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Abstract

Nowadays, public-key cryptographic is widely deployed and successfully used but still a major
drawback exists. In fact, from encrypted data a party can either decrypt or cannot learn anything
at all about the message other than the intentionally leaked information such as its length. In the
recent years, the cloud computing paradigm has emerged as the new standard to use computing
resources, such as storage devices, that are delivered as a service over a network. In such a
scenario, the notion of public key cryptography is not enough. It would be desirable to specify
a decryption policy in the encrypted data in such a way that only the parties who satisfy the
policy can decrypt. In a more general form, we may want to only give access to a function of
the message, depending on the decryptor’s authorization.

Thus, in the last decade researchers have started looking at a more sophisticated type of
encryption called functional encryption. A functionality F is a function F : K × M → Σ
where K is the key space and M is the message space. Then, a functional encryption scheme,
in the public-key setting, for F is a special encryption scheme in which, for every key k ∈ K,
the owner of the master secret key msk associated with the master public key mpk can generate
a special secret-key skk that allows the computation of F (k,m) from a ciphertext of m ∈ M
computed under public key mpk . In other words, whereas in traditional encryption schemes
decryption is an all-or-nothing affair, in functional encryption it is possible to finely control the
amount of information that is revealed by a ciphertext. One of the most notable example of
functional encryption is identity-based encryption first introduced by Shamir as an alternative to
the standard notion of public-key encryption.

In this thesis, we discuss several instantiations of function encryption that can all be seen as
generalizations of identity-based encryption. We improve on previous constructions in terms of
capabilities and security guarantees.
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Chapter 1

Introduction

A set of parties can securely exchange information over an insecure network or storage service
by using encryption. In the simpler scenario, called symmetric setting or private-key setting,
the parties must first agree on a common secret key k (using a secondary channel assumed to
be secure), before they can start any secret communication. In this setting, the secret key k is
involved in both the encryption and decryption process. Such a solution can be practical for a
small organization but it is not feasible for larger networks such as Internet where millions of
parties are involved.

In the 1970s, with the advent of public-key cryptography the issue of having an a prior
mutual secret (and thus a secure communication channel) has been solved radically. In the
asymmetric setting or public-key setting, the decryption key (also called secret key) differs from
the encryption key (also called public key) and it is infeasible to find the decryption key, given
the encryption key. In this setting, a party P generates a pair of keys and keeps the decryption
key. The encryption key is then published and now any party can send P private messages by
encrypting them using P ’s encryption key. Then, only P will be able to recover those messages
by using its decryption key.

Nowadays, public-key cryptographic is widely deployed and successfully used. But still
some issues remain. In fact, from encrypted data a party can either decrypt or cannot learn
anything at all about the message other than the intentionally leaked information such as its
length. In the recent years, the cloud computing paradigm has emerged as the new standard to
use computing resources, such as storage devices, that are delivered as a service over a network.
In such a scenario, the notion of public key cryptography is not enough. It would be desirable to
specify a decryption policy in the encrypted data in such a way that only the parties who satisfy
the policy can decrypt. In a more general form, we may want to only give access to a function
of the message, depending on the decryptor’s authorization.

With these motivations in mind, researchers have started looking at a more sophisticated type
of encryption called functional encryption. A functionality F is a function F : K ×M → Σ
where K is the key space and M is the message space. Then, a functional encryption scheme,
in the public-key setting, for F is a special encryption scheme in which, for every key k ∈ K,
the owner of the master secret key msk associated with the master public key mpk can generate
a special secret key (also called token) skk that allows the computation of F (k,m) from a
ciphertext of m ∈ M computed under public key mpk . In other words, whereas in traditional
encryption schemes decryption is an all-or-nothing affair, in functional encryption it is possible
to finely control the amount of information that is revealed by a ciphertext.

One of the most notable example of functional encryption is identity-based encryption (IBE,
for short) first introduced by Shamir [Sha85] as an alternative to the standard notion of public-
key encryption. In an IBE scheme, the public key associated with a user can be an arbitrary

1



2 CHAPTER 1. INTRODUCTION

identity string, such as his email address, and others can send encrypted messages to a user us-
ing this arbitrary identity without having to rely on a public-key infrastructure. In these systems,
there also exists a trusted central authority capable of generating secret keys for any user in
the system. The first practical constructions of an IBE are due to Boneh and Franklin [BF03]
and Cocks [Coc01]. While the Boneh-Franklin IBE scheme is based on elliptic curve groups
equipped with efficiently computable bilinear maps, the scheme by Cocks is based on the
quadratic residuosity problem [Coc01]. In addition to the scheme, Boneh and Franklin also intro-
duced a formal security definition for IBE schemes to model privacy, known as indistinguishabil-
ity under chosen-identity-attacks, and showed that their scheme was provably secure under this
notion based on a new computational problem, known as bilinear Diffie-Hellman problem, in the
random oracle model [BR93]. However, access to the data itself is still inherently all-or-nothing.
The decryptor either will be able to decrypt the data and learn everything or will not and thus
learn nothing. This has motivated the study of anonymous identity-based encryption schemes,
where the ciphertext does not leak the identity of the recipient. The Boneh-Franklin IBE scheme
was already known to be inherently anonymous but the first anonymous IBE without random
oracles was proposed by Boyen and Waters [BW06]. Moreover, anonymity can be leveraged to
construct Public key Encryption with Keyword Search (PEKS) schemes, as observed by Boneh
et al. [BDOP04] and later formalized by Abdalla et al. [ABC+08]. Following the work of Boneh
and Franklin, Horwitz and Lynn [HL02] proposed the concept of Hierarchical IBE (HIBE, for
short), in which users are organized in a tree of depth L, with the root being the trusted central
authority. In a HIBE scheme, intermediate nodes in the tree are capable of generating secret
keys for any of their descendants. Since its introduction, several practical constructions of HIBE
schemes have been proposed in the literature (e.g., [GS02, CHK03, BB04, BBG05]), with the
first being due to Gentry and Silverberg [GS02], who proposed a scheme based on the Boneh-
Franklin IBE scheme and proved it secure in the random-oracle model based on the bilinear
Diffie-Hellman problem.

After the realization of the first Identity-Based Encryption schemes a number of new cryp-
tosystems have provided increasing functionality and expressiveness of decryption capabilities.
In particular, one of the most relevant generalization of identity based encryption, known in
the literature as Attribute-Based Encryption (ABE, for short), was proposed by Sahai and Wa-
ters [SW05] to express complex access policies. Subsequently, Goyal, Pandey, Sahai and Wa-
ters [GPSW06] refined this concept into two different formulations of ABE: Key Policy ABE and
Ciphertext-Policy ABE. In a key policy ABE, a ciphertexts contains a vector v = (v1, . . . , vn)
of n Boolean values and a secret key contains a poly-sized boolean formula φ over n Boolean
variables. The formula φ must evaluates to true over v to be able to recover the encrypted mes-
sage. On the other side, two notable generalizations of anonymous identity based encryption
are known in the literature as hidden vector encryption (HVE, for short) and inner-product en-
cryption (IPE, for short). In an hidden vector encryption scheme, first proposed by Boneh and
Waters [BW07], a ciphertext contains a vector v = (v1, . . . , v`) of ` elements in {0, 1}∗ and a
secret key contains a vectorw = (w1, . . . , w`) of ` elements in {0, 1}∗∪{*}where we refer to *
as a wildcard character. The decryptor can then compute a predicate of v and w that is satisfied
if and only if for each i = 1, . . . , `, vi = wi whenever vi 6= *. Applications of such encryp-
tion scheme include conjunctive and range searches. Later, Katz, Sahai and Waters [KSW08]
proposed inner-product encryption, a more general system to test if a dot product operation over
the ring ZN is equal to 0, where N is the product of three random primes chosen by the setup
algorithm. Despite this apparently restrictive structure, IPE can support conjunction, subset and
range queries on encrypted data as well as disjunction, polynomial evaluation, and CNF and
DNF formulas. Following the work of Katz, Sahai and Waters, Okamoto and Takashima [OT09]
proposed the concept of Hierarchical IPE (HIPE, for short). All the previous constructions of
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IPE and HIPE schemes were based on elliptic curve groups equipped with efficiently computable
bilinear maps. More recently, Agrawal et al. [AFV11] proposed a lattice-based functional en-
cryption scheme for inner product whose security follows from the difficulty of the learning with
errors problem (LWE, for short). The LWE problem, first introduced by Regev [Reg05], has re-
ceived a lot of attention in the recent years due to its versatility and because it is also conjectured
to be hard to solve even for quantum adversaries.

One of the most important achievements of the modern theory of Cryptography is the for-
malization of the notion of a secure cryptosystem given in the seminal work of Goldwasser and
Micali [GM84]. There, two notions of security were proposed, one is a game-based notion
and the other is simulation-based, and they were shown to be equivalent in the sense that an
encryption scheme meets one security definition if and only if it meets the other. The study of
simulation-based notions of security for functional encryption was initiated by Boneh, Sahai, and
Waters [BSW11] and O’Neill [O’N10]. Specifically, in [BSW11] Boneh et al. showed that there
exists a clearly insecure functional encryption scheme that is nonetheless deemed secure by the
game-based notion of security. This motivated the study of a simulation-based notion of security
for functional encryption. In the same paper [BSW11], Boneh et al. gave impossibility results
in the non-programmable random oracle model for simple instances of functional encryption for
which, instead, game-based security had been shown to be achievable (again, under appropriate
complexity assumptions). Specifically, they showed that it is not possible to construct Identity
Based Encryption that is secure against an adaptive adversary that can ask to see the encryption
of an unbounded number of messages. Informally, this is because any simulation-based def-
inition that allows the adversary to query for secret keys after seeing the challenge ciphertext
must achieve something very similar to non-interactive non-committing encryption for which
impossibility results are already known [Nie02].

The impossibility result of [BSW11] was recently shown to hold also in the standard model
by Bellare and O’Neill in [BO12] under an additional complexity assumption. Recently, Gor-
bunov, Vaikuntanathan, and Wee [GVW12], building on the construction of Sahai and Seyali-
oglu [SS10], gave a functional encryption scheme for all polynomial size circuits that is simulation-
based secure against adaptive adversaries that have access to a bounded number of tokens. This is
complemented by the recent result of Agrawal, Gorbunov, Vaikuntanathan, and Wee [AGVW12]
that shows that there exists no functional encryption scheme for the functionality of poly-size
circuits that is simulation-based secure against non-adaptive adversaries that can see one cipher-
text and ask for an unbounded number of tokens. O’Neill [O’N10] gave a different notion of
simulation-based security and introduced a simple condition on a functionality (called pre-image
samplability). O’Neill showed that, for pre-image sampleable functionalities, the game-based
and the simulation-based notions of non-adaptive security coincide (just as it happens in regular
encryption schemes).

1.1 Summary of Our Results

Generalized Key Delegation for Wildcarded Identity-Based and Inner-Product Encryp-
tion. One of the main applications of IBE and HIBE schemes is email encryption, where users
can encrypt a message to the owner of the email address without having to obtain a certified copy
of the owner’s public key first. Motivated by the fact that many email addresses correspond to
groups of users rather than single individuals, Abdalla et al. [ACD+06] introduced the concept
of identity-based cryptography with wildcards (WIBE, for short). In a WIBE scheme, decryption
keys are issued exactly as in a standard HIBE scheme and the main difference lies in the encryp-
tion process. More specifically, in a WIBE scheme, the sender can encrypt messages to more
general patterns consisting of identity strings and wildcards so that any identity matching the
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given pattern can decrypt. For instance, by encrypting a message to the pattern UNISA.DI.*,
then any user belonging to the DI department at the University of Salerno would be able to
decrypt it.

Unfortunately, like in standard HIBE schemes, the hierarchical key derivation of a WIBE
scheme has its limitations. In particular, it does not allow any deviation from the hierarchical
structure or prevent from further deriving keys below their identities. In order to overcome
these limitations, Abdalla, Kiltz, and Neven [AKN07] introduced the concept of identity-based
encryption with wildcard key derivation (WKD-IBE, for short) to generalize the key delegation
mechanism of HIBE schemes. In a WKD-IBE primitive, which can be seen as the dual of a
WIBE, secret keys are associated with patterns consisting of identity strings and wildcards and
the owner of a key can derive keys for any identity that matches the pattern associated with this
secret key. In addition to introducing the concept of WKD-IBE, Abdalla, Kiltz, and Neven also
proposed several instantiations of the new primitive, both in the standard and random-oracle
models, along with new applications such as identity-based broadcast encryption (IBBE, for
short) and wildcard signatures. They also indicated that the concepts of WKD-IBE and WIBE
could be combined into a universal primitive which allows for more general patterns to be used in
both the encryption and key derivation algorithms. We refer to this WKD-IBE with generalized
key delegation as WW-IBE. In Chapter 4 we show how to build a fully secure anonymous WW-
IBE scheme.

Lattice-based Hierarchical Inner Product Encryption. In Chapter 5, we consider the prob-
lem of constructing hierarchical inner-product encryption scheme based on lattices assumptions.
To achieve this goal, we extend the lattice-based IPE scheme by Agrawal et al. [AFV11] to the
hierarchical setting by employing basis delegation technics by Peikert et al. [CHKP10] and by
Agrawal et al. [ABB10]. As the underlying IPE scheme, our new scheme is shown to be weak
selective secure based on the difficulty of the learning with errors problem in the standard model,
as long as the total number of levels in the hierarchy is a constant.

Adaptive Simulation-Based Secure Constructions for Functional Encryption. In Chap-
ter 6, we consider the problem of designing simulation-based secure functional encryption
schemes. We look both at general functionalities (the functionality corresponding to the class of
poly-sized circuits) and at a more specialized functionality.

Specifically, we give a general transformation that takes a game-based functional encryption
scheme for all polynomial-size circuits and constructs a functional encryption scheme for the
same functionality that is simulation-based secure against adaptive adversaries that can ask for a
bounded number of tokens and can see one ciphertext. Our transformation is both black-box and
for the standard model and is inspired by the work of Feige, Lapidot and Shamir [FLS90]. We
remark that by the recent impossibility results of [AGVW12], the restriction to bounded number
of tokens is necessary and thus our construction is essentially the best one can hope for.

Then, we show how to construct a HVE scheme whose simulation-based security can be
proved under standard assumptions in the bilinear pairing setting in the standard model. Our
construction is shown secure against adaptive adversaries obtaining one ciphertext and asking
an unbounded number of tokens. Again, this is the best one can hope for in the standard model,
given the impossibility result of [BSW11, BO12] for IBE. The only previous simulation-based
construction for IBE secure against adaptive adversary was given in [BSW11] and is in the pro-
grammable random oracle model and imposes no bound on the number of tokens and ciphertexts
obtained by the adversary.



Chapter 2

Functional Encryption

We start this chapter by describing the syntactic and security definition of functional encryption.
To do so, we will follow the work of Boneh, Sahai, and Waters [BSW11] who initiated the formal
study of functional encryption by giving precise definitions of the concept and its security.

Definition 2.0.1 [Functionality] A functionality F = {Fn} is a family of functions Fn : Kn ×
Xn → Σ where Kn is the key space for parameter n, Xn is the plaintext space for parameter
n and Σ is the output space. Sometimes we will refer to functionality F as a function from
F : K × X → Σ with K = ∪nKn and X = ∪nXn. For simplicity, and without loss of
generality, we assume that Σ = {0, 1}.

An easy example of a functionality is that for the evaluation of Boolean circuits. Specifically,
the Circuit functionality is defined as follow.

Definition 2.0.2 [Circuit Functionality] The Circuit functionality has key space Kn equals to
the set of all n-input Boolean circuits and plaintext spaceXn the set {0, 1}n of n-bit strings. For
C ∈ Kn and x ∈ Xn, we have

Circuit(C, x) = C(x),

Then, informally, a functional encryption scheme for a functionality F defined over (K,X)
enables the decryptor to evaluate F (k, x) given the encryption of x ∈ X and a secret key skk
for k ∈ K.

Formally, a functional encryption scheme can be defined as follows.

Definition 2.0.3 [Functional Encryption Scheme] A functional encryption scheme for a func-
tionality F defined over (K,X) is a tuple (Setup,KeyGen,Enc,Dec) of 4 algorithms with the
following syntax:

Setup(1λ) outputs public and master secret keys (mpk ,msk) for security parameter λ;

KeyGen(msk , k) on input a master secret key msk and key k ∈ K, outputs token skk;

Enc(mpk , x) on input public key mpk and plaintext x ∈ X , outputs ciphertext Ct;

Dec(mpk , skk,Ct) outputs a string y.

5



6 CHAPTER 2. FUNCTIONAL ENCRYPTION

Correctness. We require that for all k ∈ K and x ∈ X , and for all (mpk ,msk)← Setup(1λ),
skk ← KeyGen(msk , k) and Ct← Enc(mpk , x), then Dec(mpk , skk,Ct) = F (k, x) with very
high probability.

In the above definition the plaintext space and the key space only depend on the security
parameter. In a more general definition both sets could also depend on the public key mpk
as it is the case for most known candidate constructions of (functional and plain) public key
encryption schemes. Nonetheless, since our results do not depend on this definitional detail, we
choose not to overburden our notations and definitions.

In the next section, we will see two sub-classes of functional encryption well recognized in
the literature. These sub-classes are characterized by having a plaintext space with additional
structure.

2.1 Predicate Encryption

In the literature, many functional encryption schemes are defined for functionality whose plain-
text space X consists of two subspaces I and M called respectively index space and message
space. In this case, the functionality F is defined in terms of a polynomial-time predicate
P : K × I → {0, 1} as follows:

F (k, (ind,m)) =

{
m if P (k, ind) = 1

⊥ if P (k, ind) = 0
,

where k ∈ K, ind ∈ I and m ∈M .

Definition 2.1.1 [Predicate Encryption Schemes] A predicate encryption scheme for a func-
tionality F defined over (K,X = (I,M)) for predicate P : K × I → {0, 1} is a tuple
(Setup,KeyGen,Enc,Dec) of 4 algorithms with the following syntax:

Setup(1λ) outputs public and master secret keys (mpk ,msk) for security parameter λ;

KeyGen(msk , k) on input a master secret key msk and key k ∈ K, outputs token skk;

Enc(mpk , (ind,m)) on input public key mpk , an index ind ∈ I and message m ∈ M , outputs
ciphertext Ct;

Dec(mpk , skk,Ct) outputs a string m or ⊥.

Correctness. We require that for all k ∈ K and (ind,m) ∈ X , and for all (mpk ,msk) ←
Setup(1λ), skk ← KeyGen(msk , k) and Ct← Enc(mpk , (ind,m)), then Dec(mpk , skk,Ct) =
m if and only if P (k, ind) = 1.

Predicate Only Encryption. A predicate only encryption scheme is a predicate encryption
where the plaintext space coincides with the index space meaning that the ciphertext does not
contain any message. More formally, in this case the functionality F is defined as follows:

F (k, ind) = P (k, ind) ∈ {0, 1} ,

where k ∈ K, ind ∈ I .
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Predicate Encryption with Public Index. In a predicate encryption scheme with public index,
the ciphertext always leaks the index. More formally, in this case the functionality F is defined
as follows:

F (k, (ind,m)) =

{
(ind,m) if P (k, ind) = 1

(ind,⊥) if P (k, ind) = 0
,

where k ∈ K, ind ∈ I and m ∈M .

2.1.1 Identity-Based Encryption

In an IBE scheme, ciphertexts and private keys are associated with identities, or strings, and a
secret key can decrypt a ciphertext if they encode the same identity. An IBE scheme can then be
formally defined as a predicate encryption scheme with public index in the following way. The
keys space K and the index space I are the sets of binary strings and the IBE predicate P over
(K, I) is defined as follows:

P (k, ind) =

{
1 if k = ind

0 if k 6= ind
.

If the index is hidden by the ciphertext then we recover the definition of Anonymous IBE.

Hierarchical IBE. Following the work of Boneh and Franklin, Horwitz and Lynn [HL02]
proposed the concept of Hierarchical IBE (HIBE, for short), in which users are organized in a
tree of depth L, with the root being the trusted central authority.

An HIBE scheme for hierarchy of depth L can then be formally defined as a predicate en-
cryption scheme with public index in the following way. The keys space K and the index space
I are the sets of vectors (ID1, . . . , ID`) where ` ≤ L and each IDi ∈ {0, 1}∗. Then, the HIBE
predicate PL over (K, I) is defined as follows:

PL(k = (IDk1, . . . , ID
k
` ), ind = (IDc1, . . . , ID

c
`′)) =

{
1 if ` ≤ `′ and for i = 1 . . . `, IDki = IDci
0 otherwise

.

If the index is hidden by the ciphertext then we recover the definition of Anonymous HIBE.

2.1.2 Hidden Vector Encryption

An HVE scheme, first proposed by Boneh and Waters [BW07], is a generalization of IBE with
the support of a special character * we refer to as a wildcard character. Formally, an HVE
scheme can be defined as a predicate encryption scheme in the following way. The keys space
K consists of all the `-tuple (v1, . . . , v`) where each vi ∈ {0, 1}∗ ∪ {*} and the index space I
consists of all the `-tuple (w1, . . . , w`) of ` where each wi ∈ {0, 1}∗ and the HVE predicate P`
over (K, I) is defined as follows:

P`(k = (v1, . . . , v`), ind = (w1, . . . , w`)) =

{
1 if vi = wi whenever vi 6= *

0 otherwise
.

Applications of such encryption scheme include conjunctive and range searches.
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2.1.3 Inner Product Predicate

Katz, Sahai and Waters [KSW08] proposed inner-product encryption (IPE, for short), a more
general system to test if a dot product operation over the ring ZN is equal to 0, where N
is the product of three random primes chosen by the setup algorithm. Later, Okamoto and
Takashima [OT09] and Lewko et. al. [LOS+10] gave constructions over the field Fp. Formally,
an IPE scheme can be defined as a predicate encryption scheme in the following way. Let p be a
prime of length λ, chosen at setup time where λ is the security parameter. Then, the keys space
K and the index space I consist of all the n-tuple (v1, . . . , vn), where each vi ∈ Fp, and the IPE
predicate Pp,n over (K, I) is defined as follows:

Pp,n(k = (v1, . . . , vn), ind = (w1, . . . , wn)) =

{
1 if

∑n
i=1 vi · wi = 0

0 otherwise
.

Despite this apparently restrictive structure, IPE can support conjunction, subset and range
queries on encrypted data as well as disjunction, polynomial evaluation, and CNF and DNF
formulas.

Hierarchical IPE. Following the work of Katz, Sahai and Waters, Okamoto and Takashima [OT09]
proposed the concept of Hierarchical IPE (HIPE, for short). Specifically,

Definition 2.1.2 [Hierarchical Format] Letµ be a tuple of positive integersµ = (n, d;µ1, . . . , µd)
such that µ0 = 0 < µ1 < · · · < µd = n. For i = 1, . . . , d, let Σi = Fµi−µi−1

p \ {0µi−µi−1} the
set of attributes. Let Σ be the hierarchical attributes Σ = ∪di=1(Σ1 × . . .×Σi), where the union
is a disjoint union. Them, we call µ an hierarchical format of depth d for the attribute space Σ.
Sometimes, we will use notation Σ|t = ∪ti=1(Σ1 × . . .× Σi)

Let p be a prime of length λ, chosen at setup time where λ is the security parameter. Then,
an HIPE scheme can be formally defined as a predicate encryption scheme in the following way.
For a given hierarchical format µ, the keys space K and the index space I correspond to the
hierarchical attributes set Σ, and the HIPE predicate Pp,µ over (K, I) is defined as follows:

Pp,µ(k = (v1, . . . ,v`), ind = (w1, . . . ,w`′)) =

{
1 if ` ≤ `′ and for each i, 〈vi,wi〉 = 0

0 otherwise
.

2.2 Security Definitions

One of the most important achievements of the modern theory of Cryptography is the formal-
ization of the notion of a secure cryptosystem given in the seminal work of Goldwasser and
Micali [GM84]. There, two notions of security were proposed, one is a game-based notion and
the other is simulation-based, and they were shown to be equivalent in the sense that an en-
cryption scheme meets one security definition if and only if it meets the other. The study of
simulation-based notions of security for functional encryption was initiated by Boneh, Sahai,
and Waters [BSW11] and O’Neill [O’N10]. Specifically, in [BSW11] Boneh et al. showed that
there exists a clearly insecure functional encryption scheme that is nonetheless deemed secure
by the game-based notion of security. This motivated the study of a simulation-based notion of
security for functional encryption. In the same paper [BSW11], Boneh et al. gave impossibility
results in the non-programmable random oracle model for simple instances of functional en-
cryption for which, instead, game-based security had been shown to be achievable (again, under
appropriate complexity assumptions).

In the next sections, we give formal definitions of game-based and simulation-based security
for functional encryption.
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2.2.1 Game-based security

The game-based notion of security for functional encryption, also called indistinguishability
under-chosen message attack (IND-CPA, for short), can be formalized by means of the following
game between an adversary A and a challenger C. Let FE be a functional encryption scheme
for functionality F over (K,X) and let A be a probabilistic polynomial-time adversary. Game
IND-CPAFEA (1λ), where λ is the security parameter, is defined as follows.

Setup: C generates public key and master secret key by invoking the setup algorithm on input
the security parameter λ given in unary. Specifically, (mpk ,msk)← Setup(1λ). Then, C
starts the interaction with A on input mpk .

Query Phase 1: A adaptively submits key queries. On input a key k ∈ K, C generates a secret
key for k, skk = KeyGen(msk , k), and gives skk back to A.

Challenge: A submits two equal length plaintexts x0, x1 ∈ X . C chooses random η ∈ {0, 1}
and generates ciphertext Ct? = Enc(mpk , xη). C sends back Ct? to A.

Query Phase 2: It is the same as Query Phase 1.

Guess: Eventually, A submits its guess η′.

Winning Condition: A wins the game if the following conditions are satisfied:

1. η = η′.

2. For all k queried by A, it holds that F (k, x0) = F (k, x1).

The advantage of A in the above game is defined as

AdvFE,AIND-CPA(λ) = Prob[IND-CPAFEA (1λ) = 1]− 1/2 .

Definition 2.2.1 A functional encryption scheme FE is IND-CPA-secure if any polynomial-
time adversaries making at most a polynomial number of queries to the key derivation oracle
only has a negligible advantage in the IND-CPA game described above, i.e., AdvFE,AIND-CPA(λ) is
negligible function of λ.

CCA Security. In a chosen-ciphertext attack (IND-CCA, for short), the adversary is addition-
ally given access to a decryption oracle that for a given key k ∈ K and a given ciphertext Ct
returns the decryption Dec(mpk ,KeyGen(msk , k),Ct).

Selective Security. It is a weaker security model, introduced by [CHK03, BB04] to obtain
the first IBE scheme secure in the standard model, where the adversary must commit to its
challenge before seeing the public key. We refer to this definition of security as selective-
indistinguishability under chosen-message attack (chosen-ciphertext-attack), sIND-CPA (sIND-
CCA) for short. In the literature, the non-selective model of security (IND-CPA) is also some-
times called full-security model.

Predicate Encryption. In this case, Definition 2.2.1 is sufficient. In particular in the IND-
CPA game, the adversary’s challenge consists of two indexes ind0, ind1 and two messages
m0,m1. This models the privacy of the index and that of the message. This definition of
security is also know in the literature as anonymity under chosen-plaintext attack (ANO-CPA,
for short). Moreover, in the literature a weaker security model has been defined. It is known as
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weakly attribute-hiding model (wAH-IND-CPA or wAH-ANO-CPA for short) where the win-
ning conditions is relaxed. Specifically, it is required that, for all k queried by A, it holds that
F (k, x0) = F (k, x1) = 0, meaning that the adversary cannot see secret keys that can be used
to decrypt the ciphertext. This relaxation is still reasonable and has been used to achieve full-
security.

Instead, for public index predicate encryption schemes it is enough to model only the pri-
vacy of the message because the index is public. Thus in the IND-CPA game, the adversary’s
challenge consists of an index ind and two messages m0,m1. In this case, the weakly attribute-
hiding model is a minimum requirement because otherwise the adversary would be forced to
submit a challenge with m0 = m1.

2.2.2 Simulation-based security

In the context of functional encryption, the intuition that we would like to be captured by a
simulation-based definition of security is that getting the secret key skk corresponding to the
key k ∈ K should only reveal F (k, x) when given an encryption of x. The following formal
definition, largely based on the recent works of Boneh, Sahai and Waters [BSW11] and O’Neill
[O’N10], tries to capture this intuition avoiding to fall into the impossibility results of [BSW11],
namely we restrict the adversary to request the encryption of a single message.

Definition 2.2.2 A functional encryption scheme FE for functionality F over (K,X) is adap-
tively simulation-based secure (SIM-Secure, for short) if there exists a simulator algorithm
Sim = (Sim0,Sim1,Sim2) such that for all adversary algorithms A = (A0,A1) the output
of the following two experiments are computationally indistinguishable.

