Universita degli Studi di Salerno

Dipartimento di Ingegneria Elettronica ed Ingegneria Informatica

Dottorato di Ricerca in Ingegneria dell'Informazione
X Ciclo — Nuova Serie

TESI DI DOTTORATO

Image partition and video
segmentation using the
Mumford-Shah functional

CANDIDATO: ALFREDO CUTOLO

TUTOR: PROF. GIuLANO GARGIULO
Co- TUTOR: PROF. ABDELAZIZ RHANDI

COORDINATORE: PROF. ANGELO MARCELLI

Anno Accademico 2010 — 2011






To Mariarosaria
and my Parents






Contents

INEFOTUCTION ..t 7.

(O =T o) (= PRSP 11

Data Structure for Image Representation ....cccceee...oooooveeveeeiinnnnnns 11
1.1 Different Image RepresentationS...........cccceeevvvvnninennn. 11
1.2 Levelsetandlevellines........ccccoouiiiiiiiciiiiiiiiieeeeeeee 13
1.3 Image and itS toPOoIlOgY .......evvvriiiiiiiiieeeeeeeeeee e 14

1.3.1 Topology of morphological representation............ 16
1.4 Tree of shape as an image representation................... 18

1.4.1 Basic definition ........ooooviiiiiiiiiiiii e 19
1.4.2 From level sets to their components........ccccceu.....e. 21
1.4.3 Beyond components of level set..........ccccuuueenennnn. 23
1.4.4 Saturation, hole and shape definition. ................... 27
1.4.5 Saturation of complement ..............oooiiicceeeiiiiinnnns 28
1.4.6 Properties of saturation..................commmmmeeeeeeeeeenennen. 29
1.4.7 Decomposition of an image into shapes..... ... 33
1.4.8 Unicoherent SPaces........cccccuvvvvvvviiiiiiieeeeeeeeeeeeeeee, 35
1.4.9  APPlICALIONS ..oveeiiiiieieeeeeeeeeeee s 35
(O T o] (= PRSP 39
Image segmentation based on minimization of Mumfsindh
FUNCHONAL ... ..ot 39
2.1 The simplified Mumford-Shah functional on the Tde
SNAPES .t ———— e aaaaas 93
2.1.1 Optimization of a multiscale energy on a hierarohy
QT 1110 1 41
2.2 Proposed approach...........coeeuuuuuuuuuiimmce e 45
2.2.1 Merging algorithm...........ccooviiiiiiieccee e, 46
2.2.2 Construction of hierarchy..........ccccoooiioemeeeeeviiiiiinnnns 48
2.3  Experimental results ...........covvvvvviiiiiiiiiiieee e 49
ChaPLer 3 .. e a5
MOLION ESTIMALION ...t 55
3.1 INrOAUCHION ... 55
3.2 Geometric image formation...........ccccceeeeeeeeeeiiiieeeeiiiiinn, 56
3.3 2D Motion estimation ...........coouvveiiiiiiimmeemeeiiiiiiie e 59

3.4 Optical flow estimation method ..............ccommmeeeeeeeeeenn... 64
3.4.1 Dense Motion Estimation techniques.................... 65



6

3.4.2 Parametric Motion Estimation techniques............. 69

CRAPLEEN 4 .. 79.
A/ Lo [T IRST=T o g aT=T o] r= 4[] o I 79
4.1 INtrOdUCTION ..ot 79

4.2 Proposed approach for video segmetation.................... 81
4.2.1 Data structure for video handling: graph................ 81
4.2.2 Modified version of a simplified Mumford-Shah

functional for video segmentation...........ccccuevviiiiiiinieeeeeeen, 85

4.2.3 Minimization of the modified version of M-S functial

using a hierarchy of Partition..............coeeeeeeeeeiieeeeeen 86
4.3 Experimental results ...........oovvvviiiiiiiieciicee e 88

RETEIENCES ... e e e e e e 93



| ntroduction

The aim of this Thesis is to present an image gamtand video
segmentation procedure, based on the minimizatioa onodified
version of Mumford-Shah functional. Generally, inosh image
processing applications, an image is usually vieaga@ set of pixels
placed on a rectangular grid. A single pixel pregidan extremely
local information making impossible any kind oferpiretation.

The proposed approach, instead, follows a regisedamage
representations. This approach is used, for instancMPEG-4 [27]
or MPEG-7 [85] standards. In such cases the imag@derstood as a
set of objects. Region-based image representatioffisr two
advantages with respect to the pixel based onesitmber of regions
is lower than the number of original pixels andioeg represent a
first level of abstraction with respect to the naformation.

The basic objects used of the image partition mloee are the
upper and lower level sets of the image. In orddrave a more local
description of it, we deal with the connected congaus of (upper or
lower) level sets. As proposed by Caselles etna[23], we have
considered the boundary of these sets, that isetleklines, forming
the topographic map.

To be able to handle discontinuous functions, nsmecifically,
upper semicontinuous ones, we define level lineghas external
boundary of the level sets of the image. This laalto the notion of
shape which consists in filling the holes of thamected components
of the level sets, upper or lower, of the origimahge. The operation
of hole filling was called saturation in [1], [68Thus, level lines are
the boundaries of shapes and to give the familyew€l lines is
equivalent to give the family of shapes.

Moreover, the family of connected components of aupjevel
lines has a tree structure. And the same happenthéofamily of
connected components of lower level lines. These tiwes can be
merged in a single tree: théree of Shapes’ of an image [69]. It gives
a complete and non-redundant representation ofirttagje and is
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contrast independent. The tree is equivalent to ithage: its
knowledge is sufficient to reconstruct the image.

The image partition procedure determined by lewald is based
on the minimization of a simplified version of tiumford - Shah
functional. If we minimize the functional with resg to all possible
partitions, the problem of finding a global minimusexponentially
complex. But, if the minimization takes place inhe&rarchy of
partitions, global minima can be obtained quickdg][[40].

To build the hierarchy of partitions the tree ofaige shape has
been used. In particular the regions determinelgwsl lines are taken
as an initial partition of a hierarchy which candmmstructed using the
simplified Mumford-Shah functional. Then, using Gues
optimization algorithm [43], the global minima die energy in the
hierarchy can be defined at any scale obtainingsteched image
partition.

