8.4 reports the size of Pareto frontiers and the number of non-dominated solutions

for the two-objective test case selection problem obtained by (i) DIV-GA, (ii) the additional

greedy algorithm, and (iii) NSGA-II. Specifically, the table reports mean size and standard

deviation over 30 independent runs of the algorithms. For all the 11 programs, the number

of solutions forming the Pareto frontiers of DIV-GA is larger than the number of optimal

solutions produced by the NSGA-II and by the additional greedy algorithm. For example,

on gzip DIV-GA provides a Pareto frontier with 222 solutions on average, while NSGA-

II provides 186 solutions and the additional greedy algorithm only 19. For the tester this

represents a substantial improvement, since a larger Pareto frontier provides a wider range

of candidate solutions that provide different compromises between cost and coverage. From

the analysis of Table 8.4 it is also possible to note that there is no clear winner among the

additional greedy and NSGA-II, confirming the results of previous study [68]. In 5 cases out

of 11, the size of the Pareto frontiers obtained by NSGA-II is smaller than the size of the

Pareto frontiers obtained by the additional greedy, while for the remaining cases the scenario

is the opposite (the size of the Pareto frontiers achieved by NSGA-II is larger).

DIV-GA also turned out to be able to produce a larger number of non-dominated sub-test

suites with respect to all the other algorithms. In particular, the majority of subset of tests

forming the Pareto frontiers of DIV-GA are also non-dominated by any other algorithm.

For example, on bash the Pareto frontier produced by DIV-GA contains 354 solutions, and

among them 311 solutions are non-dominated by those obtained by all the other algorithms

(i.e., such solutions are stated in the reference Pareto frontiers), while the number of non-

dominated solutions provided by the additional greedy algorithm and NSGA-II is really

small, especially when compared with the total amount of provided solutions. For example,

on bash the additional greedy provides 232 different solutions. However, among them only

30 solutions (less than 13%) are non-dominated by the solutions of the other algorithms

(in particular by those of DIV-GA). Similarly, NSGA-II obtains 276 different solutions, but

only 13% of them are non-dominated by those of the other algorithms. In summary, for the

two-objective formulation, DIV-GA not only produces more Pareto optimal sub-test suites

than the other algorithms, but they sub-test suites provide better code coverage with lower

execution cost than the solutions produced by the other algorithms.

The considerations above are also supported by statistical analysis. Table 8.5 reports the

results of the Welch’s t-test and Cohen’s d effect size, obtained comparing (across the 30 GA

runs) the size of the Pareto frontiers and the number of non-dominated solutions achieved by

the experimented algorithms (the p-values have been adjusted using the Holm’s correction

procedure [227]). The statistical analysis confirms that DIV-GA always produces Pareto

frontiers that are significantly larger than those produced by the additional greedy algorithm

(in 100% of cases) and by NSGA-II (in 82% of cases). The corresponding effect size values

revealed that the magnitude of the improvement of DIV-GA over the other two algorithms
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Table 8.4: Two-objective test case selection: mean Pareto sizes and number of non-dominated
solutions achieved by the different algorithms.

Program Method
Pareto size

Non Dominated
Solutions

Mean St. Dev. Mean St. Dev.

bash
DIV-GA 354 4.98 311 35.39
Add. Greedy 232 - 30.20 27.24
NSGA-II 276 5.69 37 52.04

flex
DIV-GA 306 8.52 303 8.23
Add. Greedy 43 - 7 0
NSGA-II 157 70.99 0 -

grep
DIV-GA 162 2.19 140 3.05
Add. Greedy 70 - 9 -
NSGA-II 60 - 3.75 4.79

gzip
DIV-GA 222 3.71 186 13.29
Add. Greedy 19 - 5.67 -
NSGA-II 88 1.36 30 13.48

sed
DIV-GA 270 - 252 18.03
Add. Greedy 33 - 3 -
NSGA-II 225 33.72 27.45 39.71

printtokens
DIV-GA 86 5.26 55.64 11.75
Add. Greedy 10 - 3 -
NSGA-II 6.60 2.30 0 -

printtokens2
DIV-GA 96 11.31 63 18.57
Add. Greedy 10 - 4 -
NSGA-II 23.60 7.50 0 -

schedule
DIV-GA 62.22 3.03 28.33 2.69
Add. Greedy 6 - 2 -
NSGA-II 1 - 0 -

schedule2
DIV-GA 63.22 5.49 31.14 4.45
Add. Greedy 9 - 4 -
NSGA-II 18 0.58 0 -

space
DIV-GA 344 4.19 340 12.39
Add. Greedy 119 - 3 -
NSGA-II 284 85.58 6.67 14.38

vim
DIV-GA 353 1.10 234 75.37
Add. Greedy 266 - 91 77.78
NSGA-II 339 8.66 6.5 9.19

is large (d >1) in the majority of cases: 100% of the cases for the additional greedy and 91%

of the cases for NSGA-II.

As for the number of solutions DIV-GA statistically outperforms the other two algorithms

with a large effect size in all the cases. When comparing the additional greedy and NSGA-

II, we can also note that for all the 11 programs none of the two algorithms turns out to

be statistically better than the other in terms of Pareto optimality. In fact, in some cases

the additional greedy significantly outperforms NSGA-II, while in the other cases it is the
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Table 8.5: Comparison between different algorithms for the two-objective test case selection
problem. Welch’s t-test p values and Cohen’s d effect size. We use S, M, and L to indicate
small, medium and large effect sizes, respectively.

Program Hypothesis
Pareto Size Non Dom. Solutions

p-values Cohen’s d p-values Cohen’s d

bash
DIV-GA > Add. Greedy < 0.01 58.39 (L) < 0.01 8.90 (L)
DIV-GA > NSGA-II < 0.01 16.64 (L) < 0.01 6.16 (L)
Add. Greedy > NSGA-II 1 -10.96 (L) 0.58 0.16

flex
DIV-GA > Add. Greedy < 0.01 40.92 (L) < 0.01 50.96 (L)
DIV-GA > NSGA-II 0.75 2.94 (L) < 0.01 52.69 (L)
Add. Greedy > NSGA-II 1 -2.04 (L) < 0.01 -

grep
DIV-GA > Add. Greedy < 0.01 59.13 (L) < 0.01 56.11 (L)
DIV-GA > NSGA-II < 0.01 12.37 (L) < 0.01 34.05 (L)
Add. Greedy > NSGA-II < 0.01 2.30 (L) < 0.01 1.44 (L)

gzip
DIV-GA > Add. Greedy < 0.01 77.31 (L) < 0.01 19.19 (L)
DIV-GA > NSGA-II < 0.01 47.92 (L) < 0.01 11.67 (L)
Add. Greedy > NSGA-II 1 -71.41 (L) 1 -2.56 (L)

printtokens
DIV-GA > Add. Greedy < 0.01 19.47 (L) < 0.01 6.39 (L)
DIV-GA > NSGA-II < 0.01 18.59 (L) < 0.01 6.65 (L)
Add. Greedy > NSGA-II < 0.01 1.68 (L) < 0.01 4.32 (L)

printtokens2
DIV-GA > Add. Greedy < 0.01 10.71 (L) < 0.01 2.86 (L)
DIV-GA > NSGA-II < 0.01 6.39 (L) < 0.01 3.04 (L)
Add. Greedy > NSGA-II 0.41 0.14 (L) < 0.01 14.32 (L)

schedule
DIV-GA > Add. Greedy < 0.01 26.22 (L) < 0.01 13.83 (L)
DIV-GA > NSGA-II < 0.01 28.33 (L) < 0.01 14.19 (L)
Add. Greedy > NSGA-II 0.78 20.74 (L) 0.02 3.77 (L)

schedule2
DIV-GA > Add. Greedy < 0.01 16.95 (L) < 0.01 8.44 (L)
DIV-GA > NSGA-II < 0.01 11.49 (L) < 0.01 9.66 (L)
Add. Greedy > NSGA-II 1 -25.56 (L) 0.03 4.54 (L)

sed
DIV-GA > Add. Greedy < 0.01 70.57 (L) < 0.01 19.52 (L)
DIV-GA > NSGA-II < 0.01 3.10 (L) 0.14 7.28 (L)
Add. Greedy > NSGA-II 1 -11.06 (L) 0.97 -0.88 (L)

space
DIV-GA > Add. Greedy < 0.01 76.12 (L) < 0.01 38.41 (L)
DIV-GA > NSGA-II 0.05 1.00 (L) < 0.01 26.22 (L)
Add. Greedy > NSGA-II 1 2.72 (L) 0.69 -0.22 (S)

vim
DIV-GA > Add. Greedy < 0.01 12.57 (L) < 0.01 1.86 (L)
DIV-GA > NSGA-II < 0.01 4.18 (L) < 0.01 4.17 (L)
Add. Greedy > NSGA-II 1 17.50(L) < 0.01 1.45 (L)

contrary.