RealExpFE,A(1λ)

(mpk ,msk)← Setup(1λ);
(x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Enc(mpk , x);
α← AKeyGen(msk ,·)

1 (mpk ,Ct, aux);
Output: (mpk , x, α)

IdealExpFE,ASim (1λ)

(mpk ,msk)← Sim0(1λ);
(x, aux)← AKeyGen(msk ,·)

0 (mpk);
(Ct′, aux′)← Sim1(mpk , |x|, (ki, F (ki, x), sk i)

q1
i=1);

α← AO(msk ,aux′,·)
1 (mpk ,Ct′, aux);

Output: (mpk , x, α)

Here, k1, . . . , kq1 are the keys for whichA0 has asked to see a secret key in the first query phase
for some q1 = poly(λ). Moreover, oracleO(msk , aux′, ·) is algorithm Sim2(msk , aux′, ·, F (·, x))
that answers to the adversary’s queries of the second phase. In particular, Sim2 receives as third
argument the key k for which the adversary has asked a secret key and as fourth argument the
value F (k, x), along with the master secret key msk and current state aux′ of the simulator.

We observe that the simulator algorithm Sim2 is stateful in that after each invocation, it updates
the state aux′ which is carried over to its next invocation. Also, we note that the notion of non-
adaptive SIM-Security (NA-SIM-Secure, for short), is obtained by giving A1 no oracle access
in both experiments.

Recently, Agrawal et al. [AGVW12] showed that for adversaries that can obtain an un-
bounded number of tokens, Definition 2.2.2 cannot be achieved for incompressible functionali-
ties (i.e., weak pseudo-random functions). Thus, by restricting the range of adversaries to those
that make an a-priori bounded number of queries (counting both first stage and second stage
token queries), we obtain the following weaker notion.
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Definition 2.2.3 A functional encryption scheme FE is q-bounded simulation-based secure (q-
SIM-Secure, for short) if there exists a simulator algorithm Sim such that for all adversary
algorithms A that make at most q token queries, the output of experiments RealExpFE,A and
IdealExpFE,ASim are indistinguishable.
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Chapter 3

Tools and Notations

In this chapter we introduce the mathematical tools we will use in our constructions.

3.1 Notations

We say a function f(n) is negligible if it is O(n−c) for all c > 0, and we use negl(n) to denote
a negligible function of n. We say f(n) is polynomial if it is O(nc) for some c > 0, and we use
poly(n) to denote a polynomial function of n.

If D is a probability distribution, the writing “x ← D” means that x is chosen according
to D. If D is a finite set, the writing “x ← D” means that x is chosen according to uniform
probability on D. If A is an algorithm then A(x1, x2, . . .) denotes the probability distribution of
the output of A when A is run on input (x1, x2, . . .) and randomly chosen coin tosses. Instead
A(x1, x2, . . . ;R) denotes the output of A when run on input (x1, x2, . . .) and (sufficiently long)
coin tosses R. All algorithms, unless explicitly noted, are probabilistic polynomial time (PPT,
for short) and all adversaries are modeled by non-uniform polynomial time algorithms. If A is
an algorithm and B is an algorithm with access to an oracle then AB denotes the execution of A
with oracle access to B. We say an event occurs with overwhelming probability if its probability
is 1− negl(n).

If q > 0 is an integer the [q] denotes the set {1, . . . , q}. The notation bxe denotes the nearest
integer to x, rounding towards 0 for half-integers. For any integer q ≥ 2, we let Zq denote the
ring of integers modulo q and we represent Zq as integers in (q/2, q/2]. We let Zn×mq denote the
set of n×m matrices with entries in Zq.

We use bold capital letters (e.g. A) to denote matrices, bold lowercase letters (e.g. w) to
denote vectors. The notation A> denotes the transpose of the matrix A. When we say a matrix
defined over Zq has full rank, we mean that it has full rank modulo each prime factor of q. IfA1

is an n×m matrix andA2 is an n×m′ matrix, then [A1‖A2] denotes the n× (m+m′) matrix
formed by concatenating A1 and A2. If w1 is a length m vector and w2 is a length m′ vector,
then we let [w1‖w2] denote the length (m + m′) vector formed by concatenating w1 and w2.
However, when doing matrix-vector multiplication we always view vectors as column vectors.
The norm of a matrixR ∈ Rk×m is defined as ‖R‖ := sup‖u‖=1 ‖Ru‖.

3.2 Bilinear Settings

The study of cyclic groups in cryptography has been motivated by the assumed hardness of
taking discrete logarithms on which the security of several cryptosystems (most notably the
ElGamal encryption scheme) and cryptographic protocols has been based. The observation

13
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that some cyclic groups admit bilinear maps has been used at first to break cryptosystems, see
[MOV91, FMR99, FR94]. Later, it was discovered that they could also be used to build cryp-
tosystems, so rather than avoiding this additional properties of the cyclic groups, one can exploit
them to construct new schemes. The Boneh and Franklin’s identity-based encryption scheme
[BF01] is one of the most famous examples of what can be achieved using bilinear maps. Ex-
tending the basic idea leads to identity-based schemes with additional useful properties such as
authenticated or hierarchical identity-based encryption [HL02]. Moreover identity-based sig-
nature [BLS01, Hes03] identity-based identification [KH04, KH06] schemes have been con-
structed using bilinear maps.

Definition 3.2.1 [Bilinear Setting] Let G1,G2 and GT be cyclic groups of prime-order N . Let
g1 be a generator of G1 and g2 be a generator of G2. A bilinear pairing or bilinear map is an
efficiently computable function ê : G1 ×G2 → GT such that:

1. (Bilinearity) ∀ a, b ∈ ZN it holds that ê(ga1 , g
b
2) = ê(g1, g2)ab.

2. (Non-degeneracy) ê(g1, g2) 6= 1.

Then, we call the tuple (N,G1,G2, g1, g2,GT , ê) an asymmetric bilinear setting. Moreover, if
G1 = G2 = G and g is a generator of G then the tuple (N,G,GT , g, ê) is called symmetric
bilinear setting.

Finally, we suppose the existence of an efficient algorithm BSGen which takes in input the
security parameter λ and outputs a description of a bilinear setting over cyclic groups whose
order is of Θ(λ) bits.

The cryptographic relevance of bilinear maps stem from the fact that in cyclic groups that
admit such a mapping the decisional Diffie-Hellman assumption does not hold. Indeed, given
g, gx, gy, gz it is possible to check if z = xy (and thus solve the decisional DH problem) by
testing ê(g, gz) and ê(gx, gy) for equality.

Decisional Linear Assumption. One of the most well studied assumption in the contest of
prime-order bilinear settings is the Decisional Linear Assumption (DL, for short). It can be
described in the following way.

For a given prime-order bilinear setting generator BSGen, define the following distribution:
Pick a random bilinear setting (N,G, g,GT , ê)← BSGen(1λ), and then pick

g, f, v ← G and c1, c2, c3 ∈ ZN

and set D = (N, g, f, v, f c1 , vc2).

Then, the advantage of a PPT adversary A in breaking the DL Assumption is

AdvADL(λ) = |Prob[A(D, gc1+c2) = 1]− Prob[A(D, gc1+c2+c3) = 1]| .

Definition 3.2.2 [Decisional Linear Assumption] We say that the DL Assumption holds for gen-
erator BSGen if, for all probabilistic polynomial-time algorithms A, AdvADL(λ) is a negligible
function of λ.

3.2.1 Composite-Order Bilinear Setting

Composite-order bilinear settings were first used in cryptography by [BGN05] (see also [Bon07])
and then widely used to construct functional encryption schemes and more.
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Definition 3.2.3 [Composite-Order Bilinear Setting] Let G and GT be cyclic groups of com-
posite order N product of m > 1 primes, N = p1 · . . . · pm. Let g be a generator of G and
ê : G × G → GT an efficiently computable non-degenerate bilinear map. Then, we call the
tuple (N,G, g,GT , ê) a composite-order bilinear setting.

Moreover, we suppose the existence of an efficient algorithm CBSGen which takes as input
the security parameter λ and the number of primes m > 1, and outputs a description of a
composite-order bilinear setting over cyclic groups whose order N is the product of m primes
of Θ(λ) bits each.

For notational convenience, for each non-empty subset S ⊆ [m] we denote by GS the sub-
group of order

∏
i∈S pi in the bilinear group G.

Orthogonality. From the fact that the group is cyclic, it is easy to verify that if g and h are
group elements of co-prime orders then ê(g, h) = 1. This is called the orthogonality property
and is a crucial tool in many proof of full security for functional encryption schemes.

General Subgroup Decision Assumption. In the contest of composite-order bilinear settings,
one of the most common assumption is the General Subgroup Decision Assumption (GSD, for
short) introduced by Bellare et al. [BWY11]. It can be described in the following way.

For a given composite-order bilinear setting generator CBSGen, define the following dis-
tribution: Pick a random bilinear setting (N,G, g,GT , ê) ← CBSGen(1λ, 1m). Let S0, S1, S2,
. . . , Sk, for constant k, be non-empty subsets of [m] such that for each 2 ≤ j ≤ k, either
Sj ∩ S0 = Sj ∩ S1 = ∅ or Sj ∩ S0 6= ∅ and Sj ∩ S1 6= ∅, and then pick

Z2 ← GS2 , . . . , Zk ← GSk ,

T0 ← GS0 , T1 ← GS1 ,

and set D = (N,Z2, . . . , Zk).

Then, the advantage of a PPT adversary A in breaking the GSD Assumption is

AdvAGSD(λ) = |Prob[A(D,T0) = 1]− Prob[A(D,T1) = 1]| .

Definition 3.2.4 [General Subgroup Decision Assumption] We say that the GSD Assumption
holds for generator CBSGen if, for all S0, . . . , Sk that satisfy the conditions above and for all
probabilistic polynomial-time algorithms A, AdvAGSD(λ) is a negligible function of λ.

We will use the following algorithm to sample a random instance of the GSD Assumption.

Algorithm GSDGen on input the security parameter 1λ, the number of primes 1m and k+1 non-
empty subsets of [m], S0, S1, S2, . . . , Sk, does the following: Pick a random composite-
order bilinear setting (N,G, g,GT , ê)← CBSGen(1λ, 1m), and then pick

Z2 ← GS2 , . . . , Zk ← GSk ,

T0 ← GS0 , T1 ← GS1 .

Then the algorithm picks a random β ∈ {0, 1} and returns the tuple (N,Tβ, Z2, . . . , Zk).

For notational convenience, sometimes we will omit the parametermwhen it is clear from
the context.
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3.2.2 Dual Pairing Vector Spaces

Dual paring vector spaces (DPVS, for short) are rich mathematical structures introduced by
Okamoto and Takashima [OT08, OT09] in the context of functional encryption. DPVS can be
constructed on prime-order symmetric and asymmetric bilinear settings. We will focus on the
symmetric setting.

Given a symmetric bilinear setting (N,G,GT, g, ê), let V = Gn be a vector space whose
elements are expressed by vectors

x = (gx1 , . . . , gxn) ,

where xi ∈ ZN for each i ∈ [n]. The canonical base of V is

A = (ai)i∈[n] ,

where ai = (1, . . . , 1, g, 1, . . . , 1). Thus, a vector x can be expressed in base A as:

x = (x1, . . . , xn)A =
∑
i∈[n]

xi · ai .

Then, a well-defined non-degenerate pairing operation between x,y ∈ V, can be defined as
follows:

ê(x,y) =
∏
i∈[n]

ê(gxi , gyi) = ê(g, g)
∑
i∈[n] xi·yi .

Notice that over A it is easy to decompose xiai = (1, . . . , 1, gxi , 1, . . . , 1) from x =
(x1, . . . , xn)A =

∑
i∈[n] xi · ai. Thus, the canonical base A can be further randomized to

obtain a new base B = (b1, . . . , bn) of V by applying a random (regular) linear transformation
R = (ri,j)i∈[n],j∈[n] ← GL(n,ZN ) as follows:

bi =
∑
j∈[n]

ri,j · aj .

Moreover, if we apply to A randomizationR to form base B and randomization (RT)−1 to form
base B? = (b?1, . . . , b

?
n). Then (B,B?) are dual orthonormal bases of V such that ê(bi, b?j ) =

ê(g, g)δi,j where δi,j = 1 if i = j, and 0 otherwise.

Definition 3.2.5 [Dual Pairing Vector Spaces] Let G and GT be cyclic groups of prime order
N . Let g be a generator of G and ê : G × G → GT an efficiently computable non-degenerate
bilinear map. Let V = Gn, for integer n > 0, be a vector space obtained as direct product of G
and A = (ai)i∈[n] its canonical base, and let (B,B?) random dual orthonormal bases of V. Let
paramV = (N,V,GT ,A). Then, we call the tuple (paramV,B,B?) a dual pairing vector space.

Finally, we suppose the existence of an efficient algorithm DPVSGen which takes in input
the security parameter λ and integer n, and outputs a description of a dual pairing vector space
over cyclic groups whose order is of Θ(λ) bits. Notice that algorithm DPVSGen can be obtained
by using algorithm BSGen and applying the randomization described above.

Decisional Subspace Problem. First introduced by [OT08]. It asks to distinguish between
vector u = (r1, . . . , rm)B and vector v = (0n, rn+1, . . . , rm)B where n+ 1 < m and ri ← ZN
for i ∈ [m]. Although the decisional subspace problem is assumed to be intractable, it can be
efficiently solved by using trapdoor t? ∈ span(b?1, . . . , b

?
n). In fact ê(u, t?) 6= 1 and ê(v, t?) =

1 with high probability.
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3.3 Lattices

In 1994, Peter Shor [Sho96] showed that quantum computers can solve in polynomial time,
integer factorization and discrete logarithms including elliptic curve discrete logarithms [BL95].
Because of the threat that Shor’s algorithm poses to existing encryption techniques, there is a
great deal of interest in new hard problems believed to resist against quantum attacks.

Lattice assumptions are hard assumptions that have received in the very recent years a lot
of attentions both in cryptanalysis and cryptography. In this section, we will introduce the
background relevant to this work and the main hardness assumption in the field, the Learning
with Error problem formally introduced by Regev [Reg05]. Specifically, we collect, almost
verbatim, results from [ABB10, AFV11, AP09, MR04, GPV08, CHKP10].

Lattice. An m-dimensional lattice Λ is a full-rank discrete subgroup of Rm. A basis of Λ is
a linearly independent set of vectors whose span is Λ. We will focus on integer lattices and
among these we will focus on the q-ary lattices defined as follows: for any integer q ≥ 2 and
anyA ∈ Zn×mq , we define

Λ⊥q (A) := {e ∈ Zm : A · e = 0 mod q}

Λuq (A) := {e ∈ Zm : A · e = u mod q}

Λq(A) := {e ∈ Zm : ∃ s ∈ Zmq withAt · s = e mod q}.

The lattice Λuq (A) is a coset of Λ⊥q (A); namely, Λuq (A) = Λ⊥q (A) + t for any t such that
A · t = u mod q.

Gram-Schmidt norm. Let S = {s1, . . . , sk} be a set of vectors in Rm. Let ‖S‖ denotes
the length of the longest vector in S, i.e., max1≤i≤k ‖si‖, and S̃ := s̃1, . . . , s̃k ⊂ Rm denotes
the Gram-Schmidt orthogonalization of the vectors s1, . . . , sk. We refer to ‖S̃‖ as the Gram-
Schmidt norm of S.

Gaussian distributions. Let L be a discrete subset of Zn. For any vector c ∈ Rn and any
positive parameter σ ∈ R>0, let

ρσ,c(w) := exp
(
−π‖x− c‖2/σ2

)
be the Gaussian function on Rn with center c and parameter σ. Let

ρσ,c(L) :=
∑
w∈L

ρσ,c(w)

be the discrete integral of ρσ,c over L, and let DL,σ,c be the discrete Gaussian distribution over
L with center c and parameter σ. Specifically, for all v ∈ L, we have

DL,σ,c(v) =
ρσ,c(v)

ρσ,c(L)
.

For notational convenience, ρσ,0 and DL,σ,0 are abbreviated as ρσ and DL,σ respectively. The
following lemma captures standard properties of these distributions.

Lemma 3.3.1 Let q ≥ 2 and let A be a matrix in Zn×mq with m > n. Let TA be a basis for
Λ⊥q (A) and σ ≥ ‖T̃A‖ · ω(

√
logm). Then for c ∈ Rm and u ∈ Znq :
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1. Pr [‖w − c‖ > σ
√
m : w ← DΛ,σ,c] ≤ negl(n)

2. A set of O(m logm) samples from DΛ⊥q (A),σ contains a full rank set in Zm, except with
negligible probability.

3. There is a PPT algorithm SampleGaussian(A,TA, σ, c) that returns x ∈ Λ⊥q (A) drawn
from a distribution statistically close to DΛ,σ,c.

4. There is a PPT algorithm SamplePre(A,TA,u, σ) that returns x ∈ Λ⊥q (A) sampled from
a distribution statistically close to DΛu

q (A),σ, whenever Λuq (A) is not empty.

Norm of a random matrix. The following lemmata can be used to bound the norm of a
random matrix in {−1, 1}m×m.

Lemma 3.3.2 ([ABB10, Lemma 15]) LetR be a k×mmatrix chosen at random from {−1, 1}k×m.
Then,

Pr
[
‖R‖ > 12

√
k +m

]
< e−(k+m) .

Lemma 3.3.3 ([ABB10, Lemma 16]) Let u ∈ Rm be some vector of norm 1. LetR be a k×m
matrix chosen at random from {−1, 1}k×m. Then

Pr
[
‖Ru‖ >

√
kω(

√
log k)

]
< negl(k) .

Randomness extraction. We will use the following lemma, which follows from a generaliza-
tion of the leftover hash lemma due to Dodis et al. [DRS04]. Agrawal, Boneh, and Boyen [ABB10]
prove the lemma for prime moduli q but that the result extends to square-free values of q by the
Chinese remainder theorem.

Lemma 3.3.4 [[ABB10, Lemma 13]] Suppose that m > (n+ 1) lg q+ω(log n) and that q > 2
is square free. Let R be an m × k matrix chosen uniformly in {1,−1}m×k mod q where
k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly in Zn×m and Zn×k
respectively. Then for all vectors w ∈ Zm, the distribution (A,AR,R>w) is statistically close
to the distribution (A,B,R>w).

Lattice problems. Two of the most well known computational problems on lattices are the
shortest vector problem and the shortest independent vectors problem. Specifically, let λ1(Λ)
denote the length of the shortest nonzero vector in the lattice Λ and λn(Λ) the minimum length
of a set of n linearly independent vectors from Λ, where the length of a set is defined as the
length of longest vector in it, then the shortest vector problem and the shortest independent
vectors problem are defined as follows:

Definition 3.3.5 [Shortest Vector Problem, GapSVPγ] GapSVP is a promise problem. Specifi-
cally, an instance of GapSVPγ , for γ = γ(n) > 1, is given by an n-dimensional lattice Λ, and a
number d > 0. In YES instances, λ1(Λ) ≤ d whereas in NO instances λ1(Λ) > γ(n) · d.

Definition 3.3.6 [Shortest Independent Vectors Problem, SIVPγ] An instance of SIVPγ , for
γ = γ(n) > 1, is given by an n-dimensional lattice Λ. The goal is to output a set of n linearly
independent lattice vectors of length at most γ(n) · λn(Λ).
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3.3.1 Sampling algorithms

The following algorithms are used to sample short vectors and random basis from specific lat-
tices.

Algorithm ToBasis : Micciancio and Goldwasser [MG02] showed that a full-rank set S in a
lattice Λ can be converted into a basis T for Λ with an equally low Gram-Schmidt norm.

Lemma 3.3.7 ([MG02, Lemma 7.1]) Let Λ be an m-dimensional lattice. There is a
deterministic polynomial-time algorithm that, given an arbitrary basis of Λ and a full-
rank set S = s1, . . . , sm in Λ, returns a basis T of Λ satisfying ‖T̃ ‖ ≤ ‖S̃‖ and
‖T ‖ ≤ ‖S‖

√
m/2

Algorithm TrapGen : Ajtai [Ajt96] and later Alwen and Peikert [AP09] showed how to sample
an essentially uniform matrixA ∈ Zn×mq along with a basis S of Λ⊥q (A) with low Gram-
Schmidt norm.

Theorem 3.3.8 ([AP09, Theorem 3.2] with δ = 1/3) Let q, n,m be positive integers with
q ≥ 2 andm ≥ 6n lg q. There is a probabilistic polynomial-time algorithm TrapGen(q, n,m)
that outputs a pair (A ∈ Zn×mq ,S ∈ Zm×m) such thatA is statistically close to uniform in
Zn×mq and S is a basis for Λ⊥q (A), satisfying ‖S̃‖ ≤ O(

√
n log q) and ‖S‖ ≤ O(n log q)

with overwhelming probability in n.

We let σTG = O(
√
n log q) denote the maximum with high probability Gram-Schmidt

norm of a basis produced by TrapGen.

Algorithm ExtendBasis : Peikert et al. [CHKP10] shows how to construct a basis for Λ⊥q (A‖B‖C)

from a basis for Λ⊥q (B).

Theorem 3.3.9 For i = 1, 2, 3 let Ai be a matrix in Zn×miq and let A := (A1‖A2‖A3).
LetT 2 be a basis of Λ⊥q (A2). There is deterministic polynomial time algorithm ExtendBasis(A1,

A2,A3,T 2) that outputs a basis T for Λ⊥q (A) such that ‖T̃ ‖ = ‖T̃ 2‖

Algorithm SampleLeft : The algorithm takes as input a full rank matrix A ∈ Zn×mq , a short
basis TA of Λ⊥q (A), a matrixB ∈ Zn×m1

q , a vector u ∈ Znq , and a Gaussian parameter σ.
Let F := (A‖B), then the algorithm outputs a vector e ∈ Zm+m1 in the coset Λuq (F ).

Theorem 3.3.10 ([ABB10, Theorem 17], [CHKP10, Lemma 3.2]) Let q > 2,m > n and
σ > ‖TA‖ · ω(

√
log(m+m1)). Then SampleLeft(A,B,TA,u, σ) outputs a vector

e ∈ Zm+m1 statistically close to DΛu
q (F ),σ.

Algorithm SampleRight : The algorithm takes as input matrices A ∈ Zn×kq and R ∈ Zk×m,
a full rank matrix B ∈ Zn×mq and a short basis TB of Λ⊥q (B), a vector u ∈ Znq , and
a Gaussian parameter σ. Let F := (A‖AR + B), then the algorithm outputs a vector
e ∈ Zk+m in the coset Λuq (F ).

Let Sm be them-sphere {x ∈ Rm+1 : ‖x‖ = 1}. We define sR := ‖R‖ = supx∈Sm−1 ‖R·
x‖.

Theorem 3.3.11 ([ABB10, Theorem 19]) Let q > 2,m > n and σ > ‖TB‖ · sR ·
ω(
√

log(k +m)). Then SampleRight(A,B,R,TB,u, σ) outputs a vector e ∈ Zk+m

distributed statistically close to DΛu
q (F ),σ.
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3.3.2 The LWE Problem

The Learning with Errors problem (LWE, for short) is the problem of determining a secret
vector over Fq given a polynomial number of noisy inner products. The decision variant is to
distinguish such samples from random. More formally, we define the (average-case) problem as
follows:

Definition 3.3.12 ([Reg05]) Let n ≥ 1 and q ≥ 2 be integers, and let χ be a probability dis-
tribution on Zq. For r ∈ Znq , let Ar,χ be the probability distribution on Znq × Zq obtained by
choosing a vector a ∈ Znq uniformly at random, choosing e ∈ Zq according to χ, and outputting
(a, 〈a, r〉+ e).

(a) The search-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n) number
of samples from Ar,χ, output r.

(b) The decision-LWEq,n,χ problem is: for uniformly random r ∈ Znq , given a poly(n)
number of samples that are either (all) from Ar,χ or (all) uniformly random in Znq × Zq ,
output 0 if the former holds and 1 if the latter holds.

We say the decision-LWEq,n,χ problem is infeasible if for all polynomial-time algorithmsA, the
probability that A solves the decision-LWE problem (over r and A random coins) is negligibly
close to 1/2 as a function of n.

The power of the LWE problem comes from the fact that for certain noise distributions χ,
solving the search-LWE problem is as hard as finding approximate solutions to the shortest
independent vectors problem (SIVP) and the decision version of the shortest vector problem
(GapSVP) in the worst case. For polynomial size q there is a quantum reduction due to Regev,
while for exponential size q there is a classical reduction due to Peikert. Furthermore, the search
and decision versions of the problem are equivalent whenever q is a product of small primes.
These results are summarized in the following:

Definition 3.3.13 For α ∈ (0, 1) and an integer q > 2, let Ψα denote the probability distribution
over Zq obtained by choosing x ∈ R according to the normal distribution with mean 0 and
standard deviation α/

√
2π and outputting bqxe.

Theorem 3.3.14 ([Reg05]) Let n, q be integers and α ∈ (0, 1) such that q = poly(n) and αq >
2
√
n. If there exists an efficient (possibly quantum) algorithm that solves decision-LWEq,n,Ψα ,

then there exists an efficient quantum algorithm that approximates SIVP and GapSVP to within
Õ(n/α) in the worst case.

Theorem 3.3.15 ([Pei09]) Let n, q be integers and α ∈ (0, 1), and q =
∑

i qi ≤ 2n/2, where
the qi are distinct primes satisfying ω(log n)/α ≤ qi ≤ poly(n). If there exists an efficient
(classical) algorithm that solves decision-LWEq,n,Ψα , then there exists an efficient (classical)

algorithm that approximates GapSVP to within Õ(n/α) in the worst case.

The following lemma will be used to show correctness of decryption.

Lemma 3.3.16 ([ABB10, Lemma 12]) Let e be some vector in Zm and let v ← Ψ
m
α . Then the

quantity |〈e,v〉| when treated as an integer in (−q/2, q/2] satisfies

|〈e,v〉| ≤ ‖e‖ ·
(
qα · ω(

√
logm) +

√
m/2

)
with overwhelming probability in m.



Chapter 4

Generalized Key Delegation for
Wildcarded Identity-Based and

Inner-Product Encryption

Even though the WIBE and WKD-IBE constructions in [ACD+06, AKN07] are very practical,
they had two significant shortcomings. First, their security proofs only hold in cases where the
maximum hierarchy depth L is a constant due to the fact that they are not tight and lose a factor
which is exponential in L. As a result, these schemes can only be used in scenarios where such
a restriction is acceptable. In particular, when using WKD-IBE schemes to build identity-based
broadcast encryption schemes, such a limitation on the maximum hierarchy depth will have a
direct impact on the maximum size of the target group. Second, their solutions do not hide the
pattern associated with the ciphertext. Hence, their schemes cannot be used in any application
where the anonymity of the recipient needs to be preserved.

The main goal here is to overcome the limitations of existing WKD-IBE and WIBE schemes.
To achieve the first of these goals, we show in Section 4.2 how to convert the WIBE scheme
by Abdalla et al. [ACD+06] based on the Boneh-Boyen HIBE scheme [BB04] into a non-
anonymous WW-IBE scheme which is fully secure even when the maximum hierarchy depth
L is a polynomial in the security parameter. Towards this goal, we make use of bilinear groups
of composite order [BGN05], whose order is a product of three primes. Our non-anonymous
fully secure WW-IBE scheme has three main ingredients in its design. The first one is the gener-
alization of the secret key delegation mechanism already present in the underlying Boneh-Boyen
HIBE scheme. This technique is similar to one used by Abdalla et al. in [AKN07]. The second
one is the addition of a ciphertext delegation mechanism, using a technique similar to the one
employed in [ACD+06]. Finally, the third key ingredient is the use of the dual system technique
of Waters [Wat09, LW10] to achieve security with respect to adaptive adversaries. In a dual
system, there are two kinds of keys and ciphertexts: normal and semi-functional. While normal
keys can be used to decrypt both normal and semi-functional ciphertexts, semi-functional keys
can only decrypt normal ciphertexts. When a semi-functional key is used to decrypt a semi-
functional ciphertext, decryption will fail with all but negligible probability. In a dual system, a
security proof usually employs a standard hybrid argument over a sequence of games. The first
one is the real security game in which key derivation and encryption queries are answered with
normal keys and ciphertexts. In the next game, the ciphertext given to the attacker is changed
to semi-functional. Then, in each subsequent game, the secret keys used to answer key deriva-
tion queries are changed to semi-functional, one at a time. Finally, once everything the attacker
receives is semi-functional, then it is straight-forward to prove security directly.

21
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As we show in Section 4.2, these three ingredients fit nicely together and we are able to
prove its security. However, this is not always the case. In particular, when considering WW-
IBE schemes based on the Boneh-Boyen-Goh HIBE [BBG05], we did not succeed extending the
proof strategy by Lewko and Waters [LW10] to the WW-IBE case. This is due to the fact that,
when a normal secret key is changed to semi-functional, the information leaked by the delegation
mechanisms of the secret keys together with the presence of wildcards in the challenge ciphertext
breaks down the information theoretical argument used to hide the nominality of semi-functional
keys. Nevertheless, it is worth pointing out that recent techniques by Lewko and Waters [LW12]
might be useful in overcoming these issues.

