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Introduction 
 

The aim of this Thesis is to present an image partition and video 
segmentation procedure, based on the minimization of a modified 
version of Mumford-Shah functional. Generally, in most image 
processing applications, an image is usually viewed as a set of pixels 
placed on a rectangular grid. A single pixel provides an extremely 
local information making impossible any kind of interpretation. 

The proposed approach, instead, follows a region based image 
representations. This approach is used, for instance, in MPEG-4 [27] 
or MPEG-7 [85] standards. In such cases the image is understood as a 
set of objects. Region-based image representations offer two 
advantages with respect to the pixel based ones: the number of regions 
is lower than the number of original pixels and regions represent a 
first level of abstraction with respect to the raw information.  

The basic objects used of the image partition procedure are the 
upper and lower level sets of the image. In order to have a more local 
description of it, we deal with the connected components of (upper or 
lower) level sets.  As proposed by Caselles et al. in [23], we have 
considered the boundary of these sets, that is the level lines, forming 
the topographic map.  

To be able to handle discontinuous functions, more specifically, 
upper semicontinuous ones, we define level lines as the external 
boundary of the level sets of the image. This leads us to the notion of 
shape which consists in filling the holes of the connected components 
of the level sets, upper or lower, of the original image. The operation 
of hole filling was called saturation in [1], [68]. Thus, level lines are 
the boundaries of shapes and to give the family of level lines is 
equivalent to give the family of shapes.  

Moreover, the family of connected components of upper level 
lines has a tree structure. And the same happens for the family of 
connected components of lower level lines. These two trees can be 
merged in a single tree: the “Tree of Shapes” of an image [69]. It gives 
a complete and non-redundant representation of the image and is 
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contrast independent. The tree is equivalent to the image: its 
knowledge is sufficient to reconstruct the image. 

The image partition procedure determined by level lines is based 
on the minimization of a simplified version of the Mumford - Shah 
functional. If we minimize the functional with respect to all possible 
partitions, the problem of finding a global minimum is exponentially 
complex. But, if the minimization takes place in a hierarchy of 
partitions, global minima can be obtained quickly [43] [40]. 

To build the hierarchy of partitions the tree of image shape has 
been used. In particular the regions determined by level lines are taken 
as an initial partition of a hierarchy which can be constructed using the 
simplified Mumford-Shah functional. Then, using Guigues 
optimization algorithm [43], the global minima of the energy in the 
hierarchy can be defined at any scale obtaining the searched image 
partition. 

The Mumford-Shah functional used for image partition has been 
then extended to develop a video segmentation procedure. Differently 
by the image processing, in video analysis besides the usual spatial 
connectivity of pixels (or regions) on each single frame, we have a 
natural notion of “temporal” connectivity between pixels (or regions) 
on consecutive frames given by the optical flow. In this case, it makes 
sense to extend the tree data structure used to model a single image 
with a graph data structure that allows to handle a video sequence.  

We have developed the appropriate graph pre-computing a dense 
optical flow of the whole video sequence using any of the methods 
available in literature. So, we have defined the vertices of the graph as 
all the video pixels, assigning to each one its corresponding gray level. 
The edges of the graph are of two kinds: spatial edges and temporal 
edges. Spatial edges join each pixel with its 8-neighbors on the same 
frame. Temporal edges are defined using the pre-computed optical 
flow. 

The video segmentation procedure is based on minimization of a 
modified version of a Mumford-Shah functional. In particular the 
functional used for image partition allows to merge neighboring 
regions with similar color without considering their movement. Our 
idea has been to merge neighboring regions with similar color and 
similar optical flow vector. Also in this case the minimization of 
Mumford-Shah functional can be very complex if we consider each 
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possible combination of the graph nodes. This computation becomes 
easy to do if we take into account a hierarchy of partitions constructed 
starting by the nodes of the graph. The global minima of the 
functional can be defined at any scale using the same optimization 
algorithm for the image partition [43] obtaining the video 
segmentation. 
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Plan of the thesis 
 

The thesis is organized as follows: 
The first chapter reports the different representations of the 

topology of the image that can be found in the literature. We address 
our attention at the tree of shape as the data structure for image 
representation. This structure allows to reconstruct the original image. 
In particular we show how is possible to construct it merging the tree 
of shape of upper and lower level lines of the image. To compute the 
merging operation has been necessary to define the notation of hole 
and saturation. Then in Chapter 2 we describe an image partition 
procedure based on minimization of a Mumford Shah functional. The 
problem of the quick computation of minima using a hierarchy of 
partitions constructed on the tree of image shape is faced. The section 
ends with some experimental results. 

In Chapter 3 we revise some aspects of the image sequence 
formation, and the motion estimation problem. We also review the 
main optical flow estimation methods known in literature. Last 
section, Chapter 4, proposes a video segmentation procedure based on 
the minimization of a modified version of the Mumford Shah 
functional. We describe the data structure used to handle the video 
sequence characterized by spatial connections (between pixels or 
regions of the same frame) and temporal connections (defined by the 
optical flow vector). The procedure adopted to minimize quickly the 
functional is presented. At the end we show some experimental results 
comparing a video segmentation obtained with the simplified 
Mumford Shah functional for image partition with the new introduced 
functional. 
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Chapter 1 

 

Data Structure for Image 
Representation 
 

In this chapter we review some issues related to image 
representation. Representations based on regions are interesting for 
many image processing applications. Among them, we emphasize the 
tree of shapes of an image, which gives a compact structure of the 
level lines of an image. The level lines are the boundaries of the upper 
or lower level sets of an image. We revise the main properties of these 
level sets, and the definition of shapes from them, as well as we derive 
the tree structure of the shapes. 
 

1.1 Different Image Representations  

Image representations can be different depending on their 
purpose. The raw information, that is the values of the samples, or 
pixels, is a too low level of representation, and the image must be 
described with more elaborate models.  

For a deblurring, restoration, denoising purpose, the 
representations based on the Fourier transform are generally the best 
since they rely on the generation process of the image (Shannon 
theory), and/or on the frequency models of the degradation as for 
additive noise, or spurious convolution kernel. However, the Fourier 
transform is purely frequency oriented and does not give directly any 
space information. The wavelet theory [59][65], achieves a 
localization of the frequencies, and, due to the linear structure of the 
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images at their smallest scales, the wavelet representation is to date 
the best representation of the image for compression purpose. 

Nevertheless, from the image analysis point of view, frequency 
based representations do not give the adequate information. Indeed, 
the Fourier representation is nonlocal and the wavelet representation is 
sensitive to a translation, rotation or scaling in the image, disabling the 
recognition of objects independently of the viewpoint.  Moreover, 
both of these representations have quantized observation scales. 

Scale-space and edge detection theories propose to represent the 
images by some significant edges, where edges are defined suitably. 
The algorithms proceed in general in two steps (which sometimes can 
be merged): first the images are (linearly or not) smoothed [1][21] and 
secondly an edge detector is applied to the smoothed image. Edges are 
detected based on the second order derivatives of the image. The 
earliest definition of edges is due to Marr and Hildreth [61] and a 
variant was later proposed by Canny [22]. The scale represents the 
amount of smoothing prior to edge detection. The first scale-space 
based on edges is the zero-crossing of the Laplacian across the 
gaussian pyramid, that is the smoothing is a convolution with a 
gaussian kernel of varying variance. According to Marr, those zero-
crossings represent the “raw primal sketch” of the image, that is the 
basis on which further vision algorithms should rely, see Marr [60] 
and Hummel [47]. In general, edges extraction can be formulated as a 
variational problem, see Nitzberg and Mumford [76], Morel and 
Solimini [70]. The image is approximated by a function that stands in 
a class of functions for which edges are properly defined: a famous 
example of such a class is the family of piecewise constant images 
having a bounded discontinuity length; in this class, the discontinuities 
lines of the approximating function are interpreted as the edges, see 
Mumford and Shah [71]. Then, a balance between how close and how 
complex the approximation is (e.g., with the previous example, the 
complexity can be the length of the discontinuity boundary), defines a 
scaled representation of the image.  

Despite the generality of the variational approach, it suffers from 
the fact that there is no theory that says what the model should be. 
These representations by the edges have two major drawbacks that 
have been discussed, see Koenderink [51], Witkin [90] and Mallat 
[59], but not solved within the scale-space theory. First, the geometric 
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representation by the edges is incomplete: it does not allow a full 
reconstruction of the image, therefore some information has been lost 
in the process of edge detection. Secondly, the decomposition in 
scales yields a redundant representation. 

Another problem with these approaches is linked to the fact that 
the image gray level is not an absolute data, since in many cases the 
contrast is camera dependent, and the optics of the camera is generally 
unknown, and in all cases hard to measure. This problem can be 
avoided by working in the morphological framework considering the 
level set and the level lines. 
 

1.2 Level set and level lines 

In natural images, the contrast depends on the type of camera, on the 
digitization process, due to the gray level quantization, to the 
lightning... Despite this multiplicity of factors changing the contrast, 
the perception of the image must remain identical, independent of the 
screen on which it is displayed. In other words, the contrast 
information is secondary relatively to the geometric information, and 
useful mainly for visual convenience. 

The invariance under change of contrast has been first stated as a 
Gestalt principle by Wertheimer [89]. 

Matheron [62] and after him Serra [80], [81] propose a 
“morphological” representation of the images by their level sets. It 
yields a complete, contrast invariant representation of the image, 
independent on any parameter. A variant of this representation is 
proposed by Caselles et al. in [23], by considering the boundary of 
these sets, that is the level lines, forming the topographic map. 

In general a (gray level) image is represented by a function 
:u Ω → ℝ defined in a domain 2Ω∈ℝ . The most basic elements of 

mathematical morphology are the level sets. We call superior level set 
Ω  and inferior level setX uλ of value λ  the subset of Ω defined as 

follows: 
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The convention to take strict inequality for lower level sets and 

large inequality for upper level sets is to get consistency results 
between them, i.e., \ X u X uλ

λΩ = . 

Whereas it is usually of minor importance because we do not mix 
upper and lower level sets (1.1), it becomes fundamental when we 
deal with both simultaneously. 

Furthermore, topological characteristics extracted from level sets 
are also morphological. A particular case is the connected components 
of the boundaries of level sets, which are called level lines. Another 
case is taking the connected components of level sets, which are used 
in the following chapter to construct “shapes”. 

Our interest about the level sets comes also from the fact that they 
are a representation of the image. From the lower level sets of an 
image u , we can recover u by the formula: 

 

{ },  ( ) inf :p u p p X uλλ∀ ∈Ω = ∈                                            (1.2) 
 

                                             
and for the upper level set by the formula:  

 

{ },  ( ) sup :p u p p X uλλ∀ ∈Ω = ∈                                            (1.3) 

 
In the last case, thanks to the non strict inequality, the supremum 

is actually a maximum, since ( )u pp X u∈ . 
 

1.3 Image and its topology 

Once the image is segmented, one way or another, the resulting 
topology must be described. The usual notion of segmentation is a 
partition of the image into connected regions and the relations 
between these regions are meaningful. The first idea is to encode the 
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adjacency relations: we need to know when two regions have a 
common boundary. The classical way to represent this relation is 
through a graph, the Region Adjacency Graph (RAG): each region is 
represented as a vertex in the graph and when two regions are 
adjacent, an edge links the corresponding vertices, see Rosenfeld [79]. 
Nevertheless, adjacency is not the only meaningful relation between 
regions. For example, if two regions are adjacent, the number of 
connected components of their boundary is not encoded. The solution 
to this problem would be to add the corresponding number of edges 
between the two vertices, yielding then a multigraph. More annoying 
is the problem that the knowledge that a region is a hole inside another 
region is not contained in the (multi) graph. Gangnet et al. [41], 
recognizing that these data are missing, propose to add the inclusion 
structure of contours to the graphs. However, this represents the 
topology of the image in two graphs, making it uneasy to manipulate. 
Observing the difficulty to describe the relations between regions in 
terms of pixels only, Kovalesky in [54] proposes a cell-list 
representation, adding frontiers between regions as 1-dimensional 
elements and the junction points of regions of these frontiers as 0-
dimensional elements. However, his structure is not a graph, and does 
not encode more data than the RAG. 

Following the direction opened by Kovalesky, Fiorio in [37] uses 
the same elements to construct its representation as a combinatorial 
map (see Lienhardt [57]) and exposes an algorithm of linear 
complexity to construct his representation, the Frontiers Topological 
Graph. Fiorio emphasizes the fact that the representation must be 
consistent with the usual topology of the plane, and that it must 
introduce the minimum number of elements of non maximal 
dimension to this purpose. In [38], he generalizes to higher 
dimensions this representation, whereas in [39], he explains how to 
manipulate the Frontiers Topological Graph, in particular how to 
update the structure when two regions are merged and how to extract 
the Frontiers Topological Graph of a subimage, provided the 
subimage does not cut regions. Unfortunately, these basic operations 
are not obvious, coming from the fact that the combinatorial map is a 
fairly complex representation. 
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1.3.1 Topology of morphological representation 

All these topological representations are based on a segmentation 
of the image understood as a partition into connected regions. But the 
basic elements of mathematical morphology, the level sets, do not 
compose a partition of the image; instead, they are hierarchical, 
because they are ordered. When talking about whole level sets, this 
order, the inclusion relation, is total, yielding a very elementary 
structure, an ordered list. However, it lacks an important feature of the 
above representations, the locality, or the fact that the atoms of the 
representation (the level sets) are not connected. Hence comes the 
need for considering instead the connected components of the level 
sets. 

A fruitful approach is proposed by Ballester, Caselles and Morel 
in [5], where the atoms are some parts of the connected components of 
bilevel sets, that is points whose values are comprised between two 
given thresholds. They are chosen so that when the thresholds are 
changed in a manner to have an included bilevel, the subpart of the 
atom remains connected. These atoms are called the maximal 
monotone sections, and are invariant with respect to contrast change. 
Their study comes from a successful shape preserving local contrast 
enhancement algorithm proposed by Caselles et al. in [24] and [26]. 
However, the relations between these structures are not totally studied, 
and their efficiency in terms of compactness of the representation 
remains to be demonstrated. 

Cox and Karron [30] explore the structure of the family of 
connected components of upper level sets in a 3-D image for purposes 
of coding and visualization of 3-D data. They show that the image can 
be described as a discrete structure, the tree of criticalities. They call it 
the Digital Morse Theory, because it is analogous to the Morse theory 
for continuously defined functions: a Morse function, that is a twice 
continuously differentiable function, in which the Hessian matrix is 
non degenerate at critical points, can be described by a tree of 
criticalities (see Milnor [67]). From discrete data, a three-dimensional 
array of gray levels, they define the continuous interpolated functions 
which are topologically consistent with the discrete data and show that 
they share the same tree of criticalities. Whereas they remark that 
using the discrete notions of connectedness (there are two: 4 and 
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8connectedness in 2-D, 6 and 26 connectedness in 3-D) without 
reference to the interpolated function can yield inconsistencies when 
we take the opposite of the image, they do not push this remark to its 
natural conclusion: upper level sets are not sufficient to describe 
topologically the image, because they are adapted to light objects, but 
the dark objects are not well represented in the digital Morse tree. 