Figure 8.3 provides—for some programs considered in our study, i.e., flex, grep, gzip

and printtokens—a graphical comparison between the Pareto frontiers obtained by the

three algorithms and a “reference” Pareto frontier, built as explained in section 8.3.4. We

obtained consistent results for all other programs as well (see the Appendix C for further

details). As it can be noticed, the Pareto frontiers provided by DIV-GA are much closer to the

reference Pareto frontiers (often the two frontiers are perfectly overlapped) than the Pareto

frontiers provided by NSGA-II and the additional greedy. The additional greedy algorithm

provides solutions that are, in some cases, quite close to the reference frontiers. However,

the majority of them are dominated by solutions produced by DIV-GA. Instead, NSGA-II

produces solutions quite far from the optimal set of solutions (e.g., on printtokens). Only

on gzip all the algorithms turned out to be close to the reference frontier, even if Table 8.4

shows a substantial difference in terms of number of non-dominated solutions and Pareto
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Figure 8.3: Pareto frontiers.

frontier size of DIV-GA compared to the other approaches. Particularly interesting are the

results achieved for all the programs in the Siemens suite —i.e. printtokens, printtokens2,

schedule, and schedule2— where NSGA-II is very far from the optimal Pareto frontier

while DIV-GA provides (near) optimal frontiers. Finally, for what concerns the uniformity

of the distribution of the solutions over the produced Pareto frontiers, we can also observe

that DIV-GA also provides a wider diversity of non-dominated solutions with higher coverage

and uniformity along the Pareto frontier than the other algorithms. Conversely, NSGA-II and

the additional greedy algorithm provide solutions which are not well distributed uniformly

along the Pareto frontiers, i.e., providing more solutions for higher coverage levels and leaving

the rest of the Pareto frontiers quite unexplored.

Table 8.6 compares the performance of the three experimented algorithms for the three-

objective formulation of the test case selection problem. Also in this case, results are shown

in terms of mean and standard deviation of the size of Pareto frontiers and number of non-

dominated solutions computed across 30 independent runs of each algorithm. In all cases,

the size of the Pareto frontiers obtained by DIV-GA is larger than those obtained using
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Table 8.6: Three-objective formulation of the test case selection problem: mean size of Pareto
frontier and mean number of non-dominated solutions obtained by the different algorithms.

Program Method
Pareto size

Non Dominated
Solutions

Mean St. Dev. Mean St. Dev.

bash
DIV-GA 354 2.98 310 53.73
Add. Greedy 233 - 31 -
NSGA-II 276 4.47 48 69.20

flex
DIV-GA 331 8.06 328 8.04
Add. Greedy 47 - 7 -
NSGA-II 139 44.62 0 -

grep
DIV-GA 317 13.06 294 44.21
Add. Greedy 72 - 6 -
NSGA-II 207 46.23 21 42.73

gzip
DIV-GA 198 4.97 171 11.30
Add. Greedy 19 - 1 -
NSGA-II 195 4.66 130 20.77

printtokens
DIV-GA 110 33.28 110 33.71
Add. Greedy 13 - 7 -
NSGA-II 6 2.77 0 -

printtokens2
DIV-GA 190 30.11 189 27.70
Add. Greedy 11 - 4 -
NSGA-II 11 3.50 0 -

schedule
DIV-GA 213 11.33 199 11.29
Add. Greedy 10 - 6 -
NSGA-II 123 21.48 18.67 30.24

schedule2
DIV-GA 136 23.09 91 27.77
Add. Greedy 11 - 1 -
NSGA-II 118 20.47 9 20.20

sed
DIV-GA 195 38.02 164 43.48
Add. Greedy 33 - 5 -
NSGA-II 98 19.83 36.14 12.56

space
DIV-GA 360 - 318 59.51
Add. Greedy 126 - 7 -
NSGA-II 360 - 78 91.65

vim
DIV-GA 393 1.77 219 16.29
Add. Greedy 266 - 163 -
NSGA-II 182 3.50 26.43 10.75

the additional greedy algorithm. For example, on gzip DIV-GA provides 198 solutions

against 19 solutions produced using the additional greedy. DIV-GA also produces larger

Pareto frontiers than NSGA-II in 9 out of 11 cases, while on space and gzip the size of

the Pareto frontiers is exactly the same. However, by looking at the non-dominance of the

solutions, DIV-GA always produces a number of non-dominated solutions larger than the

number of non-dominated solutions produced by the other two algorithms. Such solutions

are also stated on the reference frontier, i.e., they are not dominated by solutions produced
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Table 8.7: Comparison between different algorithms for the three-objective test case selection
problem. Welch’s t-test p values and Cohen’s d effect size. We use S, M, and L to indicate
small, medium and large effect sizes respectively.

Program Hypothesis
Pareto Size Non Dom. Solutions

p-values Cohen’s d p-values Cohen’s d

bash
DIV-GA > Add. Greedy < 0.01 57.48 (L) < 0.01 7.31 (L)
DIV-GA > NSGA-II < 0.01 20.59 (L) < 0.01 4.22 (L)
Add. Greedy > NSGA-II 1 -13.60 (L) 0.73 0.34 (S)

flex
DIV-GA > Add. Greedy < 0.01 49.82 (L) < 0.01 56.40 (L)
DIV-GA > NSGA-II < 0.01 5.96 (L) < 0.01 57.49 (L)
Add. Greedy > NSGA-II 1 -2.94 (L) < 0.01 20.62

grep
DIV-GA > Add. Greedy < 0.01 26.56 (L) < 0.01 9.21 (L)
DIV-GA > NSGA-II < 0.01 3.25 (L) < 0.01 6.28 (L)
Add. Greedy > NSGA-II 1 -4.12 (L) < 0.01 0.49 (M)

gzip
DIV-GA > Add. Greedy < 0.01 50.88 (L) < 0.01 56.00 (L)
DIV-GA > NSGA-II 0.25 0.62 (M) < 0.01 4.46 (L)
Add. Greedy > NSGA-II 1 -53.37 (L) 1 -8.81 (L)

printtokens
DIV-GA > Add. Greedy < 0.01 4.14 (L) < 0.01 4.39 (L)
DIV-GA > NSGA-II < 0.01 4.43 (L) < 0.01 4.66 (L)
Add. Greedy > NSGA-II < 0.01 3.68 (L) < 0.01 19.45 (L)

printtokens2
DIV-GA > Add. Greedy < 0.01 8.41 (L) < 0.01 9.42 (L)
DIV-GA > NSGA-II < 0.01 8.377 (L) < 0.01 9.62 (L)
Add. Greedy > NSGA-II 0.40 0.12 < 0.01 12.13 (L)

schedule
DIV-GA > Add. Greedy < 0.01 9.12 (L) < 0.01 24.21 (L)
DIV-GA > NSGA-II < 0.01 2.63 (L) < 0.01 7.91 (L)
Add. Greedy > NSGA-II 1 -7.46 (L) 0.82 0.59 (M)

schedule2
DIV-GA > Add. Greedy < 0.01 7.63 (L) < 0.01 4.57 (L)
DIV-GA > NSGA-II 0.14 0.80 (L) < 0.01 3.38 (L)
Add. Greedy > NSGA-II 1 -7.39 (L) 0.94 0.55 (M)

sed
DIV-GA > Add. Greedy < 0.01 6.03 (L) < 0.01 7.07 (L)
DIV-GA > NSGA-II < 0.01 3.19 (L) < 0.01 5.62 (L)
Add. Greedy > NSGA-II 1 -4.65 (L) 1 3.51 (L)

space
DIV-GA > Add. Greedy < 0.01 251.46 (L) < 0.01 8.98 (L)
DIV-GA > NSGA-II < 0.01 145.73 (L) < 0.01 1.02 (L)
Add. Greedy > NSGA-II 1 -83.09 (L) 0.93 -2.64 (L)

vim
DIV-GA > Add. Greedy < 0.01 106.25 (L) < 0.01 4.88 (L)
DIV-GA > NSGA-II < 0.01 76.70 (L) < 0.01 13.97 (L)
Add. Greedy > NSGA-II < 0.01 33.84 (L) < 0.01 17.96 (L)

by the other algorithms. Conversely, the majority of solutions produced by the additional

greedy and NSGA-II are dominated by—i.e., they are worse than—the solutions of DIV-GA.

For example, on flex the additional greedy algorithm produces 47 solutions forming the

Pareto frontier, and among them only 7 solutions (less than 15% of the total amount of the

produced solutions) are non-dominated by any other algorithm. Similarly, NSGA-II produces

139 solutions for the same program, but none of them belongs to the reference Pareto frontier,

i.e., all of them are dominated by other solutions. Hence, for the three-objective test case

selection problem, DIV-GA produces a larger number of sub-test suites with higher code

coverage, higher past fault coverage and lower execution cost than both NSGA-II and the

additional greedy.