One of the key elements in designing a WW-IBE scheme, starting from the HIBE schemes
in [BB04, BBG05], is to have some sort of delegation mechanism also for the ciphertext in order
to replace the wildcards with the identities required by the secret key. So we have two delegation
mechanisms, one for the secret keys and one for the ciphertexts. These two mechanisms can be
symmetric in the sense that they are essentially the same. Let us think to the [BBG05] scheme:
If we want a delegation mechanism for the ciphertext what we can do is essentially to reuse the
secret keys delegation mechanism. The issue here is that we are introducing a stronger correla-
tion between ciphertexts and secret keys. Thus when we proceed to prove the semantic security
by means of the dual system encryption, during the secret key games the information theoretical
argument necessary to finish the proof breaks down because the ciphertext now release too much
information. Instead this issue doesn’t arise in the [BB04] scheme because we are able to de-
fine two different delegation mechanisms avoiding in this way the stronger correlation between
ciphertexts and secret keys. Unfortunately when we try to achieve the anonymity property then
it seems that this requires a symmetric delegation mechanism and this blocks us to achieve even
semantic security.

In order to achieve, and to avoid all the issues of the previous approach, our second goal
of building WW-IBE, which are not only fully secure but also anonymous, we first introduce
in Section 4.3 a generalization of the notion of hierarchical inner predicate encryption [OT09],
which we call inner-product encryption with generalized key delegation (WKD-IPE, for short).
Next, after introducing the new WKD-IPE notion, we present a generic transform which converts
any WKD-IPE into a WW-IBE scheme. The reduction uses the same trick used in [KSW08] to
build hidden vector encryption from inner product encryption. Specifically, zero entries are used
to simulate wildcards.

Since the transform preserves anonymity and has a tight security reduction, the resulting
WW-IBE scheme will be anonymous and fully secure as long as the underlying WKD-IPE is
anonymous and fully secure. Finally, we show how to modify the hierarchical inner-product
encryption scheme from [LOS+10] to allow for more general key delegation patterns. As for
the previous scheme, we also use the dual system encryption methodology of Waters [Wat09] in
the security proof.

It is worth noticing that, even though our constructions allow for wildcards in the key deriva-
tion algorithm, they do not take into account the limited delegation property through which one
can prevent users from further deriving keys for identities below them. As remarked by Abdalla
et al. in [AKN07], this is without loss of generality as the limited delegation property can be
easily achieved in the case where the maximum depth is fixed by padding the identity vector with
dummy strings at the unused levels. Hence, here we only focuses on wildcard key delegation.

4.1 Definitions

In this section, we introduce a new primitive, called identity-based encryption with wildcards
and generalized key delegation, which combines the notions of wildcarded IBE [ACD+06] and
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IBE with generalized key delegation [AKN07]. In doing so, we adopt the same notation and
definition style used in [ACD+06].

4.1.1 Identity-Based Encryption with Wildcards and Generalized Key Delegation

Like WIBE and WKD-IBE, Identity-Based Encryption with Wildcards and Generalized Key
Delegation (WW-IBE, for short) allows for more general patterns either during the encryption
or the key derivation processes. Such a pattern is described by a vector

P = (P1, . . . , P`) ∈ ({0, 1}∗ ∪ {*})` ,

where * is a special wildcard symbol. As in a WKD-IBE, a user in possession of the secret key
for a given pattern P can generate secret keys for any pattern P ′ that matches P . We say that a
pattern P ′ = (P ′1, . . . , P

′
`′) matches P , denoted P ′ ∈* P , if and only if `′ ≤ `; ∀ i = 1 . . . `′,

P ′i = Pi or Pi = *; and ∀ i = `′ + 1 . . . `, Pi = *. As in a WIBE, a user in possession of the
secret key for a given pattern P can decrypt ciphertexts for any pattern P ′ that matches P .

Formally, an WW-IBE scheme can be defined as a predicate encryption scheme with public
index in the following way. Let L be the hierarchy depth then, the keys space K and the indices
space I consist of all the patterns P = (P1, . . . , P`) ∈ ({0, 1}∗ ∪ {*})` for 1 ≤ ` ≤ L and the
WW-IBE predicate PL over (K, I) is defined as follows:

PL(k = P ′, ind = P ) =

{
1 if P ′ ∈* P
0 otherwise

.

Definition 4.1.1 [WW-IBE] An Identity-Based Encryption with Wildcards and Generalized Key
Delegation scheme is a tuple of 5 algorithms WW − IBE = (Setup,KeyGen,KeyDer,Enc,Dec)
with the following syntax:

Setup(1λ, 1L) outputs public and master secret keys (mpk ,msk) for security parameter λ and
hierarchy depth L.

KeyGen(msk , P = (P1, . . . , P`)) on input a master secret key msk and pattern P , outputs
secret key skP ;

KeyDer(mpk , skP , P
′) on input a master public key mpk , a secret key skP for pattern P =

(P1, . . . , P`) and pattern P ′ such that P ′ ∈* P , outputs secret key skP ′ ;

Enc(mpk , P,m) on input public key mpk , pattern P = (P1, . . . , P`) and plaintext m, outputs
ciphertext Ct;

Dec(mpk , skP ′ ,Ct) outputs a string y.

Correctness. We require that for all key pairs (mpk ,msk) output by Setup, all messages
m ∈ {0, 1}∗, all 0 ≤ ` ≤ L, all patterns P, P ′ ∈ ({0, 1}∗ ∪ {*})` such that P ′ ∈* P ,
all skP ′ obtained through a chain of key derivation skP1 = KeyGen(msk , P1), skPi+1 =
KeyDer(mpk , skPi , Pi+1) such that P1 ∈* . . . ∈* Pn = P ′,

Dec( skP ′ , Enc(mpk , P,m) ) = m

with probability one.
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4.1.2 Security

As for Definition 2.2.1, IND-CPA security for WW-IBE schemes is formalized by means of
the following game between an adversary A and a challenger C. Specifically, we define the
security of WW-IBE schemes through a game with an adversary which is different from the
security games of HIBE schemes in two points: first, the adversary can query for the secret
keys corresponding to arbitrary patterns, rather than specific identity vectors and second, the
adversary chooses a challenge pattern instead of an identity to which the challenge ciphertext
will be encrypted. Of course, the adversary is not allowed to query the key derivation oracle for
any pattern matched by the challenge pattern.

We give complete form of the security definition following [SW08]. Specifically, game
IND-CPAWW−IBE

A (1λ), where λ is the security parameter, is defined as follows.

Setup: C generates master public key and secret key by invoking the setup algorithm on
input the security parameter λ and the hierarchy depth L given in unary. Specifically,
(mpk ,msk)← Setup(1λ, 1L). Then, C starts the interaction with A on input mpk .

We let S denote the set of private keys that C has created but not yet given to the adversary.
At this point, S = ∅.

Query Phase 1: A makes Create, Delegate, and Reveal key queries. Specifically:

To make a Create query, A specifies a pattern P ∈
(
{0, 1}∗ ∪ {*}

)≤L. In response,
C creates a key for this pattern by calling the key generation algorithm, skP =
KeyGen(msk , P ), and places this key in the set S. C only givesA a reference to this
key, not the key itself.

To make a Delegate query, A specifies a key skP in the set S and a pattern P ′. In
response, C makes a key for this new vector by running the delegation algorithm on
skP and P ′. C adds this key to the set S and again givesA only a reference to it, not
the actual key.

To make a Reveal query, A specifies an element of the set S. C gives this key to A
and removes it from the set S. Notice that A needs no longer make any delegation
queries for this key because it can run delegation algorithm on the revealed key for
itself.

Challenge: A submits two equal length messages m0,m1 and a challenge patternP = (P1, . . . , P`)
where 0 ≤ ` ≤ L. C chooses random η ∈ {0, 1} and generates ciphertext Ct? =
Enc(mpk , P,mη). C sends back Ct? to A.

Query Phase 2: It is the same to Query Phase 1.

Guess: Eventually, A submits its guess η′.

Winning Condition: A wins the game if the following conditions are satisfied:

1. η = η′.

2. No secret key for any pattern obtained through delegation from any of the revealed
secret key is such that it matches the target pattern (i.e., any P ′ such that P ′ ∈* P ).

The advantage of A in the above game is defined as

AdvWW−IBE,A
IND-CPA (λ) = Prob[IND-CPAWW−IBE

A (1λ) = 1]− 1/2 .
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Definition 4.1.2 A WW-IBE scheme is IND-CPA-secure if any polynomial-time adversaries
making at most a polynomial number of queries to the key derivation oracle only has a negli-
gible advantage in the IND-CPA game described above, i.e., AdvWW−IBE,A

IND-CPA (λ) is negligible
function of λ.

4.1.3 Anonymous WW-IBE

An important property we investigate is the anonymity of WW-IBE schemes. The objective is
to hide the pattern in the ciphertext. Therefore, the adversary could also choose two patterns
to be challenged on. More specifically, game ANO-CPAWW−IBE

A (1λ), where λ is the security
parameter, is defined as follows.

Setup: C generates master public key and secret key by invoking the setup algorithm on
input the security parameter λ and the hierarchy depth L given in unary. Specifically,
(mpk ,msk)← Setup(1λ, 1L). Then, C starts the interaction with A on input mpk .

We let S denote the set of private keys that C has created but not yet given to the adversary.
At this point, S = ∅.

Query Phase 1: A makes Create, Delegate, and Reveal key queries. Specifically:

To make a Create query, A specifies a pattern P ∈
(
{0, 1}∗ ∪ {*}

)≤L. In response,
C creates a key for this pattern by calling the key generation algorithm, skP =
KeyGen(msk , P ), and places this key in the set S. C only givesA a reference to this
key, not the key itself.

To make a Delegate query, A specifies a key skP in the set S and a pattern P ′. In
response, C makes a key for this new vector by running the delegation algorithm on
skP and P ′. C adds this key to the set S and again givesA only a reference to it, not
the actual key.

To make a Reveal query, A specifies an element of the set S. C gives this key to A
and removes it from the set S. Notice that A needs no longer make any delegation
queries for this key because it can run delegation algorithm on the revealed key for
itself.

Challenge: A submits two equal length messages m0,m1 and two challenge patterns P0 =

(P
(0)
1 , . . . , P

(0)
` ) and P1 = (P

(1)
1 , . . . , P

(1)
` ) where 0 ≤ ` ≤ L. C chooses random

η ∈ {0, 1} and generates ciphertext Ct? = Enc(mpk , Pη,mη). C sends back Ct? to A.

Query Phase 2: It is the same as Query Phase 1.

Guess: Eventually, A submits its guess η′.

Winning Condition: A wins the game if the following conditions are satisfied:

1. η = η′.

2. No secret key for any pattern obtained through delegation from any of the revealed
secret key is such that it matches one of the challenge pattern but not the other.

The advantage of A in the above game is defined as

AdvWW−IBE,A
ANO-CPA (λ) = Prob[ANO-CPAWW−IBE

A (1λ) = 1]− 1/2 .
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Definition 4.1.3 A WW-IBE scheme is ANO-CPA-secure if any polynomial-time adversaries
making at most a polynomial number of queries to the key derivation oracle only has a negli-
gible advantage in the ANO-CPA game described above, i.e., AdvWW−IBE,A

ANO-CPA (λ) is negligible
function of λ.

4.2 A WW-IBE Construction

Our first construction is based on a slight variant of the Boneh-Boyen WIBE scheme given
in [ACD+06]. We extend it to obtain generalized key delegation and prove its security in the
standard model, under static assumptions in composite order bilinear groups [BGN05], by using
Waters’ Dual Encryption System [Wat09]. As in [LW10], we use groups G,GT whose order
N = p1p2p3 is a product of three primes. We note that the actual computation occurs in Gp1 ,
the subgroup of G of order p1. Gp2 , the subgroup of G of order p2, is only used to define the
semi-functional space and is not used in the real scheme. Thus, secret keys and ciphertexts will
be semi-functional when they include terms in Gp2 . Finally, Gp3 , the subgroup of G of order p3,
is used to re-randomize the secret keys.

4.2.1 Complexity Assumptions

For completeness we restate here the complexity assumptions we use, first introduced by Lewko
and Waters in [LW10]. The first two are instances of the general subgroup decision assumption.

Assumption LW.1 For a given prime-order bilinear setting generator BSGen, define the fol-
lowing distribution: Pick a random bilinear setting (N = p1p2p3,G, g,GT , ê) ← BSGen(1λ),
and then pick

g1, T1 ← Gp1 , g3 ← Gp3 , T2 ← Gp1p2 ,

and set D = (N, g1, g3).
Then, the advantage of a PPT adversary A in breaking Assumption LW.1 is

AdvALW.1(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]| .

Definition 4.2.1 We say that Assumption LW.1 holds for generator BSGen if, for all probabilis-
tic polynomial-time algorithms A, AdvALW.1(λ) is a negligible function of λ.

Assumption LW.2 For a given prime-order bilinear setting generator BSGen, define the fol-
lowing distribution: Pick a random bilinear setting (N = p1p2p3,G, g,GT , ê) ← BSGen(1λ),
and then pick

g1, X1 ← Gp1 , X2, Y2 ← Gp2 , g3, X3 ← Gp3 , T1 ← Gp1p3 , T2 ← Gp1p2p3 ,

and set D = (N, g1, g3, X1X2, Y2X3).
Then, the advantage of a PPT adversary A in breaking Assumption LW.2 is

AdvALW.2(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]| .

Definition 4.2.2 We say that Assumption LW.2 holds for generator BSGen if, for all probabilis-
tic polynomial-time algorithms A, AdvALW.2(λ) is a negligible function of λ.
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Assumption LW.3 For a given prime-order bilinear setting generator BSGen, define the fol-
lowing distribution: Pick a random bilinear setting (N = p1p2p3,G, g,GT , ê) ← BSGen(1λ),
and then pick

ρ, s← ZN , g1 ← Gp1 , g2, X2, Y2 ← Gp2 , g3 ← Gp3 , T2 ← GT ,

and set T1 = ê(g1, g1)ρs and D = (N, g1, g2, g3, g
ρ
1X2, g

s
1Y2).

Then, the advantage of a PPT adversary A in breaking Assumption LW.3 is

AdvALW.3(λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]| .

Definition 4.2.3 We say that Assumption LW.3 holds for generator BSGen if, for all probabilis-
tic polynomial-time algorithms A, AdvALW.3(λ) is a negligible function of λ.

4.2.2 Our Construction

We first introduce some additional notation. If P = (P1, ..., P`) is a pattern, then let |P | = `
be the length of P , let W(P ) be the set containing all wildcard indices in P , i.e. the indices
1 ≤ i ≤ ` such that Pi = *, and let W(P ) be the complementary set containing all non-
wildcard indices. Clearly W(P )

⋂
W(P ) = ∅ and W(P )

⋃
W(P ) = {1, ..., `}.

Setup(1λ, 1L): Choose a description of a composite order bilinear setting (N = p1p2p3,G, g,
GT , ê) ← CBSGen(1λ, 3) with known factorization and random g1 ← Gp1 , g3 ← Gp3 .
Choose random ρ ← ZN and random (ui,j ← Gp1)i∈[L],j∈{0,1}, and set Ω = ê(g1, g1)ρ.
Then, the master public key is

mpk ← [N, g1, g3, (ui,j)i∈[L],j∈{0,1},Ω] ,

and the master secret key is
msk ← [ρ] .

KeyGen(msk , P = (P1, . . . , P`)): Choose random (ri ← ZN )i∈W(P ), W0 ← Gp3 and (Wi ←
Gp3)i∈W(P ). Then set

K0 = gρ1 ·
∏

i∈W(P )

(
ui,0 · uPii,1

)ri
·W0 ,

and
(Di = gri1 ·Wi)i∈W(P )

The secret key for pattern P is skP ← [K0, (Di)i∈W(P )].

KeyDel(mpk , skP , P
′ = (P ′1, . . . , P

′
`)): If P ′ ∈* P then the key delegation algorithm chooses

random (r′i ← ZN )i∈W(P ′) andW ′0 ← Gp3 and (W ′i ← Gp3)i∈W(P ′). Then the algorithm
sets

K ′0 = K0 ·
∏

i∈W(P ′)

(
ui,0 · u

P ′i
i,1

)r′i ·W ′0 ,
and(

D′i = Di · g
r′i
1 ·W

′
i

)
i∈W(P )

⋂
W(P ′)

and
(
D′i = g

r′i
1 ·W

′
i

)
i∈W(P )

⋂
W(P ′)

.

The secret key for pattern P ′ is skP ′ ← [K ′0, (D
′
i)i∈W(P ′)].
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Enc(mpk , P = (P1, . . . , P`),m): Choose random s← ZN and then set

C1 = gs1 ,(
C2,i =

(
ui,0 · uPii,1

)s)
i∈W(P )

,

C3 = Ωs ·m ,(
C4,i,j = usi,j

)
i∈W(P ),j∈{0,1} .

The ciphertext for pattern P and message m is CtP ← [C1, (C2,i)C3, (C4,i,j)].

Dec(mpk ,CtP , skP ′): The decryption algorithms returns ⊥ if P 6∈* P ′. If this is not the
case then to decrypt it is enough to focus on the non-wildcard positions of the secret key.
Then, each identity in these positions must be matched by a corresponding identity in the
ciphertext. In particular, if position i corresponds to a non-wildcard in the secret key and
to a wildcard in the ciphertext (these positions are those in W(P )

⋂
W(P ′)) then that

wildcard needs to be delegated to the required identity P ′i . Thus, to recover the message
m the decryption algorithms computes what follows:

C2 =
∏

i∈W(P )
⋂

W(P ′)

ê(Di,C2,i) ·
∏

i∈W(P )
⋂

W(P ′)

ê
(
Di,C4,i,0 · C

P ′i
4,i,1

)
,

then the blinding factor is obtained as

ê(K0,C1)

C2
=

Ωs ·
∏
i∈W(P ′) ê

((
ui,0 · uPii,1

)ri
, gs1

)
∏
i∈W(P ′) ê

(
gri1 ,

(
ui,0 · uPii,1

)s) = Ωs .

Remember that the Gp3 part cancels out by the orthogonality property.

4.2.3 Security

In this section we will prove the following main theorem:

Theorem 4.2.4 If Assumptions LW.1, LW.2, and LW.3 hold, then our scheme is IND-CPA se-
cure in the sense of Definition 4.1.2.

Following Lewko and Waters [LW10], we define two additional structures used in the proofs
of security. Specifically:

Semi-Functional Ciphertext : Let g2 denote a generator of Gp2 . An semi-functional ciphertext
is created as follows: first, we use the encryption algorithm to form a normal ciphertext
Ct′ ← [C ′1, (C

′
2,i),C

′
3, (C

′
4,i,j)]. Then, we choose random exponents x ← ZN , (zc,i ←

ZN )i∈W(P ) and (zc,i,j ← ZN )i∈W(P ),j∈{0,1}. Finally, we set

C1 = C ′1 · gx2 ,(
C2,i = C ′2,i · g

x·zc,i
2

)
i∈W(P )

,

C3 = C ′3 ,(
C4,i,j = C ′4,i,j · g

x·zc,i,j
2

)
i∈W(P ),j∈{0,1} .
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Semi-Functional Keys : To create a semi-functional key, we first create a normal key skP ←
(K ′0, (D

′
i)) using the key generation algorithm. Then, we choose random y, zk ← ZN and

random (zk,i ← ZN )i∈W(P ). Finally, we set

K0 = K ′0 · g
y·zk
2

and (
Di = D′i · g

y·zk,i
2 ·Wi

)
i∈W(P )

.

Remark 4.2.5 Notice that semi-functional ciphertexts can still be decrypted by normal secret
keys and semi-functional secret keys can still be used to decrypt normal ciphertext. But an semi-
functional ciphertext, for pattern P ′, and an semi-functional secret key, for pattern P , lead to
a random decryption with high probability. In fact the decryption algorithm will compute the
blinding factor multiplied by the additional term ê(g2, g2)xy·(zc−zk) where

zc =
∑

i∈W(P )
⋂

W(P ′)

zk,i · zc,i +
∑

i∈W(P )
⋂

W(P ′)

zk,i · (zc,i,0 + zc,i,1) .

If zc = zk, decryption will still work. We say that such a ciphertexts and secret keys are
nominally semi-functional. We will use this concept during the security proofs arguing that the
nominality is hidden even to an unbounded adversary under the constraints of the security game.

For a probabilistic polynomial-time adversary A which makes q key queries, our proof of secu-
rity will consist of the following q + 5 games between A and a challenger C.

GameReal: It is the real IND-CPA security game.

GameWD: It is the same as GameReal except that all key queries will be answered by fresh
calls to the key generation algorithm.

GameRestricted: It is the same as GameWD except that A cannot ask for keys for pat-
terns which are prefixes of one of the challenge patterns modulo p2. We will retain this
restriction in all subsequent games.

Gamek: For k from 0 to q, we define Gamek like GameRestricted except that the ciphertext
given toA is semi-functional and the first k keys are semi-functional. The rest of the keys
are normal.

GameFinal: It is the same game as Gameq, except that the challenge ciphertext has C3

random in GT (thus the ciphertext is independent from the messages provided byA). It is
clear that no adversary can have advantage greater than 0 here.

We start by giving an overview of the proof of security.

GameReal = GameWD: The keys are identically distributed whether they are produced by
key delegation from a previous key or from a fresh call to the key generation.

GameWD ≈c GameRestricted: Essentially, if the adversary is able to ask for keys for
patterns which are prefixes of one of the challenge patterns modulo p2, then this means that
the adversary can find a non-trivial factor ofN and can be used to break either Assumption
LW.2. This restriction is crucial to show that Gamek−1 ≈ Gamek.
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GameRestricted ≈c Game0: In Game0, the challenge ciphertext Ct? is semi-functional,
while all keys are normal. Notice that Assumption LW.1 (N, g1, g3) is enough to generate
mpk and msk . Then, T can be used to generate Ct? and, depending on the nature of T ,
Ct? can be normal as in GameRestricted or semi-functional as in Game0.

Gamek−1 ≈c Gamek: Given an instance of Assumption LW.2 (N, g1, g3, X1X2, Y2X3),
mpk and msk can be generated by using g1 and g3. The first k − 1 secret key queries,
which are semi-functional, can be answered by employing Y2X3. The last q − k queries
can be answered by invoking KeyGen on input msk . Finally, the challenge ciphertext
can be generated by employing X1X2 and the k-th secret key by employing T . Now, if
T ∈ Gp1p3 , then the k-th secret key is normal and the joint distribution of the k-th secret
key and the challenge ciphertext is as in Gamek−1. On the other hand, if T ∈ Gp1p2p3 ,
then the k-th key is nominally semi-functional with the respect to the challenge ciphertext.
Hence, the simulator cannot test by himself the nature of T . Moreover, the nominality of
k-th key is hidden to the adversary under the restriction of GameRestricted and from the
fact that the adversary cannot ask secret keys for patters matching the challenge pattern.

Gameq ≈c GameFinal: In Gameq, the challenge ciphertext and secret keys are semi-
functional. It is easy to see that these two games are indistinguishable under Assumption
LW.3.

GameFinal gives no advantage: In GameFinal, η is information-theoretically hidden from
the attacker. Hence the attacker can obtain no advantage in breaking the scheme.

We give now formal proofs of the above statements.

Lemma 4.2.6 GameReal = GameWD.

Proof: We note that the keys are identically distributed whether they are produced by the key
delegation algorithm from a previous key or from a fresh call to the key generation algorithm.
Thus, in the attacker’s view, there is no difference between these games.

Lemma 4.2.7 If Assumption LW.2 holds, then for all probabilistic polynomial time adversaries
A, GameWD ≈c GameRestricted.

Proof: Suppose that A has probability ε of producing a pattern P = (P1, . . . , Pk), that is a
prefix of one of the challenge pattern P ? = (P ?1 , . . . , P

?
j ) modulo p2. That is, there exists i such

that that Pi 6= P ?i modulo N and both are different from ?, and that p2 divides Pi−P ?i and thus
a = gcd(Pi − P ?i , N) is a nontrivial factor of N . We notice that p2 divides a and set b = N

a .
The following two cases are exhaustive and at least one occurs with probability at least ε/2:

1. ord(g1) | b. Suppose case 1 has probability at least ε/2. We describe algorithm B that
breaks Assumption LW.2. B receives (N, g1, g3, X1X2, Y2X3) and T and constructs mpk
and msk by choosing ρ ← ZN and (ui,j ← ZN )i∈[L],j∈{0,1}, and setting Ω = ê(g1, g1)ρ,
mpk ← [N, g1, g3, (g

ui,j
1 )i∈[L],j∈{0,1},Ω] and msk ← [ρ]. Then B runs A on input mpk

and uses knowledge of msk to answer A’s queries. At the end of the game, for all pattern
P ’s for which A has asked for the key and for the challenge pattern P ?, B computes
a = gcd(Pi − P ?i , N). Then, if ê ((X1X2)a, Y2X3) is the identity element of GT then B
tests if ê(T b, X1X2) is the identity element of GT . If this second test is successful, then B
declares T ∈ Gp1p3 . If it is not, B declares T ∈ Gp1p2p3 . It is easy to see that if p2 divides
a and p1 = ord(g1) divides b, then B’s output is correct.
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2. ord(g1) - b and ord(g3) | b. In this case, B breaks Assumption LW.2 in the same way
except that mpk by exchanging the roles of gp1 and gp3 and thus p1 and p3.

Lemma 4.2.8 If Assumption LW.1 holds, then for all probabilistic polynomial time adversaries
A, GameRestricted ≈c Game0.

Proof: We describe algorithm B that breaks Assumption LW.1. B receives (N, g1, g3) and T
and simulates GameRestricted or Game0 with A depending on T .

Setup : B chooses random ρ ← ZN and (ui,j ← ZN )i∈[L],j∈{0,1}, and set Ω = ê(g1, g1)ρ.
Then, B set

mpk ← [N, g1, g3, (g
ui,j
1 )i∈[L],j∈{0,1},Ω] ,

as the public parameters and
msk ← [ρ] ,

as the master secret key. B starts the interaction with A on input mpk .

Secret Keys : Notice that B knows msk and thus can answer all A’s queries.

Challenge : A sends B challenge messages m0,m1 ∈ {0, 1}∗ and a challenge pattern P =
(P1, . . . , P`) where 0 ≤ ` ≤ L. B chooses random η ← {0, 1} and computes the chal-
lenge ciphertext Ct? as follows:

C1 = T ,(
C2,i = T ui,0+ui,1·Pi

)
i∈W(P )

,

C3 = ê(T, g1)ρ ·m,

(C4,i,j = T ui,j )i∈W(P ),j∈{0,1} .

Notice that if T ∈ Gp1 , then T can be written as gs1 and Ct? is a normal ciphertext with random-
ness s. Instead, if T ∈ Gp1p2 , then T can be written as gs1g

x
2 and Ct? is semi-functional with

randomness s, x, zc,i = ui,0 + ui,1 · Pi, zc,i,j = ui,j .

Lemma 4.2.9 If Assumption LW.2 holds, then for all probabilistic polynomial time adversaries
A, Gamek−1 ≈c Gamek.

Proof: We describe algorithmB that breaks Assumption LW.2. B receives (N, g1, g3, X1X2, Y2X3)
and T and simulates Gamek−1 or Gamek with A depending on T .

Setup : B chooses random ρ ← ZN and (ui,j ← ZN )i∈[L],j∈{0,1}, and set Ω = ê(g1, g1)ρ.
Then B set

mpk ← [N, g1, g3, (g
ui,j
1 )i∈[L],j∈{0,1},Ω] ,

as the public parameters and
msk ← [ρ] ,

as the master secret key. B starts the interaction with A on input mpk .
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Secret Keys : Let us now explain howB answers the i-th key query for patternP = (P1, . . . , P`)
where 0 ≤ ` ≤ L.

i < k : B creates an semi-functional secret key as follows: Choose random z′k ← ZN ,
(ri, z

′
k,i ← ZN )i∈W(P ), W0 ← Gp3 and (Wi ← Gp3)i∈W(P ). Then set

K0 = gρ1 ·
∏

i∈W(P )

(
ui,0 · uPii,1

)ri
· (Y2X3)z

′
k ·W0 ,

and (
Di = gri1 · (Y2X3)z

′
k,i ·Wi

)
i∈W(P )

.

By writing Y2 as gy2 , we have that this is a properly distributed semi-functional key
with randomness y, zk = z′k and zk,i = z′k,i.

i = k : To answer the k-th key query B chooses random (r′i ← ZN )i∈W(P ), W0 ← Gp3

and (Wi ← Gp3)i∈W(P ), and sets

K0 = gρ1 ·
∏

i∈W(P )

(
T ui,0+ui,1·Pi

)r′i ·W0 ,

and (
Di = T r

′
i ·Wi

)
i∈W(P )

.

Notice that, if T ∈ Gp1p3 , then T can be written as gr1g
w
3 and the k-th secret key is

a normal key with randomness ri = r · r′i, If T ∈ Gp1p2p3 , then T can be written
as gr1g

y
2g
w
3 and the k-th secret key is semi-functional with randomness ri = r · r′i, y,

zk =
∑

i∈W(P ) r
′
i · (ui,0 + ui,1 · Pi) and zk,i = r′i.

i > k : B runs KeyGen using msk .