The Mumford-Shah functional used for image panititas been
then extended to develop a video segmentation guee Differently
by the image processing, in video analysis besidesusual spatial
connectivity of pixels (or regions) on each sinfji@me, we have a
natural notion of temporal” connectivity between pixels (or regions)
on consecutive frames given by the optical flowthis case, it makes
sense to extend the tree data structure used telnacsingle image
with a graph data structure that allows to handl&lao sequence.

We have developed the appropriate graph pre-congpatidense
optical flow of the whole video sequence using afyhe methods
available in literature. So, we have defined theiees of the graph as
all the video pixels, assigning to each one itsesgonding gray level.
The edges of the graph are of two kinds: spatigesdand temporal
edges. Spatial edges join each pixel with its &lmeors on the same
frame. Temporal edges are defined using the pregated optical
flow.

The video segmentation procedure is based on nuaion of a
modified version of a Mumford-Shah functional. lmrficular the
functional used for image partition allows to mergeighboring
regions with similar color without considering thenovement. Our
idea has been to merge neighboring regions withlaimolor and
similar optical flow vector. Also in this case tmeinimization of
Mumford-Shah functional can be very complex if wensider each



9

possible combination of the graph nodes. This cdatjmn becomes
easy to do if we take into account a hierarchyastifpons constructed
starting by the nodes of the graph. The global m#niof the
functional can be defined at any scale using theesaptimization
algorithm for the image partition [43] obtaining ethvideo
segmentation.
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Plan of thethesis

The thesis is organized as follows:

The first chapter reports the different represémat of the
topology of the image that can be found in thediiere. We address
our attention at the tree of shape as the datatstmi for image
representation. This structure allows to reconstiue original image.
In particular we show how is possible to constitiaherging the tree
of shape of upper and lower level lines of the immafp compute the
merging operation has been necessary to definedtegtion of hole
and saturation. Then in Chapter 2 we describe ageémpartition
procedure based on minimization of a Mumford Shaictional. The
problem of the quick computation of minima usinghiararchy of
partitions constructed on the tree of image shagacded. The section
ends with some experimental results.

In Chapter 3 we revise some aspects of the imageesee
formation, and the motion estimation problem. Wsoateview the
main optical flow estimation methods known in lgkmre. Last
section, Chapter 4, proposes a video segmentatanegure based on
the minimization of a modified version of the Mundo Shah
functional. We describe the data structure usetladle the video
sequence characterized by spatial connections ¢eetvwpixels or
regions of the same frame) and temporal connecldeitned by the
optical flow vector). The procedure adopted to mize quickly the
functional is presented. At the end we show sonpemental results
comparing a video segmentation obtained with thepBfied
Mumford Shah functional for image partition withethew introduced
functional.
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Chapter 1

Data Sructure for | mage
Representation

In this chapter we review some issues related t@gen
representation. Representations based on regi@ens@resting for
many image processing applications. Among thememphasize the
tree of shapes of an image, which gives a compaattare of the
level lines of an image. The level lines are therwaries of the upper
or lower level sets of an image. We revise the rpaaperties of these
level sets, and the definition of shapes from thasnyell as we derive
the tree structure of the shapes.

1.1 Different Image Representations

Image representations can be different depending thar
purpose. The raw information, that is the valueghaf samples, or
pixels, is a too low level of representation, ahd tmage must be
described with more elaborate models.

For a deblurring, restoration, denoising purposdie t
representations based on the Fourier transforngemerally the best
since they rely on the generation process of thagem(Shannon
theory), and/or on the frequency models of the aafion as for
additive noise, or spurious convolution kernel. ldoer, the Fourier
transform is purely frequency oriented and doesgna directly any
space information. The wavelet theory [59][65], iagbs a
localization of the frequencies, and, due to thedr structure of the



12

images at their smallest scales, the wavelet reptason is to date
the best representation of the image for compregsiopose.

Nevertheless, from the image analysis point of viéeguency
based representations do not give the adequatemafmn. Indeed,
the Fourier representation is nonlocal and the \eavepresentation is
sensitive to a translation, rotation or scalinghi@ image, disabling the
recognition of objects independently of the viewyoi Moreover,
both of these representations have quantized cdis@mscales.

Scale-space and edge detection theories propospitesent the
images by some significant edges, where edgesediteed suitably.
The algorithms proceed in general in two steps ¢tvisiometimes can
be merged): first the images are (linearly or sotpothed [1][21] and
secondly an edge detector is applied to the smdathage. Edges are
detected based on the second order derivativeheofimage. The
earliest definition of edges is due to Marr anddréth [61] and a
variant was later proposed by Canny [22]. The scapgesents the
amount of smoothing prior to edge detection. Thst fscale-space
based on edges is the zero-crossing of the Laplaa@oss the
gaussian pyramid, that is the smoothing is a catasi with a
gaussian kernel of varying variance. According tariMthose zero-
crossings represent the “raw primal sketch” of ithage, that is the
basis on which further vision algorithms shouldyyedee Marr [60]
and Hummel [47]. In general, edges extraction aafobmulated as a
variational problem, see Nitzberg and Mumford [76}prel and
Solimini [70]. The image is approximated by a fuoctthat stands in
a class of functions for which edges are propedfingéd: a famous
example of such a class is the family of piecevasestant images
having a bounded discontinuity length; in this s|ake discontinuities
lines of the approximating function are interpretesdthe edges, see
Mumford and Shah [71]. Then, a balance betweendiose and how
complex the approximation is (e.g., with the pregicexample, the
complexity can be the length of the discontinuibpbdary), defines a
scaled representation of the image.

Despite the generality of the variational approachkuffers from
the fact that there is no theory that says whatntioglel should be.
These representations by the edges have two megarbdcks that
have been discussed, see Koenderink [51], WitkD] ghd Mallat
[59], but not solved within the scale-space the&iist, the geometric
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representation by the edges is incomplete: it dussallow a full
reconstruction of the image, therefore some inféionahas been lost
in the process of edge detection. Secondly, theordposition in
scales yields a redundant representation.

Another problem with these approaches is linketheofact that
the image gray level is not an absolute data, simegrany cases the
contrast is camera dependent, and the optics afaimera is generally
unknown, and in all cases hard to measure. Thiblgmo can be
avoided by working in the morphological framewornsidering the
level set and the level lines.