Results of the Welch’s t test confirm that the differences between DIV-GA and the other

two algorithms are also statistically significant. Table 8.7 reports the p-values obtained

comparing the Pareto frontier size and the number of non-dominated solutions achieved

206



8.4. Empirical Results

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

Add. Greedy
Reference

(a)

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

SVD−GA
Reference

(b)

0
2

4
6

8x 10
6 0

0.5

1

0

5

10

15

20

 

Coverage %

Cost

 

P
as

t F
au

lts

vNSGA−II
Reference

(c)

Figure 8.4: Three-objective Pareto Frontiers achieved on flex.
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Figure 8.5: Three-objective Pareto Frontiers achieved on gzip.

by the experimented algorithms (the p-values have been adjusted using the Holm’s [227]

correction procedure). For all programs, the Pareto frontiers produced by DIV-GA are

significantly larger than those produced by the additional greedy (100% of cases) and by

NSGA-II (82% of cases) with a very large effect size in all the cases. When comparing NSGA-

II and the additional greedy, we can also note that NSGA-II produces a larger number of

sub-test suites than the additional greedy. DIV-GA also always produces a larger number of

solutions—i.e., more sub-test suites—that are non-dominated by any solution obtained by

the other algorithms. The results also show that in general the additional greedy algorithm

is dominated by NSGA-II. However, on some programs —i.e. flex, grep, printtokens,

printokens2, and vim— the additional greedy algorithm produces more optimal results

than NSGA-II, as it was also pointed out by Yoo et al. [68].

Figures C.5-C.8 show the results for the three-objective formulation on three programs ,

i.e., flex, gzip, and printtokens. Consistent results have been obtained for all the other

programs (see the Appendix C for further details). The 3D plots displays the solutions

produced by (i) DIV-GA, (ii) the additional greedy algorithm, (iii) NSGA-II, and (iv) the

reference Pareto frontier (denoted using black dots). The additional greedy algorithm pro-

duces solutions that are quite close to the reference frontier. However, the number of the
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Figure 8.6: Three-objective Pareto Frontiers achieved on printtokens.

produced solutions is really small if compared to the reference frontier. DIV-GA always

produces three-objective solutions stated in the reference frontier: in all cases the Pareto

frontier of DIV-GA exactly overlaps the reference frontier. Hence, DIV-GA always produces

solutions that are non-dominated by any other algorithm. Instead, NSGA-II produces (near)

optimal solutions only in a few cases. For example, on gzip the Pareto frontier obtained by

NSGA-II is quite close to the reference Pareto frontier, even if Table 8.7 reveals that only a

part of such solutions are non-dominated, while on printtokens, the solutions obtained by

NSGA-II are quite far from the reference Pareto frontier.

RQ1 Summary. For both the two- and three-objective test case selection problems, we

can conclude that DIV-GA is always able to produce more Pareto-optimal sub-test suites than

the additional greedy algorithm and NSGA-II. Such sub-test suites represent Pareto-optimal

compromises between coverage and cost.

8.4.2 RQ2: What is the cost-effectiveness of DIV-GA, compared

to alternative test case selection techniques?

Table 8.8 reports the mean values of the cost-effectiveness hypervolume metric (IEC) related

to the different Pareto frontiers produced by the three experimented algorithms: (i) DIV-GA,

(ii) additional greedy, and (iii) NSGA-II. The reported values represent the mean of the IEC
values achieved over 30 independent runs. Results are also collected according to the two

formulations of test case selection problem investigated in this Chapter.

For the two-objective formulation, in 10 out of 11 programs the hypervolume values

obtained by DIV-GA are smaller than those achieved by the additional greedy. Hence, the

test cases stated in the corresponding Pareto frontiers are able to detect more faults with

a lower execution cost (which mirrors a lower average percentage of fault detection loss).

Only on sed, the additional greedy produces the same hypervolume values as DIV-GA. A

similar analysis can be done by comparing DIV-GA and NSGA-II: for all programs, the IEC
values provided by DIV-GA are better than those provided by NSGA-II. When comparing

the additional greedy and NSGA-II, it is possible to observe that there is no clear winner
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Table 8.8: Mean cost-effectiveness hypervolume values.

Program Method
ICE

2-Objective 3-Objective

bash
Add. Greedy 0.45 0.32
DIV-GA 0.39 0.30
NSGA-II 0.52 0.48

flex
Add. Greedy 0.03 0.15
DIV-GA 0.02 0.05
NSGA-II 0.04 0.20

grep
Add. Greedy 0.51 0.51
DIV-GA 0.40 0.27
NSGA-II 0.40 0.28

gzip
Add. Greedy 0.56 0.52
DIV-GA 0.51 0.51
NSGA-II 0.60 0.54

printtokens
Add. Greedy 1 0.72
DIV-GA 0.83 0.60
NSGA-II 0.97 0.81

printtokens2
Add. Greedy 0.86 0.17
DIV-GA 0.81 0.08
NSGA-II 1 0.86

schedule
Add. Greedy 1 0.07
DIV-GA 0.97 0.06
NSGA-II 0.98 0.10

schedule2
Add. Greedy 1 0.89
DIV-GA 0.99 0.84
NSGA-II 1 0.89

sed
Add. Greedy 0.23 0.20
DIV-GA 0.23 0.10
NSGA-II 0.28 0.10

space
Add. Greedy 0.35 0.14
DIV-GA 0.24 0.12
NSGA-II 0.35 0.16

vim
Add. Greedy 0.24 0.23
DIV-GA 0.22 0.19
NSGA-II 0.33 0.25

among them, also from an effectiveness point of view. In 2 out of 11 cases, the test cases

selected by NSGA-II can detect more faults than the solutions detected by the additional

greedy algorithm, while in 6 out of 11 cases the greedy algorithm outperforms NSGA-II.

In the remaining 3 cases, there is no difference between the IEC values achieved by the

two algorithms. This result indicates that injecting diversity in GAs allows to improve the

effectiveness of multi-objective GAs (NSGA-II in our case).

To provide a graphical interpretation to the IEC metric, Figure C.15 plots the percentage

of faults detected by the solutions (sub-test suites) provided by the three algorithms at same
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Figure 8.7: Effectiveness of the achieved sub-test suites for two-objective test case selection.

level of execution cost on space and printtokens. We can observe that the sub-test suites

selected by DIV-GA are able to detect more faults than the additional greedy with lower

execution cost. For example, on space the test suites optimized by DIV-GA can detect 100%

of faults, while the percentage of faults produced by the other two algorithms is lower at the

same level of execution cost. Similar considerations can be made on the other programs (see

the Appendix C for further details).

For the three-objective formulation of the test case selection problem, we obtained results

that are quite similar to those obtained for the two-objective formulation (see Table 8.8).

Indeed, for all the programs, the cost-effectiveness hypervolume values achieved by DIV-GA

are smaller than those achieved by the additional greedy. This means that the test cases

within the corresponding Pareto frontiers are able to detect more faults with a lower execution

cost, mirroring a lower average percentage of fault detection loss per unit cost. A similar

analysis can be done by comparing DIV-GA and NSGA-II. In general, DIV-GA obtains the

best hypervolume values. Only on grep and sed the ICE values obtained by DIV-GA and

NSGA-II are the same. When comparing the additional greedy and NSGA-II, we can observe

that in general the additional greedy is better in terms of fault detection-effectiveness. In 2

out of 11 cases, the test cases selected by NSGA-II can detect more faults than the test cases

selected by the additional greedy algorithm, while in 8 out of 11 cases the additional greedy

outperforms NSGA-II. Finally, in only one case there is no difference between the IEC values

produced by the two algorithms.

Figure C.16 plots the cost/faults curves obtained by the three algorithms. The goal of

such an analysis is to provide a graphical comparison of the percentage of faults detected

by the different solutions (sub-test suites) at same level of execution cost. We can notice

that the sub-test suites obtained by DIV-GA are able to detect more solutions than both

the additional greedy and NSGA-II with a lower (or in some cases the same) execution cost.

For example, on space, the test suites optimized by DIV-GA can detect 100% of the faults,
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Figure 8.8: Effectiveness of the achieved sub-test suites for three-objectives test case selection.

while the percentage of faults detected by the other two algorithms is lower for the same

level of execution cost. On printtokens, all the algorithms provide solution that are able

to reveal all faults. However, DIV-GA turned out to be better than the other techniques in

terms of execution cost. Similar considerations can be made on the other programs (see the

Appendix C for further details).

RQ2 Summary. For both two and three-objective formulations of the test case selection

problem, we can conclude that DIV-GA is always able to produce optimal sub-test suites

within the Pareto frontiers. Such sub-test suites are able to reveal more faults than the sub-test

suites obtained by the additional greedy algorithm and NSGA-II. Moreover, the corresponding

execution cost is lower than the other techniques.

8.5 Threats to Validity

This section discusses the threats to the validity of our empirical evaluation, classifying them

into construct, internal, external, and conclusion validity.

Threats to construct validity concern the relationship between theory and observation.