Challenge : A sends B challenge messages m0,m1 ∈ {0, 1}∗ and a challenge pattern P =
(P1, . . . , P`) where 0 ≤ ` ≤ L. B chooses random η ← {0, 1} and computes the chal-
lenge ciphertext Ct? as follows:

C1 = X1X2 ,(
C2,i = (X1X2)ui,0+ui,1·Pi

)
i∈W(P )

,

C3 = ê(X1X2, g1)ρ ·m ,

(C4,i,j = (X1X2)ui,j )i∈W(P ),j∈{0,1} .

Notice that X1X2 can be written as gs1g
x
2 for some random s, x ∈ ZN , thus the challenge

ciphertext is semi-functional with randomness s, x, zc,i = ui,0 + ui,1 · Pi, zc,i,j = ui,j .

Since the k-th secret key pattern is not a prefix of the challenge pattern modulo p2 we have that zk
and zc are independent and randomly distributed. We observe that, if B attempts to test whether
the k-th key is semi-functional by using the above procedure to create an semi-functional cipher-
text for k-th secret key pattern then we will have that zk = zc and thus decryption always works
(independently of T ).

Lemma 4.2.10 If Assumption LW.3 holds, then for all probabilistic polynomial time adver-
saries A, Gameq ≈c GameFinal.
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Proof: We describe algorithmB that breaks Assumption LW.3. B receives (N, g1, g2, g3, g
ρ
1X2, g

s
1Y2)

and T and simulates Gameq or GameFinal with A depending on T .

Setup : B chooses random (ui,j ← ZN )i∈[L],j∈{0,1}, and set Ω = ê(gρ1X2, g1). Then B set

mpk ← [N, g1, g3, (g
ui,j
1 )i∈[L],j∈{0,1},Ω] .

as the public parameters. B starts the interaction with A on input mpk .

Secret Keys : For pattern P = (P1, . . . , P`) where 0 ≤ ` ≤ L, B creates a semi-functional
secret key as follows: Choose random z′k ← ZN , (ri, z

′
k,i ← ZN )i∈W(P ), W0 ← Gp3 and

(Wi ← Gp3)i∈W(P ). Then set

K0 = (gρ1X2) ·
∏

i∈W(P )

g
ri·(ui,0+ui,1·Pi)
1 · gz

′
k

2 ·W0 ,

and (
Di = gri1 · g

z′k,i
2 ·Wi

)
i∈W(P )

.

Challenge : A sends B challenge messages m0,m1 ∈ {0, 1}∗ and a challenge pattern P =
(P1, . . . , P`) where 0 ≤ ` ≤ L. B chooses random η ← {0, 1} and computes the chal-
lenge ciphertext C as follows:

C1 = (gs1Y2) ,(
C2,i = (gs1Y2)ui,0+ui,1·Pi

)
i∈W(P )

,

C3 = T ·m ,

(C4,i,j = (gs1Y2)ui,j )i∈W(P ),j∈{0,1} .

This sets zc,i = ui,0 + ui,1 · Pi and zc,i,j = ui,j . We note that gui,j1 are elements of Gp1 ,
so when ui,j are randomly chosen from ZN , their value modulo p1 and modulo p2 are
random and independent.

We finish by observing that, if T = ê(g1, g1)ρs, then the challenge ciphertext is a properly
distributed semi-functional with message mη. If T ← GT, then the ciphertext is an semi-
functional ciphertext with a random message.

Wrapping up. We have proved by the previous lemmata that the real security game is indis-
tinguishable from GameFinal, where η is information-theoretically hidden from the attacker.
Thus under assumptions LW.1-3, Theorem 4.2.4 holds.

4.3 WKD-IPE and Its application to Anonymous WW-IBE

In this section, we first introduce inner-product encryption with generalized key delegation
(WKD-IPE, for short) and show how to generically reduce Anonymous WW-IBE to it in a
way that preserves full security. The reduction is based on an observation by [KSW08] that
zero entries can be used to simulate wildcards. The generalized key delegation capability of
the WKD-IPE scheme will provide the final ingredient of the reduction. Finally, we give a new
WKD-IPE construction based on a slight modification of the Okamoto-Takashima hierarchi-
cal inner-product predicate encryption scheme [LOS+10], which allows for more general key
delegation patterns.



34 CHAPTER 4. WILDCARDED IDENTITY-BASED ENCRYPTION

4.3.1 Definition of Inner-Product Encryption with Generalized Key Delegation

In this section, following [OT09, LOS+10], we define the WKD-IPE primitive and its security.
We start by extending Definition 2.1.2 of hierarchical format to more general patterns. The main
difference with Definition 2.1.2 is that we do not require any more that each Σi does not contain
the all zero vector. Specifically:

Definition 4.3.1 [Generalized Hierarchical Format] Let µ be a tuple of positive integers µ =
(n, d;µ1, . . . , µd) such that µ0 = 0 < µ1 < · · · < µd = n. For i = 1, . . . , d, let Σi = Fµi−µi−1

p

the set of attributes. Let Σ be the hierarchical attributes Σ = ∪di=1(Σ1× . . .×Σi)\{0n}, where
the union is a disjoint union. Them, we call µ an generalized hierarchical format of depth d for
the attribute space Σ.

Delegation. Given y,y′ ∈ Σ, we say that y′ is a delegation of y, in symbols y′ ≺ y, if and
only if for each i ∈ [d] we have yi = 0 or yi = y′i. Again as opposed to [OT09, LOS+10] any
yi = 0 can be replaced by a non-zero vector, for any i ∈ [d].

Definition 4.3.2 [WKD-IPE] A inner-product encryption with generalized key delegation with
hierarchical format µ is defined by the following tuple of algorithms: WKD− IPE = (Setup,
Enc,KeyGen,Dec,KeyDel) with the following syntax:

Setup(1λ,µ) takes as input security parameter λ and generalized hierarchical format µ and
outputs public parameters mpk and master secret key msk .

KeyGen(msk ,y = (y1, . . . ,yd) ∈ Σ) takes as input msk , an attribute vector y following
hierarchy µ and outputs a private key sky.

KeyDel(mpk , sky,y
′ ∈ Σ) takes as input mpk , secret key for attribute vectors y = (y1, . . . ,yd)

and y′ = (y′1, . . . ,y
′
d) such that y′ ≺ y, and outputs a secret key for attribute vector

(y′1, . . . ,y
′
d).

Enc(mpk ,m,x) takes as input mpk , m in some associated message space and an attribute
vector x, and outputs a ciphertext Ct.

Dec(mpk ,Ct, sky) takes as input mpk , ciphertext Ct and secret key sky and outputs the mes-
sage m.

Correctness. We make the following consistency requirement. Suppose ciphertext Ct is ob-
tained by running Enc on input mpk , message m and attribute vector x and that sky is a secret
key for attribute vector y obtained through a sequence of KeyGen and KeyDel calls using the
same mpk . Then Dec, on input mpk ,Ct and sky, returns m, except with negligible probability,
if and only if fy(x) = 1.

4.3.2 Security Definition

We give complete form of the security definition following [SW08]. Our security definition
captures semantic security and ciphertext anonymity by means of the following game between
an adversary A and a challenger C. More specifically, game ANO-CPAWKD−IPE

A (1λ), where
λ is the security parameter, is defined as follows.
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Setup: C generates master public key and secret key by invoking the setup algorithm on
input the security parameter λ and the generalized hierarchical format µ. Specifically,
(mpk ,msk)← Setup(1λ,µ). Then, C starts the interaction with A on input mpk .

We let S denote the set of private keys that C has created but not yet given to the adversary.
At this point, S = ∅.

Query Phase 1: A makes Create, Delegate, and Reveal key queries. Specifically:

To make a Create query, A specifies an attribute vector y. In response, C creates a key
for this vector by calling the key generation algorithm, and places this key in the set
S. C only gives A a reference to this key, not the key itself.

To make a Delegate query, A specifies a key sky in the set S and y′. In response, C
makes a key for this new vector by running the delegation algorithm on sky and y′.
C adds this key to the set S and again gives A only a reference to it, not the actual
key.

To make a Reveal query, A specifies an element of the set S. C gives this key to A
and removes it from the set S. Notice that A needs no longer make any delegation
queries for this key because it can run delegation algorithm on the revealed key for
itself

Challenge: A gives two pairs of message and identity (m0,y0) and (m1,y1) to C. Then C
chooses random η ← {0, 1}, encrypts mη under yη and sends the resulting ciphertext to
A.

Query Phase 2: This is the same as Phase 1.

Guess: Eventually, A submits its guess η′.

Winning Condition: A wins the game if the following conditions are satisfied:

1. η = η′.
2. No secret key for any vectorw obtained through delegation from any of the revealed

secret key is such that fw(x0) 6= fw(x1).

The advantage of A in the above game is defined as

AdvWKD−IPE,A
ANO-CPA (λ) = Prob[ANO-CPAWKD−IPE

A (1λ) = 1]− 1/2 .

Definition 4.3.3 A inner-product encryption with generalized key delegation scheme is ANO-
CPA-secure if any polynomial-time adversaries making at most a polynomial number of queries
to the key derivation oracle only has a negligible advantage in the ANO-CPA game described
above, meaning that AdvWKD−IPE,A

ANO-CPA (λ) is a negligible function of λ.

In the Section 4.4, we will describe a construction of inner-product encryption with gener-
alized key delegation that achieves a weaker security definition called wAH-ANO-CPA and de-
fined in Section 2.2.1. Specifically, game wAH-ANO-CPA is like ANO-CPA but with a relaxed
winning condition. Specifically, wAH-ANO-CPA only requires that fw(x0) = fw(x1) = 0 for
any vectorw for which the relative secret key has been obtained through delegation from one of
the revealed secret key.

Definition 4.3.4 A inner-product encryption with generalized key delegation scheme is wAH-
ANO-CPA-secure if any polynomial-time adversaries making at most a polynomial number of
queries to the key derivation oracle only has a negligible advantage in the wAH-ANO-CPA
game, meaning that AdvWKD−IPE,A

wAH-ANO-CPA (λ) is a negligible function of λ.
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4.3.3 Reducing Anonymous WW-IBE to WKD-IPE

Let WKD− IPE = (SetupWKD, KeyGenWKD, KeyDelWKD, EncWKD, DecWKD) be a Inner-
product encryption with generalized key delegation. We can construct the scheme WW − IBE =
(SetupWW, KeyGenWW, KeyDelWW, EncWW, DecWW) as follows:

SetupWW(1λ, 1L): The algorithm returns the output of SetupWKD(1λ,µ = (2L,L; (µi =
2i)i∈[L])). So the hierarchy µ is of depth L and each level has dimension 2.

KeyGenWW(msk , P ): For a pattern P = (P1, . . . , P`), the key generation algorithm constructs
vector y ∈ Σ by setting, for each i ∈ [`],

yi =

{
(1, Pi) if Pi 6= *

(0, 0) otherwise
.

We denote this transformation by

y = KEncode(P ) .

Then the key generation algorithm returns

skP = KeyGenWKD(msk ,y) .

KeyDelWW(mpk , skP , P
′): The algorithm returns the output of

skP ′ = KeyDelWKD(mpk , skP ,KEncode(P
′)) .

EncWW(mpk , P ): The algorithm constructs vector x ∈ Σ in the following way: For each
i ∈ [`] the algorithms sets

xi =

{
(−ri · Pi, ri) if Pi 6= *

(0, 0) otherwise
.

We denote this transformation by

x = CEncode(P ) .

Then the encryption algorithm returns

Ct = EncWKD(mpk ,x) .

DecWW(skP ′ ,Ct): Returns DecWKD(skP ′ ,Ct).

Correctness. It follows from the observation that for patterns P and P ′, we have that
fKEncode(P ′)(CEncode(P )) = 1 if and only if P ∈* P ′.

Theorem 4.3.5 If WKD− IPE is ANO-CPA secure then WW − IBE is so.

Proof: Let A be an adversary that breaks the ANO-CPA security of the WW − IBE scheme for
an hierarchy of depth ` and consider the following adversary B that tries to break the ANO-CPA
security of the WKD− IPE scheme for hierarchy format µ = (2`, `; (µi = 2i)i∈[`]) that uses A
as a subroutine and interact with the challenger C.
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Then, B receives from C a master public key mpk for the WKD− IPE scheme and passes it to
A. Whenever A asks for the key for pattern P , B constructs y = KEncode(P ) and asks C for a
key sky for y and returns it toA. WhenA asks for a challenge ciphertext by providing (m0, P

?
0 )

and (m1, P
?
1 ), B simply computes x0 = CEncode(P ?0 ) and x1 = CEncode(P ?1 ) and gives the

pair (m0,x0), (m1,x1) to C. B then forwards the challenge ciphertext to A. Finally, B outputs
A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries satisfy the game
constraints, then all B’s queries have the same property. Thus B’s advantage is the same as A’s.

4.4 Constructing WKD-IPE

In this section, we show our new WKD-IPE construction and prove its security. Our construc-
tion is based on a slight modification of the Okamoto-Takashima hierarchical predicate encryp-
tion scheme for the class of the inner-product predicates [LOS+10]. As the HPE scheme in
[LOS+10], our scheme will be proved to be only weakly attribute-hiding secure.

4.4.1 Complexity Assumptions

For completeness we restate here the complexity assumptions used, first introduced by Okamoto
and Takashima in [LOS+10]. All these assumptions can be seen as variants of the decisional
subspace assumption.

Assumption OT.1 For a given prime-order dual-pairing vector spaces generator DPVSGen,
define the following distribution: Pick a random bilinear setting (paramV,B,B?)← DPVSGen(1λ,
2n+ 3), and then pick

δ ← ZN , δ ← ZnN , ρ← ZN ,U = (ui)i∈[n] ← GL(n,ZN ) ,

and set
B̂ = (b1, . . . , bn, b2n+1, b2n+3), B̂? = (b?1, . . . , b

?
n, b

?
2n+1, b

?
2n+2) ,

e0 = (δ · bi + δi · b2n+3)i∈[n], e1 = (δ · bi + ρ ·
∑
j∈[n]

ui,j · bn+j + δi · b2n+3)i∈[n] ,

and D = (paramV, B̂, B̂?).
Then, the advantage of a PPT adversary A in breaking Assumption OT.1 is

AdvAOT.1(λ) = |Prob[A(D, e0) = 1]− Prob[A(D, e1) = 1]| .

Definition 4.4.1 We say that Assumption OT.1 holds for generator DPVSGen if, for all proba-
bilistic polynomial-time algorithms A, AdvAOT.1(λ) is a negligible function of λ.

Assumption OT.2 For a given prime-order dual-pairing vector spaces generator DPVSGen,
define the following distribution: Pick a random bilinear setting (paramV,B,B?)← DPVSGen(1λ,
2n+ 3), and then pick

ω, γ, ρ, τ ← ZN ,γ ← ZnN ,U = (ui)i∈[n] ← GL(n,ZN ) ,

and set
B̂ = (b1, . . . , bn, b2n+1, b2n+3), B̂? = (b?1, . . . , b

?
2n+2) ,
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Z = (zi)i∈[n] = (UT)−1, e = (δ · bi + ρ ·
∑
j∈[n]

ui,j · bn+j)i∈[n] ,

h0 = (ω · b?i + γi · b?2n+2)i∈[n], h1 = (ω · b?i + τ ·
∑
j∈[n]

zi,j · b?n+j + γi · b2n+2)i∈[n] ,

and D = (paramV, B̂, B̂?, e).
Then, the advantage of a PPT adversary A in breaking Assumption OT.2 is

AdvAOT.2(λ) = |Prob[A(D,h0) = 1]− Prob[A(D,h1) = 1]| .

Definition 4.4.2 We say that Assumption OT.2 holds for generator DPVSGen if, for all proba-
bilistic polynomial-time algorithms A, AdvAOT.2(λ) is a negligible function of λ.

Remark 4.4.3 In [LOS+10], Okamoto and Takashima proved that Assumptions OT.1 and OT.2
can be reduced to the n-Extended Decisional Diffie-Hellman Assumption. More recently in
[OT10] Okamoto and Takashima proved that these kind of decisional subspace problems can be
reduced to the Decision Linear Assumption [BBS04].

4.4.2 Our Construction

The algorithms of our WKD− IPE are defined as follows:

Setup(1λ, µ = (n, d;µ1, . . . , µd)): Choose a random DPVS instance

(paramV,B,B?)← DPVSGen(1λ, 2n+ 3) .

Then set B̂ = (b1, . . . , bn, b2n+1, b2n+3), Ω = ê(g, g). The master public key is defined
as

mpk ← [paramV, B̂,Ω] ,

and the master secret key
msk ← [B?] .

KeyGen(msk ,y = (y1, . . . ,yd)): Given y according to hierarchy µ, generate the following
sub-keys:

Decryption Key : First apply a random translation to y choosing (ri ← ZN )i∈[d] so that

ŷ = (ŷ1, . . . , ŷd) = (r1 · y1, . . . , rd · yd) .

Then choose r ← ZN and computes the decryption key:

skdec = (ŷ1, . . . , ŷd,0n, 1, r, 0)B? .

Randomization Keys : Let Sy = {k ∈ [d] : yk 6= 0} and Ty = Sy
⋃
{d+ 1}. For each

k ∈ Ty apply a random translation to y choosing (sk,i ← ZN )i∈[d] so that

ŷrank = (ŷrank,1 , . . . , ŷ
ran
k,d ) = (sk,1 · y1, . . . , sk,d · yd) .

Then choose sk ← ZN and compute the randomization keys:

sk rank = (ŷrank,1 , . . . , ŷ
ran
k,d ,0n, 0, sk, 0)B? .
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Delegation Keys : Let Dy = {j ∈ [n] : ∃k ∈ [d] s.t. yk = 0 and µk−1 + 1 ≤ j ≤ µk}.
Choose t ← ZN . Then for each j ∈ Dy, let k be the index such that yk = 0 and
µk−1 + 1 ≤ j ≤ µk, apply a random translation to y choosing (tj,i ← ZN )i∈[d] so
that

ŷdelj = (ŷdelj,1 , . . . , ŷ
del
j,d ) = (tk,1 · ydelj,1 , . . . , tk,d · ydelj,d ) ,

where ŷdelj,i = t · ej if j = ik , otherwise ŷdelj,i = tj,i · yi where ej is the zero vector
with 1 in the j-th coordinate.
Then choose tj ← ZN and compute the delegation keys:

skdelj = (ŷdelj,1 , . . . , ŷ
del
j,d ,0n, 0, tj , 0)B? .

The secret key for y is sky ← [skdec, (sk rank )k∈Ty , (sk
del
j )j∈Dy ]. Notice that sky contains

at most n+ 1 sub-keys.

KeyDel(msk , dy,y
′ = (y′1, . . . ,y

′
d)): Given y′ according to the hierarchy µ, Let Sy = {i ∈

[d] : yi = 0} and let Ek = {i ∈ [n] : µk−1 + 1 ≤ i ≤ µk}. Then the key delegation
algorithm does the following:

Decryption Key : Chooses r′ ← ZN , (r′j ← ZN )j∈[d] and computes

sk ′dec = skdec +
∑
j∈Ty

r′j · sk ranj +
∑
j∈Sy

r′j ·∑
i∈Ej

y′i · skdeli

 .

Randomization Keys : For each k ∈ Ty′ chooses s′k ← ZN and (s′k,j ← ZN )j∈[d]. Then
computes

sk ′rank =
∑
j∈Ty

s′k,j · sk ranj +
∑
j∈Sy

s′k,j ·∑
i∈Ej

y′i · skdeli

 .

Delegation Keys : Chooses t′ ← ZN and for each j ∈ Dy′ , chooses (t′j,i ← ZN )i∈[n],
t′j ,← ZN . Then computes

sk ′delj =
∑
i∈Ty

t′j,i · sk rani +
∑
i∈Sy

t′j,i · ∑
k∈Ej

y′k · skdelk

+ t′ · skdelj .

Thus sky′ = [sk ′dec, (sk ′rank )k∈T
y′ , (sk

′del
j )j∈Dy′ ].

Enc(mpk ,x = (x1, . . . ,x`),m): Choose s ← ZN , (si ← ZN )i∈[d] and pads x to the max-
imum length d with random vectors following the hierarchy µ. Then apply a random
translation to x so that x̂ = (x̂1, . . . , x̂d) = (s1 · x1, . . . , sd · xd), and compute

C1 = (x̂1, . . . , x̂d,0n, α, 0, s)B and C2 = Ωα ·m .

The ciphertext for vector x and message m is Ct← [C1,C2].

Dec(mpk ,Ct, sky): The decryption algorithms computes the blinding

ê(C1, sk
dec) = ê(g, g)α+

∑
i∈[d]〈x̂i,ŷi〉

Remark 4.4.4 Notice that we need |Ty| randomization sub-keys because in order to re-randomize
the decryption key it is necessary to generate |Ty| random coefficients, one for each i ∈ Sy plus
r. By taking a random linear combination of the randomization sub-keys we achieve the task.
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4.4.3 Security

We will prove the following main theorem:

Theorem 4.4.5 If Assumptions OT.1 and OT.2 hold then our WKD-IPE scheme is secure in the
sense of Definition 4.3.4.

Following [LW10], we define two additional structures that will be used in the proof of
security. Specifically:

Semi-Functional Ciphertext : An semi-functional ciphertext has additional dimensions. More
specifically, choose r ← ZnN and set

C1 = (x̂1, . . . , x̂d, r, α, 0, s)B .

Semi-Functional Keys : A secret key is semi-functional if all its sub-keys are semi-functional.
More specifically:

Decryption Key :
sksf.dec = (ŷ1, . . . , ŷd, r

dec, 1, r, 0)B? ,

Randomization Keys :

sksf.rank = (ŷrank,1 , . . . , ŷ
ran
k,d , r

ran
k , 0, sk, 0)B? ,

Delegation Keys :
sksf.delj = (ŷdelj,1 , . . . , ŷ

del
j,d , r

del
j , 0, tj , 0)B? ,

where rdec, rrank , rdelj ← ZnN .

Remark 4.4.6 Notice that semi-functional ciphertexts and semi-functional secret keys lead to a
random decryption with high probability. In fact with high probability the 〈r, rdec〉 6= 0 given
that r and rdec are uniformly and independently distributed. If r and rdec were correlated such
that

r = ρ · x̂ ·U and rdec = τ · ŷ ·Z ,

where ρ, τ ← ZN , U = (ui,j ← ZN )i∈[n],j∈[n] and Z = (UT)−1, then the decryption would
succeed for all vectors x̂ and ŷ such that their inner-product is 0.

For a PPT adversary A which makes q key queries, our proof of security will consist of the
following q · (n+ 1) + 3 games between A and a challenger C.

GameReal: It is the real Inner-product encryption with generalized key delegation security
game.

GameWD: It it the same as GameReal except that all key queries will be answered by fresh
calls to the key generation.

Game0: It is the same as GameWD except that the challenge ciphertext given to A is semi-
functional.

Gamei,j: For i ∈ [q] and 0 ≤ j ≤ n + 1, is the same as Game0 except that the first
i− 1 keys are semi-functional and the remaining q − i are normal. For the i-th key, only
the first j sub-keys are semi-functional and the rest of the sub-keys are normal. Thus
Game1,0 = Game0 and Gamei,n+1 = Gamei+1,0.
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GameFinal: It is the same as Gameq,n+1 expect that the challenge ciphertext is for a ran-
dom message and random attribute vector. Notice that in GameFinal the value of η is
information-theoretically hidden from the attacker. Hence the attacker has no advantage
in breaking the scheme.

For completeness we restate some useful lemmas whose proofs can be found in [LOS+10].

Lemma 4.4.7 Let C = {(x,y) | 〈x,y〉 6= 0} ⊂ V × V ? where V is an n-dimensional vector
space over final field FN and V ? its dual. Then for all (x,y) ∈ C and for all (r,w) ∈ C we
have that PrZ←GL(n,FN ),ρ,τ←F×N

[x(ρU) = r and v(τZ) = w ] = 1
|C| where U = (ZT)−1.

Lemma 4.4.8 Let N > 2 and ∆ = {M | detM = 0} ⊂ Fn×nN . Then |∆|/Nn2
< 2/N

We give now formal proofs of the above statements.

Lemma 4.4.9 For any algorithm A, |AdvGameReal
A −AdvGameWD

A | ≤ 3q/N .

Proof: We show that the distribution of sky′ ← KeyGen(msk ,y′) is equivalent to that of
KeyDel(mpk , sky,y

′), for sky = KeyGen(msk ,y) such that y′ can be delegated from y, ex-
cept with probability 3/N . Notice that the distribution of the secret key sky′ is represented
by the coefficients of the square matrix S = ((sk.i)i∈Sy′ , sk)k∈Ty′ (which is a |Ty′ | × |Ty′ |
matrix in ZN ) and by t used in the delegation sub-keys, which are all uniformly and indepen-

dently distributed. By Lemma 4.4.8 the span of matrix Sy′ is Z
|T

y′ |
N except with probability 2/N

and the coefficient t is different from 0 except with probability 1/N . Thus the distribution of
KeyDel(mpk , sky,y

′) is equivalent to that of sky′ except with probability 2/N + 1/N = 3/N .
The Shoup’s difference lemma gives us the upper bound.

Lemma 4.4.10 Suppose there exists an algorithmA such that AdvAGameWD
−AdvAGame0 = ε.

Then we can build an algorithm B with advantage ε in breaking Assumption OT.1.

Proof: We describe algorithm B that breaks Assumption OT.1. B receives (paramV, B̂, B̂?) and
eβ . Depending on the value of β, B simulates GameWD or Game0.

Setup : B sets Ω = ê(g, g) and gives A mpk ← [paramV, B̂,Ω] and keeps msk ← [B̂?] secret.

Secret Keys : B uses the msk to generate secret keys.

Challenge : A sends B the two challenges ((m(0),x(0)), (m(1),x(1))). B chooses η ← {0, 1}
and then encrypts (m(η), x(η)) as follows: B chooses α ← ZN , (si ← ZN )i∈[d] and pads
xη to the maximum length d with random vectors following the hierarchy µ. Then B
applies a random translation to xη so that

x̂(η) = (x̂
(η)
1 , . . . ,x

(η)
d )

= (s1 · x(η)
1 , . . . , sd · x

(η)
d )

,

and computes

C1 =
∑
i∈[n]

x̂
(η)
i · eβ,i + α · b2n+1 and C2 = Ωα ·m(η) .
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Now, if β = 0 then
C1 = (x̄1, . . . , x̄d,0n, α, 0, s)B ,

where x̄i = δ · si · x(η)
i and s = 〈x̂(η), δ〉, and the challenge ciphertext is distributed as in

GameWD. Instead if β = 1 then

C1 = (x̄1, . . . , x̄d, r, α, 0, s)B ,

where x̄i = δ · si · x(η)
i , r = (r1, . . . , rn) with ri = ρ · 〈x̂(η),ui〉, and s = 〈x̂(η), δ〉. Be-

cause x̂(η) 6= 0n and that (ui)i∈[n] and δ are uniformly and independently distributed then the
challenge ciphertext is properly distributed as in Game0. Hence, B can use the output of A to
distinguish the value of β .

Lemma 4.4.11 Suppose there exists an algorithmA such that AdvAGamei,j−1
−AdvAGamei,j

=
ε. Then we can build an algorithm B with advantage ε+ 1/N in breaking Assumption OT.2.

Proof: We describe algorithm B that breaks Assumption OT.2. B receives (paramV, B̂, B̂?, e)
and hβ . Depending on the value of β, B simulates Gamei,j−1 or Gamei,j.

Setup : B sets Ω = ê(g, g) and gives A mpk ← [paramV, B̂,Ω] and sets msk ← [B̂?].

Secret Keys : For the first i− 1 secret key queries, B creates semi-functional secret keys in the
following way: B invokes the key generation algorithm on input the master secret key msk
and the given vector y to obtain the secret key sky ← [skdec, (sk rank )k∈Ty , (sk

del
k )k∈Dy ]←

KeyGen(msk ,y). Then B introduces the additional dimensions to create semi-functional
secret key sksfy ← [sksf.dec, (sksf.rank )k∈Ty , (sk

sf.del
k )k∈Dy ] by using B̂? as:

Decryption Key :
sksf.dec = skdec +

∑
i∈[n]

rdeci · b?n+i ,

Randomization Keys :

sksf.rank = sk rank +
∑
i∈[n]

rrank,i · b?n+i ,

Delegation Key :
sksf.delj = skdelj +

∑
i∈[n]

rdelj,i · b?n+i .

where rdeci , rrank,i , r
del
j,i ← ZnN .

Then, for the i-th secret key query on vector y, the first j − 1 sub-keys are generated
semi-functional as before. The remaining n− j sub-keys are normal, so without the semi-
functional part. For the j-th sub-key of the i-th key, B does the following: Depending
on the type of the j-th sub-key (decryption, randomization, delegation), B applies the
necessary translation to the vector y to obtain the vector ŷ. Then it encodes ŷ as:

sk j =
∑
i∈[n]

ŷi · hβ,i + b?2n+1 .