1.2 Levd set and level lines

In natural images, the contrast depends on thedfjgamera, on the
digitization process, due to the gray level quaion, to the
lightning... Despite this multiplicity of factorshanging the contrast,
the perception of the image must remain identicalependent of the
screen on which it is displayed. In other wordse tbontrast
information is secondary relatively to the geoneeinformation, and
useful mainly for visual convenience.

The invariance under change of contrast has besnstated as a
Gestalt principle by Wertheimer [89].

Matheron [62] and after him Serra [80], [81] propos
“morphological” representation of the images by thivel sets. It
yields a complete, contrast invariant representatid the image,
independent on any parameter. A variant of thisesgntation is
proposed by Caselles et al. in [23], by considetimg boundary of
these sets, that is thevel lines, forming the topographic map.

In general a (gray level) image is represented bfurection

u:Q - Rdefined in a domaiMQ OR?. The most basic elements of
mathematical morphology are the level sets. Westagkerior level set
Q and inferior level seX,uof value A the subset ofQ defined as

follows:
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X'u=[u= 1] ={pDQ, u(p)zA}

(1.2)
X,u=[u<A] :{pDQ, u(p)</1}
The convention to take strict inequality for lowevel sets and

large inequality for upper level sets is to get szstency results

between them, i.eQ\ X"u=X,u.

Whereas it is usually of minor importance becauseda not mix
upper and lower level sets (1.1), it becomes fureddal when we
deal with both simultaneously.

Furthermore, topological characteristics extradted level sets
are also morphological. A particular case is thenected components
of the boundaries of level sets, which are calwcl lines. Another
case is taking the connected components of levg| wdich are used
in the following chapter to construct “shapes”.

Our interest about the level sets comes also franfact that they
are arepresentation of the image. From the lower level sets of an
imageu, we can recoveu by the formula:

Op0Q, u(p)=inf{A: pOX,u} (1.2)

and for the upper level set by the formula:
OpOdQ, u(p)=sur{/1 pO X”u} (1.3)

In the last case, thanks to the non strict inetyahe supremum
is actually a maximum, sinqe] X"Pu.

1.3 Image and itstopology

Once the image is segmented, one way or anothemesulting
topology must be described. The usual notion ofrsggation is a
partition of the image into connected regions ahd telations
between these regions are meaningful. The firsl ide¢o encode the
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adjacency relations: we need to know when two regibave a
common boundary. The classical way to represerst tthiation is
through a graph, the Region Adjacency Graph (RA€Eh region is
represented as a vertex in the graph and when tgons are
adjacent, an edge links the corresponding vertsms Rosenfeld [79].
Nevertheless, adjacency is not the only meaningdiation between
regions. For example, if two regions are adjacém, number of
connected components of their boundary is not exato@lhe solution
to this problem would be to add the correspondinmiver of edges
between the two vertices, yielding then a multiraldore annoying
is the problem that the knowledge that a regianhsle inside another
region is not contained in the (multi) graph. Gastget al. [41],
recognizing that these data are missing, proposaldothe inclusion
structure of contours to the graphs. However, tieigresents the
topology of the image in two graphs, making it lsyeto manipulate.
Observing the difficulty to describe the relatidmstween regions in
terms of pixels only, Kovalesky in [54] proposes call-list
representation, adding frontiers between regionsl-aémensional
elements and the junction points of regions of éhfgentiers as O-
dimensional elements. However, his structure isangtaph, and does
not encode more data than the RAG.

Following the direction opened by Kovalesky, Fioing37] uses
the same elements to construct its representasom eombinatorial
map (see Lienhardt [57]) and exposes an algorithimlirear
complexity to construct his representation, thenkess Topological
Graph. Fiorio emphasizes the fact that the reptaen must be
consistent with the usual topology of the planed d@hat it must
introduce the minimum number of elements of non imak
dimension to this purpose. In [38], he generalizes higher
dimensions this representation, whereas in [39]eX@ains how to
manipulate the Frontiers Topological Graph, in ipatar how to
update the structure when two regions are mergdchaw to extract
the Frontiers Topological Graph of a subimage, pley the
subimage does not cut regions. Unfortunately, thesec operations
are not obvious, coming from the fact that the coatorial map is a
fairly complex representation.
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1.3.1 Topology of morphological representation

All these topological representations are based sagmentation
of the image understood as a partition into coreteotgions. But the
basic elements of mathematical morphology, thelleets, do not
compose a partition of the image; instead, they laszarchical,
because they are ordered. When talking about wleold sets, this
order, the inclusion relation, is total, yielding ve@ry elementary
structure, an ordered list. However, it lacks apontant feature of the
above representations, the locality, or the faat the atoms of the
representation (the level sets) are not connedtethice comes the
need for considering instead the connected compsranthe level
sets.

A fruitful approach is proposed by Ballester, Ckesseand Morel
in [5], where the atoms are some parts of the cctedecomponents of
bilevel sets, that is points whose values are c@®agrbetween two
given thresholds. They are chosen so that wherthiesholds are
changed in a manner to have an included bilevel,sthbpart of the
atom remains connected. These atoms are calledntheimal
monotone sections, and are invariant with respecbhtrast change.
Their study comes from a successful shape preggtotcal contrast
enhancement algorithm proposed by Caselles eh 4R4] and [26].
However, the relations between these structuresatrmtally studied,
and their efficiency in terms of compactness of tepresentation
remains to be demonstrated.

Cox and Karron [30] explore the structure of thenifg of
connected components of upper level sets in a @dye for purposes
of coding and visualization of 3-D data. They shbwat the image can
be described as a discrete structure, the tregtmfdties. They call it
the Digital Morse Theory, because it is analogauthé Morse theory
for continuously defined functions: a Morse funntidhat is a twice
continuously differentiable function, in which titéessian matrix is
non degenerate at critical points, can be describgda tree of
criticalities (see Milnor [67]). From discrete datathree-dimensional
array of gray levels, they define the continuousripolated functions
which are topologically consistent with the diserdata and show that
they share the same tree of criticalities. Wherth@y remark that
using the discrete notions of connectedness (thezetwo: 4 and
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8connectedness in 2-D, 6 and 26 connectedness D \Bithout
reference to the interpolated function can yieldomsistencies when
we take the opposite of the image, they do not phishremark to its
natural conclusion: upper level sets are not gSefiicto describe
topologically the image, because they are adaptdidtit objects, but
the dark objects are not well represented in thgadiMorse tree.