In this study, they are mainly related to the choice of the metrics used to evaluate the

characteristics of the different test case selection algorithms. In order to evaluate the opti-

mality of the experimented algorithms (DIV-GA, additional greedy, and NSGA-II) we used

two well-known metrics: (i) Pareto frontier size and (ii) number of solutions not dominated

by reference Pareto frontiers [319]. Such metrics have been also used in previous work on

multi-objective test case selection [68, 103, 11, 304]. The effectiveness of the Pareto sets

achieved by all the algorithms was measured by using the hypervolume indicator, which is

widely used in multi-objective optimization [110]. In particular, we used (i) execution cost

and (ii) percentage of detected faults as utility functions to build a bi-objective hypervolume

indicator. Another construct validity threat involves the correctness of the measures used
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as test criteria: statement coverage, faults coverage and execution cost. To mitigate such a

threat, the code coverage information were collected using two open-source profiler/compiler

tools (GNU gcc and gcov). The execution cost was measured by counting the number of

source code statements expected to be executed by the test cases, while the original fault

coverage information was extracted from the SIR dataset [343].

Threats to internal validity concern factors that could have influenced our results and

that were not properly considered. In this study, a crucial factor is the random nature of

the GAs themselves [265]. To address this problem, we ran the experimented GAs (DIV-GA

and NSGA-II) 30 times for each subject program (as done in previous work [68, 65, 11]), and

considered the mean values of the measures used to evaluate the optimality and effectiveness.

Another threat to internal validity is represented by the algorithms used to compute orthog-

onal vectors in the DIV-GA: there is no unique algorithm to generate orthogonal vectors

and different algorithms might affect the performance of the proposed algorithm. To address

such a potential issue we report the algorithm used in this Chapter. The tuning of the GAs

parameters is another factor that can affect the internal validity of this work. In this study

we used the same parameters used in previous work on multi-objective test case selection

[68, 65, 11].

Threats to external validity concern the generalization of our findings, and are related

to the set of programs used in the experimentation. We considered 11 programs extracted

from the SIR, that were also used in most previous work on regression testing [268, 36,

299, 104, 300, 68, 65, 11, 103]. However, in order to corroborate our findings, replications

on a wider range of programs and optimization techniques are desirable. The replication

of the study we conducted in this Chapter is part of our agenda for future work. Also,

there may be optimization algorithms or formulations of the test case selection problem

not considered in this study that could produce better results. No particular algorithm is

known to be effective for the multi-objective test case selection problem [103], and usually the

evaluation of a search-based algorithm involves a comparison with other kinds of algorithms.

We compared DIV-GA with (i) the additional greedy algorithm, and (ii) the Pareto efficient

multi-objective GA (NSGA-II) in order to evaluate the benefits of the proposed algorithms

over the most used ones. Moreover, in order to make more generalizable the results, we

evaluated all the algorithms with respect to solving two different formulations of the test

case selection problem with two and three objectives to be optimized.

Finally, for what concerns conclusion validity, we support our findings by using appro-

priate statistical tests, i.e. the Welch’s t-test. We performed Wilk-Shapiro normality test to

verify wether the Welch’s t-test could be applied to our data. Finally, we used the Cohen’s d

effect size to measure the magnitude of the differences between the experimented algorithms.

8.6 Conclusion and Future Work

We proposed a novel diversity preserving technique based on Singular Value Decomposition

and orthogonal arrays to improve the performance of multi-objective genetic algorithms when
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solving multi-criteria regression testing problems. Specifically, we proposed DIV-GA (DIver-

sity based Genetic Algorithm), a novel multi-objective genetic algorithm which combine the

main loop of the popular NSGA-II with the diversity preserving mechanism formulated for

multi-objective test case selection.

An empirical study conducted on 11 open source programs and test suites shows that DIV-

GA outperforms both additional greedy algorithm and NSGA-II, which were considered as

the best optimizers for multi-objective test case selection problem [68, 27, 65, 34, 35, 36]. In

particular, DIV-GA allows not only to generate more optimal trade-offs with respect to the

other optimizers when considering two and three test case selection criteria, but its selected

sub-test suites turned out to be more cost-effective. Indeed, the sub-test suites generated

by DIV-GA are able to reveal more faults at same level of execution cost than the sub-test

suites obtained by both the additional greedy algorithm and NSGA-II.

The results achieved in our experimentation support our initial conjecture. Preserving

diversity is a crucial activity when using search-based algorithms for test case selection.

Without sound diversity mechanisms, which might require using approaches such as the

one proposed in this Chapter, the potential of search-based algorithms can be seriously

undermined, as shown in our empirical study. This is true in the test case selection problem,

but also in other software engineering problems, such as test case generation [5]. Our final

conjecture, that we plan to verify in the future, is that the proposed diversity mechanisms

can be properly customized in order to improve the plethora of search-based approaches

that have been recently proposed to support software engineering tasks (e.g., refactoring and

scheduling) but that do not properly consider the diversity as an important issue.

213



Multi-Objective Test Suite Optimization

214



Chapter 9

Conclusion and feature work

Contents
9.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 216

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

215



Conclusion and feature work

9.1 Summary of Contributions

This thesis investigated and proposed the usage of search based approaches to reduce the

effort of software maintenance and software testing with particular attention to four main ac-

tivities: (i) program comprehension; (ii) defect prediction; (iii) test data generation and (iv)

test suite optimization for regression testing. For program comprehension and defect predic-

tion this thesis provided their first formulations as optimization problems and then proposed

the usage of genetic algorithms to solve them (single-objective GAs and MOGAs respec-

tively). Test data generation and test suite optimization have been extensively investigated

as search-based problems in literature. However, this thesis presented diversity preserving

mechanisms in order to overcome some limitations of evolutionary testing techniques.

The first part of the thesis focused on two semi-automated techniques used to support the

software engineer during software maintenance tasks: IR-based program comprehension and

defect prediction. In this thesis we noted that these techniques pose the software engineer in

front of many possible choices (different instantiations of an IR process, or multiple criteria

when using defect prediction models) and the problem of selecting the best choice is not

trivial, task and dataset dependent. Thus, we illustrated the benefits of using search-based

approaches for calibrating/tunig these techniques.

Chapter 3 investigated a search-based approach to automatically assemble a (near) opti-

mal IR process when solving software engineering problems such as traceability link

recovery or feature location. It presented a sound approach —named LSI-GA— to find

a (near) optimal configuration of a generic IR process, and a further approach —named

LDA-GA— to find (near) optimal calibrations for LDA. The conducted empirical stud-

ies involved four different software engineering tasks and demonstrate that: (i) the IR

processes instantiated by LSI-GA significantly outperform those assembled according

to what previously done in literature; (ii) the performances achieved by LSI-GA are

not significantly different from the performances of the global optimum, i.e., the ideal

IR process that can be combinatorially built by considering all possible combinations

of treatments for the various phases of the IR process, and by having a labeled train-

ing set available (i.e., by using a supervised approach); (iii) applying LDA to software

engineering tasks requires a careful calibration due to its high sensitivity to different

parameter settings; (iv) LDA-GA is able to identify LDA configurations that lead to

higher accuracy as compared to alternative heuristics; (v) the performance of LDA-

GA are comparable to the best results obtained from the combinatorial search and

by having a labeled training set available (i.e., by using a supervised approach). It

is also important to highlight that both LDA-GA and LSI-GA are unsupervised since

they estimated the goodness of an IR process or of a LDA configuration using qual-

ity of clustering metrics. Thus, the proposed approaches are unsupervised and task

independent.

Chapter 4 formulated the problem of finding good cross-project defect prediction models

as a multi-objective problem where multiple and contrasting goals have to be taken
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into account. The Chapter presented MODEP, a search-based techniques based on

MOGAs, which produces a Pareto front of predictors that allow to achieve different

trade-offs between the cost of code inspection and the amount of defect-prone classes

correctly classified. An empirical study conducted on 10 open-source software projects

demonstrated that: (i) MODEP can be applied to any traditional machine learning

technique (for instance in Chapter 4 we used logistic regression or a decision tree)

and considering different software criteria, such as the inspection cost, the number of

defect-prone classes tested, and the number of defects that can be discovered by the

analysis/testing; (ii) MODEP allows to achieve a better cost-effectiveness than single-

objective predictors trained with both a within or cross-project strategy; (iii) MODEP

outperforms a state-of-the-art approach for cross-project defect prediction [86], based

on local prediction among classes having similar characteristics. Specifically, MODEP

achieves, at the same level of cost, a significantly higher recall (based on both the

number of defect-prone classes and the number of defects). Finally, while traditional

defect prediction approaches provides only one prediction model, MODEP allows to

achieve different trade-offs between the cost of code inspection (measured in terms of

KLOC of the source code artifacts) and the amount of defect-prone classes or number

of defects that the model can predict (i.e., recall). In this way, for a given budget (i.e.,

LOCH that can be reviewed or tested with the available time/resources) the software

engineer can choose a predictor that (a) maximizes the number of defect-prone classes

tested (which might be useful if one wants to ensure that an adequate proportion of

defect-prone classes has been tested), or (b) maximizes the number of defects that can

be discovered by the analysis/testing.

The second part of the thesis focused on evolutionary software testing with particular

attention to test data generation and test suite optimization. Along with their strengths,

testing techniques based on evolutionary algorithms have a set of challenges and open issues.