The remaining q − i secret key queries are answered by generating normal secret keys
using msk .
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Challenge : A sends B the tuple ((m(0),x(0)), (m(1),x(1))). B chooses η ← {0, 1} and en-
crypts (m(η),x(η)) as follows: B chooses random α, s ← ZN , (si ← ZN )i∈[d] and pads
x(η) to the maximum length d with random vectors following the hierarchy µ. Then B
applies a random translation to x(η) so that

x̂(η) = (x̂
(η)
1 , . . . , x̂

(η)
d )

= (s1 · x(η)
1 , . . . , sd · x

(η)
d )

,

B computes
C1 =

∑
i∈[n]

x̂
(η)
i · ei + α · b2n+1 + s · b2n+3

= (x̄1, . . . , x̄d, t, α, 0, s)B

,

and
C2 = Ωα ·m(η) ,

where x̄i = δ · si · x(η)
i , t = (t1, . . . , tn) with (ti = ρ · 〈x̂(η),ui〉)i∈[n].

Now, if β = 0 then the j-th sub-key can be written as

sk j = (ȳ1, . . . , ȳd,0n, 1, r, 0)B? ,

where ȳi = ω · ŷi and r = 〈ŷ,γ〉. Thus sk j is a normal sub-key and the joint distribution of the
challenge ciphertext and sk j is as in Gamei,j−1. Instead if β = 1 then the j-th sub-key can be
written

sk j = (ȳ1, . . . , ȳd, r, 1, r, 0)B? ,

where ȳi = ω · ŷi, r = (r1, . . . , rn) with (ri = τ · 〈ŷ, zi〉)i∈[n], r = 〈ŷ,γ〉. Since 〈ŷ, x̂〉 6= 0,
by the constraints of the security game and from Lemma 4.4.7, the coefficients (ti, ri)i∈[n] are
pairwise-independently and uniformly distributed under the condition that 〈t, r〉 6= 0 . Thus the
joint distribution of the challenge ciphertext and sk j is as in Gamei,j expect with probability
1/N that is the probability of the event 〈t, r〉 = 0.

Lemma 4.4.12 For any algorithm A, Gameq,n+1 = GameFinal.

Proof: We show that the view ofA in Gameq,n+1 is identical to the view ofA in GameFinal.
Given the dual orthonormal bases (B,B?), used in Gameq,n+1, of V, we will construct new
dual orthonormal bases D,D? of V such that:

1. (D,D?) is distributed like (B,B?),

2. (D,D?) is consistent with the public key seen by B in both games Gameq,n+1 and
GameFinal, and

3. the secret keys and the challenge ciphertext in GameFinal can be written in those bases.

Thus, given
B = (b1, . . . , bn, bn+1, . . . , b2n, b2n+1, b2n+2, b2n+3)

and
B? = (b?1, . . . , b

?
n, b

?
n+1, . . . , b

?
2n, b

?
2n+1, b

?
2n+2, b

?
2n+3) ,
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we define new dual orthonormal bases D,D? of V as follow: First choose U = (ui ← ZnN )i∈[n]

and v = (vi ← ZN )i∈[n], then define

D = (b1, . . . , bn,dn+1, . . . ,d2n, b2n+1, b2n+2, b2n+3) ,

and
D? = (d?1, . . . ,d

?
n, b

?
n+1, . . . , b

?
2n,d

?
2n+1, b

?
2n+2, b

?
2n+3) ,

where (d?i = b?i +
∑

j∈[n] ui,j ·b
?
n+j)i∈[n] and (dn+i = bn+i−

∑
j∈[n] ui,j ·bj − vi ·b2n+1)i∈[n]

and d?2n+1 = b?2n+1 +
∑

j∈[n] vi · b
?
n+j .

It is easy to see that (D,D?) are dual orthonormal because the transformation applied preserve
this property, distributed like (B,B?) and consistent with public key in both games (notice that
bn+1, . . . , b2n are secret to the adversary). Now in Gameq,n+1 each sub-key on vector y can be
written as the encoding of a randomly translated vector ŷ (the translation depends on the sub-key
type) in base B?. This sub-key can be rewritten in base D?, affecting only the semi-functional
part, as follows:

sk = (ŷ1, . . . , ŷd, r, 1, r, 0)B?

=
∑
i∈[n]

ŷi · b?i +
∑
i∈[n]

ri · b?n+i + b?2n+1 + r · b?2n+2

=
∑
i∈[n]

ŷi ·

d?i −∑
j∈[n]

ui,j · b?n+j

+
∑
i∈[n]

ri · b?n+i +

d?2n+1 −
∑
j∈[n]

vi · b?n+j

+ r · b?2n+2

=
∑
i∈[n]

ŷi · d?i +
∑
i∈[n]

(ri − 〈ŷi,ui〉 − vi) · b?n+i + d?2n+1 + r · b?2n+2

= (ŷ1, . . . , ŷd, r
′, 1, r, 0)D?

,

where r′ = (r′1, . . . , r
′
n) with r′i = ri − 〈ŷi,ui〉 − vi. Notice that r′ is uniformly distributed.

Moreover in Gameq,n+1 the challenge ciphertext on vector x = x(η) can be written as the
encoding of a randomly translated vector x̂ in base B. This challenge ciphertext can be rewritten
in base D as follows:
C1 = (x̂1, . . . , x̂d, t, α, 0, t)B

=
∑
i∈[n]

x̂i · bi +
∑
i∈[n]

ti · bn+i + α · b2n+1 + t · b2n+3

=
∑
i∈[n]

x̂i · bi +
∑
i∈[n]

ti ·

dn+i +
∑
j∈[n]

ui,j · bj + vi · b2n+1

+ α · b2n+1 + t · b2n+3

=
∑
i∈[n]

(x̂i + 〈t,ui〉) · bi +
∑
i∈[n]

ti · bn+i + (α · 〈t,u〉) · b2n+1 + t · b2n+3

= (x̄1, . . . , x̄d, t, α
′, 0, t)D

,

affecting only x̂ and α and where x̄i = x̂i + 〈t,ui〉 and α′ = α · 〈t,u〉. Notice that x̄ and α′

are independently and uniformly distributed as requested in GameFinal. Thus, the view of A
in Gameq,n+1 and GameFinal is the same.

Wrapping up. We have proved by the previous lemmata that the real security game is indis-
tinguishable from GameFinal, where η is information-theoretically hidden from the attacker.
Thus under assumptions OT.1 and OT.2, Theorem 4.4.5 holds.



Chapter 5

Lattice-based Hierarchical Inner
Product Encryption

In this chapter we consider the problem of constructing hierarchical inner-product encryption
scheme based on lattices assumptions. To achieve this goal, we extend the lattice-based IPE
scheme by Agrawal et al. [AFV11] to the hierarchical setting by employing basis delegation
technics by Peikert et al. [CHKP10] and by Agrawal et al. [ABB10]. As the underlying IPE
scheme, our new scheme is shown to be selective weakly attribute-hiding secure based on the
difficulty of the learning with errors problem in the standard model, as long as the total number
of levels in the hierarchy is a constant.

5.1 Definitions

In this section, we introduce the hierarchical inner-product encryption primitive and its security.
In doing so, we adopt the same notation and definition style used in [AFV11].

5.1.1 Hierarchical inner-product encryption

Definition 5.1.1 An hierarchical inner-product encryption for hierarchical format µ (Definition
2.1.2) is defined by the following tuple of algorithms HIPE = (Setup,Derive,Enc,Dec) with
the following syntax:

Setup(1λ,µ) Takes as input security parameter λ and hierarchical format µ and outputs public
parameters mpk and master secret key msk .

Derive(mpk , skv,vt) Takes as input the master public key mpk , the secret key for the vector
v = (v1, . . . ,vt−1) ∈ Σ|t−1, and a vector vt ∈ Σt, and outputs a secret key skv′ for the
vector v′ = (v1, . . . ,vt−1,vt). If v is the empty vector then skv is the master secret key
msk .

Enc(mpk ,m,w = (w1, . . . ,wt) ∈ Σ|t) Takes as input public parameters m in some associated
message space, public parameters mpk and an attribute vectorw and outputs a ciphertext
Ct.

Dec(mpk ,Ct, skv) Takes as input public parameters mpk , ciphertext Ct and secret key skv
and outputs the message m.

45
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Correctness. We make the following consistency requirement. Suppose ciphertext Ct is ob-
tained by running Enc on input mpk , message m and attribute vector w and that skv is a secret
key for attribute vector v obtained through a sequence of Derive calls using the same mpk .
Then Dec, on input mpk ,Ct and skv, returns m, except with negligible probability, if and only
if fv(w) = 1.

5.1.2 Security Definition

The notion we achieve is the selective weakly attribute-hiding indistinguishability under-chosen
message attack (wAH-sIND-CPA, for short) and can be formalized by means of the following
game between an adversary A and a challenger C. Game wAH-sIND-CPAHIPE

A (1λ), where λ is
the security parameter, is defined as follows.

Init: A is given hierarchical format µ of depth d and outputs challenge vectorsw0,w1 ∈ Σ|h.

Setup: C generates master public key and secret key by invoking the setup algorithm on input
the security parameter λ given in unary. Specifically, (mpk ,msk)← Setup(1λ). Then, C
starts the interaction with A on input mpk .

Query Phase 1: A is given oracle access to Derive(mpk ,msk , ·). Then, A can delegate secret
keys directly by invoking the Derive algorithm.

Challenge: A gives a pair of message (m0,m1) to C. Then C chooses random η ← {0, 1},
encrypts mη under wη and sends the resulting ciphertext to A.

Query Phase 2: It is the same as Query Phase 1.

Guess: Eventually, A submits its guess η′.

Winning Condition: A wins the game if the following conditions are satisfied:

1. η = η′.

2. for any vector v for which the relative secret key has been obtained through deriva-
tion from one of the revealed secret key, it holds that fv(w0) = fv(x1) = 0.

The advantage of A in the above game is defined as

AdvHIPE,A
wAH-sIND-CPA(λ) = Prob[wAH-sIND-CPAHIPE

A (1λ) = 1]− 1/2 .

Definition 5.1.2 An hierarchical inner-product encryption scheme HIPE is wAH-sIND-CPA-
secure if any polynomial-time adversaries making at most a polynomial number of queries to
the key derivation oracle only has a negligible advantage in the wAH-sIND-CPA game described
above, meaning that AdvHIPE,A

wAH-sIND-CPA(λ) is negligible function of λ.

5.2 An HIPE Construction

We start by giving some intuitions on how we have extended the scheme by Agrawal et al.
[AFV11] to the hierarchical setting.
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Public Parameters. For hierarchical formatµ = (`, d;µ1, . . . , µd), the public parameters will
contain random matrices (A, {Ai,j,γ}) in Zn×mq . The master secret key is a trapdoor TA forA.
To generate a secret key for vector v = (v1, . . . ,vt) at depth t ≤ d we use the matrix:

Fv =

A‖ ∑
j∈[µ1]

k∑
γ=0

v1,j,γ ·A1,j,γ‖ . . . ‖
∑
j∈[µt]

k∑
γ=0

vt,j,γ ·At,j,γ

 ∈ Zn×(t+1)m
q (5.1)

where each vi,j is r-decomposed for a certain fixed r and k = blogr qc.

Secret Keys. Then the secret key for v is a short basis for the lattice Λ⊥q (Fv). By using the
short basis for Λ⊥q (Fv), it is possible to generate a random short basis for Λ⊥q (Fv‖vt+1

). This
provides the delegation mechanism.

Simulation. For challenge vectorw? = (w?
1, . . . ,w

?
t?), the simulator chooses the matricesA

andB uniformly at random in Zn×mq and construct the matricesAi,j,γ as follows:

Ai,j,γ = ARi,j,γ − rγw?i,jB

where Ri,j,γ ∈ {−1, 1}m×m. Since the matrices A, {Ri,j,γ} are uniform and independent in
Zn×mq , we have that the Ai,j,γ’s are uniform in Zn×mq as in the real system. Moreover the
simulator has a trapdoor TB for Λ⊥q (B) but no trapdoor for Λ⊥q (A). To generate a secret key
for vector v = (v1, . . . ,vt), the simulator must produce a short basis for Λ⊥q (Fv) where

Fv =
(
A‖AR1 − 〈v1,w

?
1〉B‖ . . . ‖ARt − 〈vt,w?

t 〉B
)

Then let

Ri =
∑
j∈[µi]

k∑
γ=0

vi,j,γ ·Ri,j,γ ∈ Zm×mq

R =
[
R1‖ . . . ‖Rt

]
∈ Zm×t·mq

Bv = [−〈v1,w
?
1〉B‖ . . . ‖ − 〈vt,w?

t 〉B] ∈ Zn×t·mq

Thus Fv can be written as:

Fv =
(
A‖AR+Bv

)
∈ Zn×(t+1)m

q . (5.2)

When v is not a prefix of w meaning that there exists an index i such that 〈vi,w?
i 〉 6= 0,

the simulator can then extend TB to a short basis for the entire lattice Λ⊥q (Bv). The simulator
can now generate short vectors in Λ⊥q (Fv) using algorithm SampleRight, which is sufficient for
constructing a short basis for Λ⊥q (Fv), as required. When v is a prefix of w, meaning that for
each i = 1, . . . , t, 〈vi,w?

i 〉 = 0, then the matrix Fv no longer depends onB and the simulator’s
trapdoor disappears. Consequently, the simulator can generate secret keys for all vectors other
than prefixes of w?. As we will see, for w? the simulator can produce a challenge ciphertext
that helps it solve the given LWE challenge.

5.2.1 Sampling a random basis

To realize the above delegation mechanism and for the simulation we will need the following
algorithms. Following, almost verbatim, [ABB10, CHKP10], let Λ be an m-dimensional lattice
and let O(Λ, σ) be an algorithm that generates independent samples from a distribution statisti-
cally close to DΛ,σ. The following algorithm called SampleBasisO(Λ, σ) uses O to generate a
basis T of Λ in the following way:



48 CHAPTER 5. LATTICE-BASED HIERARCHICAL INNER PRODUCT ENCRYPTION

1. For i = 1, . . . ,m, generate v ← O(Λ, σ), if v is independent of {v1, . . . , vi−1}, set
vi ← v, if not, repeat.

2. Convert the set of independent vectors v1, . . . , vm to a basis T using Lemma 3.3.8 (and
using some canonical basis of Λ) and output T .

The following theorem summarizes properties of this algorithm.

Lemma 5.2.1 For σ > b̃l(Λ)ω(
√

logm) algorithm SampleBasisO(Λ, σ) satisfies the following
properties:

1. Step 1 requires at most O(m logm) w.h.p and 2m samples in expectation.

2. With overwhelming probability ‖T̃‖ ≤ ‖T‖ ≤ σ
√
m.

3. Up to a statistical distance, the distribution of T does not depend on the implementa-
tion of O. That is, the random variable SampleBasisO(Λ, σ) is statistically close to
SampleBasisO

′
(Λ, σ) for any algorithm O′ that samples from a distribution statistically

close to DΛ,σ.

By using the above SampleBasis algorithm, we define the following two algorithms. The
SampleBasisLeft algorithm will be used in the real scheme, instead the SampleBasisRight will
be used in our proof of security. Specifically:

Algorithm SampleBasisLeft. Given the lattice Λ⊥q (Fv) where Fv is defined as in Equation 5.1
for v = (v1, . . . ,vt), write Fv = (A|M) for some matricesA andM .

Then given a short basis TA for Λ⊥q (A) we can implement algorithm O(Fv, σ) as

O(Fv, σ) := SampleLeft(A,M ,TA, 0, σ) .

When σ > ‖T̃A‖·ω(
√

log((t+ 1)m)), Theorem 3.3.10 shows that the resulting vector is
distributed statistically close to DΛ⊥q (Fv),σ as required for SampleBasis. Using the above
algorithm in algorithm SampleBasis leads to an algorithm to sample a random basis of
Λ⊥q (Fv) given a short basis of A. We refer to this algorithm as SampleBasisLeft and
summarize its properties in the following corollary.

Corollary 5.2.2 Algorithm SampleBasisLeft(A,M ,TA, σ) outputs a basis of Λ⊥q (Fv)

satisfying the three properties in Lemma 5.2.1 provided thatA is rank n and σ > ‖T̃A‖ ·
ω
(√

log((t+ 1)m)
)

.

Algorithm SampleBasisRight. In the simulation, the matrix Fv is defined as in Equation 5.2.
In this case, given a short basis TB for Λ⊥q (B) we can implement algorithm O(Fv, σ) as
follows:

1. Using Theorem 3.3.9, extend basis TB for Λ⊥q (B) to a basis TBv for Λ⊥q (Bv) such
‖T̃Bv‖ = ‖T̃B‖.

2. Then run SampleRight(A,Bv,R,TBv , 0, σ) and output the result. When Bv is
rank n and v is not a prefix ofw? the matrixBv is rank n as required for SampleRight.
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Let sR := ‖R‖ be the norm of the matrixR. Then, when σ > ‖T̃B‖·sR·ω(
√

log((t+ 1)m)),
Theorem 3.3.11 shows that the resulting vector is distributed statistically close toDΛ⊥q (Fv),σ

as required for SampleBasis. Using the above algorithm in algorithm SampleBasis leads
to an algorithm to sample a random basis of Λ⊥q (Fv) for Fv defined in (5.2) given a short
basis ofB. We refer to this algorithm as SampleBasisRight and summarize its properties
in the following corollary.

Corollary 5.2.3 Algorithm SampleBasisRight(A,Bv,R,TB, σ) outputs a basis ofDΛ⊥q (Fv),σ

satisfying the three properties in Lemma 5.2.1 provided that B is rank n, that v is not a
prefix of w? and σ > ‖T̃B‖ · sR · ω(

√
log((t+ 1)m)).

5.2.2 Our Construction

Let n > 0 be the security parameter and µ = (`, d;µ1, . . . , µd) the hierarchical format. Let
q = q(n,µ) and m = m(n,µ) be positive integers. Let r = r(n,µ) ≥ 2 be and integer and
define k = k(n,µ) := blogr qc. Our hierarchical inner-product encryption for hierarchical
format µ consists of the following algorithms.

Setup(1n,µ): On input a security parameter n, and an hierarchical format of depth d µ =
(`, d;µ1, . . . , µd), the algorithm generates public and secret parameters as follows: Use
algorithm TrapGen(q, n,m) to select a uniformly random n×m-matrixA ∈ Zn×mq with
a basis TA ∈ Zm×m for Λ⊥q (A) such that ‖T̃A‖ ≤ O(

√
n log q). For i ∈ [d], j ∈ [µi]

and γ = 0, . . . , k, choose uniformly random matrices Ai,j,γ ∈ Zn×mq . Select a uniformly
random vector u ∈ Znq . Output

mpk = (A, {Ai,j,γ},u) ,

and
msk = TA .

Derive(mpk , skv,vt): On input the master public key mpk , the secret key for the vector v =
(v1, . . . ,vt−1), and the vector vt, the algorithm generates a secret key for the vector
v′ = (v1, . . . ,vt) as follows: Construct short basis for Λ⊥q (Fv′) by invoking

S ← SampleBasisLeft

Fv, ∑
j∈[µi]

∑
γ∈k

vt,j,γ ·At,j,γ , skv, σt

 ,

where

Fv′ =

Fv‖ ∑
j∈[µi]

k∑
γ=0

vt,j,γ ·At,j,γ

 ,

and skv is a short basis for Λ⊥q (Fv). Then, output skv′ = S.

By Corollary 5.2.2, when σt > ‖s̃kv‖ · ω(
√

log((t+ 1)m)) then ‖s̃kv′‖ ≤ ‖skv′‖ ≤
σt ·

√
(t+ 1)m.

Notice that, for the special case of the first level secret keys when v is the empty vector ε,
we define Fε := A and skv = msk .
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Enc(mpk ,w,m): On input the master public key mpk , the vector w = (w1, . . . ,wt), and the
message m ∈ {0, 1}, the algorithm generates a ciphertext Ct as follows: The algorithm
chooses a uniformly random matrix B ← Zn×mq and s ← Znq , a noise vector x ← Ψ

m
αt

and a noise term x← Ψαt . Then, the algorithm computes

c0 = A>s+ x ∈ Zmq .

For i ∈ [t], j ∈ [µi] and γ = 0, . . . , k, the algorithm chooses a random matrix Ri,j,γ ∈
{−1, 1}m×m and computes

ci,j,γ = (Ai,j,γ + rγwi,jB)>s+R>i,j,γx ∈ Zmq .

Finally, the algorithm computes

c1 = u>s+ x+ m · bq/2e ∈ Zq ,

and outputs Ct = (c0, {ci,j,γ}, c1).

Dec(mpk , skv,C ): On input the master public key mpk , the secret key for the vector v =
(v1, . . . ,vt), and a ciphertext Ct = (c0, {ci,j,γ}, c1), the algorithm does the following:
For i ∈ [t], define the r-ary expansion of the vector vi, then the algoirthm computes

cvi =
∑
j∈[µi]

k∑
γ=0

vi,j,γ · ci,j,γ .

Let c = [c0‖cv1‖ . . . ‖cvt ], then the algorithm sets τt := σt ·
√

(t+ 1)m ·ω(
√

(t+ 1)m)

and τt ≥ ‖s̃kv‖ · ω(
√

(t+ 1)m), and computes

ev = SamplePre(Fv, skv,u, τt) .

Finally, the algorithm computes

z = c1 − e>v · c ,

and interpreters z as in integer in (−q/2, q/2]. Then the algorithm outputs 0 if |z| < q/4
and 1 otherwise.

With the following lemma, we show the correctness of our scheme.

Lemma 5.2.4 For hierarchical formatµ = (`, d;µ1, . . . , µd) of depth d, suppose the parameters
q and αt, for each t ∈ [d], are such that

q/ log q = Ω

(
σt · µ ·

r

log r
·m3/2

)
and αt ≤

(
t · log q · σt · µ ·

r

log r
·m · ω(

√
logm)

)−1

,

where µ = maxi∈[d] µi. Moreover, for vectors v = (v1, . . . ,vt) and w = (w1, . . . ,wh), let
skv be the basis of the lattice Fv obtained through a sequence of calls to the Derive algorithm,
let Ct← Enc(mpk ,w,m) and m′ ← Dec(mpk , skv,C ).

Then, if fv(w) = 1, namely 〈vi,wi〉 = 0 (mod q) for each i ∈ [t], then with overwhelming
probability we have m′ = m.
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Proof: Just for notational convenience, let

Ãi =

∑
j∈[µ]

k∑
γ=0

vi,j,γAi,j,γ

 and R̃i =
∑
j∈[µ]

k∑
γ=0

vi,j,γR
>
i,j,γx .

Then, for each i ∈ [t], the decryption algorithm computes:

cvi =
∑
j∈[µ]

k∑
γ=0

vi,j,γ · ci,j,γ

=
∑
j∈[µ]

k∑
γ=0

vi,j,γ ·
[
(Ai,j,γ + rγwi,jB)>s+R>i,j,γx

]

= Ãi
>
s+

∑
j∈[µ]

k∑
γ=0

rγvi,j,γwi,j


︸ ︷︷ ︸

〈vi,wi〉

B>s+ R̃i .

If 〈vi,wi〉 = 0 then we have:

cvi = Ãi
>
s+ R̃i (mod q) .

Thus, if for each i ∈ [t], 〈vi,wi〉 = 0 then c can be written as:

c =[c0‖cv1‖ . . . ‖cvt ]

=
[
A‖Ã1‖ . . . ‖Ãt

]>
s +

[
x‖R̃1‖ . . . ‖R̃t

]>
(mod q)

= F>v · s+
[
x‖R̃1‖ . . . ‖R̃t

]>
(mod q) .

At this point, the short vector ev = SampleLeft(Fv, skv,u, τt) is computed by the decryption
algorithm such that by Theorem 3.3.10, Fv · ev = u (mod q). It follows that

e>v c = u>s+ e>v

[
x‖R̃1‖ . . . ‖R̃t

]>
(mod q) .

Finally, the decryption algorithm computes:

z = c1 − e>v c (mod q)

=
(
u>s+ x+ m · bq/2e

)
− u>s− e>v

[
x‖R̃1‖ . . . ‖R̃t

]>
(mod q)

= m · bq/2e+

(
x− e>v

[
x‖R̃1‖ . . . ‖R̃t

]>)
︸ ︷︷ ︸

noise term

(mod q) .

Thus, to have a successful decryption, it suffices to set the parameters so that with overwhelming
probability, x− e>v [x‖R̃1‖ . . . ‖R̃t

]> < q

4
.
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Let us write ev = [ev,0‖ev,1‖ . . . ‖ev,t] with ev,i ∈ Zm for i = 0, . . . , t. Then the noise term
can be rewritten as

x−

ev,0 +
∑
i∈[t]

∑
j∈[µ]

k∑
γ=0

vi,j,γRi,j,γev,i

> x .
By Lemma 3.3.1, we have ‖ev‖ < τt

√
(t+ 1)m with overwhelming probability. Moreover by

Lemma 3.3.2, we have ‖Ri,j,γ · ev,i‖ ≤ 12
√

2m · ‖ev,i‖ with overwhelming probability, and
since vi,j,γ ∈ [0, r − 1] it follows that∥∥∥∥∥∥ev,0 +

∑
i∈[t]

∑
j∈[µ]

k∑
γ=0

vi,j,γRi,j,γev,i

∥∥∥∥∥∥ = O(t · µ · k · r · σt ·m) .

Finally, by Lemma 3.3.16, the error term has absolute value at most:(
qαt · ω(

√
logm) +

√
m/2

)
·O (t · µ · k · r · σt ·m) .

5.3 Proofs of Security

In this section we prove the following theorem.

Theorem 5.3.1 If the decision-LWEq,n,χ problem is infeasible (Definition 3.3.12), then our
HIPE scheme is wAH-sIND-CPA-secure.

Following [ABB10, AFV11], we define additional algorithms. These will not be used in the real
scheme, but we need them in our proofs.

Sim.Setup(1n,µ,w?): The main difference with the normal setup algorithm is that now the
simulator does not generate any more a trapdoor for the matrix A. Instead, a trapdoor for
a matrixB, that will be embedded into theAi,j,γ matrices, is generated. Furthermore, the
simulator embeds the challenge vectorw? in the public parameters in such a way it is still
possible to generate a ciphertext for w? but no secret key can be generate for vectors v
such that fv(w?) = 1.

Specifically, the algorithm chooses random A, R?
i,j,k and u, it uses TrapGen to generate

B? and defines
Ai,j,γ = AR?

i,jγ − rγw?i,jB? .

Specifically, on input a security parameter n, an hierarchical format µ = (`, d;µ1, . . . ,
µd) of depth d , and a challenge vector w? = (w?

1, . . . ,w
?
d), the algorithm generates

public and secret parameters as follows: Choose random matrix A ∈ Zn×mq . For i ∈ [d],
j ∈ [µi] and γ = 0, . . . , k, choose uniformly random matrices R?

i,j,γ ∈ Zn×mq . Select a
uniformly random vector u ∈ Znq . Use algorithm TrapGen(q, n,m) to select a uniformly
random n × m-matrix B? ∈ Zn×mq with a basis TB? ∈ Zm×m for Λ⊥q (B?) such that
‖T̃B?‖ ≤ O(

√
n log q). For i ∈ [d], j ∈ [µi] and γ = 0, . . . , k, set

Ai,j,γ = AR?
i,j,γ − rγw?i,jB? .

Output mpk = (A, {Ai,j,γ},u) and msk = ({R?
i,j,γ},B?,TB?).
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Sim.Derive(mpk , skv,vt): Secret keys are now created by using the trapdoor TB? , sampled
by Sim.Setup, and the SampleBasisRight algorithm.

Specifically, on input the master public key mpk , the secret key for the vector v =
(v1, . . . ,vt−1), and the vector vt, the algorithm generates a secret key for the vector
v′ = (v1, . . . ,vt) by constructing a short basis for Λ⊥q (Fv′), as defined by Equation 5.2,
by invoking

S ← SampleBasisRight(A,B?
v′ ,R

?,TB? , σt) .

Output skv′ = S.

Notice that if the simulator tries to generate a secret key for a vector v such that fv(w?) =
1 then the simulator’s trapdoor disappears meaning that the simulator cannot generate such
a secret key.

Sim.Enc(mpk ,w,m): The algorithm differs from Enc in the sense that it uses matrices R?
i,j,γ

andB? instead of matricesRi,j,γ andB.

Specifically, on input master public key mpk , vector w = (w1, . . . ,wt), and message
m ∈ {0, 1}, the algorithm generates a ciphertext Ct as follows: The algorithm chooses a
uniformly random vector s ← Znq , a noise vector x ← Ψ

m
αt and a noise term x ← Ψαt .

Then, the algorithm computes

c0 = A>s+ x ∈ Zmq ,

and, for i ∈ [t], j ∈ [µi] and γ = 0, . . . , k,

ci,j,γ = (Ai,j,γ + rγwi,jB
?)>s+R?>

i,j,γx ∈ Zmq .

Finally, the algorithm computes

c1 = u>s+ x+ m · bq/2e ∈ Zq ,

and outputs Ct = (c0, {ci,j,γ}, c1).

We now turn on the proof of security that follows the same line of that of Agrawal et
al. [AFV11] adapted to new hierarchical setting.