In a study on numerical functions defined on aaegte of R?,
published in 1950, Kronrod [55] avoids this drawkamdeed, the
atoms in his work are connected components of ysblgets, which
are continua. Given such a componéhtand a neighborhood of
K, if we call open set the family of the connecteanponents of
isolevel sets contained i, the family of all these sets forms a
topology on the set of connected components obvsblsets of the
image. The natural map, that with a point of thetalegle associates
the connected component of isolevel set contaiitinig continuous.
Since the square is connected, locally connectedcampact, so is
the topological space of connected components adévsl sets. He
shows furthermore that no subset of this spacenseomorphic to the

circle S', concluding that this space is actuallytr@e, in the
topological sense. Moreover, he shows that this bi@s an at most
countable number of leaves and of ramification {siand that the
leaves are connected components of isolevel sétseparating the
rectangle (they are some regional extrema, but alsat he calls
concentric singularities), whereas ramification @i are those
separating the rectangle in at least three pamscalls this tree the
one-dimensional tree of the function and descrities functions
which are in the same family as a given one: theyabtained by
merging some parts of the tree. In many respduis cobnstruction is
remarkable: the family of connected componentssofevel sets is
globally invariant under a contrast change, but alsder an inversion
of contrast (taking the negative of the functiompich was the feature
lacking to the digital Morse tree. However, fromethmage
representation point of view it suffers from twaaabacks: isolevel
sets are sparse and do not represent an objdwt image and the tree
is not ordered, meaning that there is no actudl mdwe first drawback
is not related to Kronrod work, since his conceraswot image
analysis, but rather the study of functions, b second he solves
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only partially, although he does not emphasizepitobdlem: If we fix

a point of the square, the components of isolegtd ot containing
this point can be ordered relative to this poinhat/this amounts to
do is to isolate some connected component of isblegt (the one
containing the fixed point), and order the otheemelatively to it,

giving a rooted tree. From the image analysis pofntiew, such a
construction is not pertinent, since the pointhiesen arbitrarily.

In many respects our work is closely related torifod’s one.
We do not deal with isolevel sets but with conngéatemponents of
upper and lower level sets, whose holes we filke Tibtion of hole is
not without flexibility, and we develop an axion@aapproach of the
adequate definitions of hole. The fact we fill th@es permits to mix
the upper and lower level sets in the same strecthamely a tree,
which is oriented by inclusion. In this manner, thee describes in a
straightforward manner the topology of the imagkisTis related to
Kronrod’s article in the sense that the boundaryoof atoms are
(connected parts of) connected components of isblests (at least
for a continuous function), and that filling thelé® of a connected
component of upper level set is exactly the sanféliag the holes of
its boundary (see Proposition 1.18). In this manwerprecise what is
the interior of a connected component of isolew] shis interior
being defined with no arbitrary choice, and thideys the atoms by
inclusion. This keeps the advantages of Kronrodé&e,t namely
contrast and negative invariance properties, whdang adapted to
image analysis, because most objects in the imegdikely to be
formed of atoms of our representation. Moreover,gam generality
because the results are valid for a semicontinunage.

1.4 Treeof shape asan image representation

Now we want to show that, under certain topologmahditions
concerning the images and their set of definitibme, “shapes” have a
tree structure. This notion of tree is not the sileed one, in the sense
that it is not a discrete structure, since it cawehan infinite (and
possibly not even countable) number of nodes,tystdonsistent with
it: two arbitrary nodes are connected, and themn®i®op.
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The shapes of an image are built from the connematponents
of level sets. It is well known that connected comgnts of level sets
have a tree structure. The difference here is that consider
simultaneously superior and inferior level sets ah@ shapes
constructed from them are stored in one structusgthout
redundancy. This may seem paradoxic, since thendabdli the
connected components of lower level sets, or theindaof the
connected components of upper level sets, are eaffltient to
reconstruct the image. The explanation of this gaais that the
shapes are not constructed from all those connexegbonents, but
from a selection of them, this selection beingairse independent of
the contrast. Moreover, this selection is conststeith what we
expect to be “objects” in the image and discar@skthickground. We
do not pretend to solve the foreground-backgrounbiguity in
general, but this ambiguity appearing only for o&g meeting the
frame of the image, most of the time the good ah@anade.

The tree of shapes is complete and without redwydawhat
these properties mean is that the datum of theeshepsufficient to
reconstruct the image (completeness) and thatnecessary for this
operation (absence of redundancy), in the sengeé¢h®ving a part
of the tree does not permit to reconstruct the emag yields a
different image. In these respects, the tree ghabigs a representation
of the image. Moreover, we believe this tree isearesentation
adapted to image analysis, its contrast invarideteg not the least of
its advantages. Finally, for discretely defined ges, a fast algorithm
allows the decomposition, the reconstruction beirgal. This is
exposed in the next chapter.

1.4.1 Basic definition

Unless otherwise defined? will be any connected topological
space. We call image an application frénto R . Q will sometimes
need to be locally connected. We recall the dedinitof local
connectedness:

Definition 1.1 A topological space Q is said to be locally
connected if the following equivalent properties hold:

1. Xhasa basis of connected neighborhoods;



20

2. the connected components of any open set of Q are open;
Notice that local connectedness is a property lyotatlependent of
the fact that the topology is metric or not.

The notion of connectedness we use is the cladsigalogical
one:

Definition 1.2 (Connectedness) A topological space X is said
to be connected if any partition of Q into two closed sets results in
one of them being ¢; and the other one Q. A subset of Q issaid to
be connected if it is connected as a topological space (for the induced
topology).

This can also be formulated with partitions intatepen sets
(it is enough to consider the complements), orrgpyhat the only
open and closed subsets ©f are ¢ and Q, or in an alternative

formulation: the only subsets @ having ¢ as boundary argwand

Q. Other notions of connectedness exist, as for elamap-wise
connectedness, or strong connectedness, but wietrést discussion
to the classical one.
The two most important basic results that are lse&u
1. The union of a family of connected subsets @f
having a nonempty intersection is connected.
2. If COQ is connected andCODOC, then D is
connected.