In a study on numerical functions defined on a rectangle of 2ℝ , 
published in 1950, Kronrod [55] avoids this drawback. Indeed, the 
atoms in his work are connected components of isolevel sets, which 
are continua. Given such a component K  and a neighborhood U of 
K , if we call open set the family of the connected components of 
isolevel sets contained in U , the family of all these sets forms a 
topology on the set of connected components of isolevel sets of the 
image. The natural map, that with a point of the rectangle associates 
the connected component of isolevel set containing it, is continuous. 
Since the square is connected, locally connected and compact, so is 
the topological space of connected components of isolevel sets. He 
shows furthermore that no subset of this space is homeomorphic to the 
circle 1S , concluding that this space is actually a tree, in the 
topological sense. Moreover, he shows that this tree has an at most 
countable number of leaves and of ramification points, and that the 
leaves are connected components of isolevel sets not separating the 
rectangle (they are some regional extrema, but also what he calls 
concentric singularities), whereas ramification points are those 
separating the rectangle in at least three parts. He calls this tree the 
one-dimensional tree of the function and describes the functions 
which are in the same family as a given one: they are obtained by 
merging some parts of the tree. In many respects, this construction is 
remarkable: the family of connected components of isolevel sets is 
globally invariant under a contrast change, but also under an inversion 
of contrast (taking the negative of the function), which was the feature 
lacking to the digital Morse tree. However, from the image 
representation point of view it suffers from two drawbacks: isolevel 
sets are sparse and do not represent an object in the image and the tree 
is not ordered, meaning that there is no actual root. The first drawback 
is not related to Kronrod work, since his concern was not image 
analysis, but rather the study of functions, but the second he solves 
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only partially, although he does not emphasize the problem: If we fix 
a point of the square, the components of isolevel sets not containing 
this point can be ordered relative to this point. What this amounts to 
do is to isolate some connected component of isolevel set (the one 
containing the fixed point), and order the other ones relatively to it, 
giving a rooted tree. From the image analysis point of view, such a 
construction is not pertinent, since the point is chosen arbitrarily. 

In many respects our work is closely related to Kronrod’s one. 
We do not deal with isolevel sets but with connected components of 
upper and lower level sets, whose holes we fill. The notion of hole is 
not without flexibility, and we develop an axiomatic approach of the 
adequate definitions of hole. The fact we fill the holes permits to mix 
the upper and lower level sets in the same structure, namely a tree, 
which is oriented by inclusion. In this manner, the tree describes in a 
straightforward manner the topology of the image. This is related to 
Kronrod’s article in the sense that the boundary of our atoms are 
(connected parts of) connected components of isolevel sets (at least 
for a continuous function), and that filling the holes of a connected 
component of upper level set is exactly the same as filling the holes of 
its boundary (see Proposition 1.18). In this manner, we precise what is 
the interior of a connected component of isolevel set, this interior 
being defined with no arbitrary choice, and this orders the atoms by 
inclusion. This keeps the advantages of Kronrod’s tree, namely 
contrast and negative invariance properties, while being adapted to 
image analysis, because most objects in the image are likely to be 
formed of atoms of our representation. Moreover, we gain generality 
because the results are valid for a semicontinuous image. 
 

1.4 Tree of shape as an image representation 

Now we want to show that, under certain topological conditions 
concerning the images and their set of definition, the “shapes” have a 
tree structure. This notion of tree is not the classical one, in the sense 
that it is not a discrete structure, since it can have an infinite (and 
possibly not even countable) number of nodes, yet it is consistent with 
it: two arbitrary nodes are connected, and there is no loop. 
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The shapes of an image are built from the connected components 
of level sets. It is well known that connected components of level sets 
have a tree structure. The difference here is that we consider 
simultaneously superior and inferior level sets and the shapes 
constructed from them are stored in one structure, without 
redundancy. This may seem paradoxic, since the datum of the 
connected components of lower level sets, or the datum of the 
connected components of upper level sets, are each sufficient to 
reconstruct the image. The explanation of this paradox is that the 
shapes are not constructed from all those connected components, but 
from a selection of them, this selection being of course independent of 
the contrast. Moreover, this selection is consistent with what we 
expect to be “objects” in the image and discards the background. We 
do not pretend to solve the foreground-background ambiguity in 
general, but this ambiguity appearing only for regions meeting the 
frame of the image, most of the time the good choice is made. 

The tree of shapes is complete and without redundancy. What 
these properties mean is that the datum of the shapes is sufficient to 
reconstruct the image (completeness) and that it is necessary for this 
operation (absence of redundancy), in the sense that removing a part 
of the tree does not permit to reconstruct the image or yields a 
different image. In these respects, the tree of shapes is a representation 
of the image. Moreover, we believe this tree is a representation 
adapted to image analysis, its contrast invariance being not the least of 
its advantages. Finally, for discretely defined images, a fast algorithm 
allows the decomposition, the reconstruction being trivial. This is 
exposed in the next chapter. 
 

1.4.1 Basic definition 

Unless otherwise defined, Ω  will be any connected topological 
space. We call image an application from Ω  to ℝ . Ω  will sometimes 
need to be locally connected. We recall the definition of local 
connectedness: 

Definition 1.1 A topological space Ω  is said to be locally 
connected if the following equivalent properties hold: 

1. X has a basis of connected neighborhoods; 
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2. the connected components of any open set of Ω  are open; 
Notice that local connectedness is a property totally independent of 
the fact that the topology is metric or not. 

The notion of connectedness we use is the classical topological 
one: 

Definition 1.2 (Connectedness) A topological space X is said 
to be connected if any partition of Ω  into two closed sets results in 
one of them being φ ; and the other one Ω . A subset of Ω  is said to 
be connected if it is connected as a topological space (for the induced 
topology). 

This can also be formulated with partitions into two open sets 
(it is enough to consider the complements), or saying that the only 
open and closed subsets of Ω  are φ  and Ω , or in an alternative 
formulation: the only subsets of Ω having φ  as boundary are φ and 
Ω . Other notions of connectedness exist, as for example arc-wise 
connectedness, or strong connectedness, but we restrict the discussion 
to the classical one. 

The two most important basic results that are useful are: 
1. The union of a family of connected subsets of Ω  

having a nonempty intersection is connected. 
2. If C ⊂ Ω  is connected and C D C⊂ ⊂ , then D  is 

connected. 
The first point implies that any topological space  can be 

partitioned in a family of maximal connected subsets, and this 
decomposition is unique. Its elements are called the connected 
components. The second point implies that if C  is connected, C  is 
connected, and an easy consequence is that the connected components 
of a set S are closed in S  (but not necessarily open, except when S is 
locally connected, hence the interest of this notion of local 
connectedness). 

It is clear that the family of superior level sets is decreasing, 
whereas the family of inferior level sets is increasing: 

 
,  ,  X u X u X u X uλ µ

λ µλ µ∀ ≤ ⊃ ⊂                                            (1.4) 
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As explained in Section 1.2, each one of these families allowing to 
reconstruct the image from Equations 1.2 and 1.3. 
 
 
1.4.2 From level sets to their components 

Whereas contrast invariant, level sets are not compatible enough 
with our visual perception to have any hope of representing visual 
“objects”. It seems true that the eye is the most at ease in comparing 
two light intensities (much more than for example in comparing hues), 
yet these comparisons do not seem to be global: it is able to isolate 
from two adjacent regions the brighter one, but for non adjacent 
regions, the comparison does not seem to be reliable (see Figure 1). 
 
 

 
 
Figure 1: Comparing the two small gray squares, the eye is not at ease comparing 
their gray level. The left small square might appear brighter than the right one, 
whereas they have the same brightness. 
 

The consequence is that global comparisons are not meaningful, 
that is only adjacent regions should be compared. The information left 
is in Figure 2. The arrows in this figure represent the relation “brighter 
than”. This relation is transitive, but observe that it does not allow to 
compare the gray levels of the two squares.  
Moreover, any homogeneous region appears as one “object”, that is 
not split by the eye. This leads us to work with connected components 
of level sets rather than with the whole level sets. The fact that two 
regions are connected components of the same level set is not a 
relevant information, we do not compare their gray level. This is the 
case for the small gray squares in Figure 1. 
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Notation: given a point x in X uλ , let us denote by ( ),cc X u pλ  the 

connected component of X uλ  containing x . By convention, if 

( ),  cc ,x X u X u pλ λ∉  is φ . A similar notation applies to ( ) cc ,X u pλ . 

We derive evidently from Equations 1.2 and 1.3 the reconstruction 
formulae: 

( ){ }( ) inf | ,u p cc X u pλλ φ= ≠                                                

 

( ){ }( ) sup | ,u p cc X u pλλ φ= ≠                                                

 
The monotonicity of level sets translates into a tree structure for 

their connected components. Since their number need not be finite, we 
have to define a more general notion of tree. 

 
 

 
 
Figure 2: the information left from image of  Figure 1 when only local comparisons 
are performed. The arrows represent the order relation “brighter than”. 

 
Definition 1.3: Let ε  be a family of sets and ≺  a partial order 

relation in ε . We say that ≺ induces a tree structure in ε if the two 
conditions hold: 

1. ,  ,  ;R E E Rε ε∃ ∈ ∀ ∈ ≺  

2. ,  ,  ,      .
A B

A B C B and C are comparable
A C

ε 
∀ ∈ ⇒



≺

≺
 

The first condition expresses the connectedness of the structure, 
R being the root of the tree, and the second condition implies that 
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there is no loop, because, given four sets ,  ,  ,  A B C D ε∈ , the 
following situation cannot happen: 

.

A B D

A C D

⊂ ⊂
⊂ ⊂

 

    B and C not comparable . 
A particular case occurs when the relation order is the inclusion 

of sets, in which case we talk about an inclusion tree. 
With this definition we show the tree structure of connected 

components of level sets. 
Proposition 1.4: Let u be an image. Let ( , )A cc X u pλ= (resp. 

( , )A cc X u pλ= ) and ( , )B cc X u pµ=  (resp. ( , )B cc X u pµ= ). Suppose 

that A B φ∩ = . Then either A B⊂ or B A⊂ . 
Proof. Suppose, without losing generality, thatλ µ≤ . Then we 

have [ ] [ ]u uµ λ≥ ⊂ ≥ , thus [ ]B u λ⊂ ≥ . Let z A B∈ ∩ , then 

clearly ( , )A cc X u zλ= , and since B  is connected, contains z and is 
contained in [ ]u λ≥ , we deduce that B A⊂ . 
The case of the connected components of inferior level sets is dealt 
with in the same manner.                                                     □  

 
This implies (and is stronger than) the inclusion tree structure: 

Corollary 1.5: For a bounded image u , the set of lower level sets 
X uλ  and the set of upper level sets X uλ  are each inclusion trees. 

Proof: The root is the definition set of u . If ,   A B and C are 
lower level sets,  A B⊂ and A C⊂ , we get A B C⊂ ∩ , which proves 
that B C φ∩ =  and, using Proposition 1.4, that B  and C  are 

comparable for inclusion order. The proof is similar for X uλ .          □  
 

1.4.3 Beyond components of level set 

The above simple result only is a small extension of Equation 
(1.4). Nevertheless, it is a substantial improvement over these 
formulas in the sense that it represents more faithfully the objects in 
the image. We have got locality, which was one of the main 
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motivations of this work. In these two trees, we expect to find the 
meaningful objects perceived by the eye. In this sense, these trees 
seem to be useful for image analysis. 

The problem with their use is linked to reconstruction. It is 
acknowledged that the trees are sufficient information to reconstruct 
the image they are extracted from, but they are redundant. Since each 
tree represents exactly the image, if we want to deal as well with 
upper level sets as with lower level sets (which we do), manipulations 
of these trees is a problem. For example, the basic operation we would 
like to do on a tree is to remove one node. Since the other tree is not 
linked (except that it represents the same image initially), it must be 
extracted again so that it represents again the image of the first tree. 
There is no quick solution to this; we have to reconstruct the image 
from the modified tree and extract the other tree. This drawback is due 
to the lack of link between the two trees. Whereas the inclusion 
information is encoded for components of the same type of level set in 
their tree, there is no such information between components  f 
different types of level sets. This is to be expected since such 
components are not nested, that is we cannot keep an inclusion tree 
structure with all components of lower as well as upper level sets.  

Figure 3 illustrates the fact that both trees can have very different 
structures. Since no one should be privileged, the use of their tree 
structure is a problem. This example hints at what is lacking in both 
trees. The link between them is related to the notion of holes. In this 
figure, D  is an hole in F and this information is interesting from an 
image analysis point of view. 

Since each tree represents exactly the image, the datum of both is 
at the same time too much (since there is redundancy) and not enough 
because such relevant information as the relation of being a “hole” in 
an object does not appear in these data. 

All these problems have a common solution: instead of 
considering connected components of level sets, we work with 
connected components of level sets whose holes are filled. This 
elementary operation yields what we call shapes. The shapes keep the 
same properties as connected components of level sets: locality and 
insensitiveness to contrast change. The relation between connected 
components of level sets of different types “is a hole in” translates in 
this framework to the relation “is contained in”. Fortunately, this 
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operation remains consistent with image analysis. Since we live in a 
world where numerous objects are “full”, a hole in their projection in 
an image must be due to occlusion, and representing such projections 
without their holes is faithful to the true object.  
The redundancy between the two trees is automatically removed. 
Taking the example of image of Figure 3, the shapes based on 
components A , B , C  and E  are the same: the whole image.  

 
 
Figure 3: Top: an elementary image with three “objects”: two squares and one 
rectangle. Left column: the connected components of upper level sets with 
increasing thresholds from top to bottom. Right column: the connected components 
of lower level sets with decreasing thresholds from top to bottom. Bottom line: the 
two associated trees, where arrows represent the relation “contains”. The two 
squares, which are relevant from an image analysis point of view, are of different 
types and therefore appear in different trees, showing that both trees are of interest. 
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Whereas the square G is included in the rectangle F, there is no link between D and 
F.  
 

The shapes based on D  and G  are D  and G  themselves, since 
these components have no hole. On the contrary, the component F  
become the same rectangle 'F , and D  which was a hole in F , is a 
subset of 'F . As shown in Figure 4, the shapes have an inclusion tree 
structure.  In the following section, we investigate the conditions 
under which a continuously defined image can be represented by a 
tree of shapes. This will imply the definition of the notion of hole and 
of the concept of saturation. 

 

 
 
Figure 4: The shapes based on the elementary image as in Figure 3. The component 
F of Figure 3 becomes full here; D and G do not change since they have no hole, and 
all the other components become A, the whole image. The image is represented by a 
unique inclusion tree, where upper and lower level sets have equal importance. 
Notice that reversing the contrast (negating all gray values) would yield the same 
tree structure. 
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1.4.4 Saturation, hole and shape definition. 