Specifically, for a probabilistic polynomial-time adversaryA, our proof of security will con-
sist of the following sequence of 6 games between A and C showing that the encryption of the
pair (w0,m0) is computationally indistinguishable from the encryption of the pair (w1,m1).

The six games are defined as follows:

Game0: C runs the Setup algorithm, answers A’s secret key queries using the Derive algo-
rithm, and generates the challenge ciphertext for vector w0 and message m0 by using the
Enc algorithm.

Game1: In this game C uses the simulation algorithms. Specifically, C runs the Sim.Setup
algorithm with w? = w0, answers A’s secret key queries using the Sim.Derive algo-
rithm, and generates the challenge ciphertext for vector w0 and message m0 by using the
Sim.Enc algorithm .

Game2: It is the same as the Game1 except that the challenge ciphertext is randomly chosen
from the ciphertext space.

Game3: It is the same as the Game2 except that C runs the Sim.Setup algorithm withw? =
w1.
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Game4: It is the same as the Game3 except that C generates the challenge ciphertext for
vector w1 and message m1 by using the Sim.Enc algorithm

Game5: C runs the Setup algorithm, answers A’s secret key queries using the Derive algo-
rithm, and generates the challenge ciphertext for vector w1 and message m1 by using the
Enc algorithm.

We give now formal proofs of the above statements.

Lemma 5.3.2 The view of the adversary A in Game0 (resp. Game4) is statistically close to
the view of A in Game1 (resp. Game5).

Proof: We will show that Game0 is statically close to Game1. The same proof also applies to
Game4 and Game5.

Setup: In Game0, matrix A is generated by TrapGen and, for each i ∈ [d], j ∈ [µi] and
γ = 0, . . . , k, matrixAi,j,γ is uniformly random in Zn×mq .

Instead, in Game1 A is chosen uniformly at random and, for each i ∈ [d], j ∈ [µi]
and γ = 0, . . . , k, we have Ai,j,γ = AR?

i,j,γ − rγw?i,jB
?, where B? is generated by

TrapGen and the matrices R?
i,j,γ are uniformly and independently chosen at random in

{−1, 1}m×m.

Moreover, in both the games the vector u is chosen at random in Znq . Notice that, by Theo-
rem 3.3.8, since m ≥ 6n log q, the matrixesA andB? output by TrapGen are statistically
indistinguishable from a uniformly random matrix.

Secret keys: Assuming, for each level t ∈ [d], a sufficiently large σt, then in Game0, the
secret key for vector v, skv, is a basis of Λ⊥q (Fv), sampled by using the SampleBasisLeft
algorithm, satisfying the properties in Lemma 5.2.1. The same happens in Game1 by
using SampleBasisRight algorithm this time. Moreover, Lemma 5.2.1, guarantees the
independence from the derivation path. Thus, the secret keys have the same distribution
in both games.

Challenge: In Game0, the challenge ciphertext components ci,j,γ are computed as follow:

ci,j,γ =
(
Ai,j,γ + rγw?i,jB

?
)>
s+R?

i,j,γ
>x ∈ Zmq ,

where B? is uniformly random in Zn×mq and the matrices R?
i,j,γ are uniformly and inde-

pendently chosen at random in {−1, 1}m×m.

On the other side, in Game1, we have:

ci,j,γ =
(
AR?

i,j,γ − rγw?i,jB? + rγw?i,jB
?
)>
s+R?

i,j,γ
>x

= R?
i,j,γ
>
(
A>s+ x

) ,

where, this time, the matricesR?
i,j,γ are the same used to construct the public parameters.

Let us now analyze the join distribution of the public parameters and the challenge ciphertext in
Game0 and Game1. We will show that the distributions of (A, {Ai,j,γ}, {ci,j,γ}) in Game0
and in Game1 are statistical indistinguishable.
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First notice that by [ABB10, Lemma 13] we have that the following two distributions are statis-
tically indistinguishable for every fixed matrixB?, every w? and every vector x ∈ Zmq :(

A,Ai,j,γ ,R
?>
i,j,γx

)
≈s
(
A,AR?

i,j,γ − rγw?i,jB?,R?>
i,j,γx

)
.

Since eachR?
i,j,γ is chosen independently for every i, j and γ, then the joint distribution of them

are statistically close:(
A, {Ai,j,γ} ,

{
R?>

i,j,γx
})
≈s
(
A,
{
AR?

i,j,γ − rγw?i,jB?
}
,
{
R?>

i,j,γx
})

Since (AR?
i,j,γ − rγw?i,jB?)>s is statistically close toA>i,j,γs, it is possible to add each term to

one side of the equation: (
A, {Ai,j,γ} ,

{
A>i,j,γs+R?>

i,j,γx
})
≈s(

A,
{
AR?

i,j,γ − rγw?i,jB?
}
,
{(
AR?

i,j,γ − rγw?i,jB?
)>
s+R?>

i,j,γx
}) .

Finally, we add
(
rγw?i,jB

?
)>
s to both sides:

(
A, {Ai,j,γ} ,

{(
Ai,j,γ + rγw?i,jB

?
)>
s+R?>

i,j,γx
})
≈s(

A,
{
AR?

i,j,γ − rγw?i,jB?
}
,
{(
AR?

i,j,γ

)>
s+R?>

i,j,γx
}) .

To conclude, observe that the distribution on the left hand side is that of the public parameters
and the challenge ciphertext in Game0, while that on the right hand side is the distribution in
Game1.

Lemma 5.3.3 The view of the adversary A in Game1 (resp. Game3) is computationally
indistinguishable to the view ofA in Game2 (resp. Game4) under the decision-LWE problem.

Proof: We will show that Game1 is computationally indistinguishable from Game2 by giv-
ing a reduction from the decision-LWE problem. The same proof applies also to Game3 and
Game4.

SupposeA can distinguish between Game1 and Game2 with non-negligible advantage. Then,
it is possible to use A to build an algorithm B to solve the decision-LWE problem.

Init: B is givenm+1 LWE challenge pairs (aj , yj) ∈ Znq ×Zq, where either yj = 〈aj , s〉+xj
for a random s ∈ Znq and a noise term xj ← Ψα or yj is uniformly random in Zq.

Setup: The public parameters are constructed using the vectors of the pairs (aj , yj). The i-th
column of matrix A will be the vector ai, 1 ≤ i ≤ m and vector u will be a0. The
matricesAi,j,γ are still computed as in Sim.Setup on input w? = w0, i.e.,

Ai,j,γ = AR?
i,j,γ − rγw?i,jB? .

Secret keys: All private-key extraction queries are answered using Sim.Derive.
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Challenge: The ciphertext Ct = (c0, {ci,j,γ}, c1) is constructed using the LWE challenge pairs
(aj , yj), as follows:

c0 = (y1, . . . , ym) ,

ci,j,γ = R?>
i,j,γc0 ,

and
c1 = y0 + m · bq/2e .

Then, If yj = 〈aj , s〉+ xj , we have that

c0 = (y1, . . . , ym)

= (〈a1, s〉+ x1, . . . , 〈am, s〉+ xm) = A>s+ x
,

ci,j,γ = R?>
i,j,γc0

= R?>
i,j,γ(A>s+ x)

= (AR?
i,j,γ)>s+R?>

i,j,γx

= (AR?
i,j,γ − rγw?i,jB? + rγw?i,jB

?)>s+R?>
i,j,γx

= (Ai,j,γ + rγw?i,jB)>s+R?>
i,j,γx

,

and
c1 = y0 + mbq/2e

= u>s+ x+ m · bq/2e
.

Therefore the challenge ciphertext is distributed exactly as in Game1.

Instead, if yj is uniformly random in Zq then the challenge ciphertext is

(c0,R
?>
c0, c1) ,

whereR?> is the concatenation of all theR?
i,j,γ matrices, and by the leftover hash lemma

[Sho08, Theorem 8.38],AR? andR?>
c0 are independent uniformly random samples.

Therefore, the ciphertext is uniformly random, as the ciphertext generated by Game2.

At the end A must guess if it is interacting with Game1 or Game2 . Notice that, the answer
to this guess is also the answer to the LWE challenge. We showed that if yj is uniformly random
in Zq, than A’s view is the same as in Game2 and if yj = 〈aj , s〉 + xj , than A’s view is the
same as in Game1. Therefore, the B’s advantage in solving LWE is the same as A’s advantage
in distinguish the views of Game1 and Game2.

Them, it remains to show that Game2 is indistinguishability from Game3.

Lemma 5.3.4 The view of the adversaryA in Game2 is statistically indistinguishability to the
view of A in Game3

Proof: We will show that Game2 is statically close to Game3. The main difference between
the two games is in the way the Sim.Setup algorithm is invoked. Specifically, in Game2,
Sim.Setup is invoked on input w? = w0. In Game3, w? = w1 is used instead.
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Notice that, all public parameters are randomly generated in both games, except for the ma-
trices Ai,j,γ . Therefore, the indistinguishability of Game2 and Game3 only depends on the
indistinguishability of theAi,j,γ matrices that in both games they are generated as

Ai,j,γ = AR?
i,j,γ − rγw?

i,jB
? .

By Lemma 3.3.4, (A,AR
?
) is statistically indistinguishable from (A,A′) where R? is the

concatenation of all the R?
i,j,γ matrices. Moreover, for any fixed X and uniformly random C,

the variable C − X is also uniformly random. Therefore the distributions of Ai,j,γ in both
games are statistically indistinguishable.

Wrapping up. We have proved by the previous lemmata that our hierarchical inner-product
encryption is weak attribute hiding-selective attribute secure assuming decision-LWEq,n,χ prob-
lem is infeasible. To finalize we extract the parameters required for correctness and security of
the system. Specifically:

• We need to ensure that for each t ∈ [d], correctness holds. Specifically, Lemma 5.2.4
requires

q/ log q = Ω(σt · µ ·
r

log r
·m3/2)

and
αt ≤ (t · log q · σt · µ ·

r

log r
·m · ω(

√
logm))−1 .

• By Theorem 3.3.8, algorithm TrapGen requires

q > 2 and m > 6n lg q .

• By Corollary 5.2.2, to have algorithm SampleBasisLeft working correctly in the Derive
algorithm, we need for each t ∈ [d],

σt > ‖s̃kv‖ · ω(
√

log((t+ 1)m)) .

Thus, we have
σt > σTG · ω((logm)t/2) .

• By Corollary 5.2.3, to have algorithm SampleBasisRight working correctly in the Sim.Derive
algorithm, we need for each t ∈ [d],

σt > ‖T̃B‖ · sR · ω(
√

log((t+ 1)m)) .

Thus, by Theorem 3.3.8,
‖T̃B‖ < σTG

and, by Lemma 3.3.2,

sR = ‖R‖ = O(t · µ · (logr q + 1) ·
√

(t+ 1)m)

due the particular structure ofR, where µ = maxi∈[d] µi. Thus,

σt > O(
√
n log q) ·O(µ · (logr q + 1) ·

√
(t+ 1)m) · ω(

√
(t+ 1)m) .

• Finally, Regev’s reduction must apply. Thus

q > 2
√
n/αt .
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Chapter 6

Adaptive Simulation-Based Secure
Constructions for Functional

Encryption

In this chapter we consider the problem of designing simulation-based secure functional encryp-
tion schemes.

Specifically, we give a general transformation that takes a game-based secure functional en-
cryption scheme for all polynomial-size circuits and constructs a functional encryption scheme
for the same functionality that is simulation-based secure against adaptive adversaries that can
ask for a bounded number of tokens and can see one ciphertext. Our transformation is both black-
box and for the standard model and is inspired by the work of Feige, Lapidot and Shamir [FLS90].
We remark that by the recent impossibility results of [AGVW12], the restriction to bounded
number of tokens is necessary.

We then investigate functional encryption schemes for Hidden-Vector Encryption [BW07]
which is readily seen to be a generalization of (Anonymous) Identity-Based Encryption. There-
fore the impossibility result for IBE of [BSW11] applies also to HVE. The current state of the
art [BSW11, O’N10, AGVW12] tells us that in general for functional encryption the game-
based and simulation-based definitions of security are not equivalent. Despite this, the work
of O’Neill [O’N10] provides us with an avenue for constructing simulation-based secure func-
tional encryption schemes from game-based secure ones for non-adaptive adversaries (these are
adversaries that cannot ask token queries after having seen the ciphertext). Specifically, for a
pre-image sampleable functionality (see later for a definition) any game-based secure functional
encryption scheme is also non-adaptive simulation-based secure. We show that if HVE is pre-
image sampleable then it is possible to decide NP in probabilistic polynomial time. Therefore it
is unlikely that pre-image samplability can be used to construct simulation-based secure HVE.

Motivated by this result, we then show how to construct a HVE scheme whose simulation-
based security can be proved under standard assumptions in the bilinear pairing setting in the
standard model. Our construction is shown secure against adaptive adversaries obtaining one
ciphertext and asking an unbounded number of tokens. Again, this is the best one can hope
for in the standard model, given the impossibility results of [BSW11, BO12] for IBE. The only
previous simulation-based construction for IBE secure against adaptive adversary was given in
[BSW11] and is in the programmable random oracle model and imposes no bound on the number
of tokens and ciphertexts obtained by the adversary.

We remark that a functional encryption scheme for HVE can be derived from the general
result of [GVW12]. However, our construction allows the adversary to obtain an unbounded
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number of tokens (whereas the construction of [GVW12] imposes an upper bound on the num-
ber of tokens that can be seen by an adversary) and is more efficient (this is due to the fact that
our construction is tailored for HVE whereas the one of [GVW12] is for a general class). Fi-
nally, we remark that the impossibility result of Agrawal et al. [AGVW12] does not apply to
HVE. Indeed, the impossibility results uses the fact that polynomial size circuits can compute
incompressible functionalities (i.e., weak pseudo-random functions). It is easy to see that HVE
is not incompressible.

6.1 A General Transformation

In this section we show how to transform any game-based secure functional encryption scheme
for the Circuit functionality (see Definition 2.0.2) into one for the same functionality that is
simulation-based secure against adaptive adversaries that can ask a bounded number of tokens
and can see one ciphertext. The transformation has some similarities with the FLS paradigm
introduced by Feige, Lapidot and Shamir [FLS90] to obtain zero-knowledge proof systems from
witness indistinguishable proof systems.

Notice, that by the impossibility result of [AGVW12], in the full model, there exists no
functional encryption scheme for the functionality of all circuits that is simulation-based se-
cure against adversaries that ask an unbounded number of tokens (even if the adversary is non-
adaptive).

Let us start by showing how to transform a given n-input Boolean circuit C in a new ran-
domized circuit over n ·(q+1) Boolean inputs Cr such that Cr evaluates the same function of C
and provides additional slots in the message that will be used in a critical way by our simulator.
Later we will set q as the bound on the number of tokens the adversary can ask for, and r as a
random n-bit Boolean string.

Definition 6.1.1 [The transformed circuitCr] Fix the security parameter λ and let n = poly(λ).
For any string r ∈ {0, 1}n and any n-bit input circuit C, we define (n · (q + 1))-input Boolean
circuit Cr as follows:

Cr(m,m1, . . . ,mq) =


1, if mi = r for some i ∈ [q];

0, if m =⊥ and mi 6= r, for all i ∈ [q];

C(m), otherwise.

Moreover, we let ⊥ be a special message not contained in Xn.

Now, we are ready to show how to transform a functional encryption scheme IndFE for the
Circuit functionality in an another functional encryption scheme SimFE for the same function-
ality by using Cr. We call this transformation TransBound.

Definition 6.1.2 [The transformation TransBound] Let IndFE be a functional encryption scheme
for the functionality Circuit defined by the algorithm = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen,
IndFE.Eval), and let q > 0 be a fixed integer. We define a new functional encryption scheme
SimFE = (Setup,KeyGen,Enc,Eval) for Circuit as follows.

• Setup(1λ, 1n): the algorithm returns the output of IndFE.Setup(1λ, 1n·(q+1)) as its own
output.

• Enc(mpk ,m): on input mpk and m ∈ {0, 1}n, the algorithm chooses q random n-bit
Boolean strings m1, . . . ,mq ∈ {0, 1}n and sets m′ = (m,m1, . . . ,mq) and returns the
output of IndFE.Enc(mpk ,m′) as its own output.
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• KeyGen(msk , C): on input msk and a n-input Boolean circuit C, the algorithm chooses
random r ∈ {0, 1}n and returns the pair (r, sk) where sk = IndFE.KeyGen(msk , Cr).

• Eval(mpk ,Ct, sk): on input mpk , Ct and sk , the algorithm returns the output IndFE.Eval(mpk ,
Ct, sk) as its own output.

Correctness. Suppose that Eval is invoked on a ciphertext Ct for m ∈ {0, 1}n and skC for
circuit C. Then if mi 6= r for all i ∈ [q], Eval returns the correct evaluation, namely C(m).
Thus, the probability that Eval fails is at most q/2n that is negligible in n.

Before proving the q-SIM-Security of SimFE, we mention that SimFE is also IND-Secure.
Notice that it is not implied by q-SIM-Security. The lemma follows from a simple reduction to
the IND-Security of IndFE and we state it without proof.

Lemma 6.1.3 If IndFE is IND-Secure then SimFE is IND-Secure.

We now prove the main result of this section, namely, that SimFE is q-SIM-Secure.

Theorem 6.1.4 If there exists an IND-Secure functional encryption scheme for circuits, then,
for all constant q, there exists an q-SIM-Secure functional encryption scheme for the same func-
tionality.

Proof: Let IndFE = (IndFE.Setup, IndFE.Enc, IndFE.KeyGen, IndFE.Eval) be an IND-Secure
functional encryption scheme for the functionality Circuit, and let SimFE = (Setup,KeyGen,Enc,
Eval) be the functional encryption scheme for the same functionality obtained applying TransBound.
Then, we show that SimFE is q-SIM-Secure by constructing a simulator Sim = (Sim0,Sim1,Sim2)

such that for any p.p.t. adversaries A = (A0,A1), RealExpSimFE,A and IdealExpSimFE,A
Sim are

computationally indistinguishable, and reducing the q-SIM security to the IND security of IndFE.

Specifically, the simulator works as follows:

• Sim0 on input the security parameters invokes the IndFE.Setup algorithm to generate
public parameters and master secret key.

• Sim1 on input the public parameter mpk , token queries C1, . . . , Cq1 made by A0, the
Boolean values z1 = C1(m), . . . , zq1 = Cq1(m) wherem is the challenge message output
by the adversary, and the tokens sk1, . . . , sk q1 generated by KeyGen to answersA0’s token
queries, does the following:

Sim0 chooses values m̃1, . . . , m̃q ∈ {0, 1}n as follows. For i = 1, . . . , q1, if zi = 1, Sim0

sets m̃i = ri; otherwise, if zi = 0, Sim0 picks m̃i at random in {0, 1}n. Furthermore for
i = q1 + 1, . . . , q, Sim0 picks m̃i at random in {0, 1}n.

Finally, Sim0 sets m̃ = (⊥, m̃1, . . . , m̃q) and computes C̃t as C̃t = IndFE.Enc(mpk , m̃)
and stores m̃1, . . . , m̃q in the state.

• Sim2 on input the master secret key msk , Boolean circuit Ci and zi = Ci(m), for q1 <
i ≤ q, does the following:

If zi = 0 then Sim2 picks random ri ∈ {0, 1}n; otherwise, if zi = 1, Sim1 sets ri = m̃i.
Sim2 then sets sk i as the pair (ri, IndFE.KeyGen(msk , Crii )).
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We now prove that Sim is a good simulator meaning that for all PPT adversariesA = (A0,A1),
RealExpSimFE,A and IdealExpSimFE,A

Sim are computationally indistinguishable.

For sake of contradiction, suppose there exists a distinguisher D that distinguishes with non-
negligible probability the output distribution of a certain A in experiment RealExpSimFE,A and
in experiment IdealExpSimFE,A

Sim . Then, A and D can be used to construct a successful IND
adversary B for IndFE. Specifically, B = (B0,B1) does the following.

• B0 on input the public parameters mpk generated by IndFE.Setup, runsA0 on input mpk .

Then, B0 answersA0’s queryCi for i ∈ [q1] by using its own oracle IndFE.KeyGen(msk , ·)
as follows: B0 chooses a random ri ∈ {0, 1}n and outputs the pair (ri, sk i) where
sk i = IndFE.KeyGen(msk , Crii ).

Eventually,A0 outputs a message m and the state aux. B0 sets x = (m,m1, . . . ,mq) and
x′ = (⊥,m′1, . . . ,m′q) where the values m1, . . . ,mq are chosen at random in {0, 1}n and
the values m′1, . . . ,m

′
q are defined as follows. For i = 1 to q1:

– If Ci(m) = 0, picks m′i at random in {0, 1}n,

– if Ci(m) = 1, sets m′i = ri.

Furthermore for q1 < i ≤ q, Sim0 pick m′i at random in {0, 1}n.

Finally, B0 outputs (x, x′, st); i.e., x and x′ are the two challenge plaintexts and st is B’s
state.

• B1 on input the public parameters mpk , a ciphertext Ct and the state st, runs A1 on the
same inputs.

Then, B1 answersA1’s queries by using its own oracle IndFE.KeyGen(msk , ·) as follows:
Given a query Ci, for i = q1 + 1, . . . , q,

– If Ci(m) = 0, B1 picks random ri ∈ {0, 1}n,

– if Ci(m) = 1, sets ri = m′i.

Then, B1 outputs (ri, sk i) where sk i = IndFE.KeyGen(msk , Crii ).

Eventually, A1 outputs α, then B1 invokes D on input (mpk , x, α) and returns D’s guess
as its own guess.

We now show that, except with negligible probability, x = (m,m1, . . . ,mq) and x′ = (⊥
,m′1, . . . ,m

′
q) are such that, for all i = 1, . . . , q, Cr1i (x) = Cr1i (x′) and thus B is a valid IND

adversary.

Recall that Crii (m,m1, . . . ,mq) = 1 iff ri = mj or Ci(m) = 1 for some j ∈ [q], and that
m 6= ⊥. For each i ∈ [q], we distinguish two mutually exclusive cases.

• Crii (x) = 0. In this case, we know that Ci(m) = 0 since m 6=⊥. On the other side, since
m′1, . . . ,m

′
q are randomly chosen and independent from ri, from the definition of Crii , it

follows that, except with negligible probability, Crii (x′) = 0.

• Crii (x) = 1. Suppose toward a contradiction that with non-negligible probabilityCi(m) =
0. Thus Crii (x) = 1 because ri = mj for some j ∈ [q] given that m 6=⊥. But when
Ci(m) = 0 then ri is randomly and independently chosen. Thus, with negligible proba-
bility, ri 6= mj for all j ∈ [q]. Thus, Crii (x) = 0. Contradiction. Then, it must be that
Ci(m) = 1. Thus, it holds that ri = m′j for some j ∈ [q], so that Crii (x′) = 1 too.
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Now notice that if the challenger of the IND-Security game encrypts x then B is simulating
A’s output distribution in the RealExpSimFE,A experiment. Instead if x′ is encrypted then B is
simulating Sim’s output distribution in the IdealExpSimFE,A

Sim experiment.

Finally, for A to be successful it is important that x 6= x′, which holds with non-negligible
probability. By the hypothesis on D, this contradicts our initial assumption that IndFE is IND-
Secure.

Comparison with the construction of Gorbunov, Vaikuntanathan, and Wee [GVW12].
Gorbunov, Vaikuntanathan, and Wee [GVW12], building on the construction of Sahai and Seyali-
oglu [SS10], gave a functional encryption scheme for all polynomial size circuits that is simulation-
based secure against adaptive adversaries that have access to a bounded number of tokens. We
stress that they assume a (one-query) SIM-Secure functional encryption scheme whereas we
rely only on the existence of IND-Secure functional encryption schemes. Furthermore, their
construction results in a scheme with a ciphertext of size super linear (at least quadratic even in
the case of NC1 circuits) in q whereas our construction has ciphertext of size linear in q.

6.2 Adaptive Security for HVE

In this section, we show how to construct a HVE scheme whose semantic security can be proved
under static assumptions in the bilinear pairing setting in the standard model. We show our con-
struction secure against adaptive adversaries obtaining one ciphertext and asking an unbounded
number of tokens.

One possible avenue for obtaining (non-adaptively) simulation-based secure functional en-
cryption scheme for HVE could be via the notion of pre-image samplability introduced by
O’Neill [O’N10]. In Section 6.2.1 we prove that HVE is unlikely to be pre-image sampleable.
We then embark into the construction of an adaptively secure simulation-based functional en-
cryption scheme for HVE.

6.2.1 Pre-Image Samplability

In this section we prove that if HVE is pre-image sampleable then we can decide 3SAT in
polynomial time. We start by reviewing the notion of a pre-image sampleable functionality by
O’Neill [O’N10].

Definition 6.2.1 [O’N10] Functionality F : K ×M → {0, 1} is pre-image sampleable (PS,
for short) if there exists a sampler algorithm Sam such that for all PPT adversaries A,

Prob
[(
m, (ki)

`=poly(λ)
i=1

)
← A(1λ); m′ ← Sam(1λ, |m|, (ki, F (ki,m))`i=1) :

F (ki,m) = F (ki,m
′) for i = 1, . . . , `] = 1− negl(λ) .

For q > 0, we say that F is q-pre-image sampleable (q-PS, for short) if the sampler algorithm
Sam is guaranteed to work only with respect to adversariesA that output at most q pairs (ki, bi).

The following theorem is from [O’N10].

Theorem 6.2.2 If functionality F is PS then any IND-Secure functional encryption schemeFE
for F is also NA-SIM-Secure.

Next we prove that the fact that the HVE functionality is PS has unexpected complexity-
theoretic consequences.
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Theorem 6.2.3 If HVE is PS then SAT can be decided in probabilistic polynomial time.

Proof: Let Sam be a sampler algorithm for HVE and consider the following algorithm B that,
on input a Boolean formula Φ = φ1 ∧ . . .∧φc in CNF with c clauses and ` variables x1, . . . , x`,
performs the following computation. In the description of B, we will identify `-bit strings with
truth assignment to variables x1, . . . , x`.

For each clause φi of Φ, B computes key ki = (k1,i, . . . , k`,i) ∈ {0, 1, ?}` in the following way.
Let h ∈ {0, 1}` be a truth assignment that does not satisfy the i-th clause φi. For j = 1, . . . , `,
B sets kj,i in the following way

kj,i =


hj , if xj appears in φi;

1− hj , if x̄j appears in φi;

?, otherwise.

Keys k1, . . . , kc enjoy the following (easy to verify) property. Let m ∈ {0, 1}` be a truth
assignment over the variables x1, . . . , x`. Then, m satisfies Φ if and only if HVE(m, ki) = 0
for i = 1, . . . , c.

B then runs algorithm Sam on input ((k1, 0), . . . , (kc, 0)) and let m be Sam’s output. If m is a
satisfying truth assignment for Φ then B decides that Φ is satisfiable. Otherwise, B decides that
Φ is not satisfiable.

Let us now prove that B’s output is correct with high probability. Notice that Sam is only
guaranteed to work if it is given in input a sequence (ki, bi) for which there exists anm ∈ {0, 1}`
such that bi = HVE(m, ki). So we distinguish two cases. In the first case, we assume that Φ
is satisfiable. Then the input of Sam is exactly as required by Definition 6.2.1 and thus, except
with negligible probability, Sam outputs m such that HVE(m, ki) = 0 for i = 1, . . . , c. By our
previous observation such an m is a satisfying assignment for Φ and B is correct.

Suppose instead that Φ is not satisfiable. Then Sam will not output a satisfying assignment and
B is correct.

6.2.2 Complexity Assumptions

In our construction we will make hardness assumptions for bilinear settings whose order N is
product of five distinct primes each of length Θ(λ).

Assumption 1 (General Diffie-Hellman for composite order groups). The assumption is a
kind of Diffie-Hellman assumption in the bilinear setting of composite order. Specifically, for
a given composite-order bilinear setting generator CBSGen, define the following distribution:
Pick a random bilinear setting (N,G, g,GT , ê)← CBSGen(1λ, 5) and then pick

A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , A5 ← Gp5 , α, β ← ZN ,

T0 = Aαβ1 ·D4, T1 ← Gp1p4 ,

and set D = (N,A1, A2, A3, A4, A5, A
α
1 · B4, A

β
1 · C4) . We define the advantage of any A in

breaking Assumption 1 to be

AdvA1 (λ) = |Prob[A(D,T0) = 1]− Prob[A(D,T1) = 1]| .

Definition 6.2.4 We say that the Assumption 1 holds for generator CBSGen if, for all proba-
bilistic polynomial-time algorithms A, AdvA1 (λ) is a negligible function of λ.
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6.2.3 The Scheme

In this section we describe our HVE scheme. To make our description and proofs simpler, we
add to all vectors ~x and ~y two dummy components and set both of them equal to 0. We can thus
assume that all vectors have at least two non-star positions.

Setup(1λ, 1`): The setup algorithm randomly chooses a description of composite-order bilinear
setting (N,G, g,GT , ê) ← CBSGen(1λ, 5) with known factorization, and random g1 ∈
Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [`] and b ∈ {0, 1}, random ti,b ∈ ZN
and random Ri,b ∈ Gp3 and sets

Ti,b = g
ti,b
1 ·Ri,b .