The first point implies that any topological spacean be
partitioned in a family of maximal connected subseand this
decomposition is unique. Its elements are called tloonnected
components. The second point implies tha€ifis connectedC is
connected, and an easy consequence is that theatedrcomponents
of a setSare closed inS (but not necessarily open, except wHgis
locally connected, hence the interest of this motiof local
connectedness).

It is clear that the family of superior level se$sdecreasing,
whereas the family of inferior level sets is ingieg:

0A <, X*u O X*u, X,uld X,u (1.4)



21

As explained in Section 1.2, each one of theseli@enallowing to
reconstruct the image from Equations 1.2 and 1.3.

1.4.2 From level setsto their components

Whereas contrast invariant, level sets are not edilvip enough
with our visual perception to have any hope of espnting visual
“objects”. It seems true that the eye is the mostage in comparing
two light intensities (much more than for exampleomparing hues),
yet these comparisons do not seem to be globa:able to isolate
from two adjacent regions the brighter one, but m@n adjacent
regions, the comparison does not seem to be rel(abk Figure 1).

Figure 1: Comparing the two small gray squares, the eye isahease comparing
their gray level. The left small square might appbeaghter than the right one,
whereas they have the same brightness.

The consequence is that global comparisons areneahingful,
that is only adjacent regions should be comparéd.iiiformation left
is in Figure 2. The arrows in this figure represiet relation “brighter
than”. This relation is transitive, but observetttiadoes not allow to
compare the gray levels of the two squares.

Moreover, any homogeneous region appears as ornectgbthat is
not split by the eye. This leads us to work witimmected components
of level sets rather than with the whole level sé&tse fact that two
regions are connected components of the same &mtels not a
relevant information, we do not compare their giesel. This is the
case for the small gray squares in Figure 1.
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Notation: given a pointxin X"u, let us denote b)cc(x”u, p) the
connected component oX’u containing x. By convention, if
x0 X, cc(x”u,p) is ¢. A similar notation applies tocc(X,u,p).

We derive evidently from Equations 1.2 and 1.3 téeonstruction
formulae:

u(p) =inf{A|cc(X,u, p) # ¢
u(p) :sup{/l |cc(X”u ,p) ¢go}

The monotonicity of level sets translates intoes tstructure for
their connected components. Since their number netbe finite, we
have to define a more general notion of tree.

Figure 2: the information left from image of Figure 1 whemlyplocal comparisons
are performed. The arrows represent the orderigalébrighter than”.

Definition 1.3: Let £ be a family of sets and < a partial order
relation in £. We say that <induces a tree structure in ¢€if the two
conditions hold:

1. [ROg, OEOE, E<R,

A< B
2. UA B, Clg, = B and C are comparable
A<C

The first condition expresses the connectednesheofbtructure,
Rbeing the root of the tree, and the second comditiplies that
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there is no loop, because, given four sé&sB, C,D0¢, the
following situation cannot happen:
AOBOD
ACOCOD.
B and C not comparable.

A patrticular case occurs when the relation ordeghésinclusion
of sets, in which case we talk aboutiaciusion tree.

With this definition we show the tree structure @dnnected
components of level sets.

Proposition 1.4: Let ube an image. LetA=cc(X"u, p) (resp.
A=cc(X,u, p)) and B =cc(X“u, p) (resp.B=cc(X, u, p)). Suppose
that An B=g. Then eitherAlJ Bor B A.

Proof. Suppose, without losing generality, tiat 1. Then we
have [u= ] Ou=A4, thus BO[u=A]. Let zOAnB, then
clearlyA=cc(X"u,z), and sinceB is connected, containgand is
contained ifu= A] , we deduce thaB [0 A.

The case of the connected components of infenal sets is dealt
with in the same manner. i

This implies (and is stronger than) the inclusi@etstructure:
Corollary 1.5: For a bounded image, the set of lower level sets

X ,u and the set of upper level sexdu are each inclusion trees.
Proof: The root is the definition set afi. If A B and Care

lower level setsAOB and A C, we getAll Bn C, which proves

that BnC=¢ and, using Proposition 1.4, tha8 and C are

comparable for inclusion order. The proof is simitar X"u. O

1.4.3 Beyond componentsof level set

The above simple result only is a small extensibrEguation
(1.4). Nevertheless, it is a substantial improvemerer these
formulas in the sense that it represents morefédiyhthe objects in
the image. We have got locality, which was one loé tmain
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motivations of this work. In these two trees, wepent to find the
meaningful objects perceived by the eye. In thissee these trees
seem to be useful for image analysis.

The problem with their use is linked to reconstitct It is
acknowledged that the trees are sufficient inforomato reconstruct
the image they are extracted from, but they arerddnt. Since each
tree represents exactly the image, if we want tal ds well with
upper level sets as with lower level sets (whichdeg manipulations
of these trees is a problem. For example, the lmgscation we would
like to do on a tree is to remove one node. Siheeother tree is not
linked (except that it represents the same imagially), it must be
extracted again so that it represents again thgenod the first tree.
There is no quick solution to this; we have to retouct the image
from the modified tree and extract the other tides drawback is due
to the lack of link between the two trees. Wher#as inclusion
information is encoded for components of the saype bf level set in
their tree, there is no such information betweemmonents f
different types of level sets. This is to be expdcsince such
components are not nested, that is we cannot keepchusion tree
structure with all components of lower as well pper level sets.

Figure 3 illustrates the fact that both trees cawvehvery different
structures. Since no one should be privileged, ube of their tree
structure is a problem. This example hints at whdacking in both
trees. The link between them is related to theomotif holes. In this
figure, D is an hole inF and this information is interesting from an
image analysis point of view.

Since each tree represents exactly the image attuendof both is
at the same time too much (since there is reduyjlaamzl not enough
because such relevant information as the relatidseimg a “hole” in
an object does not appear in these data.

All these problems have a common solution: insteafd
considering connected components of level sets, woek with
connected components of level sethose holes are filled. This
elementary operation yields what we hihpes. The shapes keep the
same properties as connected components of letel Iseality and
insensitiveness to contrast change. The relatidwdss connected
components of level sets of different types “isoéehin” translates in
this framework to the relation “is contained in”orkunately, this
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operation remains consistent with image analysisceSwe live in a
world where numerous objects are “full”, a holetheir projection in
an image must be due to occlusion, and represesticly projections
without their holes is faithful to the true object.