In this section we want to show that the shapes extracted from an 
image have an inclusion tree structure and to investigate the 
possibilities of reconstruction of an image from its shapes. Under 
these conditions, decomposition of an image into shapes will be a 
powerful image representation, well adapted to image analysis. 

 
Heuristically, the tree of shapes is a data structure to encode in a 

tree the family of level lines of the image. To be able to handle 
discontinuous functions, more specifically, upper semicontinuous 
ones, we define level lines as the external boundary of the level sets of 
the image. This leads us to the notion of shape which consists in 
filling the holes of the connected components of the level sets, upper 
or lower, of u . The operation of hole filling was called saturation in 
[1], [68]. Thus, level lines are the boundaries of shapes and to give the 
family of level lines is equivalent to give the family of shapes. It is 
easy to imagine them when the image is smooth (its graph is a smooth 
topography). 

 
Definition 1.6: Let Ω be a connected topological space and 

A ⊂ Ω . We call hole of A  in Ω  the components of \ AΩ . 
 
Definition 1.7:  Let \p A∞ ∈Ω  be a reference point, and let T  be 

the hole of A  in Ω  containing p∞ . We define the saturation of A  

with respect top∞ as the set \TΩ  and we denote it by ( , )Sat A p∞ . We 

shall refer to T  as the external hole of A  and to the other holes of 
A as the internal holes. By extension, if p A∞ ∈  by convention we 

define ( , )Sat A p∞ = Ω . Note that  ( , )Sat A p∞ is the union of A  and its 

internal holes. 
The saturation operator is the operator that transforms the 

connected components of level sets to “shapes”. This operator fills the 
holes of the connected components of level sets. 

We will denote by AΤ the set of holes of A and  Ext A  the exterior 

of A . Then we have the identity: 
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( )
AT

sat A A T
∈Τ

= ∪ ∪  

where the unions are disjoint. 
Notice that the definitions of holes and exterior depend on the 

saturation operator chosen on Ω . But we will never consider several 
saturations at the same time, so that the context will be clear enough to 
disambiguate these notions. 

 
Definition 1.8: Given an image u , we call shapes of inferior 

(resp. superior) type the sets 

( )( ) ( )( )( ),  . ,sat cc X u p resp sat cc X u pλ
λ  

 
We call shapes of u  any shape of inferior or superior type. We denote 
by ( )S u the family of shapes of u . 

 
Examples of interesting saturation operators will be shown later, 

but here is a trivial one: consider the operator that transforms φ ; to 
either φ ; or Ω  and any other set to Ω . This operator destroys all 
information from the connected components of level sets of an image 
and inhibits the reconstruction of an image from its shapes, which is 
one of our concerns. 

 

1.4.5 Saturation of complement 

 We derive from the definition the essential properties of a 
saturation operator on a connected topological space Ω . 

 
Definition 1.9: We say that A ⊂ Ω  is a simple set when A  is 

connected and ( )sat A A= . 

 
In other words, a simple set is a connected set that has no holes, 

that is a connected fixed point of sat. 
The first result is that a hole in a connected set is a simple set or 

its saturation is Ω . 
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Lemma 1.10: Let A  be a connected subset of Ω  and T  a hole in 
A . Then either T  is a simple set or ( )sat T = Ω , the last case 

implying ( )sat A = Ω . 

Proof: T  being a connected component of the complement of a 
connected set ( )A  in a connected space, we know that \TΩ  is 

connected (see [75], IV.3, Theorem 3.3). So this set is either a hole of 
T , in which case ( )sat T = Ω , or the exterior of T , in which case 

( )sat T T= . 

If ( )sat T = Ω , then since ( )T sat A⊂ , the monotonicity of sat 

yields 

( ) ( )( ) ( ).sat T sat sat A sat AΩ = ⊂ =  

□  
This immediately yields 
Corollary 1.11: Let A  a connected subset of Ω  and T  a hole in 

A . Then ( )( ) .sat T sat A⊂  

 

1.4.6 Properties of saturation 

We investigate here the topological properties of simple sets, in 
particular their position relative to their boundary. It appears that 
pathological situations are avoided when the space Ω  is locally 
connected (see Definition 1.1). Notice that from the idempotency of 
the saturation operator simple sets are the image by the saturation 
operator of some sets, in other words, sets that are already saturated. 
The converse (i.e., the saturation of a set is a simple set) would be true 
at the condition this saturated set is connected. 
 

Saturation preserves connectedness 

First we prove that saturation preserves connectedness. This will be a 
direct consequence of the following lemma: 
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Lemma 1.12: Let Ω  be a connected topological space. Suppose 
that Ω  is locally connected. If ,  AA ⊂ Ω is connected and T  is a 
connected component of \ AΩ , then A T∪ is connected. 

Proof. Suppose that A T∪ is not connected. Then A  and T  being 
connected, they are the connected components of A T∪ . Thus A  and 
T  are closed in A T∪ , and each one being the complement of the 
other one in this space, they are also open. Thus, there is an open set 
U  in Ω  such that T U⊂  and U A φ∩ = . We can suppose U  
connected, otherwise it suffices to take the connected component of 
U  that contains A  (there is one since A  is connected), and this 
component is open since Ω  is locally connected. U  is then 
connected, included in \ AΩ and contains T . Since T  is a connected 
component of \ AΩ , this implies T U= , an open set. 

As T  is closed in ,  A T T A φ∪ ∩ = , and T  being connected, 

T T= . Since Tφ ≠ ≠ Ω , the fact that T  is open and closed is a 
contradiction with the connectedness of Ω . 

This lemma allows us to show the connectedness preserving 
property of saturation: 

Proposition 1.13: Let Ω  be a connected and locally connected 
topological space, sat a saturation operator on Ω  and A ⊂ Ω  a 
connected set. Then ( )sat A is connected. 

Proof. It suffices to write 

( ) ( )
AT

sat A A T
∈Τ

= ∪∪  

a union of connected sets (thanks to Lemma 1.12) having a nonempty 
intersection ( )A . ( )sat A is then connected.                                □  

As a consequence of Proposition 1.13, all properties proved 
below apply to shapes of any image defined on Ω , since shapes are 
simple sets. 

 
Saturation preserves topology 

Next, we prove that saturation preserves topology: 
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Lemma 1.14: Let Ω  a connected space, sat a saturation on Ω and 
A ⊂ Ω . If A  is open, ( )sat A is also open. If Ω  is locally connected 

and A  is closed, then ( )sat A  is also closed. 

Proof. If ( )sat A = Ω , the assertions become trivial, so we will 

suppose this is not the case. 

( )\ sat AΩ is a connected component of \ AΩ , so that it is closed in 

\ AΩ , which is closed provided A  is open. Thus ( )\ sat AΩ is closed 

in Ω , which proves that ( )sat A is open. 

If A  is closed, then \ AΩ  is open, and ( )\ sat AΩ is a connected 

component of \ AΩ , so ( )\ sat AΩ is open (since Ω  is locally 

connected), proving that ( )sat A is closed.                                         □  

Remark: A  direct consequence of Lemma 1.14 is that the only 
shapes of an upper semicontinuous image u  that are of inferior and 
superior type are φ  and Ω . Indeed, since connected components of 
upper (resp. lower) connected components of level sets are closed 
(resp. open since Ω  is locally connected), their saturation is also 
closed (resp. open). Thus a shape being simultaneously of inferior and 
superior type would be open and closed, the connectedness of Ω  
implying this shape would be Ω  or φ . Remark this becomes false 
when u  is not upper semicontinuous, as shown in Figure 5. 
 

 
 
Figure 5: For an image that is not upper semicontinuous, a nontrivial shape can be 
of inferior and superior type. In this example, the central disk is approximated by a 
sequence of decreasing circles at level 2, whereas the gaps between circles are at 
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level 0. This disk is a connected component of 1X u u and 2X u , without holes for 

the natural saturation of 2ℝ . 
 

Boundary of saturation sets 

If A  is a set in a topological space we denote with A∂  the boundary 
of A . 

We now show that the boundary of the saturation of a set A  is a 
subset of the boundary of A . 

Lemma 1.15 If A  is any subset of a locally connected space Ω , 
and { },iA i I∈ are its connected components, then 

i
i I

A A
∈

∂ ⊂ ∂∪  

Proof. Let i I∈ . On one hand, we have: 

i iA A A∂ ⊂ ⊂ . 

On the other hand, \ \A AΩ ⊂ Ω , so that taking the complement of 
each member we get 

\ \A A⊃ Ω Ω                                                                                   (*) 
Then                                                                                               (**)  
the last inclusion coming from the fact that i iA A A∩ = , expressing 

that iA  is closed in A , since it is a connected component of A . Since 

\ \ AΩ Ω  is open and Ω  is locally connected, its connected 
components are also open. Thanks to ( )* , each connected component 

of \ \ AΩ Ω  is contained in a connected component of A . Therefore, 

\ \ AΩ Ω being moreover open, each one of its connected components 
is contained in the interior of a connected component of A . Thanks to 

( )** , we get 

( ) ( )\ \i iA A A
°

∂ ∩ Ω Ω ⊂  

which implies that ( ) ( )\ \iA A φ∂ ∩ Ω Ω =  since 

( )i iA A φ
°

∂ ∩ = meaning \iA A∂ ⊂ Ω .                                                   □  

Remark: without additional assumptions, the converse inclusion 
is false. Consider as an example Ω = ℝwith the usual topology and 
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A =ℚ . Then A∂ = Ω  whereas the connected components of A  are 

composed of one rational, thus for each i , i iA A=  and i
i

A A=∪ . 

Nevertheless, if I  is finite, the fact that the iA  are connected 

components of A  implies i
i I

A A
∈

=∪ which is sufficient to prove the 

converse inclusion. 
Proposition 1.16: If  Ω  is locally connected and A ⊂ Ω , 

( )sat A A∂ ⊂ ∂  
Proof. If ( )sat A = Ω , we get ( )sat A φ∂ =  and the result is trivial. 

Now suppose that \ ( )sat A φΩ ≠ . 

( )( )( ) \sat A sat A∂ = ∂ Ω  and ( )\ sat AΩ  is a connected 

component of \ AΩ . Thus, 

( )( ) ( )\ \sat A A∂ Ω ⊂ ∂ Ω  

meaning ( )sat A A∂ ⊂ ∂ .          □  
The next important result links the saturation of a set to the 

saturation of its boundary. 
Lemma 1.17: Let Ω  be a topological space and A ⊂ Ω be an 

open connected set. Then A  is a connected component of \ AΩ ∂ . 
Proof. Since A  is open, \A A⊂ Ω ∂ and moreover 

( )\A A A= ∩ Ω ∂  

proving that A  is closed in \ AΩ ∂ , and since it is also open in it and 
connected, it is a connected component of \ AΩ ∂ .      □  

Proposition 1.18: Let Ω  a connected and locally connected 
topological space and A ⊂ Ω  such that ( )sat A ≠ Ω . Then 

( ) ( )sat A sat A⊂ ∂ , and if A  is closed, we get ( ) ( )sat A sat A= ∂ . 

 

1.4.7 Decomposition of an image into shapes 

The above results concerning the properties of the saturation 
operator are the tools needed to prove that shapes have an inclusion 
tree structure. Nevertheless, this requires additional assumptions on 
the space Ω , which, as we will see, are met with nℝ .  
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Our first proposition is the easy part of our general theorem, and 
does not need further hypotheses about Ω . It compares the saturations 
of connected components of the same type of level set. 

Proposition 1.19: Let Ω  be a connected and locally connected 
space and u  an image defined on Ω . Let A  and B  be two shapes of 
u  of the same type such that A B φ∩ ≠ . Then either A B⊂ or B A⊂ . 
It deals with the comparison of the saturations of connected 
components of level sets of different types. Notice that it involves a 
strong hypothesis on the boundary of the open shape, which explains 
why additional hypotheses on Ω  are required, so that this hypothesis 
is automatically satisfied for all open shapes. Notice the proposition is 
formulated in such a way that the two connected components have one 
point ( )p in common. 

Proposition 1.20: Let u  be an upper semicontinuous image on 

Ω , ( )( ),A sat cc X pλ=  and ( )( ),B sat cc X pλ=  two shapes of u . 

Suppose also that B∂  is connected. Then either A B⊂ or B A⊂ . 
The following lemma deals with the last case: when the connected 

components of level sets are disjoint. 
Lemma 1.21: Let A  and B  be two disjoint connected sets of a 

connected and locally connected topological space. Then ( )sat A and 

( )sat B ) are either nested or disjoint. 

The following theorem sums up the three preceding results and is 
the achievement of this section. 

Theorem 1.22: Let u  be an upper semicontinuous image on the 
connected and locally connected space Ω , A  and B  two shapes of u  
with connected boundary. Then A  and B  are either disjoint or nested. 

From this result, we can conclude that the set of shapes of an 
(upper semicontinuous) image has an inclusion tree structure. For 
simplicity, we assume that our image is discrete. Then we can 
represent the tree as a finite structure; the shapes are the tree nodes 
and the parent-child relationship, represented by the links between 
nodes, is determined by inclusion (the child A  being a shape 
contained in the father fA  with no other shape B  such that 

fA B A⊂ ⊂  ). 
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1.4.8 Unicoherent spaces 

As we have seen, the shapes of an image have an inclusion tree 
structure under some restrictive condition on u : that its shapes have 
connected boundary. Actually this can be ensured from the upper 
semicontinuity of u  if the definition set Ω  is unicoherent. We recall 
the definition of a unicoherent space: 

Definition 1.23: A topological space Ω  is said to be unicoherent 
if it is connected and whatever connected closed subsets F  and 'F  
such that 'X F F= ∪ , we have 'F F∩ is connected. 

Let us give an example of unicoherent spaces. ℝ , and any 
interval I  of ℝ , are unicoherent. Indeed, a connected subset of 
Ω = ℝ or I  is an interval. So if Ω  is the union of two closed 
intervals, they intersect and their intersection is a closed interval, thus 
a connected set. It is harder to prove that nℝ  and any hypercube of 

nℝ  are unicoherent. In particular, the closure of a Jordan domain in 
nℝ  is unicoherent, since it is homeomorphic to a hypercube in nℝ . 

Proposition 1.24: If Ω  is a unicoherent and locally connected 
space, sat is a saturation on Ω  and u  is an upper semicontinuous 
image defined on Ω , then all shapes of u  have a connected boundary. 

We deduce the following 
Corollary 1.25:  In a unicoherent and locally connected space Ω  

with a saturation, two shapes of an upper semicontinuous image 
defined on Ω  are either disjoint or nested. 