We highlight that one of these issues is the genetic drift, or loss of diversity. For these reasons,

we proposed a novel diversity preserving techniques based on Singular Value Decomposition

(SVD) [322], to estimate the evolution directions of a population across different generations

to promote the exploration of unexplored regions by creating new individuals with orthogonal

evolution directions.

Chapters 6 provided a preliminary analysis of the benefits of the proposed techniques

when integrated within both GAs and MOGAs (obtaining the SVD augmented al-

gorithms named SVD-GA and SVD-NSGA-II respectively). Specifically, the proposed

techniques have been evaluated on 15 single-objective numerical test problems and 12

multi-objective numerical test problems with varying problem dimensions. The results

achieved on two empirical studies indicate the superiority of the proposed algorithms if

compared to their original versions GAs and NSGA-II. After this preliminary analysis

on numerical problems, the SVD-based technique have been evaluated in the context

of software testing.
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Chapter 7 presented three improved variants of the basic SVD-GA, which are the history

aware SVD-GA, reactive GA, and combined history aware and reactive SVD-GA in

the context of evolutionary test data generation. Experimental studies on 17 Java

classes extracted from widely used open source libraries showed that: (i) the proposed

diversification schemata improve over basic GA in terms of effectiveness (i.e., branch

coverage achieved) in 8 of the tested classes; (ii) the proposed diversification schemata

significantly improved efficiency in 6 out of 7 tested classes where the effectiveness was

not significantly improved.

Chapter 8 presented an improved variant of the basic SVD-NSGA-II, named DIV-GA, for

solving multi-objective test suite optimization problem. Such a variant combines the

basic SVD-NSGA-II algorithm with the orthogonal design in order to both (i) generate

a well diversified initial population and (ii) maintain diversity during the evolution of

MOGAs. The empirical study conducted on 11 open source programs and relative test

suites shows that DIV-GA outperforms both additional greedy algorithm and NSGA-

II, which were considered as the best optimizers for multi-objective test case selection

problem [68, 27, 65, 34, 35, 36]. In particular, DIV-GA allows (i) to generate more

optimal trade-offs with respect to the other optimizers when considering two and three

test case selection criteria; (ii) to select sub-test suites that are more cost-effective.

9.2 Future Work

There is a large set of possible improvements that can be studied in future. For example,

future work will be devoted to further experiment and assess the proposed search-based ap-

proaches in larger software projects for all the experimented software engineering problems.

For what concern the program comprehension, we plan to use a more sophisticated evolution-

ary algorithm, employing genetic programming (GP) to assemble different phases in different

ways, including creating ad-hoc weighting schemata [212] or extracting ad-hoc elements from

artifacts to be indexed, e.g., only specific source code elements, only certain parts-of-speech.

Also, we plan to also optimize the choice of the most appropriate IR algebraic method, also

in cases for which such a method does not imply document clustering.

Concerning defect prediction problems, future work aims at considering different kinds of

cost-effectiveness models. As said, we considered LOCH is a proxy for code inspection cost,

but certainly is not a perfect indicator of the cost of analysis and testing. Alternative cost

models, better reflecting the cost of some testing strategies (e.g., code cyclomatic complexity

for white box testing, or input characteristics for black box testing) must be considered.

Last, but not least, we plan to investigate whether the proposed approach could be used in

combination with—rather than as an alternative to—the local prediction approach [86].

For software testing, we plan to support SVD-based diversity mechanisms with non-

numeric data types (e.g. strings) as well as an arbitrary number of method call sequences as

part of our future extension. For such an extension, the non-numeric types and the method

call sequences need to be mapped to a vector space in which a meaningful notion of evolution
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direction can be defined. An idea to proceed along these directions involves mapping a

variable size sequence (of method calls) to fixed size feature vectors, which represent the

frequency of occurrence of each feature in an individual. Similarly, feature vectors can

be used to represent strings of arbitrary length by extracting pairwise Longest Common

Substrings (LCS) from the strings into a feature set and encoding each string as a feature

vector containing each feature (LCS). SVD will then be applied to the feature vectors, so

as to explore orthogonal regions in the space of feature vectors. In a similar vein, since

the current approach considers vectors of fixed size, we intend to investigate an extension

of our technique that is able to address vectors of variable dimensions by using complex

number for representing variable length candidate solutions. We plan to integrate all these

future extensions and enhancements of our implementation into the publicly available tool

EvoSuite.

Finally, concerning the test suite optimization problems, we plan to verify whether the

proposed diversity mechanisms can be properly customized in order to improve the plethora

of search-based approaches that have been recently proposed to support software engineering

tasks (e.g., refactoring and scheduling) but that do not properly consider the diversity as an

important issue.
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Appendix A

SVD-GA: Performances of the

Experimented Algorithms

In this appendix we present the results achieved when considering a different problem di-

mensions with respect to those reported in Chapter 6.

A.1 Empirical study on single-objective GAs

Table A.1 reports the descriptive statistics of the error values achieved by the three exper-

imented optimizers, namely GA, CMA-ES, and SVD-GA when the number of independent

variables was set to n = 100. When comparing the performances of SVD-GA with GA, we

can note that the proposed diversity preserving technique turns out to be very useful for

highly dimensional multimodal problems for which the number of local optima is very high.

As we can see the results achieved are in-line with those achieved when n=50 reported in

Chapter 6.

For the unimodal test functions, Table 6.3 shows —for functions f9−f15— the descriptive

statistics of the error values and the success rate and ERT values (at different tolerance levels),

respectively, achieved by the three experimented optimizers (i.e., DC-GA, SVD-NSGA-II, and

CMA-ES). As we can see the results achieved are in-line with those achieved when n=100

reported in Chapter 6. As we can see, the SVD-based diversity-preserving technique turns

out to be very useful for these unimodal problems too.

A.2 Empirical study on MOGAs

Table A.3 reports mean, median and standard deviation of the IGD metrics achieved using

NSGA-II and multi-objective SVD-NSGA-II for the two-objective test problems. Also in this

case, the results achieved are in-line with those achieved when n=50. SVD-NSGA-II is able
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Table A.1: Function error values achieved on multimodal test functions by GA, SVD-GA,
and CMA-ES when n=100. Values shown in bold face for comparisons where the Wilcoxon
Rank Sum test indicates a statistically significant difference.

f # Fun. Eval.
DC-GA SVD-GA CMA-ES

Median Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev.

f1

103 8.41e+2 8.41e+2 4.22e+1 4.95 67.56 1.12e+2 2.44e+3 2.47e+3 2.12e+2
104 3.75e+2 3.62e+2 3.79e+1 0 8.61 22.42 8.74e+3 8.86e+2 1.10e+2
105 1.20e+2 1.22e+2 2.01e+1 0 0 0 1.15e+2 1.33e+2 4.37e+1
106 3.82e+1 3.85e+1 5.21 0 0 0 2.98 9.14 3.07e+2

f2

103 1.53e+1 1.54e+1 6.00e+1 1.92e-1 3.23e-1 3.01e-1 2.16e+1 2.16e+1 4.77e-2
104 1.03e+1 1.06e+1 1.11 8.61e-14 7.12e-13 1086e-11 2.16e+1 2.16e+1 5.32e-2
105 2.60 2.61 2.93e-1 4.44e-15 5.57e-15 3.51e-15 2.16e+1 2.16e+1 4.81e-2
106 2.60 2.61 2.95e-1 4.44e-15 5.29e-15 3.73e-15 2.16e+1 2.10e+1 8.05e-1

f3

103 2.99e+2 2.89e+2 4.43+1 2.43e-1 4.71e-1 4.21e-1 1.92e+2 1.99e+3 5.73e+2
104 4.41e+1 4.46e+1 7.07 0 1.58e-15 7.22e-15 3.61e-3 3.87e-3 1.98e-3
105 8.55e-1 8.71e-1 8.50e-2 0 0 0 2.22e-16 2.62e-16 1.66e-16
106 2.42e-3 5.12e-3 4.74e-3 0 0 0 2.22e-16 2.13e-16 2.15e-16

f4

103 5.87e+6 7.97e+6 6.63e+6 9.61e-1 9.77e-1 1.60e-1 7.37 1.96e+3 6.86e+3
104 4.76e+1 1.90e+2 3.89e+2 2.71e-2 2.80e-2 1.08e-2 1.37 3.44e+2 1.72e+2
105 3.11 2.88 7.82e-1 8.64e-13 8.93e-13 4.02e-13 4.47e-1 2.83 3.95
106 2.88e-6 2.49e-3 1.24e-2 4.71e-33 4.71e-33 6.98e-49 5.63e-16 1.39e-15 1.92e-15

f5

103 3.58e+7 4.03e+7 2.53e+7 13.59 13.40 1.64 2.13 1.41e+6 4.67e+6
104 9.63e+4 1.37e+5 1.54e+5 2.97 2.92 6.87e-1 8.05e-1 2.47e+4 1.10e+5
105 3.79 4.33 1.81 4.17e-9 4.66e-9 3.00e-9 1.94e-2 6.72e-2 1.61e-1
106 8.14e-5 1.05e-4 9.13e-5 1.65e-32 1.35e-32 5.87e-48 6.39e-16 5.18e-12 2.59e-11