The redundancy between the two trees is automigticamoved.
Taking the example of image of Figure 3, the shapased on
componentsA, B, C and E are the same: the whole image.

o

@00 ®

©0

Figure 3. Top: an elementary image with three “objects”. taguares and one
rectangle. Left column: the connected componentsupper level sets with
increasing thresholds from top to bottom. Rightuoah: the connected components
of lower level sets with decreasing thresholds friom to bottom. Bottom line: the
two associated trees, where arrows represent ta¢iore “contains”. The two
squares, which are relevant from an image anapaist of view, are of different
types and therefore appear in different trees, stgpthat both trees are of interest.
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Whereas the squafgis included in the rectangle, there is no link betweeld and
F.

The shapes based an and G are D and G themselves, since
these components have no hole. On the contrarycahgonentF
become the same rectandie, and D which was a hole i, is a
subset ofF '. As shown in Figure 4, the shapes have an inciusee
structure. In the following section, we investgahe conditions
under which a continuously defined image can beessmted by a
tree of shapes. This will imply the definition dfet notion of hole and
of the concept of saturation.

©0

Figure 4. The shapes based on the elementary image as ireRgiihe component

F of Figure 3 becomes full here; D and G do nohgeasince they have no hole, and
all the other components becoethe whole image. The image is represented by a
unique inclusion tree, where upper and lower lesetls have equal importance.
Notice that reversing the contrast (negating adlygvalues) would yield the same
tree structure.
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1.4.4 Saturation, hole and shape definition.

In this section we want to show that the shapesaeted from an
image have an inclusion tree structure and to tyeae the
possibilities of reconstruction of an image fromm ghapes. Under
these conditions, decomposition of an image intapsk will be a
powerful image representation, well adapted to enagalysis.

Heuristically, the tree of shapes is a data strecta encode in a
tree the family of level lines of the image. To &ble to handle
discontinuous functions, more specifically, upp@&mgontinuous
ones, we define level lines as the external boynofthe level sets of
the image. This leads us to the notion of shapechwvigionsists in
filling the holes of the connected components ef ldvel sets, upper
or lower, of u. The operation of hole filling was called saturatin
[1], [68]. Thus, level lines are the boundarieslo&pes and to give the
family of level lines is equivalent to give the faynof shapes. It is
easy to imagine them when the image is smootlg#gh is a smooth

topography).

Definition 1.6: Let Qbe a connected topological space and
A Q. We call hole ofA in Q the components a2\ A.

Definition 1.7: Let p, 0Q\ A be a reference point, and [Etbe
the hole of A in Q containing p,. We define the saturation oA
with respect t@,_as the se\T and we denote it bgat(A p, ). We
shall refer toT as the external hole oA and to the other holes of
Aas the internal holes. By extension, pf, ] A by convention we
define Sat (A,p, )= Q. Note that Sat(A, p,,) is the union ofA and its

internal holes.

The saturation operator is the operator that toansf the
connected components of level sets to “shapes’s @perator fills the
holes of the connected components of level sets.

We will denote byT ,the set of holes oAand Ext A the exterior

of A. Then we have the identity:
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sat(A=ADOUT

TOT 5

where the unions are disjoint.

Notice that the definitions of holes and exteri@pend on the
saturation operator chosen 6h. But we will never consider several
saturations at the same time, so that the contéiXbevclear enough to
disambiguate these notions.

Definition 1.8: Given an imageu, we call shapes of inferior
(resp. superior) type the sets

sat (cc(x,u.p)) (resp.sat(co{ x*u.p))

We call shapes afi any shape of inferior or superior typge denote
by S(u) the family of shapes af .

Examples of interesting saturation operators wallsmown later,
but here is a trivial one: consider the operatat thansformsg; to
either @¢; or Q and any other set t6. This operator destroys all
information from the connected components of lesets of an image
and inhibits the reconstruction of an image fromshapes, which is
one of our concerns.

1.4.5 Saturation of complement

We derive from the definition the essential projesrof a
saturation operator on a connected topologicalespac

Definition 1.9: We say thatAl Q is a simple set whemA is
connected andat (A) = A.

In other words, a simple set is a connected séth@is no holes,
that is a connected fixed point of sat.

The first result is that a hole in a connectediset simple set or
its saturation Q.
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Lemma 1.10: Let A be a connected subset@fandT a hole in
A. Then eitherT is a simple set orsat(T)=Q, the last case
implying sat(A)=Q.

Proof: T being a connected component of the complement of a
connected set(A) in a connected space, we know thAdAT is
connected (see [75], IV.3, Theorem 3.3). So thigsseither a hole of
T, in which casesat(T) =Q, or the exterior ofT, in which case
sat(T) =T.

If sat(T) =Q, then sinceT O sat(A), the monotonicity of sat
yields

Q=sat(T)0O sat(sat(A)) =sat(A).
O

This immediately yields
Corollary 1.11: Let A a connected subset 6 andT a hole in

A. Thensat(T) O sat(A).

1.4.6 Propertiesof saturation

We investigate here the topological properties iofipte sets, in
particular their position relative to their bounglatt appears that
pathological situations are avoided when the spg@xeis locally
connected (see Definition 1.1). Notice that frore tdlempotency of
the saturation operator simple sets are the imagéhd saturation
operator of some sets, in other words, sets tleatleady saturated.
The converse (i.e., the saturation of a set isnplsi set) would be true
at the condition this saturated set is connected.

Saturation preserves connectedness

First we prove that saturation preserves connees=drThis will be a
direct consequence of the following lemma:
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Lemma 1.12: Let Q be a connected topological space. Suppose
that Q is locally connected. IfAJQ, Ais connected and is a
connected component 61\ A , then AT is connected.

Proof. Suppose thaAT is not connected. TheA andT being
connected, they are the connected componenssiof . Thus A and
T are closed inAOT, and each one being the complement of the
other one in this space, they are also open. Tthesg is an open set
U in Q such thatTOU and U n A=¢@. We can supposé)
connected, otherwise it suffices to take the cotatecomponent of
U that containsA (there is one sinceA is connected), and this
component is open sinc&€ is locally connected.U is then
connected, included i@\ A and containsl . SinceT is a connected
component ofQ\ A , this impliesT =U , an open set.