 

1.4.9 Applications 

Until now, we have shown that provided some hypotheses on the 
topological space Ω  are true, the shapes of a semicontinuous image 
defined on Ω  have an inclusion tree structure. But the definition of 
shapes requires that we have a saturation operator on Ω . The goal of 
this section is to exhibit saturation operators that are relevant to image 
analysis. We will do this when Ω  is a closed Jordan domain in nℝ  
(for example a hypercube), for 2n ≥ . 
When the image u  is defined only on a bounded subset of nℝ , we 
would like to have a property similar to Theorem 1.22, where shapes 
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should have an easy interpretation in terms of image analysis. The 
idea is that only a part of an image defined on nℝ  is observed. The 
first (bad) solution would be to extend the image u  to nℝ  by an 
arbitrary value. The problem is precisely that this value is arbitrary, 
and different values would give different trees. 

We would like that “objects” totally included in the definition set 
are described in the same manner they would be if the whole image on 

nℝ  were observed. So that connected components of level sets not 
meeting the frame of the definition set are supposed not to be cut. At 
this condition, whatever the image u  outside the definition set, its 
holes are the components of the complement not meeting the frame. 
For the same reason, the saturation of a connected set containing the 
frame is the definition set itself (see Figure 6). There remains to deal 
with the connected components of level sets that meet the frame 
without containing it. 

 

 
 
Figure 6: Saturation of some sets in a bounded definition set. Left: two sets 
(dashed) in their respective image. Right: their saturation (dashed). The top-left set 
does not meet the frame of the image. It is saturated as if the image were infinite 
(whatever the image outside the definition set, the result is the top-right set). The 
bottom-left set contains the frame of the image. It is also saturated as if the image 
were infinite (whatever the image outside the definition set, the result would contain 
the whole definition set, shown bottom-right). The saturation of a set containing the 
frame of the image is always the whole definition set. 
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The intuitive notion of a hole is that of a connected component of 
the complement “smaller” than the exterior. When the definition set is 

nℝ , in some sense a bounded set is “smaller” than an unbounded set, 
so that we can define the holes and the exterior in agreement with the 
intuition. When u  is defined on a bounded set, we quantify this notion 
with the help of measure theory. Therefore, we need to suppose that 
we are provided with a measure on the definition set. 

We need moreover this definition set to be unicoherent. This 
imposes strong constraints. We suppose that Ω  is the closure of a 
Jordan domain in 2ℝ , or more generally in nℝ , i.e., the closure of the 
interior of a subset of nℝ  homeomorphic to 1nS − . Then we know that 
Ω  is a connected and locally connected subset of  2n n ≥ℝ , and also 
unicoherent, for the usual topology induced by nℝ . We suppose also 
that a Borel measure µ  is given on Ω . Therefore, since Ω  is 

compact, ( )xµ < ∞ . The boundary of Ω  as a subset of nℝ , denoted 

by ∂Ω , is called the frame of the definition set; it is a connected set 
(the Jordan hypersurface). 

From these remarks, we define the saturation as follows: 
Definition 1.26: Let A  a measurable subset of Ω . We define 

( )sat A  as: 

 

( ){ }

( ) ( ) ( ){ }

\ :                                     

                                                                                      

\ \ :   / 2    

A C cc A C ifA

if A

C cc A C and C if A

φ φ

φ µ µ φ

 ∪ = Ω ∩ ∂Ω = ∩ ∂Ω =
Ω ∂Ω ⊂

Ω = Ω ∩ ∂Ω ≠ > Ω ≠ ∩ ∂Ω ≠ ∂Ω

  



(1.5) 
 

The new case is concerned with sets that meet the frame of the image 
without containing it. The construction of the associated shape is 
illustrated in Figure 7. That half the area of the image plays a specific 
role is justified by the fact that this yields a saturation operator. 

The fact that we use a Borel measure yields: 
Lemma 1.27: If A ⊂ Ω is measurable, then every connected 
component of A  and of \ AΩ is measurable. 

We are in a position to prove that the sat operator, as defined in 
1.28, is indeed a saturation operator. 
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Figure 7: The construction of the shape associated to a set meeting the frame of the 
image but not containing it. This is the case that was not illustrated in Figure 6. Left: 
the sets. Right: the associated shapes. In the first two cases (two first rows), one 
connected component of the complement has a (Lebesgue) measure larger than half 
the one of the image, this is the exterior of the set. The other connected components 
are the holes. In the third case (third row), no connected component of the 
complement has a sufficient measure, they are all considered as holes and the 
associated shape is the whole image. 

 
Proposition 1.28: The operator A ⊂ Ω  of Formula (1.5) is a 

saturation operator on Ω . 
This implies that the shapes (according to the saturation operator 

of Definition 1.26) of an upper semicontinuous image defined on Ω , 
the closure of a Jordan domain in ,  2n n ≥ℝ , have a tree structure. 
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Chapter 2  
 

Image segmentation based on 
minimization of Mumford-Shah 
functional 
 

In this chapter we address the problem of image segmentation. In 
particular, we introduce a variational approach which use the classical 
Mumford-Shah functional and is subordinated to the tree of shapes of 
the image. We carry out the minimization of the functional using a 
hierarchical processing algorithm. At the end we show some results of 
segmentation. 

 

2.1 The simplified Mumford-Shah functional on 
the Tree of Shapes  

 

Let be :u Ω → ℝ  an image defined in a domain 2Ω∈ℝ . The idea 
of computing a segmentation by selecting a subset of the family of 
level lines of u  can be applied to the simplified version of Mumford-
Shah energy functional, leading to a version of it subordinated to the 
Topographic Map of the image. 
According to Mumford-Shah [71], a segmentation of an image u  is 
defined as a pair ( ),B uɶ  where uɶ  is piecewise regular function, regular 

in \ BΩ , and B  is a the set of boundaries where uɶ  is discontinuous. 
The set of curves B  represents a partition of the image domain Ω . In 
particular, if we assume that uɶ  is piecewise constant, then \ BΩ is a 
union of regions and uɶ  takes a constant value on each of them which 
is equal to the mean value of u  on it. We define the simplified 
Mumford-Shah functional MSEλ as 

 



40 
 

( ) ( ) ( )21
\ \

, |MS B B
E B u H B u uλ λΩ Ω

= + −∫ɶ ɶ                                           (2.1) 

 
where ( )1H B denotes the length of the system of curves B , uɶ  is a 

piecewise constant image, i.e., constant on each region of \ BΩ , and 
0λ > is a parameter. We observe that, given B , the minimum of 

MSEλ with respect to the variable uɶ  is explicitly given by 
 

i Oi
i

O
O

u u
χ

=∑ɶ                                                                                       

 
where 
 

1
 

i
i

O O
i

u u dp
O

= ∫           

 

iO  being the connected components of \ BΩ  (as usual, for any set O , 

1
pOχ = if p O∈ , 0

pOχ = , if p O∉ ). This observation permits us to 

write the energy as a function of B  and denote it by ( )MSE Bλ instead 

of ( )\, |MS BE B uλ
Ωɶ . This energy is a multiscale energy which can be 

written as ( ) ( ), ,MSE B C Dλ λ≈  where 

 

( ) ( ) ( ) ( )21

\
,  

B
C B H B D B u u dp

Ω
= = −∫ ɶ                                           

 
Observe that ( )C B is strictly subadditive (See Definition 5 of [73]). 

We shall restrict us to the case of digitized images, i.e., we assume 
that the domain { } { }1,..., 1,..., ,  ,N x M N M NΩ = ∈ , and the image 

{ }: 1,..., ,  u L L NΩ → ∈ . Let ( )S u  be the tree of shapes of u . 

Observe that any set of shapes ( )S u⊆� can be endowed with a tree 

structure whose nodes are the shapes in �  , two consecutive shapes 
of �  being related by an edge. Let  
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( ) ( ){ }:ST u S u= ⊆� � .  

Let us denote 
 

 
 

We consider the minimization of (2.1) restricted to the set 

( ){ }ST u∂ = ∈� �  i.e. 

( )
( )

, 
min MSB ST u

E Bλ

=∂ ∈� �

                                                                          (2.2) 

Minimizing the simplified Mumford-Shah functional subordinated to 
the topographic map is a segmentation which contains a similarity 
criterion and computes regions whose boundaries are level lines. This 
is not the most general context for a segmentation, since boundaries of 
objects may be bounded by curves formed by pieces of level lines and 
may not coincide with full level lines. In spite of this, level lines are 
robust and contrast invariant objects, and the main edges of the image 
are contained in them.  

Observe that the computation of the optimum has an exponential 
complexity on the number of shapes if all possible combinations of 
them are taken into account. This computation becomes feasible if we 
restrict our search space to a hierarchy of partitions of Ω . 
 

2.1.1 Optimization of a multiscale energy on a hierarchy 
of partitions  

 

There are several alternative but related strategies to minimize an 
energy on a hierarchy of partitions, see [28], [43] and [40]. We shall 
follow here the approach in [6]. Let Ω  be the image domain, and let 

( ) ( ),  P PartΩ Ω  denote the family of subsets and partitions of Ω , 

respectively. 
Definition 2.1: Let ( )0R Part∈ Ω . We say that H  is hierarchy of 

partitions of Ω  constructed over 0R  if H  is a family of nonempty 

subsets of Ω  such that 
1. HΩ ∈ . 

A A∈∂ = ∪ ∂
�

�
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2. Any two sets in H are either nested or disjoint. 
3. Any set in H contains a set in 0R  

A family 'H  of nonempty subsets of Ω  satisfying 2 and 3 is called a 
pre-hierarchy over 0R . 

A cut of H  is a partition of Ω  whose elements are in H  . Figure 8 
displays a hierarchy with two possible cuts. The set of cuts of H  is 
the set of partitions of Ω  that we can build from H  . We shall assume 
that the hierarchies we consider are finite, i.e., we assume that H  has 
a finite number of elements. In this case, H  is a tree whose nodes are 
the subsets of Ω  in H  . Two nodes are related by an edge (of the 
tree) if one is contained in the other and no other set in the hierarchy is 
in between. The sets in 0R  are the leaves of the tree, Ω  is the root, 

and the concepts of father, children and siblings apply. 
 

 
Figure 8: Hierarchy representation in dendrogram form with two possible cuts C1 
and C2 [43]. 
 

Definition 2.2: We say that ( ):E Partλ +Ω → ℝ  is an affine 

energy on ( )Part Ω if there exist two functions ( ), :C D Part +Ω →ℝ  

such that ( ) ( ) ( )E R C R D Rλ λ= +  for any ( )R Part∈ Ω . In this case, 

we denote ( ), ,E C Dλ λ≈ . 
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Definition 2.3: We say that ( ):E Part +Ω → ℝ is separable if 

there exists a function on the subsets of Ω  which we denote by E  
such that 

( ) ( ) ( )    .
R

E E R Part
∈ℜ

ℜ = ∀ℜ∈ Ω∑  

We say that ( ):E Part +Ω → ℝ is subadditive if 

( ) ( ) ( )    ,E R S E R E S R S∪ ≤ + ∀ ⊆ Ω  

such that R S φ∩ = . 

Definition 2.4: Let ( ), ,E C Dλ λ≈  be an affine energy. We say 

that Eλ  is a multiscale energy if ,  C D are separable and C  is 
subadditive. The value λ  is called the scale parameter of the energy. 

From now on we assume that ( ), ,E C Dλ λ≈  is a multiscale 

energy. We assume that the multiscale energy is defined on the cuts of 
H  . For any λ , let ( )*C Hλ be the cut of H  minimizing Eλ . Let us 

review the main ideas of the algorithm proposed by Guigues in [43] to 
compute ( )*C Hλ for any 0λ >  which is based on a the dynamic 

programming functional relation. 
For each R H∈ , let 

( ) { }:H R S H S R= ∈ ⊆  

We call ( )H R ) the partial hierarchy on the node R . As it is proved in 

[43], if ( )*R C Hλ∈ then R  is locally optimal in H , that is, 

( ) ( )E R E Yλ λ≤  for any cut Y  of the partial hierarchy ( )H R . Let 

( )*R Hλ the set of nodes of H  which are locally optimal in H  for the 

energy Eλ . 
Let 

( ) ( ){ }* *: .R R R C Hλλ +Λ = ∈ ∈  

The set ( )* RΛ represents the set of scales such that R  is in the cut of 

H  minimizing Eλ . 
Let 

( ) ( ){ }* *: .up R R R R Hλλ +Λ = ∈ ∈  
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The set ( )* .up RΛ represents the set of scales for which R  is locally 

optimal in H  for the energy Eλ . As proved in [43], ( )*
up RΛ is an 

interval of type [ ), .a ∞ . We denote by ( )Rλ +  the left point of the 

interval and we refer to it as the scale of apparition of R  in an optimal 
cut of the multiscale energy Eλ . Then Guigues [43] proved the  
following result: 

Proposition 2.5: For any 

( ) ( ) ( ))*,  ,  upR H R R Rλ λ+ −∈ Λ =  where ( ) ( ):minS H R SR Sλ λ− +
∈ ⊆= . 

Thus  

( ) ( ) ( ){ }* :C H R H R Rλ λ λ λ+ −= ∈ ≤ < . 

We call the set ( )*  up RΛ the interval of persistence of the region R . 

The persistent hierarchy obtained from H  and Eλ  is 

( ){ }* *: upH R H R φ= ∈ Λ ≠ . 

On the persistent hierarchy *  H we have ( ) ( )fR Rλ λ− += where fR  

denotes the father of R  in *  H . 
For each R H∈ , Rλ +∈ , we define 

( ) ( ) ( ),E R C R D Rλ λ= + . 

We define the partial energy of the node R H∈  as the energy of the 
optimal cut of ( )H R with respect to Eλ  and we denote it by 

( )* ,E Rλ . That is 

( ) ( )( )( )* *,E R E C H Rλ
λλ = . 

Observe that for any leave R  of the hierarchy we have 

( ) ( )* , ,E R E Rλ λ=  for any Rλ +∈ . 

Proposition 2.6: The partial energies ( )* ,E Rλ of the nodes of H  

are related by the dynamic programming equation 

( ) ( ) ( )
( )

* *, inf , ,  ,    
S F R

E R E R E S R Hλ λ λ
∈

  = ∀ ∈ 
  

∑ , 

where ( )F R is the family of children of R . 
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Proposition 2.7: Assume that ( ), ,E C Dλ λ≈ is a multiscale energy on 

the hierarchy H  . Then for any R H∈ we have: 
1. ( )* ,E Rλ is a piecewise affine, nondecreasing, continuous and 

concave function of λ . 
2. We have ( ) ( )( )

* *, ,
S F R

E R E Sλ λ
∈

=∑  if ( )Rλ λ +< , while 

( ) ( )* , ,E R E Rλ λ=  for any ( )Rλ λ +≥ . 

3. If C  is strictly subadditive, i.e., if ( ) ( )( )Y F X
C X C Y

∈
<∑ for 

any X H∈ , then ( )R Rλ+ ∈ and is the only solution of 

( ) ( )( )
*, ,

S F R
E R E Sλ λ

∈
=∑ . 

Combining the results of Propositions 2.5, 2.6 and 2.7 we are able to 
compute the ( )* Ccuts Hλλ − . 