The public key is mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}], and the master secret key is msk =
[g12, g4, (ti,b)i∈[`],b∈{0,1}], where g12 = g1 · g2. The algorithm returns (mpk ,msk).

KeyGen(msk , ~y): Let S~y be the set of indices i such that yi 6= ?. The key generation algorithm
chooses random ai ∈ ZN for i ∈ S~y under the constraint that

∑
i∈S~y ai = 0. For i ∈ S~y,

the algorithm chooses random Wi ∈ Gp4 and sets

Yi = g
ai/ti,yi
12 ·Wi .

The algorithm returns ciphertext Ct = (Yi)i∈S~y .

Here we use the fact that S~y has size at least 2.

Enc(mpk , ~x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [`], the algorithm
chooses random Zi ∈ Gp3 and sets

Xi = T si,xi · Zi ,

and returns the token sk~y = (Xi)i∈[`].

Eval(mpk ,Ct, sk~y): The test algorithm computes

T =
∏
i∈S~y

ê(Xi, Yi) .

It returns TRUE if T = 1, FALSE otherwise.

Correctness. It easy to see that the scheme is correct.

Remark 6.2.5 In our construction the computation of the HVE predicate is performed in the
Gp1 subgroup. All the other subgroups are used during the proof of security and let us able to
change the distribution of the real experiment to one that is computationally indistinguishable
and easy to simulate. Notice that at this stage the Gp2 subgroup can be removed from our
construction at the expense of introducing another game in the security proof. To simplify the
proof we have decided to include that subgroup directly.
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6.2.4 Proof of Security

In this section we prove the following theorem.

Theorem 6.2.6 Under the General Subgroup Decision Assumption and Assumption 1, the HVE
scheme described in Section 6.2.3 is SIM-Secure in the sense of Definition 2.2.2.

We next give an overview of the proof of the theorem and break down the proof into 4 lem-
mata.

Our simulator Sim consists of three algorithms: Sim.Setup, Sim.Enc, and Sim.KeyGen that
share a common state. Informally,

Sim.Setup produces two public keys mpk and mpk ′. mpk is given to the adversary (that may
use it to generate his own ciphertexts) and mpk ′ instead is used to generate the simulated
ciphertext.

Sim.Enc is used to compute the simulated ciphertext and takes as input the public key mpk ′

and the sequence (~yk, zk)
q1
k=1, where zk = HVE(~yk, ~x), ~x is the plaintext output by the

adversary and q1 is the number of queries asked by the adversary in the first stage.

Sim.KeyGen instead is used to answer the adaptive queries asked by the adversary after seeing
the simulated ciphertext. When the adversary asks to see a token for ~y, Sim.KeyGen is
invoked with the master secret key msk , the value ~y and the value HVE(~x, ~y), where
~x is the challenge ciphertext output by the adversary. We stress that the simulator does
not have access to ~x. Thus we have to prove indistinguishability of the following two
experiments.

Therefore, to prove Theorem 6.2.6 it is enough to show that the following two experiments
are computational indistinguishable.

RealExpA(1λ, 1`)
(mpk ,msk)← Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Enc(mpk , ~x);
α← AKeyGen(msk ,·)

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

IdealExpASim(1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.Enc(mpk ′, (~yk,HVE(~yk, ~x))q1k=1);
α← ASim.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

More formally, we next describe the three algorithms used by Sim.

Algorithm Sim.Setup constructs two public keys mpk (that is given to the adversary) and mpk ′

(that is used to produce the simulated ciphertext) and a master secret key msk (that is used
to answer the queries of the adversary). In public key mpk the ti,b’s are encoded in the
Gp2 part of the Ti,b’s (instead of the Gp1 part as in normal public key) whereas mpk ′ is
generated correctly. Then, notice that the simulated ciphertext is independent from mpk ,
and this gives us enough freedom to manipulate the Gp1 part of the simulated ciphertext
and tokens the adversary sees in the second stage. The subgroup Gp3 will help us to hide
this transition.

Specifically, Sim.Setup randomly chooses a description of a composite-order bilinear
group (N,G, g,GT , ê) ← CBSGen(1λ, 5) with known factorization, and random g1 ∈
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Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , g5 ∈ Gp5 . Then, for i ∈ [`] and b ∈ {0, 1},
Sim.Setup picks random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets

Ti,b = g
ti,b
2 ·Ri,b, T ′i,b = g

ti,b
1 ·R′i,b .

The public keys are

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and mpk ′ = [N, g3, g5, (T
′
i,b)i∈[`],b∈{0,1}] ,

and the master secret key is

msk = [g12, g4, g5, (ti,b)i∈[`],b∈{0,1}] ,

where g12 = g1 · g2. Sim.Setup returns (mpk ,mpk ′,msk).

Algorithm Sim.Enc simulates the encryption of the challenge plaintext ~x provided by the ad-
versary. It receives on input the queries ~yk, k = 1, . . . , q1, asked by the adversary in the
first stage (the non-adaptive one) and the values zk = HVE(~yk, ~x), for k = 1, . . . , q1.

Sim.Enc does not have access to ~x and by Theorem 6.2.3 the pre-image samplability
cannot be used to sample an ~x′ such that HVE(~yk, ~x) = HVE(~yk, ~x

′) for all k. But
still some information about ~x can be derived from the inputs. Indeed, observe that if
HVE(~y, ~x) = 1, then ~y and ~x coincide in all non-star entries of ~y. For these positions,
Sim.Enc computes the ciphertext Ct just like the encryption algorithm; for all remaining
positions, the ciphertext output by Sim.Enc has a random Gp1 part.

Notice that such a simulated ciphertext is then compatible with all the tokens the adversary
sees in first stage in the sense that Eval(mpk ,Ct, sk~yk) = HVE(~yk, ~x), for k = 1, . . . , q1.
Unfortunately the simulation is not perfect. In the second stage, the adversary could ask
to see a token sk~y for a vector ~y such that HVE(~y, ~x) = 1 but Eval(mpk ,Ct, sk~y) = 0.
This is because the Gp1 part of simulated ciphertext Ct and the token sk~y does not cancel
out correctly upon decryption. A possible solution is to remove the Gp1 part from the
matching tokens the adversary sees in the second stage. This is where Gp5 comes to help
us. Gp5 will be introduced in the simulated ciphertext and matching second stage tokens
in such a way it will cancel out upon decryption and will provide us enough entropy to
remove the Gp1 part from the adaptive tokens. Thus, each component of the ciphertext
computed by Sim.Enc contains also a random Gp5 part that will be used for constructing
the answers to the adaptive queries of the adversary.

More formally, for a sequenceQ = (~yk, zk)
q1
k=1 with zk = HVE(~yk, ~x), for k = 1, . . . , q1,

we let MPos denote the set of indices 1 ≤ i ≤ ` for which there exists k ∈ {1, . . . , q1}
such that zk = 1 and yk,i 6= ?. Notice that, by the observation above, for all i ∈ MPos, the
value xi can be derived from the sequence Q. Then, Sim.Enc(mpk ′, (~yk, zk)

q1
k=1) can be

described as follows. The algorithm parses mpk ′ as mpk ′ = [N, g3, g5, (Ti,b)i∈[`],b∈{0,1}]
and, for all i ∈ MPos, derives the value xi from the input sequence. Then, the algorithm
chooses random s ∈ ZN and, for each i ∈ [`], random Zi ∈ Gp3 , and, for each i ∈ [`]:

• if i /∈ MPos, randomly select ri ∈ ZN and set Xi = T rii,0 · g
si
5 · Zi.

• if i ∈ MPos, set Xi = T si,xi · g
si
5 · Zi .

Sim.Enc returns one output, the challenge ciphertext Ct = (Xi)i∈[`], and keeps the vector
(si)i∈[`] in the state so that it can be used by algorithm Sim.KeyGen.
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Real H1 H2 H3 Ideal
Setup Sim.Setup Sim.Setup Sim.Setup Sim.Setup

Enc Enc Sim.A.Enc Sim.A.Enc Sim.Enc

KeyGen KeyGen KeyGen Sim.KeyGen Sim.KeyGen

Figure 6.1: The hybrids used in the proof of security.

Algorithm Sim.KeyGen simulates the answer to the second stage queries of the adversary. It
receives as input the master secret key msk , the vector ~y for which the token has to be
simulated and the value z = HVE(~y, ~x), where ~x is the challenge plaintext.

For each j ∈ S~y, Sim.KeyGen selects random Wj ∈ Gp4 and random aj ∈ ZN under the
constraint that

∑
j∈S~y aj = 0. Then, it distinguishes two cases.

• z = 0: In this case, the algorithm generates a token with a random Gp1 part. Specif-
ically, for each j ∈ S~y, Sim.KeyGen chooses random cj ∈ ZN and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

• z = 1: In this case, the algorithm generates a token without the Gp1 part and with
a Gp5 part that will cancel out against the simulated ciphertext upon decryption.
Specifically, for each j ∈ S~y, Sim.KeyGen sets

Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

We remind the reader that the vector (sj)j∈[`] is the same vector used by Sim.Enc (and
is stored in the state of the simulator). Also, note that the key output by Sim.KeyGen
behaves correctly when matched against the ciphertext output by Sim.Enc.

To prove that the real and the ideal experiments are indistinguishable we use three intermedi-
ate hybrids that we call H1, H2 and H3. Then, the proof consists of four main steps (see Figure
6.2.4 for a quick reference).

The first step of our proof consists in constructing the public key by means of Sim.Setup.
This has the effect of projecting the public key (and thus the ciphertexts the adversary constructs
by himself) to a different subgroup from the one of the challenge ciphertext. Specifically:

HA1 (1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Enc(mpk ′, ~x);
α← AKeyGen(msk ,·)

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

The first step of the proof consists in proving that the outputs of RealExpA and HA1 are
indistinguishable for all PPT adversaries A.
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The second step modifies the simulated ciphertext by adding a Gp5 part. This will be used in
successive experiments to answer to the adversary’s adaptive token queries. Specifically:

HA2 (1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.A.Enc(mpk ′, ~x);
α← AKeyGen(msk ,·)

1 (mpk ,Ct, aux);
Output: (mpk ,m, α)

where algorithm Sim.A.Enc proceeds as follows.

Algorithm Sim.A.Enc on input public key mpk ′ = [N, g3, g5, (T
′
i,b)i∈[`],b∈{0,1}], the algorithm

chooses random s ∈ ZN . Then, for i ∈ [`], the algorithm chooses random Zi ∈ Gp3 and
random si ∈ ZN , sets

Xi = T ′i,xi
s · gsi5 · Zi ,

returns the tuple (Xi)i∈[`] and stores the vector (si)i∈[`] in the state so that it can be used
by Sim.KeyGen.

The second step of the proof consists in proving that the outputs of HA1 and HA2 are indistin-
guishable for all PPT adversaries A.

The third step computes the simulated answers using the Sim.KeyGen algorithm that adds a
Gp5 part that cancels out with the one added in the simulated ciphertext.

HA3 (1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.A.Enc(mpk ′, ~x);
α← ASim.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

Thus the third step of the proof consists in the defining hybrid experimentHA3 and in proving
that it is indistinguishable from HA2 for all PPT adversaries A.

The fourth step consists in proving that hybrid HA3 is indistinguishable from the ideal exper-
iment for all PPT adversaries A.

This concludes the proof of Theorem 6.2.6. In the next sections we give formal details for
each step of the proof.

6.2.5 The first step of the proof

In this section we prove that RealGame and PKGame are indistinguishable.

Lemma 6.2.7 If the GSD Assumption holds, then for all PPT adversaries A, RealGameA ≈c
PKGameA.

PROOF. Suppose there exists an adversary A for which RealGameA and PKGameA are distin-
guishable. Then, we show a PPT algorithm B which receives the following instance of the GSD
Assumption, (N,T, {g3, g4, g13, g12}) ← GSDGen(1λ, {1, 3}, {2, 3}, {3}, {4}, {1, 3}, {1, 2})
and, depending on the nature of T , simulates RealGameA or PKGameA. This suffices to prove
the Lemma.
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Setup: B, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN and sets

Ti,b = T ti,b and T ′i,b = g
ti,b
13 .

Then B sets

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] and mpk ′ = [N, g3, (T
′
i,b)i∈[`],b∈{0,1}] ,

and
msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input mpk .

Token Queries: B uses msk to answer the token queries of A.

Ciphertext: B computes Ct = Enc(mpk ′, ~x).

This concludes the description of algorithm B.
The view ofA consists of mpk ,Ct and the answer of the queries. The answers of the queries

are distributed, independently from the nature of the challenge T , as in RealGameA and as in
PKGameA.

If T ∈ Gp1p3 then mpk is constructed exactly as in RealGameA. Moreover, the ciphertext
Ct, even though is constructed using mpk ′, has the same distribution of a ciphertext constructed
using mpk and thus the view of A is the same as in RealGameA.

On the other hand, when T ∈ Gp2p3 then mpk and Ct are distributed as in PKGameA. 2

6.2.6 The second step of the proof

In this section we prove that PKGame is indistinguishable from TypeACtGame.

Lemma 6.2.8 If GSD Assumption holds then, for all PPT adversariesA, PKGameA ≈c TypeACtGameA.

PROOF. Suppose there exists an adversaryA for which PKGameA and TypeACtGameA are not
indistinguishable. Then, we show a PPT algorithm B which receives the following instance of
the GSD Assumption, (N,T, {g1, g2, g3, g4}) ← GSDGen(1λ, {3}, {3, 5}, {1}, {2}, {3}, {4})
and, depending on the nature of T , simulates PKGameA or TypeACtGameA. This suffices to
prove the Lemma.

Setup: B, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and

sets Ti,b = g
ti,b
2 ·Ri,b. Then B sets

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and
msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input mpk .

Token Queries: B runs algorithm KeyGen on input msk to answer token queries.

Ciphertext: B generates the simulated ciphertext for ~x as follows. B chooses, for i ∈ [`],
random ri ∈ ZN and random Zi ∈ Gp3 , and sets

Xi = g
ti,xi
1 · T ri · Zi

This concludes the description of algorithm B.
Finally it is easy to see that if T ∈ Gp3 then Ct is distributed as in PKGameA and if T ∈

Gp3p5 then Ct is distributed as in TypeACtGameA. 2
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6.2.7 The third step of the proof

In this section we prove that H2 is indistinguishable from H3.

Lemma 6.2.9 Under the GSD Asummption and Assumption 5, for all PPT adversaries A,
HA2 ≈c HA3 .

The proof of the lemma above consists of three sub-steps.

First Substep. In the first substep, we define a new experiment called TypeAKeysGame which
differs from TypeACtGame in the way the token queries of the second stage are answered.
More specifically, the token for vector ~y such that HVE(~x, ~y) = 1 contains a Gp5 part
that is related with the one of the simulated ciphertext. The remaining tokens are like
those in TypeACtGame. We will prove that, under Assumption 3, TypeACtGame ≈c
TypeAKeysGame.

Second Substep. In the second substep, we define a new experiment called TypeBKeysGame
which differs from TypeAKeysGame in the way the token for matching queries of the
second stage are generated. More specifically, if the adversary asks for the token for a
vector ~y such that HVE(~x, ~y) = 1, then the answer does not contain a Gp1 part. The
tokens for ~y such that HVE(~x, ~y) = 0 instead are computed as in TypeAKeysGame. We
will prove that, under Assumption 4, TypeAKeysGame ≈c TypeBKeysGame.

Third Substep. Let q2 be the number of token queries made by the adversary in the second
stage. In the third substep we define, for k = 0, . . . , q2, a new experiment called H3,k

which differs from TypeBKeysGame in the way the the second stage token queries are
answered. More specifically, the first k tokens asked by the adversary are modified in the
following way. The token for ~y such that HVE(~x, ~y) = 0 contains a random Gp1 part.
Instead if HVE(~x, ~y) = 1 then the token is computed as in TypeBKeysGame. The tokens
for the remaining q2 − k queries are computed like in experiment TypeBKeysGame. We
observe that TypeBKeysGame = H3,0 and that H3,q2 = H3.

We will prove that, under Assumption 5, H3,k−1 ≈c H3,k.

The first substep

Let us start by formally defining experiment TypeAKeysGame in terms of the algorithm Sim.A.KeyGen
used to answer the token queries of the second stage.

Algorithm Sim.A.KeyGen receives in input msk , ~y and z = HVE(~y, ~x) where ~x is the chal-
lenge plaintext provided by the adversary and distinguishes two cases.

• z = 0: The answer to the query is computed by running KeyGen on input msk and
~y.

• z = 1: For each j ∈ S~y, the algorithm chooses randomWj ∈ Gp4 , random aj ∈ ZN
under the constraint that

∑
j∈S~yi

aj = 0, and sets

Yj = g
aj/tj,yj
12 · gaj/sj5 ·Wj .

Notice that the vector (sj)j∈[`] is the vector stored in the state by Sim.A.Enc.

We define hybrid experiment TypeAKeysGameA as follows.
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TypeAKeysGameA(1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.A.Enc(mpk ′, ~x);
α← ASim.A.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk ,m, α)

Lemma 6.2.10 If the GSD Assumption holds then, for all PPT A, HA2 ≈c TypeAKeysGameA.

PROOF. Suppose there exists an adversaryA for which TypeACtGameA and TypeAKeysGameA

are distinguishable. Then, we show a PPT algorithm B that receives the following instance of the
GSD Assumption, (N,T, {g1, g2, g3, g4, g15}) ← GSDGen(1λ, {1}, {1, 5}, {1}, {2}, {3}, {4},
{1, 5}) and, depending on the nature of T , simulates TypeACtGameA or TypeAKeysGameA.
This suffices to prove the Lemma.

Setup: B, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and

sets Ti,b = g
ti,b
2 ·Ri,b. Then B sets

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and
msk = [g12, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input mpk .

First Stage Token Queries: B computes the token for ~y by running KeyGen on input msk and
~y.

Ciphertext: B generates the simulated ciphertext for vector ~x as follows. B chooses random
s ∈ ZN and, for i ∈ [`], random Zi ∈ Gp3 , and sets

Xi = g
s·ti,xi
15 · Zi

Second Stage Token Queries: B generates the token for ~y in the following way.

If HVE(~x, ~y) = 0, the token is computed by running KeyGen on input msk and ~y.

If HVE(~x, ~y) = 1, the token is computed as follows. For each j ∈ S~y, B chooses random
Wj ∈ Gp4 and random aj ∈ ZN under the constraint that

∑
j∈S~y aj = 0. Then B,

for each j ∈ S~y, sets:

Yj = T aj/tj,yj · g
aj/tj,yj
2 ·Wj .

This concludes the description of algorithm B.
Now we observe that the output of B’s setup is distributed like the output of algorithm

Sim.Setup and thus like in H2 and TypeAKeysGame. Similarly, the simulated ciphertext is dis-
tributed like the output of A.Enc on input mpk ′ and ~x and thus exactly as inH2 and TypeAKeysGame.
Finally, let us consider the answers to the second stage queries. If T ∈ Gp1 then the answer to
the query for ~y has the same distribution as the output of KeyGen on input msk and ~y and thus
it is distributed as in H2. On the other hand, if T ∈ Gp1p5 then the answer to the query for ~y has
the same distribution as the output of Sim.A.KeyGen on input msk , ~y and HVE(~x, ~y) just like in
TypeAKeysGame. 2
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The second substep

Let us start by formally defining experiment TypeBKeysGame in terms of the algorithm Sim.B.KeyGen
that is used to answer the token queries of the second stage.

Algorithm Sim.B.KeyGen receives in input msk , ~y and z = HVE(~y, ~x), where ~x is the chal-
lenge plaintext provided by the adversary and distinguishes two cases.

• z = 0: The answer to the query is computed by running KeyGen on input msk and
~y.

• z = 1: For each j ∈ S~y, B chooses random Wj ∈ Gp4 and random aj ∈ ZN under
the constraint that

∑
j∈S~y aj = 0 and sets

Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

Notice that vector (sj)j∈[`] is the vector stored in the state by Sim.A.Enc.

We define hybrid experiment TypeBKeysGameA as follows.

TypeBKeysGameA(1λ, 1`)
(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.A.Enc(mpk ′, ~x);
α← ASim.B.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk ,m, α)

Lemma 6.2.11 If the GSD Assumption holds then, for all PPT A, TypeAKeysGameA ≈c
TypeBKeysGameA.

PROOF. Suppose there exists an adversaryA for which TypeAKeysGameA and TypeBKeysGameA

are distinguishable. Then, we show a PPT algorithm B that receives the following instance of the
GSD Assumption, (N,T, {g2, g3, g4, g14, g15})← GSDGen(1λ, {1, 4, 5}, {4, 5}, {2}, {3}, {4},
{1, 4}, {1, 5}) and, depending on the nature of T , simulates TypeAKeysGameA or TypeBKeysGameA.
This suffices to prove the Lemma.

Setup: B, for each i ∈ [`] and b ∈ {0, 1}, B chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and

sets Ti,b = g
ti,b
2 ·Ri,b. Then B sets

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and
msk = [⊥, g4, (ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input mpk . Notice that B is unable to compute a
complete msk as it does not have access to an element from Gp1p2 .

First Stage Token Queries: B generates the token for ~y in the following way. For each i ∈ S~y,
B chooses random Wi ∈ Gp4 , random ai ∈ ZN under the constraint that

∑
i∈S~y ai = 0

and then sets
Yi = g

ai/ti,yi
14 · gai/ti,yi2 ·Wi .
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Ciphertext: B generates the simulated ciphertext for vector ~x as follows. B chooses random
s ∈ ZN and, for i ∈ [`], random Zi ∈ Gp3 , and sets

Xi = g
s·ti,xi
15 · Zi

Second Stage Token Queries: On input msk , ~y and z = HVE(~x, ~y), B generates the token for
vector ~y in the following way.

For each j ∈ S~y, B chooses random Wj ∈ Gp4 and random aj ∈ ZN under the constraint
that

∑
j∈Sy aj = 0. Then B distinguishes two cases.

z = 0: For each j ∈ S~y, B sets

Yj = g
aj/tj,yj
14 · g

aj/tj,yj
2 ·Wj .

z = 1: For each j ∈ S~y, B sets

Yj = T aj/tj,yj · g
aj/tj,yj
2 ·Wj .

This concludes the description of algorithm B.
Let us now look at the answers to the token queries of the second stage. It is easy to see that

queries for ~y such that HVE(~x, ~y) = 0 are distributed as the output of KeyGen. Suppose that T ∈
Gp1p4p5 . Then the answers to matching queries are distributed like in the output of algorithm
Sim.A.KeyGen and thus like in TypeAKeysGame. On the other hand, if T ∈ Gp4p5 then the
answers to matching queries are distributed like in the output of algorithm Sim.B.KeyGen and
thus like in TypeBKeysGame.

2

The third substep

In this section we prove that, for any PPT adversary A, TypeBKeysGameA and HA3 are indis-
tinguishable, under Assumption 5.

For any adversary A that makes q2 queries in the second stage, we define a sequence of
hybrid experiments HA3,k, for k = 0, . . . , q2, such that

HA3,0 = TypeBKeysGameA and HA3,q2 = HA3 .

Then if TypeBKeysGameA and HA3 can be distinguished then there must exist k ∈ {1, . . . , q2}
such that hybrid experiments HA3,k−1 and HA3,k are indistinguishable. Moreover, from the defi-
nition of experiment H3,k, it is clear that if k-th token query of the second stage is a matching
query (that is, HVE(~x, ~y) = 1) then HA3,k−1 and HA3,k coincide. Therefore, if A is such that
TypeBKeysGameA and HA3 can be distinguished there must exist k such that HA3,k−1 and HA3,k
can be distinguished and the k-th token query of A in the second stage is with non-negligible
probability a non-matching query (that is, HVE(~x, ~y) = 0).

Let us now define experiment H3,k. In H3,k second stage token queries are answered by
running a parametrized version of algorithm Sim.KeyGen that, with a slight abuse of notation,
we also call Sim.KeyGen.

Algorithm Sim.KeyGen receives as input the master secret key msk , the vector ~y for which the
token must be computed and the value z = HVE(~x, ~y). In addition, Sim.KeyGen receives
the number i of the query and the value k.

For each j ∈ S~y, Sim.KeyGen selects random Wj ∈ Gp4 and random aj ∈ ZN under the
constraint that

∑
j∈S~y aj = 0. Then, it distinguishes two cases.
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• z = 0: The depending on the query index i, B does the following.

– If i ≤ k: For each j ∈ S~y, Sim.KeyGen chooses random cj ∈ ZN and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

– If i > k: For each j ∈ S~y, Sim.KeyGen sets

Yj = g
aj/tj,yj
12 ·Wj .

• z = 1: For each j ∈ S~y, Sim.KeyGen sets

Yj = g
aj/tj,yj
2 · gaj/sj5 ·Wj .

We remind the reader that the vector (sj)j∈[`] is the vector stored in the state of the
simulator.

We observe that for algorithm Sim.B.KeyGen is the parametrized version of Sim.KeyGen
with k = 0. On the other hand, algorithm Sim.KeyGen is the parametrized version of Sim.KeyGen
with k = q2.

Next we define hybrid experiment HA3,k, for an adversary A that ask q2 token queries in the
second stage and for k = 0, . . . , q2,

HA3,k(1
λ, 1`)

(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.A.Enc(mpk ′, ~x);
α← ASim.KeyGen(msk ,·,HVE(~x,·),·,k)

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

Notice that H3,0 = TypeBKeysGame and H3,q2 = H3.

Lemma 6.2.12 If Assumption 1 holds then, for any PPT adversary A, TypeBKeysGameA ≈c
HA3

PROOF. Suppose there exists an adversary A such that TypeBKeysGame and H3 are distin-
guishable. We show a PPT algorithm B that receives an instance of Assumption 1, consisting of
(N,A1, A2, A3, A4, A5, A

α
1 ·B4, A

β
1 · C4) and challenge T , and, depending on the nature of T ,

simulates HA3,k−1 or HA3,k with some non-negligible probability for a random k ∈ {1, . . . , q2}.
This suffices to prove the Lemma.

Setup: B randomly chooses position j ∈ [`] and bj ∈ {0, 1}.
B sets g1 = A1, g2 = A2, g12 = A1 ·A2, g3 = A3, g4 = A4, g5 = A5 and, for each i ∈ [`]

and b ∈ {0, 1}, B chooses random ti,b ∈ ZN , Ri,b, R′i,b ∈ Gp3 and sets Ti,b = g
ti,b
2 · Ri,b.

Finally, B sets
mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and
msk = [g12, g4, , (ti,b)(i,b)∈([`]×{0,1})\{(j,bj)}]

and starts the interaction with A on input mpk .
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First Stage Token Queries: In the first stage, B generates token for ~y in the following way. For
each i ∈ S~y, B chooses random Wi ∈ Gp4 , random ai ∈ ZN under the constraint that∑

i∈S~y ai = 0 and then sets

Yi = g
ai/ti,yi
12 ·Wi .

However, if yj = bj then B sets

Yj = (Aβ1 · C4)ai · g
aj/tj,yj
2 ·Wj .

This last setting has the effect of implicitly setting tj,yj ≡ 1/β (mod p1).

Ciphertext: B generate the challenge ciphertext for vector ~x in the following way. If xj = bj
then B aborts. Otherwise B chooses random s ∈ ZN and, for i ∈ [`], random Zi ∈ Gp3 ,
and sets

Xi = g
s·ti,xi
1 · gs·ti,xi5 · Zi.

Second Stage Token Queries: At the start of the second stage of token queries, B picks a ran-
dom k ∈ {1, . . . , q2}.
The i-th token query of the second stage for vector ~y is answered by B in the following
way by distinguishing the following two cases.

HVE(~x, ~y) = 0: We distinguish between the following three cases

i < k: For each j ∈ S~y, B chooses random Wj ∈ Gp4 , cj ∈ ZN and random
aj ∈ ZN under the constraint that

∑
j∈S~y aj = 0 and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

i = k: If yj 6= bj then B aborts.
Otherwise let h ∈ [`] be such that h 6= j and yh 6= ? and set S = S~y \ {j, h},
Notice that such an h always exists since we assumed that each query contains
at least two non-? entries.
Then, for each j ∈ S, B chooses random Wj ∈ Gp4 and random aj ∈ ZN and
sets

Yj = g
aj/tj,yj
12 ·Wj .

Then, for position j, B chooses randomWj ∈ Gp4 and random aj ∈ ZN and sets

Yj = T · g
aj/tj,yj
2 ·Wj.

Finally, for position h, B sets

Yh = (Aα1B4)−1/th,yh · g−s/th,yh1 · g−(s+aj)/th,yh
2 ·Wh,

where s =
∑

j∈S aj .
i > k: For each j ∈ S~y, B chooses random Wj ∈ Gp4 and aj ∈ ZN under the

constraint that
∑

j∈S~y aj = 0 and sets

Yj = g
aj/tj,yj
12 ·Wj .