f6

103 1.51e+3 1.50e+3 6.46e+1 1.59e+3 1.49e+3 65.57 2.50e+3 2.55e+3 2.59e+2
104 6.50e+2 6.49e+2 4.65e+1 4.70e+2 4.66e+2 39.67 9.52e+2 9.60e+2 2.19e+2
105 1.55e+2 1.58e+2 1.99e+1 3.32e+1 3.31e+1 4.22 1.19e+2 2.21e+2 2.96e+2
106 2.80e+1 2.79e+1 5.79 5.39e-4 1.20e-1 3.30e-1 3.98 1.36e+2 3.67e+2

f7

103 2.04e+1 2.04e+1 1.49e-1 2.05e+1 2.05e+1 1.54e-1 2.16e+1 2.16e+1 5.43e+2
104 1.65e+1 1.62e+1 1.04 1.43e+1 1.44e+1 9.77e-1 2.16e+1 2.16e+1 4.28e-2
105 3.61 3.60 4.09e-1 1.50 1.49 2.54e-1 2.16e+1 2.16e+1 4.96e-2
106 1.23 1.13 3.84e-1 9.23e-4 9.27e-4 1.29e-4 2.16e+1 21.08e+1 7.63e-1

to converge better in all the two-objective problems independently. Indeed, median, mean

and standard deviation of IGD values achieved by SVD-NSGA-II are always smaller than

those of NSGA-II. Moreover, the Wilcoxon rank sum test reveals that such differences are

statistically significant.

A.2.1 Graphs of Non-Dominated Solutions obtained by SVD-NSGA-

II and NSGA-II

In this appendix, we report the graphs of the non-dominated solutions obtained by SVD-

NSGA-II and NSGA-II achieved on all the two-objective and three-objective test functions.

Figures A.1, A.2, and A.3 show all non-dominated solutions obtained after 5 ·105 generations

with NSGA-II and SVD-NSGA-II on the MOP2, ZDT3, and ZDT6 test problems, respec-

tively, when the space dimension is n=100, while n=50 the graphs are shown in Chapter 6.

Figure A.4 shows all non-dominated solutions obtained after 5 · 106 function evaluation

with NSGA-II and SVD-NSGA-II on the MOP1 test problem. Such a problem has a huge

search space, while the Pareto optimal front is located in a small search sub-space of the

whole search space. This problem is usually used for measuring the speed of an evolutionary

algorithm to converge to the Pareto optimal front. The figure clearly demonstrates the
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Table A.2: Function error values achieved on unimodal test functions by GA, SVD-GA, and
CMA-ES when n=100. Values shown in bold face for comparisons where the Wilcoxon Rank
Sum test indicates a statistically significant difference.

f Eval.
GA SVD-GA CMA-ES

Median Mean St. Dev. Median Mean St. Dev. Median Mean St. Dev.

f8

103 1.92e+3 1.92e+3 1.35e+2 7.82e-1 4.85e-1 1.24e-1 1.81e+3 2.05e+3 7.50e+2
104 1.84e+2 1.81e+2 3.33e+1 0 1.36e-14 2.34e-14 4.38e-3 4.73e-3 2.94e-3
105 1.14 1.15 2.72e-2 0 5.68e-15 1.16e-14 2.84e-14 3.30e-14 1.06e-14
106 1.46e-2 1.52e-2 7.03e-3 0 0 0 0 1.14e-15 5.68e-15

f9

103 3.06e+4 3.14e+4 5.75e+3 3.82 2.09e+1 2.09e+1 2.10e+5 2.27e+5 7.52e+4
104 4.62e+3 4.73e+3 8.84e+2 8.64e-24 1.780e-21 8.68e-21 2.07e-4 2.63e-4 1.41e-4
105 3.05 3.31 8.62e-1 1.22e-148 1.32e-143 4.57e-143 4.93e-16 4.63e-16 1.38e-16
106 1.35e-3 1.33e-3 2.43e-4 0 0 0 4.63e-16 4.60e-16 1.07e-16

f10

103 1.33e+2 1.37e+2 1.89e+1 1.57 2.07 1.47 2.46e+106 2.85e+124 1.07e+124
104 5.48e+1 5.32e+1 6.52 5.94e-12 3.32e-11 7.35e-11 4.71e+100 1.04e+116 4.03e+117
105 2.05 2.14 3.67e-1 7.28e-71 1.07e-68 3.08e-68 1.28e+48 4.21e+64 1.63e+65
106 5.12e-2 5.44e-2 1.09e-2 0 0 0 1.70e-5 5.75 2.22e+1

f11

103 1.10e+5 1.19e+5 3.60e+4 61.06e+2 4.18e+3 7.68e+3 1.33e+1 8.08e+1 1.56e+2
104 3.22e+4 3.19e+4 1.08e+4 1.72 9.18e+2 2.42e+3 2.34 6.63e+1 1.99e+2
105 4.73e+3 4.72e+3 7.71e+2 1.89e-9 4.76 2.38e+1 5.76e-3 4.11e-1 9.53e-1
106 1.47e+2 1.43e+2 1.47e+1 1.24e-28 1.05e-16 3.04e-16 2.92e-16 1.67e-15 3.30e-15

f12

103 4.41e+1 4.41e+1 4.16 2.18e-1 1.11-2 297e-1 4.61e+2 4.54e+2 5.74e+1
104 2.96e+1 3.06e+1 2.96 4.58e-8 1.11-2 214e-3 2.03e+2 2.07e+2 2.92e+1
105 9.96 1.00e+1 8.60e-1 1.00e-8 1.79-3 6.82e-3 7.73 8.56 3.48
106 6.77e-1 7.08e-1 1.33e-1 8.43e-16 2.04e-10 6.92e-10 2.23e-1 2.87e-1 2.65e-1

f13

103 3.12e+2 3.13e+2 1.04e+1 3.09e+2 3.07e+2 1.09e+1 2.72e+4 2.74e+4 6.19e+3
104 1.69e+2 1.69e+2 8.94 1.33e+2 1.32e+2 8.62 1.97e+2 2.15e+2 1.01e+2
105 5..19e+1 5.24e+1 6.29 3.74 3.92 2.30 1.81e+2 2.02e+2 9.83e+1
106 2.39 2.35 1.80 9.66e-13 9.39e-13 5.71e-14 1.79e+2 2.19e+2 1.40e+2

f14

103 2.36e+5 2.37e+5 1.85e+4 2.30e+5 2.33e+5 1.79e+4 2.34e+5 2.24e+5 6.05e+4
104 2.25e+4 2.25e+4 3.68e+3 1.25e+4 1.23e+4 2.15e+3 2.30e-4 2.56e-4 1.43e-4
105 2.26e+1 2.26e+1 5.40 7.50e-1 8.22e-1 2.19e-1 5.68e-14 7.73e-14 2.78e-14
106 7.83e-3 7.83e-3 1.48e-3 5.48e-5 5.57e-5 1.11e-5 0 0 0

f15

103 1.20e+8 1.25e+8 2.99e+7 7.61e+7 8.02e+7 3.26e+7 2.88e+1 2.13e+2 6.58e+2
104 1.73e+5 1.80e+5 2.72e+4 1.44e+5 1.36e+5 3.11e+4 8.35 1.11e+2 3.79e+2
105 3.34e+4 3.27e+4 4.53e+3 1.28e+4 1.31e+4 2.40e+3 1.62e-3 4.49e-1 1.79
106 2.65e+3 2.68e+3 4.88e+2 1.16e+2 1.13e+2 24.02 0 0 0

abilities of SVD-NSGA-II in converging to the true front, while NSGA-II is quite far from

the Pareto-optimal region.

Figure A.5 shows the Pareto fronts obtained by the two algorithms on the shifted SDT1

test problem. SVD-NSGA-II performed better than NSGA-II in terms of both convergence

and distribution of solutions. Indeed, NSGA-II was not able to maintain enough diversified

non-dominated solutions in the final population and the distribution of the solutions is worst

if compared to that obtained in the final population of SVD-NSGA-II. Moreover, SVD-

NSGA-II achieved a front that is more close to the optimal front.

Figure A.6 shows the results achieved on the shifted ZDT2 test problem. This problem

has a non-convex Pareto-optimal front. Although the convergence is not a difficulty here

with both of the algorithms, SVD-NSGA-II showed better convergence to the optimal front

and it has found a better Pareto front than NSGA-II.