The above algorithm can be implemented once we have the 
hierarchy as it happens with the algorithms used in [28], [40]. Usually 
this hierarchy is constructed with a different merging algorithm [40]. 
On the contrary, the climbing algorithm proposed by Guigues [43] 
constructs the hierarchy at the same time that it implements the 
dynamic programming principle of Proposition 2.6.  

 

2.2 Proposed approach 
 

Our approach is based on the construction of the hierarchy from 
an initial partition using the mergings obtained with a greedy 
optimization algorithm for the simplified Mumford-Shah energy at 
several scales. Then we use Guigues algorithm described in Section 
2.1 to obtain the minimum of the energy on this hierarchy at any scale 
λ . This approach can be used for computing multiscale segmentations 
with the simplified Mumford-Shah energy. 
Starting with the initial partition determined by ( )S u∂ we construct a 

hierarchy using the mergings produced by a greedy algorithm applied 
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to the energy (2.1) at several scales ,  1k kλ ≥ . The greedy algorithm 

produces a local minimum of (2.2) and the hierarchy will contain all 
the merging steps to compute the local minima at several scales. Then 
by the algorithm described in the last section we compute the global 
minimum of MSEλ on this hierarchy for any value of λ . Notice that the 

global optimum corresponding to kλ λ=  does not necessarily coincide 

with the local one obtained using the greedy algorithm. 
The basic operation of the greedy algorithm is the merging of two 
neighboring regions which, in the present context is equivalent to the 
suppression of a shape. Given ( )ST u∈� , the suppression of a shape 

A  in �  gives { } ( )\ A ST u∈� . Let us describe this operation as a 

merging of two regions of \Ω ∂� . For that, let fA  be the father of 

A , let { }1,..., pB B be the children of A , and let {{ }1,..., kA A be the 

siblings of A . It is implicitly understood that, if A  is a leaf of �  , the 
family of children of A  is empty. Similarly, it may happen that the 
family of siblings of A  is empty. The shape A  determines two 
regions 

( )1\u f k
i iA A A A== ∪ ∪ ∪  

( )1\d p
i iA A B== ∪ ∪ . 

and the merging of these two regions produces the region (see Figure 
9) 

( ) ( )1 1\u d f p k
i i i iG A A A A B A= == ∪ = ∪ ∪ ∪ ∪  

 

2.2.1 Merging algorithm 

Let us describe the greedy algorithm proposed in [52] and [70] which 
finds a local minimum of (2.2). Since this algorithm could be applied 
to any energy, let us denote it by E  instead of MSEλ . Let 

( ) ( ) { }( ), \E A E E A∆ = −� � � . 

Set ( )0 S u=� . 

 



47 
 

 

Figure 9: The domain ( )G A obtained after suppression of the shape A . It is the 

region determined by the father of A , denoted by fA , the external shape in the 

Figure, the siblings of A , denoted by 1 2,  A A and the children of A , denoted by 

1 2,  B B . 

 

Step 1: For any 0A∈�  compute ( )0,E A∆ � and insert it in a queue 

Q  with priority ( )0,E A∆ � , the highest priority corresponding to the 

highest value of ( )0,E A∆ � . 

Step 2: Iterate the following procedure: Choose the shape *
iA ∈�  

which corresponds to the first element in the queue constructed in Step 

1 if ( )*, 0iE A∆ >� , and define { }*
1 \i i A+ =� � . Recompute the values 

of ( )'1, 0iE A+∆ >� for all shapes 'A  which are adjacent to *A  (i.e., 

parent, children, or siblings of *A ) and reorder again the queue in 
decreasing order of the values ( )1 1, ,  i iE A A+ +∆ ∈� � (the highest 

priority corresponding to the highest value). We stop when no shape 
*A  exists with ( )*, 0iE A∆ >� . 

The last tree obtained *
�  determines the boundaries and the 

regions of the segmentation. It is a local optimal solution of (2.2), in 
the sense that any other merging of regions of the segmentation 
increases the energy [52], [70]. 
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2.2.2 Construction of hierarchy 
Since MSEλ is a multiscale energy, we can compute its minimum on a 

hierarchy of partitions using Guigues algorithm [43] (see Section 
2.1.1). To explain our construction of the hierarchy of partitions let us 
recall the definition of completion. Let ( )0R Part∈ Ω and let H  be a 

pre-hierarchy over 0R . The operation of adding to H  a node R  

constructed by merging two regions of H  without father is called a 
completion. Then we start with the initial partition 0R  determined by 

( )S u∂  and we take the pre-hierarchy { }'
0:H R R R= ∈ . Then we 

choose 1 0λ ≥  and we minimize 1
MSEλ  using the algorithm described in 

the previous section, adding to the hierarchy 'H  the completions 
corresponding to the merging of neighboring regions performed 
during the execution of the algorithm. Let 1R  be the locally optimal 

solution obtained. We continue iteratively this process by minimizing 
the simplified Mumford-Shah energy 1

1,  2 ,  1k
MS k kE kλ λ λ+

+ = ≥ , (one 

could also use 1k kλ λ+ = + ∆ , for some value 0∆ > ) on the initial 

partition kR  using the greedy algorithm and storing the successive 

mergings as nodes of the hierarchy. The construction may be stopped 
either when the value of kλ  attains a maximum scale value maxλ , or 

when we reach the set Ω . The value of λ+  at each node is computed 
using Propositions 2.6 and 2.7. Then, using Propositions 2.5, we are 
able to compute the cutsλ − on the constructed hierarchy for any 

0λ > . These cutsλ − are local minima of MSEλ ; they are also global 

minima when restricted to the hierarchy. The implementation of this 
algorithm is based on the results of Guigues [43]. It can be used for 
computing multiscale segmentations. 
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2.3 Experimental results 
 
We display some results obtained by minimizing the simplified 
version of the Mumford-Shah functional MSEλ  given by (2.2). The 

functional MSEλ is minimized on a hierarchy of partitions constructed 

with the algorithm described in Section 2.2. In order to simplify the 
nomenclature we call the complete algorithm hierarchy-based 
algorithm. To construct it we started with the value 1 2λ =  and 

updated it with 1 2 ,  1k k kλ λ+ = ≥ , up to a maximal scale which gives 

the region Ω  as segmentation. 
For each experiment, we shall display the original image, the 

boundaries of the segmentation B  and the image uɶ  which takes the 
mean value of u  on each region of the segmentation.  

The energy functional is a multiscale one. The value of λ  
determines the minimal size of the regions of the segmentation [70]. If 
we do not know a priori this size, by taking ,for instance, 2kλ = we 
can obtain a multiscale family of segmentations of the image which 
contain the information at several scales [52], [70]. Figure 10 displays 
the results obtained minimizing MSEλ  (2.2) applied to Lena image with 

several λ  values. Figure 10 (a) display the original image. Column at 
the right displays the set of curves B  obtained, and column at the left 
displays the reconstruction uɶ .  

Figure 11 shows different segmentation of the same original 
image with different λ  values. Is possible to observe that when the λ  
value increase the number of regions that compose uɶ  decrease and, 
consequently, the image segmentation is characterize by few details 
according to the algorithm used. Indeed in this case the number of 
region of the hierarchy of partition that satisfy the Proposition 2.5 
decrease. Vice versa when the λ  value is little there are a lot of nodes 
of hierarchy that satisfy the Proposition 2.5 and, in this case, the 
image uɶ  is composed by a lot of region and, consequently, is possible 
to observe more details. 
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Figure 10: Segmentation result of the Lena image obtained minimizing MSEλ  with 

several values of λ  using the hierarchy-based algorithm. a) First row: original 

image. Column at the left: segmentation boundaries. Column at the right: image uɶ . 

b) Second row: λ  = 20, c) Third row: λ = 60, d) Forth row:λ  = 100. 
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Figure 11: Image partition with different λ  values. a) On top original image. b) 

Second row: image partition with 20λ = . c) Third row: image partition with 

500λ = . d) Fourth row: image partition with 2000λ = . 
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We select some reasonable value of λ  depending on the image 
for the rest of the experiments. Using a different λ  near to the one we 
used will not change much the results. On the other hand one could 
filter the hierarchy of partitions so that all regions obtained have a 
minimal size, but this is not related with the optimization of the 
functional on the hierarchy.  

Figure 12 displays the results obtained minimizing MSEλ applied to 

the Bureau image in Figure 12 (a) with 60λ = . Figure 12 (b) displays 
the set of curves B  obtained, Figure 12 (c) displays the reconstruction 
uɶ .  

 

 
 

Figure 12: Segmentation result of the Bureau image obtained minimizing MSEλ with 

60λ =  using the hierarchy-based algorithm. a) Top: Original image. b) Bottom 

left: Segmentation boundaries. c) Bottom right: the image uɶ . 
 
Figure 13 displays the results obtained minimizing MSEλ applied to 

the geographic image in Figure 13 (a) with 200λ = . Figure 13 (b) 
displays the set of curves B  obtained, Figure 13 (c) displays the 
reconstruction uɶ .  
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Figure 13: Segmentation result of the geographic image obtained minimizing 

MSEλ with 200λ = using the hierarchy-based algorithm. a) Top: Original image. b) 

Bottom left: Segmentation boundaries. c) Bottom right: the image uɶ . 
 

Figure 14 displays the results obtained minimizing MSEλ applied to 

the Hamburg Taxi image in Figure 14 (a) with 50λ = . Figure 14 (b) 
displays the set of curves B  obtained, Figure 14 (c) displays the 
reconstruction uɶ . 
 
 



54 
 

 
 
Figure 14: Segmentation result of the Hamburg taxi image obtained minimizing 

MSEλ  with 50λ = using the hierarchy-based algorithm. a) Top: Original image. b) 

Bottom left: Segmentation boundaries. c) Bottom right: the image uɶ . 
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Chapter 3  
 

Motion estimation 
 

In this chapter we introduce the motion estimation problem and 
we review some basic aspects involved in the digital image sequence 
formation. Some classical and more recent optical flow estimation 
methods are commented. 

 

3.1 Introduction 
 

Computing the apparent motion of objects in a sequence of 
images is one of the key problems in video processing known as the 
optical flow computation. Once computed, the measurements of image 
velocity can be used in a number of applications in video processing 
and compression as well as in computer vision [53]. In video 
compression, the knowledge of motion helps to remove temporal data 
redundancy and therefore attain high compression ratios [29]. In video 
processing, motion information is used for deblurring (motion-
compensated restoration), noise suppression (motion-compensated 
filtering) or standard conversion (motion-compensated 3D sampling 
structure conversion). Tracking moving objects is another important 
application in video processing. In computer vision, 2D motion 
usually serves as an intermediary in the recovery of camera motion or 
scene structure. For references in these topics see [53], [87]. 

The required features of the motion field are application 
dependent. Tasks such as the inference of egomotion and surface 
structure require velocity measurements being accurate and dense, 
providing a close approximation of the 2D motion filed, whereas 
motion detection only needs approximated motion field but well 
located. 

Most known motion estimation methods, in one form or another, 
employ the optical flow constraint which states that the image 
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intensity remains unchanged from frame to frame along the true 
motion path. The movement of objects present in the scene may be 
recovered by minimizing an error measure based on this assumption 
[87]. However, it is known that motion estimation is an ill-posed 
problem: the solution can not be unique, or solutions may not depend 
continuously on the data [10]. 

Current approaches try to solve this issue by imposing additional 
assumptions about the structure of the 2D motion field. These 
constraints are introduced into the error measure either by adding a 
smoothness term to it, or by restricting it to a particular motion model. 
The former strategies are called dense motion field estimation 
approaches, whereas the latter ones are usually called parametric 
motion estimation approaches. 

Classical methods for dense motion field estimation seek for a 
motion field that satisfies the optical flow constraint with a minimum 
pixel-to-pixel variation between the flow vectors (smoothness term). 
Parametric motion estimation methods usually consider a partition of 
an image into disjoint regions and estimate the motion of these regions 
restrained them to parametric motion models. We will review dense 
and parametric methods in Section 3.4. 

The optical flow constraint assumption is generally violated in 
image sequences taken from the real world. Global or local changes in 
illumination due to, for instance, a moving camera or a change in the 
shade of an object can make the optical flow constraint to fail. 
Alternatives to the classical brightness constancy assumption have 
been already proposed in the literature (see Section 3.4.2). 

 

3.2 Geometric image formation 
 

Imaging systems capture time-varying 3D  scenes as 2D  
projections. These projections can be represented by a mapping from 
4D  space to a 3D  space, ( ) ( )4 3: : , , , , ,m X Y Z t x y t→ →ℝ ℝ  where 

( ), ,X Y Z are the 3D  world coordinates, ( ),x y  are the 2D  image 

coordinates, and t  is the time, and all of them are continuous 
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variables. These projections can be perspective or orthographic [49], 
[87] and entail some loss of depth information, which engenders 
several problems such as aperture and occlusions (see Section 3.3). 

Perspective projection (or central projection) is the projection of 
points in the scene onto the intersection of the image plane with the 
ray connecting the points and the focal point (or center of projections) 
C . We consider the image-centered coordinate system, where the 
image plane is parallel to the XY plane− of the 3D  world coordinates 
and the focal point C  is a distance l  away from the image plane on 
the negative side of the Z axis− . That is, C  is placed on ( )0,0, l− . 

The distance from the focal point to the image plane, l , is called focal 
length. In Figure 15 perspective projection is illustrated for this 
configuration.  

 

 
 

Figure 15: Perspective projection model 
 
The perspective transformation for this configuration gives the 

following relations: 

  
lX lY

x and y
l Z l Z

= =
+ +

. 
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Orthographic projection (or parallel projection) is the projection 
by parallel rays orthogonal to the image plane. See Figure 16 for an 
example of orthographic projection when image-centered coordinate 
system is considered. 

 

 
 

Figure 16: Orthographic projection model 
 
The orthographic projection can be described as   x X and y X= = . 

Note that the orthographic projection corresponds to the limit case 
of the perspective projection when l → ∞ . It appears when the objects 
are, compared with the focal length l , very small or located very far 
away from the viewer (i.e., / 1l Z → , where Z  denotes the 
Z coordinate−  of the object in the world coordinate system). 

The perspective projection produces a distortion of angles and 
distances. The size of the view will vary when the relative positions of 
the eye, the image plane, and the object are altered. In the case of 
orthographic projection the size of the view of the object will not vary 
with the distance between the object and the image plane; projected 
parallel straight lines stay parallel; distances and angles are 
transformed consistently. It is usual to replace the perspective 
projection (non-linear transformation) by orthographic projection 
(linear transformation) if it is possible. 
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3.3 2D Motion estimation 
 

Image video sequences are 2D  projections of 3D  scenes at 
different time instants. Thus, 2D  motion refers to the projection of the 
3D  motion of objects and camera onto the image plane. In Figure 17 
the point tP  moves with velocity tW  to point 't

P  . The 3D  motion is 

projected over the image plane by a perspective projection. The 
corresponding image point tp  moves on the image plane with velocity 

tw  to point 't
p . 