As T is closed inAOT, Tn A=¢, and T being connected,

T=T. Since pzT #£Q, the fact thatT is open and closed is a

contradiction with the connectedness(f

This lemma allows us to show the connectednesemiag
property of saturation:

Proposition 1.13: Let Q be a connected and locally connected
topological space, sat a saturation operator @Wnand AL Q a

connected set. Thesat(A)is connected.

Proof. It suffices to write
sat(A)= U (AOT)

TOT A
a union of connected sets (thanks to Lemma 1.1@hfa nonempty
intersection( A) . sat(A)is then connected o

As a consequence of Proposition 1.13, all properpeoved
below apply to shapes of any image defined®nsince shapes are
simple sets.

Saturation preserves topology

Next, we prove that saturation preserves topology:
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Lemma 1.14: Let Q a connected space, sat a saturatio®@md
AOQ. If A is open,sat(A)is also open. IfQ is locally connected

and A is closed, thersat (A) is also closed.

Proof. If sat(A)=Q, the assertions become trivial, so we will
suppose this is not the case.
Q\sat(A)is a connected component Of\ A, so that it is closed in

Q\ A, which is closed provided is open. Thug2\sat(A)is closed
in Q, which proves thasat (A)is open.

If A is closed, thenQ\ A is open, andQ\sat(A)is a connected
component of Q\ A, so Q\sat(A)is open (sinceQ is locally

connected), proving thaat (A)is closed. O

Remark: A direct consequence of Lemma 1.14 is that the only
shapes of an upper semicontinuous imagéhat are of inferior and
superior type arep and Q. Indeed, since connected components of
upper (resp. lower) connected components of lee&d are closed
(resp. open sinc& is locally connected), their saturation is also
closed (resp. open). Thus a shape being simultaheotiinferior and
superior type would be open and closed, the cordaess ofQ
implying this shape would b& or ¢. Remark this becomes false

whenu is not upper semicontinuous, as shown in Figure 5.

Figure 5: For an image that is not upper semicontinuousrarivial shape can be
of inferior and superior type. In this example, temtral disk is approximated by a
sequence of decreasing circles at level 2, whetteagiaps between circles are at
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level 0. This disk is a connected componentéfu u and X,U, without holes for

the natural saturation dR?.

Boundary of saturation sets
If A is a set in a topological space we denote withthe boundary
of A.

We now show that the boundary of the saturatioa sétA is a
subset of the boundary &.

Lemma 1.15 If A is any subset of a locally connected sp&ce

and{A,i 01} are its connected components, then
U oA 00A

iol
Proof. Leti[JI . On one hand, we have:
0ADAOA.
On the other handQ\ A Q\ A, so that taking the complement of
each member we get

AOQ\Q\A *
Then I**
the last inclusion coming from the fact thAtn A=A, expressing

that A is closed inA, since it is a connected componentAf Since

Q\Q\A is open and Q s locally connected, its connected
components are also open. Thank:{*t)), each connected component

of Q\Q\ A is contained in a connected componentfofTherefore,

Q\Q\ Abeing moreover open, each one of its connected cpemis
is contained in the interior of a connected compoé A. Thanks to

(**), we get
@Mn@@ﬂ&ﬂ&
which implies that (0A)n (Q \m) =g since

(0A)n A = pmeaningdA O Q\A. O

Remark: without additional assumptions, the converse inolusi
is false. Consider as an examgle= R with the usual topology and
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A=Q. Then dA=Q whereas the connected componentsAofare
composed of one rational, thus for each A =A and | JA = A.

Nevertheless, ifl is finite, the fact that theA are connected
components ofA implies A:UAWhich is sufficient to prove the
iol

converse inclusion.

Proposition 1.16: If Q is locally connected anéd [1Q,

osat(A) O oA

Proof. If sat(A) =Q, we getdsat @A F ¢ and the result is trivial.

Now suppose thaQ sat A A g.

asat(A)=6(Q\sat(A)) and Q\sat(A) is a connected

component ofQ\ A. Thus,
o(Q\sat(A)Da(Q\A)
meaningdsat A Y10A. O
The next important result links the saturation oket to the
saturation of its boundary.
Lemma 1.17: Let Q be a topological space and[1Qbe an

open connected set. Thexis a connected component Qf\ 0A.
Proof. Since A is open,AJ Q\dAand moreover

A=An(Q\0A)
proving that A is closed inQ\0dA, and since it is also open in it and
connected, it is a connected componenfadidA. O

Proposition 1.18: Let Q a connected and locally connected
topological space andAOQ such that sat(A)#Q. Then

sat(A) O sat(0A), and if A is closed, we gesat (A) = sat (0A).

1.4.7 Decomposition of an image into shapes

The above results concerning the properties of gairation
operator are the tools needed to prove that shiages an inclusion
tree structure. Nevertheless, this requires additi@ssumptions on

the space , which, as we will see, are met wikk".
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Our first proposition is the easy part of our gahéineorem, and
does not need further hypotheses alf@utit compares the saturations
of connected components of the same type of letel s

Proposition 1.19: Let Q be a connected and locally connected
space andi an image defined oQ . Let A and B be two shapes of
u of the same type such thatn B # ¢. Then eitherATl Bor B A.

It deals with the comparison of the saturations asinnected
components of level sets of different types. Notitat it involves a
strong hypothesis on the boundary of the open shalpieh explains
why additional hypotheses a2 are required, so that this hypothesis
is automatically satisfied for all open shapes.iééothe proposition is
formulated in such a way that the two connectedpmrants have one
point ( p) in common.

Proposition 1.20: Let u be an upper semicontinuous image on
Q, A:sat(cc(x”, p)) and B =sat(cc(X,, p)) two shapes ofu.

Suppose also thaB is connected. Then eithé&x[0 Bor B A.

The following lemma deals with the last case: wttenconnected
components of level sets are disjoint.

Lemma 1.21: Let A and B be two disjoint connected sets of a

connected and locally connected topological spaben sat(A) and

sat(B)) are either nested or disjoint.

The following theorem sums up the three precedasgits and is
the achievement of this section.