In the special case that yj = bj, then B sets

Yj = (Aβ1 · C4)aj · g
aj/tj,yj
2 ·Wj .
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HVE(~x, ~yi) = 1: For each j ∈ S~y, B chooses random Wj ∈ Gp4 and aj ∈ ZN under the
constraint that

∑
j∈S~y aj = 0 and sets

Yj = g
aj/tj,yj
2 · g

aj/tj,yj
5 ·Wj .

This concludes the description of algorithm B.
Let us now prove that the probability that B does not abort while interacting with A is

non-negligible. First observe that the probability that B aborts while constructing the simulated
ciphertext is 1/2. Indeed, the view of A up to this point is independent from j and bj and thus,
since bj is chosen at random by B, the probability that xj = bj is 1/2. Let us now look at the
probability that B aborts while answering the k-th token query of the second stage of A, given
that it has not aborted in the construction of the simulated ciphertext. In this case the view
of A is independent from j and also remember that the probability that the k-th query of A is
non-matching is non-negligible. If this is the case then there must exist one position j such that
yj 6= ? and yj 6= xj . If j = j (which happens with non-negligible probability since A’s view
is independent from the value of j) then B does not abort. Indeed, in this case we would have
yj 6= xj 6= bj which implies that yj = bj .

Let us now look at the view ofAwhile interacting withB. We observe that mpk has the same
distribution of the corresponding output of Sim.Setup. Even though B does not have a complete
msk as it misses tj,bj , the answer of the first stage queries are distributed as the output of algo-
rithm KeyGen on input msk in which tj,bj ≡ 1/β (mod p1). Given that B does not abort, it is
straightforward to see that Ct constructed by B has the same distribution as the output of Ct ←
Sim.A.Enc on input mpk ′ and ~x. Let us now look at the answers of the second stage queries. The
matching queries and the first k−1 non-matching queries have the same distribution of the output
of algorithms Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k) and Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k −
1). Notice that, for both types of queries, the missing element of msk plays no role. Sim-
ilarly, the last q2 − k non-matching queries of the second stage are distributed as the output
Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k) and Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k − 1) in which the
missing element of msk is set equal to tj,bj ≡ 1/β (mod p1). Let us finally look at the answer
to the k-th query. If T = Aαβ1 ·D4 then the answer of the query is distributed according to the
output of Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k − 1). Notice that if B does not abort the missing
element of msk plays no role. On the other hand, if T is random Gp1p4 then the answer of the
query is distributed according Sim.KeyGen(msk , ·,HVE(~x, ·), ·, k). 2

6.2.8 The fourth step of the proof

In this section we prove that H3 is indistinguishable from IdealExp.

Lemma 6.2.13 If Assumption 1 holds then, for all PPT adversaries A, HA3 ≈c IdealExpA.

We start by defining ` + 1 intermediate hybrid experiments I1, . . . , I`+1 such that I1 = H3

and I`+1 = IdealExp and show that, for f = 1, . . . , ` + 1, If and If+1 are indistinguishable,
under Assumption 1.

To define If , we introduce a parametrized version of algorithm Sim.Enc that, with a slight
abuse of notation, we also call Sim.Enc.

The parametrized version of Sim.Enc takes as input public key mpk ′ = [N, g3, g5, (T
′
i,b)i∈[`],b∈{0,1}],

the challenge ciphertext ~x, the sequence (~yk, zk)
q1
k=1 of the q1 queries asked by the adver-

sary in the first stage along with zk = HVE(~yk, ~x). In addition we let Sim.Enc take
parameter 0 ≤ f ≤ `. Sim.Enc returns a simulated ciphertext in which the Gp1 part of
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positions i ≤ f that do not belong to MPos is random. The remaining positions are well
formed.

More formally, Sim.Enc chooses random s ∈ ZN , and, for each i ∈ [`], random Zi ∈ Gp3

and random si ∈ ZN . Then for each i ∈ [`], Sim.Enc distinguishes the following cases.

• if i < f and i /∈ MPos, Sim.Enc randomly selects ri ∈ ZN and sets

Xi = T
′ri
i,0 · g

si
5 · Zi.

• if i < f and i ∈ MPos, Sim.Enc sets

Xi = T
′s
i,xi · g

si
5 · Zi.

• if i ≥ f Sim.Enc sets
Xi = T

′s
i,xi · g

si
5 · Zi.

Sim.Enc returns the simulated ciphertext Ct = (Xi)i∈[`] and stores the vector (si)i∈[`] in
the state. Notice that if f = ` + 1 the input ~x is not used by the algorithm and we obtain
algorithm Sim.Enc. On the other hand, if f = 1, we obtain algorithm Sim.A.Enc.

Next, we define, for 1 ≤ f ≤ `+ 1, experiment IAf as follows.

IAf (1λ, 1`)

(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← AKeyGen(msk ,·)

0 (mpk);
Ct← Sim.Enc(mpk ′, ~x, (~yk,HVE(~yk, ~x))q1k=1, f);
α← ASim.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk , ~x, α)

Clearly, for all PPT adversaries A, IA1 = H3 and IA`+1 = IdealExpA. Therefore to prove
Lemma 6.2.13, it is enough to prove the following lemma.

Lemma 6.2.14 If Assumption 1 holds, then for all PPT adversaries A, and for f = 1, . . . , `,
IAf ≈c IAf+1.

To prove the above lemma, we introduce another sequence of intermediate games and make
the following observation.

Observation 6.2.15 If f ∈ MPos, the output distributions of Sim.Enc(mpk , ~x, (~yk,HVE(~yk, ~x)qk=1,
f) and Sim.Enc(mpk , ~x, (~yk,HVE(~yk, ~x)qk=1, f + 1) coincide.

Therefore if IAf and IAf+1 are distinguishable then it must be the case that A has a non-
negligible probability of outputting a challenge plaintext ~x such that f /∈ MPos. For an adversary
A that makes q1 first stage token queries we introduce 2·(q+1) intermediate hybrid experiments
LAf,0, . . . , L

A
f,q1

and MAf,q1 , . . . ,M
A
f,0 which differ in the way in which first stage token queries

are answered. Specifically, first stage queries are answered by running the following algorithm.

Algorithm Sim.C.KeyGen takes as input the master secret key msk , the query ~y for which a
token has to be computed, the number 1 ≤ i ≤ q1 of the query, integer 1 ≤ f ≤ `+ 1 and
integer 0 ≤ k ≤ q1. The algorithm distinguishes the following cases.
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• i ≤ k and yf 6= ?:
The Gp1 part of the token is random.
For each j ∈ S~y, the algorithm chooses random Wj ∈ Gp4 , random cj ∈ ZN and
random aj ∈ ZN under the constraint that

∑
j∈Sy aj = 0 and sets

Yj = g
cj
1 · g

aj/tj,yj
2 ·Wj .

• i ≤ k and yf = ?: the algorithm returns the output of KeyGen(msk , ~y).

• i > k: the algorithm returns the output of KeyGen(msk , ~y).

We are now ready to describe experiments LAf,k and MAf,k for f = 1, . . . , ` + 1 and k =
0, . . . , q1.

LAf,k(1
λ, 1`)

(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← ASim.C.KeyGen(msk ,·,·,f,k)

0 (mpk);
Ct← Sim.Enc(mpk ′, ~x, (~yk,HVE(~yk, ~x))qk=1, f − 1);
α← ASim.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk ,m, α)

MAf,k(1
λ, 1`)

(mpk ,mpk ′,msk)← Sim.Setup(1λ, 1`);
(~x, aux)← ASim.C.KeyGen(msk ,·,·,f,k)

0 (mpk);
Ct← Sim.Enc(mpk ′, ~x, (~yk,HVE(~yk, ~x))qk=1, f);
α← ASim.KeyGen(msk ,·,HVE(~x,·))

1 (mpk ,Ct, aux);
Output: (mpk ,m, α)

Before continuing, we observe the following:

Observation 6.2.16 For all PPT adversaries A, IAf = Lf,0.
Directly from the definition of the experiments.

Observation 6.2.17 For all PPT adversaries A, LAf,q1 = MAf,q1 for f = 1, . . . , `, where q1 is
the number of first stage queries made by A.
From the definitions of the two experiments, it is clear that all the token queries are answered
in the same way in both the experiments and all components Xi for i 6= f of the challenge
ciphertext are computed in the same way. Let us now look at Xf and more precisely to its Gp1

part. In Lf,q1 , the Gp1 part of Xf is computed as T
′s
f,xf

which is exactly how it is computed in
Mf,q1 when f ∈ MPos. On the other hand, when f /∈ MPos, the Gp1 part of Xf is chosen at
random. However, observe that exponents tf,0 mod p1 and tf,1 mod p1 have not appeared in
the answers to key queries since every query has either a ? in position f (in which case position
f of the answer is empty) or a non-? value in position f (in which case the Gp1 part of the
element in position f of the answer is random). Therefore, we can conclude that the Gp1 part of
the component Xf of the answer to the challenge query is also random in Gp1 .

Observation 6.2.18 For all PPT adversaries A and for f = 1, . . . , `− 1, MAf,0 = LAf+1,0.
Indeed, in both experiments all key queries are answered correctly, and the challenge query in
Mf,0 is by definition answered in the same way as in Lf+1,0.

By the above observations, for proving Lemma 6.2.14 it suffices to prove that Lf,k−1 and Lf,k
are indistinguishable and that Mf,k−1 and Mf,k are indistinguishable, for k = 1, . . . , q1. In the
next section we prove that, under Assumption 1, Lf,k−1 and Lf,k are indistinguishable. The
proof that Mf,k−1 and Mf,k are indistinguishable is similar and omitted.
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Indistinguishability of Lf,k and Lf,k−1

We start by describing an algorithm B that takes as input f and k and an instance of Assumption 1
and interacts with an adversary A. Then, provided that A outputs a challenge such that f /∈
MPos, B simulates with some non-negligible probability Lf,k or Lf,k−1 depending on the nature
of the challenge. This suffices to prove that the two hybrids are indistinguishable.

Description of algorithm B

Input: Integers 1 ≤ f ≤ `+1 and 0 ≤ k ≤ q, and a randomly chosen instance of Assumption 1
consisting ofD = (N,A1, A2, A3, A4, A5, A

α
1B4, A

β
1C4) and challenge T which is either

T = Aαβ1 D4 or random Gp1p4 .

Setup: B starts by constructing public parameters mpk . B sets g1 = A1, g2 = A2, g12 =
A1 · A2, g3 = A3, g4 = A4, g5 = A5 and, for each i ∈ [`] and b ∈ {0, 1}, B chooses
random ti,b ∈ ZN , Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
2 ·Ri,b. Then B sets

mpk = [N, g3, (Ti,b)i∈[`],b∈{0,1}] ,

and starts the interaction with A on input mpk .

Now, B guesses a position j ∈ [`] and a bit bj ∈ {0, 1} and chooses the following ran-
domness that will be used in the Gp1 subgroup. Specifically, B chooses, for each i ∈ [`]
and i 6= j, and b ∈ {0, 1}, random t′i,j ∈ ZN . Moreover, B chooses random t′j,cj ∈ ZN
where cj = 1 − bj. Notice that the value t′j,bj is unknown to B. It will be provided by the
assumption as β at the exponent.

First Stage Secret Tokens: To simulate the output of Sim.C.KeyGen(Sk, ~yi, f, k), B does the
following way:

i ≤ k : We have the following mutually exclusive cases.

Case A.1: yf 6= ? . In this case, B outputs a key whose Gp1 part is random.

Specifically, for each j ∈ S~yi , B chooses random aj such that
∑

j∈S~yj
ai = 0,

random rj ∈ ZN , and random Wj ∈ Gp4 . Then, for each j ∈ S~yi , B sets

Yj = g
rj
1 · g

aj/vi,yj
2 ·Wj .

Case A.2: yf = ?. In this case, B outputs a key with a well-formed Gp1 part.

Specifically, B, for each j ∈ S~yi , chooses random Wj ∈ Gp4 , random aj ∈ ZN
under the constraint that

∑
j∈S~yi

aj = 0 and then sets

Yj = g
aj/t

′
j,yj

1 · g
aj/tj,yj
2 ·Wj .

In the special case that yj = bj, then B sets

Yj = (Aβ1 · C4)ai · g
aj/tj,yj
2 ·Wj .

i = k : We distinguish between the following cases:

Case B.1: yf = ? . B performs the same steps of Case A.2.
Case B.2: yf 6= ? and yj 6= bj . In this case, B aborts.
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Case B.3: yf 6= ? and yj = bj . B mounts T , the challenge of the assumption, in
position j.
Specifically, let S = S~yi \ {j, h}, where h is an index such that yk,h 6= ?. Such
an index h always exists since we assumed that each query contains at least two
non-? entries. Then, for each j ∈ S, B sets

Yj = g
aj/t

′
j,yj

12 · g
aj/tj,yj
2 ·Wj .

Then, for position j, B sets

Yj = T · g
aj/tj,yj
2 ·Wj ,

and for position h, B sets

Yh = (Aα1B4)
−1/t′h,yh · g

−s/t′h,yh
1 · g−(s+aj)/th,yh

2 ·Wh,

where s =
∑

j∈S aj .

i > k : B handles these queries as in Case A.2, independently from whether yf = ? or
yf 6= ?.

Ciphertext: B receives ~x and has to compute a ciphertext. We distinguishes the following two
cases:

Case C.1: xj = bj . In this case, B aborts.
Case C.2: xj 6= bj . In this case, B computes sequence (~yi,HVE(~yi, ~x))q1i=1 for all queries

~yi that it has received from A to induce the set MPos.
Then, B chooses random s ∈ ZN , and, for each i ∈ [`], random Zi ∈ Gp3 and
random si ∈ ZN . Then, for each i ∈ [`], if i < f and i /∈ MPos, the algorithm
randomly select ri ∈ ZN and sets

Xi = gri1 · g
si
5 · Zi ,

otherwise, the algorithm sets

Xi = g
s·t′i,xi
1 · gsi5 · Zi .

Second Stage Secret Tokens: To simulate the output of Sim.KeyGen(msk , ~yi,HVE(~x, ~yi)), B
does the following way:

HVE(~x, ~yi) = 0 : B generates a secret key with a random Gp1 part and without the Gp5

part.

Specifically, for each j ∈ S~yi , B chooses random aj such that
∑

j∈S~yj
ai = 0,

random rj ∈ ZN , and random Wj ∈ Gp4 . Then, for each j ∈ S~yi , B sets

Yj = g
rj
1 · g

aj/ti,yj
2 ·Wj .

HVE(~x, ~yi) = 1 : B generates a secret key without the Gp1 part and with a Gp5 part
correlated with that of the ciphertext.

Specifically, for each j ∈ S~yi , B chooses random aj such that
∑

j∈S~yj
ai = 0, and

random Wj ∈ Gp4 . Then, for each j ∈ S~yi , B sets

Yj = g
aj/ti,yj
2 · gaj/sj5 ·Wj .
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This ends the description of B.

The algorithm B will be used to prove properties of experiments L. We can modify B so
that, on input f and k, the challenge ciphertext is constructed by randomizing the Gp1 part also
of the f -th component. The so modified algorithm, that we call B2, closely simulates the work
of experiments M and will be used to prove properties of these experiments.

Let us define the following two events.

NotAbortA1,B(f, k): denotes the event that B does not abort while computing the answer to the
k-th query in an interaction with A on input f and k. This is equivalent to the event that
yk,f = ? or yk,j = bj.

NotAbortA2,B(f, k): denotes the event that B does not abort while computing the ciphertext in
an interaction with A on input f and k. This is equivalent to the event that adversary A
outputs vector ~x such that xj = cj = 1− bj.

We can modify, experiments PKGame, L(f, k) and M(f, k) so that j and bj are chosen just
like B does. This modification makes the definitions of events NotAbortA1,Exp and NotAbortA2,Exp

meaningful also for these experiments. We write NotAbortA2 as a shorthand for NotAbortA2,PKGame.

Lemma 6.2.19 For all f, k and A, Prob[NotAbortA1,B(f, k)] ≥ 1
` .

PROOF. The probability of NotAbortA1,B(f, k) is at least the probability that yk,j = bj. More-
over, the view of A up to the k-th key query is independent from bj and j. Now observe that
the ~yk has at least two non-star entry and, provided that j is one of these (which happens with
probability at least 2/`), the probability that yk,j = bj is 1/2. 2

Lemma 6.2.20 For all f, k and A, Prob[NotAbortA2,Exp(f, k)] ≥ 1
2` for Exp = L(f, k).

PROOF. NotAbortA2,Exp(f, k) is the event that y~k,j 6= xj in the experiment Exp. It is easy to
see that the probability that j and bj are correctly guessed such that xj = cj = 1 − bj is at least
1/(2`), independently from the view of A. 2

Lemma 6.2.21 Suppose event NotAbortA1,B(f, k) occurs. If T = T1 then A’s view up to the
challenge ciphertext in the interaction with B running on input (f, k) is the same as in Lf,k−1.
If instead T = T2 then A’s view up to the challenge ciphertext in the interaction with B running
on input (f, k) is the same as in Lf,k.

Moreover, suppose events NotAbortA1,B(f, k) and NotAbortA2,B(f, k) occur. If T = T1 then
A’s total view in the interaction with B running on input (f, k) is the same as in Lf,k−1. If
instead T = T2 then A’s total view in the interaction with B running on input (f, k) is the same
as in Lf,k.

PROOF. First observe that mpk has the same distribution as the public parameters seen by A in
both experiments. The same holds for the answers to the first (k− 1) key queries and to the last
(q1 − k). Let us now focus on the answer to the k-th key query. We have two cases:

Case 1: yf = ?. Then the view ofA in the interaction with B is independent from T (see Case
B.1) and, on the other hand, by definition, the two experiments coincide. Therefore the
lemma holds in this case.
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Case 2: yf 6= ?. Suppose T = T1 = Aαβ1 ·D4 and that NotAbortA1,B(f, k) occurs. Therefore,
yj = bj and B’s answer to the k-th key query has the same distributions as in L(f, k − 1).

On the other hand if T is random in Gp1p4 and NotAbortA1,B(f, k) occurs, the Gp1 parts of
the Yj’s are random and thus the answer to the k-th query of A is distributed as in Lf,k.

For the second part of the lemma, we observe that the challenge ciphertext has the same
distribution in both experiments and that, if NotAbortA2,B(f, k) occurs, B properly constructs the
challenge ciphertext. 2

Let us now analyze the probability that A does output a challenge such that f /∈ MPos,
this is crucial for B to successfully simulate with some non-negligible probability L(f, k) or
L(f, k − 1).

We start by introducing some notation.

EAf,Exp is defined as the event that in experiment Exp the adversary A declare a challenge
vector such that f /∈ MPos . When the adversary A is clear from the context we will
simply write Ef,Exp.

EAf : is defined as the event that in experiment PKGame, the adversary A declares a challenge
vector such that f /∈ MPos . When the adversary A is clear from the context we will
simply write Ef .

EAf,B(f ′, k): we extend the definition of Ef,Exp to include the experiment played by A against
the algorithm B. Thus we denote by the event that in the interaction between A and B on
input f ′ and k, B does not abort and A declares a challenge vector such that f /∈ MPos.
If A, f ′ and k are clear from the context, we will simply write Ef,B.

EAf,f ′ : is defined as the event that during the execution of If ′ adversary A outputs a challenge
vector such that f /∈ MPos.

Observation 6.2.22 For all PPT adversaries A and distinguisher D and all 1 ≤ f ≤ `, we
have that Prob[D(I(f)A) = 1|¬Ef,f ] = Prob[D(I(f + 1)A) = 1|¬Ef,f+1].

PROOF. By definition of I , if the challenge vector is such that f ∈ MPos, then A’s view in If
and If+1 is the same. 2

Observation 6.2.23 For all PPT adversaries A and all 1 ≤ f ≤ `, we have that Prob[EAf,f ] =

Prob[EAf,f+1].

PROOF. The view of A in If up to the challenge ciphertext is independent from f . 2

Therefore we can set Prob[EAf,f ] = Prob[EAf,1] = Prob[EAf ].

Lemma 6.2.24 If Assumption 1 holds, then for k = 1, . . . , q and f = 1, . . . , `, and for all PPT
adversariesA,

∣∣∣Prob[EAf,G]−Prob[EAf,H ]
∣∣∣ and

∣∣∣Prob[NotAbortA2,G]−Prob[NotAbortA2,H ]
∣∣∣

are negligible functions of λ, for experiments G = L(f, k − 1) and H = L(f, k).

PROOF. We prove the lemma for Ef,G and Ef,H . A similar reasoning holds for NotAbortA2,G
and NotAbortA2,H . For the sake of contradiction, suppose that Prob[EAf,G] ≥ Prob[EAf,H ] + ε
for some non-negligible ε. Then we can modify algorithm B into algorithm B with a non-
negligible advantage in breaking Assumption 1. Algorithm B simply execute B’s code. By
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Lemma 6.2.19 event NotAbort1,B occurs with probability at least 1/` and in this case B can
continue the execution of B’s code and receive the challenge vector from A. At this point, B
checks whether f /∈ MPos. If it is the case, B outputs 1; else B outputs 0. It is easy to see that,
by Lemma 6.2.21, the above algorithm has a non-negligible advantage in breaking Assumption
1. 2

The proof of the following corollary is straightforward from Lemma 6.2.24 and Observa-
tions 6.2.17-6.2.18.

Corollary 6.2.25 For all f = 1, . . . , `+1 and k = 0, . . . , q, and all PPT adversariesA, we have
that, for H = Lf,k

∣∣∣Prob[EAf,H ] − Prob[EAf ]
∣∣∣ and

∣∣∣Prob[NotAbortA2,H ] − Prob[NotAbortA2 ]
∣∣∣

are negligible.

We are now ready to prove thatLf,k−1 ≈c Lf,k. To do this let us define the event SuccA(f, k)
as

SuccA(f, k) := NotAbortA1,B(f, k) ∧ NotAbortA2,B(f, k) ∧ EAf,B(f, k). (6.1)

When A is clear from the context we use the shortcut Succ(f, k).

We are now ready to prove Lemma 6.2.26.

Lemma 6.2.26 Suppose there exists an adversary A, a distinguisher D and integers 1 ≤ f ≤
` and 1 ≤ k ≤ q such that

∣∣Prob[D(GA) = 1]− Prob[D(HA) = 1]
∣∣ ≥ ε, where G =

L(f, k − 1), H = L(f, k) and ε > 0. Then, there exists a PPT algorithm B with AdvB1 ≥
Prob[Ef ] · ε/(2 · `2)− ν(λ), for a negligible function ν.

PROOF. Assume without loss of generality that Prob[D(GA) = 1] ≥ Prob[D(HA) = 1] + ε
and consider the following algorithm B. B uses algorithm B as a subroutine and interacts with
A on input integers f and k for which the above inequality holds, and an instance (D,T ) of
Assumption 1. If event Succ(f, k) does not occur, B outputs ⊥. Otherwise, B outputs D’s
output. Therefore we have

Prob[B outputs 1|T = T1] = Prob[B outputs 1|T = T1 ∧ Succ(f, k)] · (6.2)

Prob[Succ(f, k)|T = T1]

By definition of Succ(f, k) we have

Prob[Succ(f, k)|T = T1] = Prob[Ef,B ∧ NotAbort1,B ∧ NotAbort2,B|T = T1]

= Prob[NotAbort1,B|T = T1]·

Prob[Ef,B ∧ NotAbort2,B|NotAbort1,B ∧ T = T1].

Now observe that event NotAbort1,B is determined before B uses T and thus

Prob[NotAbort1,B|T = T1] = Prob[NotAbort1,B].

Moreover, by Lemma 6.2.21, if event NotAbort1,B occurs and T = T1, the view of A up to
Challenge Query is equal to the view of A in experiment G and thus

Prob[Ef,B ∧ NotAbort2,B|NotAbort1,B ∧ T = T1] = Prob[Ef,G ∧ NotAbort2,G]

whence

Prob[SuccA(f, k)|T = T1] = Prob[NotAbort1,B] · Prob[NotAbort2,G ∧ Ef,G]

= Prob[NotAbort1,B] · Prob[NotAbort2,G] · Prob[Ef,G]
,
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where NotAbort2,G and Ef,G are independent. Finally, if T = T1 and SuccA(f, k) occurs,
then, by Lemma 6.2.21, A’s view is exactly as in experiment G, and thus the probability that B
outputs 1 is equal to the probability that D output 1. We can thus rewrite Eq. 6.2 as

Prob[B outputs 1|T = T1] = Prob[D(GA) = 1]·

Prob[NotAbort1,B] · Prob[NotAbort2,G] · Prob[Ef,G]

A similar reasoning yields

Prob[B outputs 1|T = T2] = Prob[D(HA) = 1]·

Prob[NotAbort1,B] · Prob[NotAbort2,H ] · Prob[Ef,H ]

By using Corollary 6.2.25, Lemma 6.2.19 and Lemma 6.2.20, we can conclude that there exists
a negligible function ν such that we have

AdvB1 = Prob[NotAbort1,B] · Prob[NotAbort2] · Prob[Ef ]·(
Prob[D(GA) = 1]− Prob[D(HA) = 1]

)
− ν(λ)

≥ ε

2`2
· Prob[Ef ]− ν(λ)

2

The following Lemma can be proved by referring to algorithm B2. We omit further details
since the proof is essentially the same as the one of Lemma 6.2.26.

Lemma 6.2.27 Suppose there exists an adversaryA, a distinguisherD and integers 1 ≤ f ≤ `+
1 and 1 ≤ k ≤ q such that

∣∣Prob[D(GA) = 1]− Prob[D(HA) = 1]
∣∣ ≥ ε, where G = Mf,k−1,

H = Mf,k and ε > 0. Then, there exists a PPT algorithm B with AdvB1 ≥ Prob[Ef ] · ε/(2 ·
`2)− ν(λ), for a negligible function ν.

We are finally ready to prove Lemma 6.2.14.

Lemma 6.2.14. If Assumption 1 holds, If ≈c If+1.

PROOF. Suppose that for some adversary A, distinguisher D and f ∈ [`]∣∣Prob[D(IAf ) = 1]− Prob[D(IAf+1) = 1]
∣∣ ≥ ε . (6.3)

Now recall that If = Lf,0 and If+1 = Mf,0. Thus, there exists 1 ≤ k ≤ q such that:∣∣Prob[D(GA) = 1]− Prob[D(HA) = 1]
∣∣ ≥ ε/(2q) ,

whereG = Lf,k andH = Lf,k−1 or whereG = Mf,k andH = Mf,k−1. Then by Lemma 6.2.26,
in the former case, and by Lemma 6.2.27 in the latter, we can construct an adversary B against
Assumption 1, such that

AdvB1 ≥
ε

4q`2
· Prob[Ef ]− ν(λ)

Now it remains to estimate Prob[Ef ]. Notice that we can write

Prob[D(IAf ) = 1] = Prob[Ef,f ] · Prob[D(IAf ) = 1|Ef,f ]+

Prob[¬Ef,f ] · Prob[D(IAf ) = 1|¬Ef,f ]
,
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and
Prob[D(IAf+1) = 1] = Prob[Ef,f+1] · Prob[D(IAf+1) = 1|Ef,f+1]+

Prob[¬Ef,f+1] · Prob[D(IAf ) = 1|¬Ef,f+1]
,

and by combining Equation 6.3 and Observations 6.2.22 and 6.2.23, we obtain

Prob[Ef ] ·
∣∣Prob[D(IAf ) = 1|Ef,f ]− Prob[D(IAf+1) = 1|Ef,f+1]

∣∣ ≥ ε.
Thus, we can conclude that

Prob[Ef ] ≥ ε ,

and thus B has advantage

AdvB1 ≥
ε2

4q`2
− ν(λ) .

2



Chapter 7

Summary of Contributions

We briefly summarize our main contributions.

Generalized Key Delegation for Wildcarded Identity-Based and Inner-Product Encryp-
tion. Even though the WIBE and WKD-IBE constructions in [ACD+06, AKN07] are very
practical, they had two significant shortcomings. First, their security proofs only hold in cases
where the maximum hierarchy depth L is a constant due to the fact that they are not tight and
lose a factor which is exponential in L. As a result, these schemes can only be used in scenar-
ios where such a restriction is acceptable. In particular, when using WKD-IBE schemes to build
identity-based broadcast encryption schemes, such a limitation on the maximum hierarchy depth
will have a direct impact on the maximum size of the target group. Second, their solutions do
not hide the pattern associated with the ciphertext. Hence, their schemes cannot be used in any
application where the anonymity of the recipient needs to be preserved.

In Chapter 4 we showed how to overcome the limitations of existing WKD-IBE and WIBE
schemes to obtain the first fully secure anonymous WW-IBE scheme.

Lattice-based Hierarchical Inner Product Encryption. In Chapter 5, we considered the
problem of constructing hierarchical inner-product encryption scheme based on lattices assump-
tions. To achieve this goal, we extended the lattice-based IPE scheme by Agrawal et al. [AFV11]
to the hierarchical setting by employing basis delegation technics by Peikert et al. [CHKP10]
and by Agrawal et al. [ABB10].

Adaptive Simulation-Based Secure Constructions for Functional Encryption. In Chap-
ter 6, we considered the problem of designing simulation-based secure functional encryption
schemes. We looked both at general functionalities corresponding to the class of poly-sized
circuits and at a more specialized functionality, specifically HVE.
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