 

 
 

Figure 17: 3D motion projection 
 
The presence of 2D  motion manifests itself on the image plane 

by changes of the intensity values of the pixels along time. These 
changes are referred as optical flow field or apparent motion field. The 
optical flow field is, in general, different from the 2D  motion field 
due to the following effects: 

1. The 2D motion field may not always be observable: 
Lack of sufficient spatial image gradient may produce an 
unobservable motion; think, for instance, in the motion 
generated by a circle with uniform intensity which rotates 
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about its center. This motion is unobservable. The same 
thing may happen when an image made by a periodic 
structure moves and stays unchanged after the motion. In 
Figure 18 we display the two examples mentioned 
previously. This problem is a particular case of the 
aperture problem. 
 

 
 

Figure 18: Examples of projected motion that do not generate optical 
flow. 
 

2. An observable motion may not always corresponds to 
an actual motion: 
If external illumination varies from frame to frame, then a 
change will be observed in the sequence image intensity 
even though there is no motion. In Figure 19 we can see 
the effect of an illumination change over a scene. In this 
example the shades change the geometry of the image. 
This problem may appear in satellite images, and is 
difficult to solve. However, generally the situation is not 
so dramatic as in this example of optical flow field. 
 

 

Figure 19: Example of projected objects that generate optical flow. 
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Therefore, since only the optical flow field can be observed, 
generally it is assumed that the estimated optical flow corresponds to 
the 2D  motion field. Thus, the objective of motion estimation 
techniques is to estimate the optical flow field. Figure 20 shows an 
example. 

 

 
Figure 20: Optical flow estimation example: a) wheel at time t , b) wheel at time 

1t + , c) estimated optical flow field. 

 

Optical flow constraint 

As we have mentioned in the Introduction, the most usual 
assumption is that image intensity remains constant along the motion 
trajectory (optical flow constraint). This assumption involves that the 
intensity changes are due exclusively to motion, scene illumination is 
constant, and the object surface is Lambertian. 

Let [ ]0 1: ,I T T xΩ → ℝ be an image sequence with rectangular 

spatial domain 2Ω ⊂ ℝ and time interval [ ]0 1,T T . The optical flow 

constraint can be written as: 

( ) ( ) ( )( ),  ,  , , , , , ,I t x y I t t x u t x y y v t x y= + ∆ + +                     (3.1) 

where [ ]0 1,  ,t t t T T+ ∆ ∈  are two different time instants, and 

( ) ( )( ), , ,  , ,u t x y v t x y  is the optical flow field. When no confusion 

arises ( )yxt ,,  will be dropped out. 

Assuming that the displacements ( )vu,  are small or that the image 
changes slowly in space, this constant-intensity assumption leads to 
the linearized optical flow constraint, which is called the Optical Flow 
Equation (OFE). 
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0=∂+∂+∂ IvIuI yxt                                                                        (3.2) 

where ,  x y∂ ∂  and t∂  denote the partial derivatives with respect to 

,  x y  and t  respectively. 
 

Ill-posed problem 

The 2D motion estimation problem based only on two frames and 
constrained only by Equation (3.1) is an ill-posed problem in the 
absence of any additional assumptions about the nature of the motion. 
A problem is called ill-posed if a solution is not unique, or does not 
exist, or the solution do not continuously depend on the data [87]. 
Estimation of 2D motion has the existence, uniqueness and continuity 
problems: 

• Existence of a solution: No correspondence can be 
established for covered/uncovered points. This is known 
as the occlusion problem. This concept is illustrated in 
Figure 21 where the object indicated by the solid lines 
translates in the x  direction from time t  to 1t + . The 
dotted region in the frame t indicates the background to be 
covered in frame 1t + . Thus, it is not possible to find 
correspondence for these pixels in frame 1t + . The dotted 
region in frame 1t + indicates the background uncovered 
by the motion of the object. Clearly, there is no 
correspondence for these pixels in frame t . 
 

 
 

Figure 21: the occlusion problem 
 

• Uniqueness of the solution: If the components of the 
displacement at each pixel are treated as independent 

frame t frame t+1 
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variables, then the number of unknowns (two vector 
components) is twice the number of observation (3.1). 
This leads to the so-called aperture problem. In such 
cases, we can only determine motion that is in the 
direction of the spatial image gradient, called the normal 
flow, at any pixel: we denote ( ),v v=w and write the OFE 

(3.2) as 

tI I∇ ⋅ = −w                    

where the operator nabla denotes the spatial gradient 

( ),
T

x yI I I∇ = ∂ ∂ . The optical flow field w  can be 

decomposed into = +n tw w w , where the normal flow 

nw and the tangential flow tw  are respectively parallel and 

perpendicular to I∇ . Then, the OFE becomes 

( ) 0t tI I I I∇ ⋅ + + = ∇ ⋅ + =n t nw w w               

Hence, only the normal flow can be determined and is 
given by 

 where t
n n

II
w w

I I

∇= = −
∇ ∇nw  

In Figure 22 we display an illustration of the aperture 
problem. In particular, we consider an object which moves 
following the vector w  up to the line L . If we estimate 
the motion vector based on the point p , then it is not 
possible to determine which of the vectors painted over p  
corresponds to the motion of the object, and only the 
normal flow can be determined. The same problem may 
appear if we estimate the motion based on a neighborhood 
of pixels which has uniform gray level patches. This is the 
case of the window of the Figure 22 indicated as Aperture 
1. However, the aperture problem may be overcomed by 
considering a neighborhood that contain sufficient gray-
level variation. This is achieved in the second window of 
the Figure, indicated as Aperture 2. 
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Figure 22: The aperture problem 
 

• Continuity of the solution: Motion estimation is highly 
sensitive to the presence of noise in video images. Even, 
small amount of noise may result in large deviations in the 
estimates. 

These problems can be solved using different restriction over the 
optical flow as will be seen in next Section. 

 

3.4 Optical flow estimation method 
 

One of the first works about the optical flow estimation problem 
was developed in [10]. The algorithm proposed in this paper is based 
on the OFE. In particular, it follows the variational approach which 
define the following energy to be minimized over the whole image 
domain Ω   

( )2
min x y tIu Iv I

Ω
∂ + ∂ + ∂∫                 (3.3) 

Many other works have been developed based on the same energy 
function. These methods are called differential techniques, because the 
time and space derivatives of the image intensity function are needed 
for estimating the motion. 

Equation (3.3) is not sufficient to uniquely specify the 2D  motion 
field (aperture problem). Current motion estimation approaches try to 
solve the latter issue by imposing additional regularizing assumptions 
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about the structure of the 2D  motion field. They can be classified into 
two groups: dense motion estimation techniques, and parametric 
motion estimation techniques. The first ones introduce additional 
constraints into the error measure by adding a smoothness term to it, 
whereas the second ones restrict the error measure to a particular 
motion model. In the first case, the domain is the whole image and 
each pixel has a displacement vector associated. In the second case, 
the domain can be a different size window or an arbitrary region 
whose pixels follow the same motion model. The latter methods may 
be also called region-based approaches. Furthermore, the dense 
motion estimation techniques are also classified into global and local 
techniques according to the involved smoothness term [18]. The 
smoothness term is also called regularization term. In global methods 
(for instance, Horn and Schunck method) the regularization term is 
applied globally on the whole image domain, whereas in local 
methods (for instance, Lucas and Kanade method) it is applied locally 
on a neighborhood. We discus below more details of the methods. 

Before continue, remark that we denote ( ),x yφ  the general 

transformation of pixel ( ),x y  and in the dense motion estimation 

techniques we can write ( ) ( ), ,
T

x y x u y vφ = + + . 

 
 

3.4.1 Dense Motion Estimation techniques 
 

Global dense motion field estimation approaches yield flow fields 
with 100% density, but are experimentally known to be more sensitive 
to high gradient noise, as we will see later in this Section. These 
methods differ mainly in the particular smoothing strategies adopted. 

Horn and Schunck method: 
The Horn and Shunck method [45] is a classical method for dense 

motion field estimation. It attempts to determine the optical flow 
vector field ( ),u v  based on two assumptions: 

• The OFE (3.2) is satisfied. 
• The optical flow vector field varies smoothly from pixel to 

pixel. This can be expressed by requiring the integral 
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( )2 2
 u v dxdy

Ω
∇ + ∇∫                                                 (3.4) 

to be minimum. Recall that ( ),x y∇ = ∂ ∂ . 

The energy functional to be minimized includes both 
constrains, and is defined as 

( ) ( )2 2 22   HS x y tE Iu Iv I u v dx dyα
Ω

= ∂ + ∂ + ∂ + ∇ + ∇∫   

where 0α >  is the weight to control the influence of the 
smoothness constraint. Larger values of 2α  result in stronger 
penalization of large flow gradients and lead to smoother flow fields. 
This functional is well-posed (as established Schnörr [82]). Thus, it 
has a unique minimizer that implicitly entails an interpolation process: 
at locations where 0I∇ ≈ , no reliable local flow estimate is possible, 

but the regularizer of Equation (3.4) fills in information from the 
neighboring flow. This method is classified as a global technique, 
since the used regularization term is global. Note that this method and, 
in general, global dense motion field estimation methods may be 
sensitive to high gradient noise as is discussed in [18]. 

Lucas and Kanade method: 
Lucas and Kanade [48] proposed to estimate the motion of a pixel 

by assuming that the motion vector associated to the OFE remains 
unchanged in a neighborhood of the pixel. Thus, the method allows to 
estimate a translational motion vector for that block and assign this 
vector to the pixel. 

The authors propose to determine u  and v , at some location 
( , )x y  and time t , from a weighted least-square fit by minimizing the 
functional: 

( )2
*LK x y tE K Iu Iv Iσ= ∂ + ∂ + ∂                                                         

where Kσ  represents a neighborhood of ( ),x y  of size σ . The 

window function Kσ  may be a Gaussian with standard deviation σ . 

Let us remark that in this case the regularization term is applied 
locally on a neighborhood. Thus, this method is classified as a local 
technique. A sufficiently large value for s makes this method robust 
under noise. 
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A minimum ( ),u v of LKE  satisfies the equations 0u LKE∂ =  and 

0v LKE∂ = . This gives the system 

( ) ( )
( ) ( )

2

2

*        * *

**    *  

x x y x t

y t
x y y

K I K I I K I Iu

K I IvK I I K I

σ σ σ

σ
σ σ

 ∂ ∂ ∂ − ∂ ∂    =     − ∂ ∂    ∂ ∂ ∂ 

        

 
which can be solved if its symmetric matrix is invertible. This is not 
the case of flat regions, where the image gradient vanishes. In some 
other neighborhood Kσ , the smallest eigenvalue of the system matrix 

may be close to zero and consequently, the data does not allow a 
reliable determination of the full optical flow. This is a form of the 
aperture problem mentioned earlier. 

Nagel and Enkelmann method: 
The method of Horn-Schunck imposes the OFE and the 

smoothness constraint globally over the whole image. As a 
consequence, the flow is also smoothed across motion boundaries. 
Thus, the result is a blurry flow field which is ignorant of the true 
motion boundaries. This is an important drawback of this method. The 
first modification to alleviate this problem has been proposed by 
Nagel. In [74], he introduces the oriented smoothness (or image 
driven) constraint, which imposes that optical flow field should vary 
piecewise smoothly in space. 

They formulate the problem as the minimization of the functional: 

( ) ( ) ( ) ( ) ( )2  
T T

NE x y tE Iu Iv I u D I u v D I v dx dyα
Ω

 = ∂ + ∂ + ∂ + ∇ ∇ ∇ + ∇ ∇ ∇
 ∫

where ( )D I∇  is a projection matrix perpendicular to I∇  defined as: 

( ) ( ) ( )( )
( )( ) ( )

2

2

         -  1

2     

y x y

x y x

I I I
D I

I I I I

δ
δ δ

 ∂ + ∂ ∂
 ∇ =
 ∇ +  − ∂ ∂ ∂ + 

                           

Here, δ  serves as regularization parameter that prevents the matrix 

( )D I∇  from getting singular. 

Using this new functional to computer the optical flow, the 
diffusion across image boundaries with large I∇  is reduced. This 
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attenuates the variation of the flow in the direction of the spatial 
gradient. Well - posedness for this functional has been established in 
[82]. 

 
Weickert et al. methods 

Weickert et al. [84], [14], [5] and [88] are currently interested in 
the study of improved optical flow estimation techniques based on 
Horn-Schunck and Nagel methods. They noted that the smoothness 
term proposed by Nagel has an important drawback: in specific 
situations image discontinuities may not coincide with flow 
discontinuities. For instance, in the case of an image containing 
strongly textured objects, it has many texture edges which are not 
motion boundaries. Thus, the previous method may lead an over-
segmentation flow. In such cases, a smoothness term which respects 
flow discontinuities instead of image discontinuities is desirable. 

 Therefore, the authors of [83] and [84] introduced the flow-
driven smoothness term by replacing the quadratic smoothness term of 
Equation (3.4) by the following term 

( )2 2
  u v dx dyρ

Ω
∇ + ∇∫                                                              

where ( )2sρ  is a robust function. In this case, the modified energy 

functional is  

( ) ( )2 2 22   W x y tE Iu Iv I u v dx dyα ρ
Ω

= ∂ + ∂ + ∂ + ∇ + ∇∫              (3.5) 

The function ρ  has an associated function ( ) ( )2 ' 2s sψ ρ=  that is 

called the influence function [4] or diffusivity function [84] and 
controls the activity of the Euler-Lagrange equations of the Functional 
(3.5). In [88], for instance, the following regularizer have been 

considered: ( )2 2 2s sρ ε= + , where the parameter ε  serves to 

ensure that the function ρ  is differentiable s∀ ∈ℝ , and the influence 
function is 

( )2

2 2

1

2
s

s
ψ

ε
=

+
 

Observe that this function takes small values for large arguments. 
Then, this choice of ρ  for the Functional (3.5) penalizes diffusion 
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across flow discontinuities and, consequently, helps to preserve them 
in a better way. Moreover, in [83] a complete review and 
classification of rotation invariant convex regularizers can be found. 

In [14] the authors apply a robust function ρ  over the data term, 
as well as the spatio-temporal smoothness term. The data term is 
derived from the intensity constancy assumption and a gradient 
constancy assumption. Note that incorporating gradients, geometry 
information is considered. Furthermore, the approach is embedded in 
a coarse-to-fine strategy. Finally, a very interesting combination of 
Horn-Schunck method and Lucas-Kanade method with an efficient 
implementation based on multigrid schemes has been proposed in 
[18]. Multigrid strategies are developed in several areas included 
motion estimation [36] and  [63]. The multigrid framework [44] is 
nowadays an active and important subject of research. 

 

3.4.2 Parametric Motion Estimation techniques 
 

Parametric motion estimation approaches may offer relatively 
high robustness under noise, but the estimated motion is constrained 
to motions described by the specific model. These techniques are well 
suited when there is enough confidence that the underlying structure 
behaves as the enforced model. 