The problem ZDT4 (see Figure A.7) has an exponential number of different local Pareto-

optimal fronts in the search space, and only one among them corresponds to the global Pareto-
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Table A.3: IGD values achieved by SVD-NSGA-II and NSGA-II for n=100. Values are shown
in bold face for comparisons where the Wilcoxon Rank Sum test indicates a statistically
significant difference.

f Func. Eval.
NSGA-II SVD-NSGA-II

Median Mean St. Dev. Median Mean St. Dev

MOP1

4 · 105 1.05e+6 1.56e+6 1.71e+6 2.01e-1 2.25e-1 1.02e-1
6 · 105 1.05e+6 1.56e+6 1.71e+6 1.92e-1 1.92e-1 7.53e-3
8 · 105 1.05e+6 1.56e+6 1.71e+6 1.91e-1 1.92e-1 9.36e-3

106 1.05e+6 1.56e+6 1.71e+6 1.90e-1 1.92e-1 1.43e-2

MOP2

2 · 104 5.63e-1 5.55e-1 1.43e-1 5.23e-2 5.36e-2 3.67e-3
6 · 105 5.06e-1 4.71e-1 1.68e-1 4.60e-2 4.66e-2 1.87e-3
8 · 105 4.39e-1 4.04e-1 1.69e-1 4.60e-2 4.59e-2 1.50e-3

106 3.61e-1 3.44e-1 1.69e-1 4.53e-2 4.47e-2 1.91e-3

Shifted ZDT1

2 · 104 1.81e-1 2.03e-1 8.11e-2 1.61e-2 1.69e-2 2.81e-3
6 · 105 1.11e-1 1.13e-1 4.99e-2 8.70e-3 8.85e-3 6.63e-4
8 · 105 7.40e-2 7.40e-2 2.93e-2 7.10e-3 7.07e-3 3.29e-4

106 5.55e-2 5.81e-2 2.53-2 5.10e-3 5.19e-3 7.777e-4

Shifted ZDT2

2 · 104 4.74e-1 5.07e-1 2.13e-1 2.30e-2 2.31e-2 3.32e-3
6 · 105 3.20e-1 3.72e-1 2.20e-1 1.101e-2 1.02e-2 7.66e-4
8 · 105 2.87e-1 3.34e-1 2.33e-1 7.77e-3 7.86e-3 4.71e-4

106 2.72e-1 3.17e-1 2.42e-1 5.12e-3 5.36e-3 8.81e-4

ZDT3

2 · 104 1.41e-1 1.42e-1 1.60e-2 6.48e-3 5.74e-2 1.11e-1
6 · 105 1.16e-1 1.17e-1 1.68e-2 6.30e-3 5.73e-2 1.11e-1
8 · 105 1.05e-1 1.06e-1 1.74e-2 6.31e-3 5.72e-2 1.11e-1

106 9.95e-2 1.00e-1 1.78e-2 3.45e-3 5.53e-2 1.12e-1

Shifted ZDT4

2 · 104 3.35e+2 3.28e+2 3.20e+1 6.06e+1 6.26e+1 1.78e+1
6 · 105 2.31e+2 2.17e+2 4.27e+1 2.02e+1 2.04e+1 4.41
8 · 105 1.58e+2 1.55e+2 3.54e+1 8.73 9.14 2.25

106 1.28e+2 1.28e+2 2.86e+1 4.40 4.46 1.42

Shifted ZDT6

2 · 104 1.07 8.30e-1 4.93e-1 9.49e-2 1.05e-1 3.55e-2
6 · 105 1.04 7.48e-1 5.45e-1 1.42e-2 1.54e-2 3.82e-3
8 · 105 1.04 7.33e-1 5.61e-1 7.21e-3 7.60e-3 1.17e-3

106 1.04 7.32e-1 5.62e-1 4.88e-3 5.02e-3 6.18e-4

optimal front. On this problem, both NSGA-II and SVD-NSGA-II get stuck at different local

Pareto-optimal sets, but the convergence and the ability to find a diverse set of solutions are

definitely better with SVD-NSGA-II.

Figure A.8 shows the obtained set of non-dominated solutions after 5 · 105 function eval-

uations using NSGA-II and SVD-NSGA-II for DTLZ1 (with n = 20). The difficulty in this

problem is to converge to the Pareto optimal plan. The search space contains
(
118 − 1

)
sub-optimal fronts, each of which can attract the experimented algorithm. The figure shows

that NSGA-II is able to uniformly maintain solutions in decision search space. However,

the obtained solutions are really far from the optimal front which is really smaller (it is the

black point near the origin of axis). Instead, SVD-NSGA-II is able to obtain much better

and uniform solutions. Similar analysis can be done for n = 100 as showed in Figure A.9.

The same considerations hold for all the other three-objective functions, as showed by

Figures A.10, A.11, A.12, A.13, A.14, A.15, and A.16. For them SVD-NSGA-II achieved

a set of non-dominated solutions that is close to the optimal ones. Instead, even if the set
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Figure A.1: NSGA-II vs. SVD-NSGA-II on MOP2 test problem when n = 100 (n = 50 is
reported in Chapter 6).
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Figure A.2: NSGA-II vs SVD-NSGA-II on ZDT3 test problem when n = 100 (n = 50 is
reported in Chapter 6).

of non-dominated solutions reached by NSGA-II is well distributed, it is very far from the

Pareto optimal front.

Particularly interesting is the DTLZ6 test problem. It has four disconnected Pareto-

optimal regions in the search space and it was designed for testing the ability to maintain sub-

population in different Pareto-optimal regions. For such a problem, SVD-NSGA-II turned

out to be the best one from convergence and spread of solutions. Indeed, SVD-NSGA-II

reached a set of solutions close to the Pareto optimal front and such a solution are well

distributed in all the four disconnected Pareto-optimal regions. Instead, NSGA-II provided

solutions that are far from the optimal front and cover only two out of four disconnected

Pareto-optimal region.
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Figure A.3: NSGA-II vs SVD-NSGA-II on ZDT6 test problem when n = 100 (n = 50 is
reported in Chapter 6).
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(a) n = 50
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(b) n = 100

Figure A.4: NSGA-II vs. SVD-NSGA-II on MOP1 problem.
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(a) n = 50
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(b) n = 100

Figure A.5: NSGA-II vs SVD-NSGA-II on shifted ZDT1 test problem.
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(a) n = 50
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(b) n = 100

Figure A.6: NSGA-II vs. SVD-NSGA-II on shifted ZDT2 test problem.
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(a) n = 50
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(b) n = 100

Figure A.7: NSGA-II vs SVD-NSGA-II on shifted ZDT4 test problem.
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Figure A.8: NSGA-II vs. SVD-NSGA-II on DTLZ1 when n = 50.
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Figure A.9: NSGA-II vs. SVD-NSGA-II on DTLZ1 when n = 100.
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Figure A.10: NSGA-II vs. SVD-NSGA-II on DTLZ2 when n = 50.



0

20

40

60

80

0
20

40
60

80

0

20

40

60

80

 

f
2f

1

 

f 3
Pareto Optimal Front
NSGA−II

(a) NSGA-II

0

0.2

0.4

0.6

0.8

1 0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

 

f
2f

1

 

f 3

Pareto Optimal Front
SVD−GA

(b) SVD-NSGA-II

Figure A.11: NSGA-II vs. SVD-NSGA-II on DTLZ2 when n = 100.
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Figure A.12: NSGA-II vs. SVD-NSGA-II on DTLZ3 when n = 10.
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Figure A.13: NSGA-II vs. SVD-NSGA-II on DTLZ4 when n = 50.
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Figure A.14: NSGA-II vs. SVD-NSGA-II on DTLZ4 when n = 100.
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Figure A.15: NSGA-II vs. SVD-NSGA-II on DTLZ6 when n = 50.
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Figure A.16: NSGA-II vs. SVD-NSGA-II on DTLZ6 when n = 100.



Appendix B

Binary Representation of

Testing Criteria

In this appendix we report the mathematical formulation of the test criteria using a binary

vector representation that was successfully used in previous works to deal with the multi-

objective test case selection and test suite minimization problems [27, 65, 68]. A solution to

the multi-objective test suite optimization problem can be represented as a binary vector X

of length n, where the generic element xi is 1 if test case ti is selected, 0 otherwise. Starting

from this binary representation of a solution, the testing criteria can be easily defined using

linear algebra operations.

Statement coverage criterion. The statement level coverage information used in this

paper was measured using the GNU compiler, gcc, and its code coverage tool, gcov. The

achievement of a coverage criterion can be defined as the product matrix between a solution

X multiplied by a matrix that represents the statement level coverage data of the entire test

suite [65]. Let m be the number of code statements to be covered, and n the number of

test cases in the test suite. We can define a binary matrix A containing the trace data that

captures the code statements achieved by each test case. A generic entry ai,j of A is equal to 1

if the ith statement was covered by the jth test case, 0 otherwise [68, 65] according to profiling

data provided by gcov. Then, the coverage (cov) achieved by the solution represented by X

can be measured as follows [68, 65]:

cov(X) =
1

m

m∑
i=1

φi where φi =

{
1 if gi > 0

0 otherwise
(B.1)
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where gi ∈ G denotes the number of times the ith test goal was covered by the selected test

cases in X. The vector G can be computed as follows:

G = A ·X =

 a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

 ·
 x1

...

xn

 (B.2)

Execution cost criterion. As for the execution cost, in principle we could just measure

the test case execution time. However, performing such a measure is not an easy task, be-

cause the measure depends on several external factors such as different hardware, application

software, operating system, etc. We address this issue by counting the number of executed

elementary instructions in the code, instead of measuring the actual execution time. This

is consistent with what was done in previous work on multi-objective test case selection

[27, 68]. We use the gcov tool to measure the execution frequency of every basic block

(elementary instruction) composing each statements. When encountering a function call,

gcov counts the instructions actually executed when invoking the function; also, complex

statements may count as multiple elementary instructions (e.g., the for statement counts as

three instructions, i.e., the initialization, the condition, and the increment). Starting from

these execution frequencies, the execution cost criterion is defined as follows:

cost(X) =

n∑
i=1

xi · cost(ti) (B.3)

where cost(ti) represents the execution frequency of the ith test case.