Models for Motion Representation 
Motions present on an image sequence can be described in a 

parametric form using a finite, usually small, number of parameters. 
Since the 2D  motion results from the projection of 3D  moving 
objects onto the image plane, a model for 2D  motion fields can be 
derived from models describing 3D  motion, 3D  surface function and 
camera projection geometry. Note that identical 2D  motion models 
may result from different assumptions about 3D  motion, surface and 
camera projection models [87], [49] and [53]. 

We shall assume that motion of objects in an image sequence can 
be modeled  locally with an affine model. An affine transformation 

( ),x yφ of a point ( ),x y is described as: 
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( )    
,

   

a b x e
x y

c d y f
φ     

= +    
    

.                                                  (3.6) 

To understand the incidence of 3D  subjacent motion on each 
term of this Equation we refer to Chapter 7 of the book [49], where 
there is a very accurate study of the transformations that derives from 
the projective geometry when observing the movement of a planar 
surface. We give some of the ideas. 
  

 
Figure 23: A planar surface moving with translation velocity ( ), ,α β γ  at 

( )0,0,r  and rotation velocity ( )1 2 3, ,ω ω ω around it. An optical flow is induced 

on the image plane by perspective projection from the focal point ( )0,0, l− . 

 
We consider a planar surface moving in the scene given by the 
equation: Z pX qY r= + + , where ,p q  are the gradient of the surface 
and r  designates the distance of the surface from the image plane 
along the Z axis− . In Figure 23 we display a planar surface moving 
with translation velocity ( ), ,α β γ  at ( )0,0,r and rotation velocity 

( )1 2 3, ,ω ω ω  around it. An optical flow is induced on the image plane 

by perspective projection from the focal point ( )0,0, l− . This optical 

flow is denoted w  and is given by 



71 
 

( )     

    

T
E A B x x G x

F C D y y H y

         
= + +         
         

w p  

The flow w  uses a different notation from one in Equation (3.6), 
since w  only models the flow vectors, and not the full transformation. 
To obtain the transformation as is described in φ , we just need to add 

the original vector ( ),x yp = , we use the identity denoted by Id , for 

that purpose. 

( ) ( ) ( )Idφ = +p w p p . 

That is, 

( ) 1    

      1

T
E A B x x G x

p
F C D y y H y

φ
+         

= + +         +         
                         (3.7) 

The flow parameters ,  ,  ,  ,  ,  ,  ,  and A B C D E F G H are related with 

the motion parameters 1 2 3,  ,  ,  ,  , α β γ ω ω ω  and the surface ( ), ,p q r  

by following equations: 

2 2 3

1 3 1

2 1

,  

,  

,  

1 1
,  

l l
E F

l r l r
p q

A p B q
l r l r

p q
C p D q

l r l r
p q

G H
l l r l l r

α β

α γ αω ω ω

β β λω ω ω

γ γω ω

= =
+ +

+= − = − −
+ +

+= − + − = − −
+ +

   = + = − +   + +   

 

The parameters E  and F  are zero order parameters, ,  ,  ,  A B C D  are 
first order parameters and the ,  G H  are second order parameters. It is 
also important to notice that r  and l  are, respectively, the distance of 
the surface to the camera and the focal length and must be treated as 
constants. 
From the projective model in Equotion. (3.7) we can obtain simpler 
models. If we consider an orthographic projection, i.e. the case 
l → ∞ , the second order parameters G  and H  are 0 . If we also 
assume there is not any 3D  rotation in the scene, i.e. 

( ) ( )1 2 3, , 0,0,0ω ω ω = , then the first order parameters ,  ,  A B C and D  
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are also 0 . Therefore, if the second order parameters vanish, we 
obtain an affine model with six parameters; whereas, if the first and 
second order parameters vanish, we lead to a translational model with 
two parameters. 

In Figure 24 we display four examples of parametric motion 
vector fields which correspond to a translational model (a), an affine 
model (b), a projective model (c) and a model induced by perspective 
or orthographic projecton of rigid motion of curve surfaces (d). The 
corresponding motion-compensated predictions of a centered square 
[53] are displayed in the column at the right. 

 

 
Figure 24: Examples of parametric motion vector fields (sampled) and 
corresponding motion-compensated predictions of a centered square [53].  
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These models can be used efficiently for the estimation, interpretation 
and transmission of certain classes of motion fields. Observe that 
more model parameters imply more complexity in the functional 
minimization, but more precision, whereas less parameters imply 
more computational simplicity and more robustness, but less 
precision. We conclude that the affine motion model (induced by 
orthographic projection of rigid motions of planar surfaces) gives a 
good trade-off between complexity and representativeness. 

Parametric motion estimation methods: 
In [35] a region-based affine motion estimation method for the 

identification of 2D  and 3D  motion models in image sequences is 
presented. In this case two images at two different time instants, 
generally consecutive, of an image sequence are taken. The first of 
them is partitioned into disjoint connected regions. 
These regions are assumed to be extracted from the image using a 
particular partitioning strategy, such as a luminance homogeneity 
criterion. Matching of regions is carried out by minimizing a cost 
functional based on the brightness constancy assumption. In 
particular, the functional is the mean square reconstruction error after 
motion compensation 

[ ]
( )

2

,

, ,
x y

E DFD x y φ
∈

= ∑
ℝ

 

where R  is the region, and DFD  denote the displaced frame 

difference: [ ] ( ) ( )( ), , , , 1, ,DFD x y I t x y I t x yφ φ= − + . Their approach 

assume an affine motion model for each region. Moreover, the 
technique is embedded in a multiresolution scheme in order to 
improve the robustness of the method. 

Robust motion estimation 
Assumptions about the world embedded into algorithms for 

recovering optical flow (like constant intensity) are, necessarily, 
simplifications and hence, will be violated. Therefore, at the same 
time that realistic constraints that avoid model violations are 
formulated, other optical flow estimation approaches are developed 
with the goal of performing well even when violations are present. 
These approaches are called robust methods, and their goal is to detect 
and reduce the violations of the adopted assumption. 
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In motion estimation algorithms presented in the previous 
Section, there is an assumption which is implicitly derived from the 
brightness constancy and spatial smoothness assumptions: in a finite 
image region only a single motion is present. However, when a region 
contains pixels of two different objects, multiple motions may appear 
within this region and cause violations of these assumptions. The large 
error values produced are called outliers. 

Note that these gross errors may be arbitrarily large and therefore 
cannot be averaged out, as is typically done with small-scale noise. A 
popular robust technique is based on the known M-estimators [46]. 
Let { }iX p=  be a set of data points and let m  be a k-dimensional 

parameter vector to be estimated. The objective functions used in 
robust estimation are defined in terms of an error distance or residual 
function, denoted by ( ),i if f p m= , ( )ip X∈  that may correspond, 

for instance, to the displaced frame difference ( )DFD . The standard 

least-squares method tries to minimize the quadratic error, 2

i X
ip

f
∈

∑  , 

which is unstable if there are outliers present in the data (Figure 25 ). 
The M-estimators try to reduce the effect of outliers by replacing the 
squared residual 2

if  by another function of the residual. The M-

estimate of m  is defined as 

( )ˆ arg min ,
i

m i i
p X

m fρ σ
∈

= ∑                                                              

where ( )uρ  is a robust error function and iσ  is the scale parameter 

associated with if , which may or may not be present [11]. 

The choice of different functions ρ  results in different robust 
estimators. The robustness of a particular estimator refers to its 
insensitivity to outliers. A tool to analyze the robustness of the 
function ρ  is the associated influence function, ψ  [86]. The influence 
function, characterizes the bias that a particular error measurement has 
on the solution and is defined as the derivative of the function ρ . We 
next gather some functions ρ  used in computer vision: 

• Quadratic error ( )2  normL : ( ) ( )2,  with 2s s s sρ ψ= =  
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• Absolute error ( )1 normL : 

( ) ( ) ( ),  with s s s sign sρ ψ= =  

• German and McClure ( )1 normL : 

( ) ( )
( )

2

22 2

2
,  with 

s s
s s

s s

σρ ψ
σ σ

= =
+ +

 

• Cauchy function: 

( ) ( )
2

2

1 2
log 1 ,  with 

2 2

s s
s s

s
ρ ψ

σ σ
  = + =    +  

 

See Figure 25 for illustrations of these functions ρ  and the 
associated influence functions, ψ . As can be seen the quadratic and 
the absolute errors are convex functions, this property is very 
interesting for the function minimization and is not fulfilled by the 
other error estimators. However, the quadratic errors are not robust, 
because their influence function is not bounded. In Figure 25 (b) one 
can observe that the outlying points are less weighted. However, the 
absolute errors are not stable, since the function s is not differentiable 

in 0s = . The Cauchy and German and McClure do not guarantee a 
unique solution. For these two functions the influence of large errors 
decreases linearly with their size as can be seen in Figure 25 (c) and 
(d). Concave functions have been used as robust functions in [64]. For 
more details about robust parameters estimation in computer vision 
see [86], [4] and [11]. 

Black and Anandan [4] present a framework based on robust 
estimation that addresses the problem to improve accuracy and 
robustness of flow estimates in regions containing multiple motions 
by relaxing the single motion assumption. They estimate the dominant 
motion (that is, the apparent camera motion) accurately ignoring the 
other existing motions. Additionally the approach detects where the 
single motion assumption is violated (i.e.,where the error measure is 
large). Then, these positions are examined to see if they correspond to 
a consistent motion.  
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Figure 25: Common robust ρ -functions and ψ  functions 

 
Other motion estimation approaches 

The classical brightness constancy assumption is generally 
violated in image sequences taken from the real world. Global or local 
changes in illumination due to, for instance, a moving camera or a 
change in the shade of an object may change the appearance of a 
region. These kind of situations may prevent the correct motion to be 

a) Quadratic error 

b) Absolut error 

c) German & McLure 

d) Cauchy 
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estimated. Alternatives to the optical flow constraint have been 
already proposed in the literature [50], [66], [77] and [56]. 

A common approach to handle non constant intensity is through 
explicit modeling of the illumination change in the OFE [12]. This 
approach requires complex minimization since, in addition to the 
motion field, illumination fields must also be estimated. A parametric 
affine motion model is chosen. The defined functional is linearized, 
and robust estimation is used. Furthermore the scheme is embedded in 
a multiresolution scheme. 

In [10] a constraint based on spatial gradient’s constancy is 

proposed. This constraint can be written as ( ), , 0
d

I t x y
dt

∇ = . It 

relaxes the classical assumption, but requires that the amount of 
dilation and rotation in the image be negligible (this limitation is often 
satisfied in practice according to [53]). The resulting technique has 
been demonstrated to be very robust in the presence of time-varying 
illumination. 

More recently, it has been shown empirically in [9] that the 
direction of the intensity gradient is invariant to global light changes. 
In particular, the authors of [9] propose a probabilistic approach in 
which they analytically determine a probability distribution for the 
image gradient as a function of the surface’s geometry and 
reflectance. Their distribution reveals that the direction of the image 
gradient is also relative insensitive to changes in illumination 
direction. They verify this empirically by constructing a distribution 
for the image gradient from more than 20 million samples of gradients 
in a database of 1280 images of 20 inanimate objects taken under 
varying lighting conditions. The work presented in [20] is based on 
the latter properties. In particular, a sort of optical flow constraint 
equation based on probability distributions of gradient directions is 
proposed. The problems in computing the gradient directions in 
homogeneous regions (where they are not defined) and at proximity of 
straight edges (where they do not vary) are avoided by using the 
stochastic approach. Furthermore, the probability density function is 
made dependent on the gradient magnitude, becoming sharper on and 
at proximity of edges, and flatter in homogeneous regions. 
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An interesting requirement for motion estimation approaches is to 
be contrast invariant. We shall say that an operation T  on an image 
I  is contrast invariant if 

( )( ) ( )T g I T I=  

for any no decreasing contrast change g  [23]. 
In [33] a contrast invariant approach for morphological image 

registration is presented. The proposed functional is based in 
measuring the errors between the unit normals in two images, and is 
presented together with suitable regularizations. This approach is 
contrast invariant, since it is based in unit normals, which are contrast 
invariant image elements. In [32] alignment of unit normals and other 
geometric features like curvature have been used for registration of 
brain images. Other contrast invariant functional have been proposed 
based on mutual information [58] and [8]. This kind of functionals are 
widely used in medical image registration. In particular, [58] deals 
with the image registration problem and analyzes the effects of 
interpolation methods and resampling in the registration results. 
Another contrast invariant functional, based on Bayesian inference, 
was proposed in [31], for piecewise parametric motion segmentation. 
The authors interpret geometrically the optical flow constraint, then 
derive a model for the conditional probability of the spatio-temporal 
image gradient (given a particular velocity vector), and propose a 
priori assumption on the estimated motion field favoring motion 
boundaries of minimal length. In that way, their energy functional is 
an extension of the Mumford- Shah functional [72] from the case of 
gray value segmentation to the case of motion segmentation. 

The proposed functional is 

( )
( )

( )
2

22
 

, ,

t x y

r
r R

t x y

I u I v I
E dx dy L C

w I I I
λ

∈

+ ∂ + ∂
= +

∂ ∂ ∂
∑∫  

where w  is the velocity of region r R∈  , R  a given image partition, 

( )L C  is the length of the boundary C  separating regions, and λ  is a 

weight of the second constraint. Observe that the quotient in the first 
term is related with the angle between the vectors w  and 

( ), ,t x yI I I∂ ∂ ∂ . 
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Chapter 4  
 

Video segmentation 
 

In this paper we present a video segmentation procedure obtained 
minimizing a modified version of the simplified Mumford - Shah 
functional used for image partition. This procedure uses a graph with 
spatial and temporal connections to model a video sequence. The 
temporal connections are defined pre-computing the dense optical 
flow using methods available in the literature. To simplify the 
functional minimization we construct the hierarchy of partitions that 
allows to obtain a very quickly computation. 
 

4.1 Introduction 
 

Video segmentation problem has attracted the attentions of many 
researchers in the computer vision field because it plays a very 
important role in many applications, such as video compression, 
tracking and motion detection. It refers to partitioning video into 
spatial - temporal regions that correspond to independently moving 
objects. 

Although video segmentation has been studied for several 
decades, it still remains a difficult problem to solve and various 
methods for segmentation of images into coherent moving regions 
have been proposed.  

Methods which utilize spatio-temporal image intensity and 
gradient information have been chosen by some authors [78]. In [78] a 
3D segmentation based on luminance information is performed by 
morphological operators. The scene is segmented according to a 
criterion of uniform luminance (instead of coherence motion). 
Another common approach, presented among others in [1], is a two-
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step procedure which consists in estimating first the optical flow field 
between two frames and then segmenting the image based on the 
estimated optical flow field. In particular, the authors assume that an 
image is modeled by a set of overlapping layers. They compute initial 
motion estimates using a least-squares approach within image patches. 
Then, they use K-means clustering to group motion estimates into 
regions of consistent affine motion. The accuracy of segmentation 
results using this approach depends on the accuracy of the estimated 
optical flow field. Moving object boundaries have usually inaccurate 
optical flow due to occlusion and use of smoothness constraints. A 
solution for that issue is proposed in [2] where the authors propose a 
two-step iteration method similar to the previous ones, but 
incorporating several changes such as a region-based label assignment 
approach which favors the obtaining of a spatially continuous 
segmentation that is closely related to actual object boundaries. 

Furthermore, some authors have proposed that optical flow 
estimation and segmentation should be carried out simultaneously to 
obtain better results. The algorithm presented in [34] assures very 
precise motion boundaries by exploiting the static segmentation. In 
particular it avoids problems related to occlusion and uncovered 
background. 

The authors of [13] treated the analysis of the dynamic content of 
a scene from an image sequence. They propose an elaborated 
algorithm which performs a motion-based segmentation using 2D 
affine models, and apply a statistical regularization approach without 
the explicit estimation of optic flow fields. Furthermore, they build a 
temporal link between partitions of successive frames of the sequence. 
Finally, the interpretation process is carried out in different ways 
depending of the application. 

The authors of [31] propose to segment the image plane into a set 
of regions of parametric motion on the basis of two consecutive 
frames. As in [13] they exploit the Bayesian framework to derive a 
different cost functional which depends on parametric motion models 
for each of the set of regions and on the boundary separating these 
regions. As differences we can outline that this formulation is 
continuous and uses a contour representation of motion discontinuity 
set (spline or level set based).Furthermore, the data term is based on a 
different (normalized) likelihood.  
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The authors of [42] present a method for approximating optical 
flow by scaled piecewise regular vector field. The error functional 
balances two terms, an evaluation of the uniformity of pixel motion 
and a segmentation complexity term. The method is a variational 
approach similar to the region merging minimization procedure 
described by Morel and Solumini [70]. 

 

4.2 Proposed approach for video segmetation 
 

A video sequence can be modeled as a function 
:[ , ]  i ff T T R× Ω →  with spatial domain Ω  and time interval [ , ]i fT T . 

We assume that the time is discrete { } [ ]1,n n N
t

∈
. Our purpose is to 

compute the segmentation of a video sequence  defined by a pair 

( , )C fɶ  such that: 

• : ([ , ]  )i ff T T x C RΩ − →ɶ  is a regular function in 

([ , ]  )i fT T x CΩ −  domain. 

• C is the set of boundaries where fɶ  is discontinuous. 
Since a video is a sequence of images, the boundary C  is given 

by 
1

 
N

n
n

C
=

∪  where nC  is the set of boundaries each of one is related to 

the frame observed at time nt . 

To solve this problem we propose a video segmentation 
procedure based on two different steps. In the first step we construct a 
new data structure to handle a video pre-computing the optical flow. 
In the second step we define a video segmentation minimizing a 
modified version of the Mumford-Shah functional defined in Section 
2.1 for image partition. 

 

4.2.1 Data structure for video handling: graph 
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In Section 1 we have seen that under certain topological 
conditions a single image can be modeled by a tree structure. In this 
case is possible to define a spatial connection between different pixels 
(or regions) of the same image.  

In Video analysis, instead, besides the usual spatial connectivity 
of pixels on each single frame, we have a natural notion of “temporal” 
connectivity between pixels on consecutive frames given by the 
optical flow. In this case, it makes sense to extend the tree data 
structure used to model a single image with a graph data structure that 
allows to handle a video sequence. 

Given a video sequence we can build the appropriate graph in the 
following way. First, we pre-compute a dense optical flow of the 
whole video sequence using any of the methods available in literature 
(we tried some of them with similar final results [16], [15], [24] and 
[19]). This flow assigns a vector on every pixel of each frame but the 
last. Now, the vertices of the graph are defined as all the pixels of the 
video, each one assigned its corresponding gray level. The edges of 
the graph are of two kinds: spatial edges and temporal edges. Spatial 
edges join each pixel with its 8-neighbors on the same frame. 
Temporal edges are defined using the pre-computed optical flow: If 
the flow vector on pixel ( , , )x y t is ( , )u v , then we add to the graph an 
edge joining pixel ( , , )x y t  with pixel ( [ ],  [ ],  1)x u y v t+ + + , where the 
square brackets denote the nearest integer. Pruning and simplifying 
the branches of this graph corresponds to applying spatial-temporal 
coherent morphological operators to the video sequence. A selection 
of regions of this graph can be regarded as a segmentation of the 
video. For example, by selecting very few regions we obtain a very 
coarse segmentation of the video. We call the segments of this 
segmentation the “tubes” of the video. The tubes encodes temporally 
coherent segmentations of all the objects on the video, which can be 
used for tracking. This structure is useful to write higher level 
algorithms on the video. 

 
The intersections of tubes with frames are called “regions”. Thus, 

the regions of a given frame are segmentation of that frame. So, to 
handle a video sequence, we must consider the following object that 
characterize it: 
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• pixels; 
• frames; 
• tubes; 
• regioins. 

The list of pixels and the list of frames are trivially related, because 
each frame contains the same number of pixels. The relationships 
among the other lists are the true interest of the data structure, since 
they hint a combinatorial representation for the video objects. See 
Figure 26 for a diagram illustrating the relative inclusions between 
these structures. 

 

 
 
Figure 26: Inclusion relationships between the parts of the data structure. A video is 
divided into frames, and into tubes. The intersection of a tube with a frame is a 
region. Each region is a set of pixels. Neighboring regions on the same frame are 
separated by their common boundaries. 

 

4.2.1.1 Simple computation using the tubes 
The mere act of storing a video sequence using “the tubes” lends 

itself to certain higher level algorithms, which provide raw analysis of 
the objects that appear in the video. Here we list four of these 
algorithms. The algorithm for relative depth from motion will be an 
example of a more complex one. 
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Tube statistics. The simplest thing that we can do with the tubes 
is to compute statistics of all the regions. For each tube, we can see 
how its area evolves along frames, its mean motion (to select 
immediately the fastest moving objects in the video), the evolution of 
the length of its boundary, etc. 

Tube topology. The tubes can be classified by their topology, 
looking how it evolves in time. The simplest case is that of a tube 
which intersects each frame (from a certain interval of frames) in a 
single connected region. A different case is that of two objects that 
merge or split as time passes, for example when one object occludes 
another one of the same color. In that case, the tube has the shape of 
the letter Y , with the junction appearing at the frame where the 
objects merge or split. By single traversal of the data structure, we can 
build a list of the branched and unbranched tubes, and of the regions 
that they span  long the video. 

Optical flow regularization. We can use the structure of tubes 
and regions to improve a given dense optical flow. If we suspect, as 
often happens, that the optical flow is wrong or imprecise near the 
boundaries of the objects, we can discard those samples of the dense 
flow, and extrapolate their values from the inner parts of the region. 
This is a regularization of the optical flow in a single frame. But we 
can also smooth the flow along several frames, to enhance its temporal 
consistency. The connectivity of the regions assures that we will not 
be mixing flow samples from different layers of movement. 

Flow from segmentation. As an extreme case of the previous 
computation, we can construct an optical flow from scratch, just by 
looking at evolution of the tubes in time. If we find the best match 
from each region into the next one, we already have a model of the 
movement of that region. By sampling that motion on the pixels of the 
region, we produce a dense optical flow. While it is very crude, this 
method does not depend on the resolution of the video, only on the 
structure of the tubes. Thus, it can be used as a starting point for more 
precise algorithms. The quality of the results depends on the criterion 
for registering pairs of consecutive regions. A naive criterion that 
minimizes Hausdorff distance (or that matches the center of mass) will 
produce incorrect results for occluded objects, but perfect results for 
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objects which are on top of all the others, and move in a plane 
perpendicular to the line of view. In some circumstances, this may be 
useful. 

 
4.2.2 Modified version of a simplified Mumford-Shah 

functional for video segmentation 
 

As we have explained in Section 2 Simplified Mumford-Shah 
functional is largely used in image partition operation. Our purpose is  
to extend it to use a new version of the simplified Mumford-Shah 
functional for video segmentation. 

The Mumford-Shah functional (2.1) used to partition a single 
image could be incomplete to obtain a good video segmentation 
because it takes into account only the color of the regions but there are 
not information about the regions “movement”. We have modified it 
introducing an additional term to solve the video segmentation 
problem obtaining the following functional: 

1 2 2

, \ , \ , \
( , | ) ( ) ( ) (( , ) ( , ))

i f i f i f
MS x T T C x T T C x T T C

J C f H C f f u v u vλ λ
 Ω    Ω Ω     

= + − + −∫ ∫ɶ ɶ ɶ ɶ       (4.1) 

where ( , )u v  is the optical flow vector of pixels of the original video 
sequence and ( , )u vɶ ɶ  is the optical flow vector of pixels of the 
approximate video sequence. The second integral allows to consider 
the movement of the region using the optical flow pre-compute in the 
first step. The idea is to merge neighboring region with similar color 
and similar movement. 

Observe that the minimization of (4.1) has an exponential 
complexity on the size of graph that models the video, if all possible 
combinations of its nodes are taken into account. This computation 
becomes feasible if we restrict our search space to a hierarchy of a 
partitions of a video domain [ , ]  i fT T x Ω  as we have seen in section 2 

for image partition operation.  
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4.2.3 Minimization of the modified version of M-S 

functional using a hierarchy of partition 
 

To minimize (4.1) we must construct the hierarchy of a partitions. The 
construction follows a bottom-up procedure. Indeed the leaves of the 
hierarchy are the nodes of the graph that models the video. We 
construct next levels merging nodes of the reduced level without 
father. We iterate this procedure until we reach the set [ , ]  i fT T x Ω . To 

choose the nodes to merge at each iteration we perform the following 
steps. 

Let 2 2( ) ( ) (( , ) ( , ))
R R

I R f f u v u v= − + −∫ ∫ɶ ɶ ɶ   

so we can rewrite (4.1) as: 
1

, \
( , | ) ( ) ( , \ ).

i f
MS i fx T T C

J C f H C I x T T Cλ λ
 Ω  

 = + Ω  
ɶ         

Suppose to merge each region of the segmentation with its neighbor 

for all neighbors. We obtain a new set of border Ĉ , a new function 

f̂ , a new functional ̂J  and, for the merging region, a new vector 
optical flow ˆ ˆ( , )u v . Follows that 

ˆJ J J H Iλ∆ = − = ∆ + ∆                                                                          (4.2) 
where 

1 1 ˆ( ) ( )H H C H C∆ = −  

and  
ˆ( , \ ) ( , \ )i f i fI I x T T C I x T T C   ∆ = Ω − Ω    . 

Setting 0J∆ =  we calculate λ  by (4.2) as: 
I

H
λ ∆= −

∆
. 

Observe  that H∆  is a positive number because the length of the set of 
curve of the regions that compose the single image decrease when we 
merge together two or more adjacent regions. While I∆ is a negative 
number because we loss energy when we merge together one or more 
adjacent regions.  

We repeat this procedure for each region. At the end we merge 
the region and its neighbor that are characterized by the minimum λ  
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value which has been calculated. In this case, for each level of the 
hierarchy, we define a local optimal solution of (4.1) for the 
considered lambda value, in the sense that any other merging of 
regions of the segmentation leads to an increase of the functional 
(4.1).  

For each node of the hierarchy we define an interval ,λ λ+ −    

where λ+  indicate the lambda value in which node appears in the 
hierarchy and λ−  the λ+ of its father.  

Returning at (4.1),  to minimize it we fix a λ value and define a 

cut of hierarchy selecting the nodes such that λ λ λ+ − ≤ <  . 
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4.3 Experimental results 
 

In this section we present some experimental results obtained 
using the video segmentation procedure described above. 
In the first example we consider the video sequence composed by five 
frames showed in Figure 27. 

 

 
 
Figure 27: foreman video sequence on frame 1,2,3,4 and 5 from left to right and top 
to bottom. 
 

In this video sequence foreman performs a rotation of the head 
and close the eyes. 

In Figure 28 is possible to observe the optical flow pre-computed 
between frame 1 and  frame 2: 
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Figure 28: optical flow between frame 1 and frame 2 of the foreman video 
sequence. 
 
Segmentation result has showed Figure 29. 
 

 
Figure 29: foreman segmentation sequence 
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Observing the segmentation of the frames that compose the video 
sequence it is possible to follow the movements of the foreman. 

Consider now the “Hamburg taxi” video sequence in Figure 30. 
 

 
Figure 30: Hamburg taxi video sequence on frame 1,2,3 and 4 from left to right 
and top to bottom. 

 
This sequence is more complex than foreman video because some 

objects that move in the scene (car at left and right side of each frame) 
have a similar color of a static background (street). 

If we try to segment this video using a graph to model the video 
and the original Mumford-Shah functional used for image partition 
(2.1) we obtain a result showed in Figure 31. 

 

 
Figure 31: Hamburg taxi video segmentation using the original Mumford Shah 
functional. 
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In this case we can observe a good white taxi segmentation vice 
versa we lose a lot of features in the segmentation of the car on the left 
and right side of the frames. The reason is that the original functional 
merge neighboring regions with similar color without considering 
their movement. So in this case is “simple” to consider the white taxi 
because it has a color different from the one of the street. Car at left 
and right side of the frames have a color similar to the background so 
in this case is difficult to “separate” them by the street. 

Figure 32 shows the segmentation result obtain minimizing (4.1): 
 

 
 
Figure 32: Hamburg taxi video segmentation using the modified Mumford Shah 
functional. 

 
In this case we can observe more features about the car that move 

along the scene because the chosen functional allow to merge region 
with the same color and the same optical flow vector. So the car has 
the same color of the street but different optical flow vector.  
In particular the latter related pixels that reproduce the street are zero 
(street is the static background of the scene) and the optical flow 
vector about the pixel that reproduce the cars are different by zero 
(cars are the dynamic foreground). This is confirmed by the following 
the optical flow between frame one and frame two showed in Figure 
33. 
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Figure 33: optical flow between frame one and two of the Hamburg taxi video 
sequence. 
 

The light blue rectangle shows the boundary between the street 
and the car at the left side of the frame. In this case we have 
neighboring regions with the same color but different optical flow so 
we do not merge this regions. 

These examples show some video segmentation that is possible to 
obtain using a video segmentation procedure based on the 
minimization of a modified version of the Mumford - Shah functional. 
This procedure use a graph to handle a video sequence. This graph 
consider a spatial connection between pixels of the same frame and 
temporal connection between pixels of consecutive frames using the 
optical flow vector. The minimization of Mumford-Shah functional 
can be very complex if we consider each possible combination of the 
graph nodes. This computation becomes easy to do if we take into 
account a hierarchy of a partitions constructed starting by the nodes of 
the graph. As we have showed this procedure allows to obtain a good 
segmentation also if we consider video sequence in which the 
dynamic foreground has got a similar color to the static background. 
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