Past fault coverage criterion. For the third test criteria used in this paper, each

program has several faulty versions available from the SIR dataset [343]. SIR provides also

information about which test cases are able to reveal these faults. Such information can be

used to assign a past fault coverage value to each test case subset, computed as the number

of known past faults that this subset is able to reveal in the previous version. Finally, once

the past faults coverage data is stored in a binary matrix, the past fault coverage criterion

can be defined, using again a matrix multiplication. Let F be a binary matrix containing

the trace data that captures the past faults covered by each test case. A generic entry fi,j
of F is equal to 1 if the ith past fault was covered by the jth test case, 0 otherwise. Then,

the past fault coverage (fault) achieved by a solution X can be measured as follows:

fault(X) =
1

m

m∑
i=1

ϕi where ϕi =

{
1 if fi > 0

0 otherwise
(B.4)
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where fi ∈ z denotes the number of times the ith fault was covered by the selected test cases

in X. The vector z can be computed as follows:

z = F ·X =

 f1,1 . . . f1,n
...

. . .
...

fk,1 . . . fk,n

 ·
 x1

...

xn

 (B.5)

Using the three test case selection criteria described above, we examine two and three-

objectives formulations of the test case selection problem. In particular, we consider the

two-objective problem taking into account code coverage and execution cost as contrasting

goals, similarly to what done in previous work [27, 68, 11]. Formally, the two-objective test

case selection problem can be defined as follows:

Problem 8. Two-objective Test Case Selection Problem: finding a set of optimal solutions

X which maximizes the code coverage and minimizes the execution cost:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(ti)

For the three-objective formulation, we add past fault detection history as a further

objective, as also done in previous work [97, 68, 27]. The three-objective test case selection

problem can be defined as follows:

Problem 9. Three-objective Test Case Selection Problem: finding a set of optimal solutions

X which maximizes the code coverage, maximizes the past fault coverage and minimizes the

execution cost:

max cov(X) =
1

m

m∑
i=1

φi

min cost(X) =

n∑
i=1

xi · cost(ti)

max fault(X) =
1

h

h∑
i=1

ϕi

Note that, besides the test case selection criteria defined above, it is possible to formulate

other criteria, e.g., based on data-flow coverage or even functional requirements just providing

a clear mapping between tests and criterion-based requirements. However, it is important

to highlight that the goal of this work is not to analyse which set of test criteria is the most

effective for regression testing. The formulations are used to illustrate how the proposed

diversity-preserving technique can be applied to any number and kind of testing criteria to

be satisfied.
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Appendix C

Multi-Objective Test Suite

Optimization

In this appendix, we report the results achieved in our empirical study. Specifically, we report

all the Pareto frontiers achieved when comparing the proposed DIV-GA with the additional

greedy algorithm and the island version of NSGA-II.

C.1 RQ1: To what extent does DIV-GA produce near

optimal solutions, compared to alternative test case

selection techniques?

Figures C.1-C.3 provide a graphical comparison between the Pareto frontiers obtained by the

three algorithms and a “reference” Pareto frontier, built as explained in section 4. As it can

be noticed, the Pareto frontiers provided by DIV-GA are much closer to the reference Pareto

frontiers (often the two frontiers are perfectly overlapped) than the Pareto frontiers provided

by NSGA-II and the additional greedy. The additional greedy algorithm provides solutions

that are, in some cases, quite close to the reference frontiers. However, the majority of them

are dominated by the solutions produced by DIV-GA. Instead, NSGA-II produces solutions

quite far from the optimal set of solutions (e.g., on printtokens). Only on gzip all the

algorithms turned out to be close to the reference frontier. Particularly interesting are the

results achieved for all the programs in the Siemens suite —i.e. printtokens, printtokens2,

schedule, and schedule2— where NSGA-II is very far from the optimal Pareto frontier

while DIV-GA provides (near) optimal frontiers. Finally, for what concerns the uniformity

of the distribution of the solutions over the produced Pareto frontiers, we can also observe

that DIV-GA also provides a wider diversity of non-dominated solutions with higher coverage

and uniformity along the Pareto frontier than the other algorithms. Conversely, NSGA-II and

the additional greedy algorithm provide solutions which are not well distributed uniformly
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along the Pareto frontiers, i.e., more solutions for higher coverage levels and leaving the rest

of the Pareto frontiers quite unexplored.
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Figure C.1: Pareto frontiers achieved on bash, flex, grep and gzip for two-objectives test suite
optimization problem

Figures C.4-C.14 show the results for the three-objective formulation. The 3D plots

displays the solutions produced by (i) DIV-GA, (ii) the additional greedy algorithm, (iii)

NSGA-II, and (iv) the reference Pareto frontier (denoted using black dots). The additional

greedy algorithm produces solutions that are quite close to the reference frontier. However,

the number of the produced solutions is really small if compared to the reference frontier.

DIV-GA always produces three-objective solutions stated in the reference frontier: in all

cases the Pareto frontier of DIV-GA exactly overlaps the reference frontier. Hence, DIV-GA

always produces solutions that are non-dominated by any other algorithm. Instead, NSGA-

II produces (near) optimal solutions only in a few cases. For example, on gzip the Pareto

frontier obtained by NSGA-II is quite close to the reference Pareto frontier (see Figure C.7),

while on printtokens, the solutions obtained by NSGA-II are quite far from the reference

Pareto frontier (see Figure C.8).
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C.1. RQ1: To what extent does DIV-GA produce near optimal solutions, compared to
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Figure C.2: Pareto frontiers achieved on printtokens,printtokens2, schedule, schedule and sed
for two-objectives test suite optimization problem
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Figure C.3: Pareto frontiers achieved on space and vim for two-objectives test suite opti-
mization problem
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Figure C.4: Three-objective Pareto Frontiers achieved on bash
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Figure C.5: Three-objective Pareto Frontiers achieved on flex.
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Figure C.6: Three-objective Pareto Frontiers achieved on grep
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Figure C.7: Three-objective Pareto Frontiers achieved on gzip.
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Figure C.8: Three-objective Pareto Frontiers achieved on printtokens.
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Figure C.9: Three-objective Pareto Frontiers achieved on printtokens2
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Figure C.10: Three-objective Pareto Frontiers achieved on schedule
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Figure C.11: Three-objective Pareto Frontiers achieved on schedule2
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Figure C.12: Three-objective Pareto Frontiers achieved on sed
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Figure C.13: Three-objective Pareto Frontiers achieved on space
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Figure C.14: Three-objective Pareto Frontiers achieved on vim
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C.2 RQ2: What is the cost-effectiveness of DIV-GA,

compared to alternative test case selection tech-

niques?

Figures C.15-C.17 plot the percentage of faults detected by the solutions (sub-test suites)

provided by the three algorithms at same level of execution cost. The goal of such an

analysis is to provide a graphical comparison of the percentage of faults detected by the

different solutions (sub-test suites) at same level of execution cost. We can observe that the

sub-test suites selected by DIV-GA are able to detect more faults than the additional greedy

with lower execution cost. For example, on space the test suites optimized by DIV-GA can

detect 100% of faults, while the percentage of faults produced by the other two algorithms

is lower at the same level of execution cost.
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Figure C.15: Effectiveness of the achieved sub-test suites for two-objective test case selection
on bash, flex, grep and gzip.
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Figure C.16: Effectiveness of the achieved sub-test suites for two objectives test case selection
on printtokens,printtokens2, schedule, schedule, sed and space.
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Figure C.17: Effectiveness of the achieved sub-test suites for two objectives test case selection
on vim.
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Figures C.18-C.20 plot the cost/faults curves obtained by the three algorithms. We can

notice that the sub-test suites obtained by DIV-GA are able to detect more solutions than

both the additional greedy and NSGA-II with a lower (or in some cases the same) execution

cost. For example, on space, the test suites optimized by DIV-GA can detect 100% of the

faults, while the percentage of faults detected by the other two algorithms is lower for the

same level of execution cost. On printtokens, all the algorithms provide solution that are

able to reveal all faults. However, DIV-GA turned out to be better than the other techniques

in terms of execution cost.
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Figure C.18: Effectiveness of the achieved sub-test suites for three objectives test case selec-
tion bash, flex, grep and gzip.
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Figure C.19: Effectiveness of the achieved sub-test suites for three objectives test case selec-
tion on printtokens,printtokens2, schedule, schedule, sed and space.
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Figure C.20: Effectiveness of the achieved sub-test suites for three objectives test case selec-
tion on vim.
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