Theorem 1.22: Let u be an upper semicontinuous image on the
connected and locally connected sp&e A and B two shapes ofi
with connected boundary. Theh and B are either disjoint or nested.

From this result, we can conclude that the sethafpss of an
(upper semicontinuous) image has an inclusion $teecture. For
simplicity, we assume that our image is discretberl we can
represent the tree as a finite structure; the shape the tree nodes
and the parent-child relationship, represented Hgy links between
nodes, is determined by inclusion (the chill being a shape
contained in the fatherA" with no other shapeB such that

AOBOA").
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1.4.8 Unicoherent spaces

As we have seen, the shapes of an image have &arsiort tree
structure under some restrictive condition wnthat its shapes have
connected boundary. Actually this can be ensured fthe upper
semicontinuity ofu if the definition setQ is unicoherent. We recall
the definition of a unicoherent space:

Definition 1.23: A topological spaceé? is said to be unicoherent
if it is connected and whatever connected closdbets F and F'
such thatX =F OF', we haveF n F is connected.

Let us give an example of unicoherent spacks. and any
interval | of R, are unicoherent. Indeed, a connected subset of
Q=Ror | is an interval. So ifQ is the union of two closed
intervals, they intersect and their intersectioa dosed interval, thus
a connected set. It is harder to prove tiRdt and any hypercube of
R" are unicoherent. In particular, the closure obaldn domain in
R" is unicoherent, since it is homeomorphic to a hgyplee inR".

Proposition 1.24: If Q is a unicoherent and locally connected
space, sat is a saturation éh and u is an upper semicontinuous
image defined o2, then all shapes af have a connected boundary.

We deduce the following

Corollary 1.25: In a unicoherent and locally connected sp@ce
with a saturation, two shapes of an upper semicoatis image
defined onQ are either disjoint or nested.

1.4.9 Applications

Until now, we have shown that provided some hypstkeon the
topological spaceQ are true, the shapes of a semicontinuous image
defined onQ have an inclusion tree structure. But the debnitof
shapes requires that we have a saturation opeyat@. The goal of
this section is to exhibit saturation operatorg #ra relevant to image
analysis. We will do this whe® is a closed Jordan domain R"

(for example a hypercube), for= 2.

When the imageu is defined only on a bounded subsetRif, we
would like to have a property similar to Theorer22l.where shapes
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should have an easy interpretation in terms of enagalysis. The
idea is that only a part of an image defined®h is observed. The
first (bad) solution would be to extend the imageto R" by an

arbitrary value. The problem is precisely that thadue is arbitrary,
and different values would give different trees.

We would like that “objects” totally included indhdefinition set
are described in the same manner they would I ivhole image on
R" were observed. So that connected components ef &mts not
meeting the frame of the definition set are supgos® to be cut. At
this condition, whatever the image outside the definition set, its
holes are the components of the complement notimgettie frame.
For the same reason, the saturation of a conneetedontaining the
frame is the definition set itself (see Figure B)ere remains to deal
with the connected components of level sets thagtntiee frame
without containing it.

Figure 6: Saturation of some sets in a bounded definition keft: two sets
(dashed) in their respective image. Right: theiursdion (dashed). The top-left set
does not meet the frame of the image. It is sadras if the image were infinite
(whatever the image outside the definition set, rédmult is the top-right set). The
bottom-left set contains the frame of the images lalso saturated as if the image
were infinite (whatever the image outside the d#fin set, the result would contain
the whole definition set, shown bottom-right). T¢suration of a set containing the
frame of the image is always the whole definitieh s
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The intuitive notion of a hole is that of a conmettomponent of
the complement “smaller” than the exterior. Whea dlefinition set is
R", in some sense a bounded set is “smaller” thamndounded set,
so that we can define the holes and the exteriagreement with the
intuition. Whenu is defined on a bounded set, we quantify thisamoti
with the help of measure theory. Therefore, we rteesuppose that
we are provided with a measure on the definitidn se

We need moreover this definition set to be uniceher This
imposes strong constraints. We suppose fbats the closure of a
Jordan domain iflR?, or more generally iR", i.e., the closure of the
interior of a subset oR" homeomorphic t8"*. Then we know that
Q is a connected and locally connected subsékoh=> 2, and also

unicoherent, for the usual topology inducedRy. We suppose also
that a Borel measures is given on Q. Therefore, sinceQ is

compact,/,l(x) <o, The boundary of2 as a subset oR", denoted

by 0Q, is called the frame of the definition set; itaisconnected set
(the Jordan hypersurface).

From these remarks, we define the saturation &sifsi

Definition 1.26: Let A a measurable subset 6f. We define

sat(A) as:

AD{C=cc(Q\A):CnoQ=¢ ifAn 0Q =g
Q ifoQ 0 A
Q\{C=cc(Q\A):CnaQ#gand u(C)>u(Q)/ 3 if pzAndQ#0oQ

(1.5)

The new case is concerned with sets that meetrdheefof the image
without containing it. The construction of the asated shape is
illustrated in Figure 7. That half the area of tikage plays a specific
role is justified by the fact that this yields d@wsation operator.

The fact that we use a Borel measure yields:
Lemma 1.27: If AOQis measurable, then every connected
component ofA and of Q\ Ais measurable.

We are in a position to prove that the sat operamdefined in
1.28, is indeed a saturation operator.
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Figure 7: The construction of the shape associated to mseting the frame of the
image but not containing it. This is the case tas$ not illustrated in Figure 6. Left:
the sets. Right: the associated shapes. In thetfius cases (two first rows), one
connected component of the complement has a (Leb¥sgeasure larger than half
the one of the image, this is the exterior of thie The other connected components
are the holes. In the third case (third row), nowrmxted component of the
complement has a sufficient measure, they are aikidered as holes and the
associated shape is the whole image.

Proposition 1.28: The operatorA0Q of Formula (1.5) is a
saturation operator of2 .

This implies that the shapes (according to therattun operator
of Definition 1.26) of an upper semicontinuous iraatefined onQ ,

the closure of a Jordan domain®Y, n=> 2, have a tree structure.
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Chapter 2

Image  segmentation  based on
minimization of Mumford-Shah
functional

In this chapter we address the problem of imagensetation. In
particular, we introduce a variational approacholkhise the classical
Mumford-Shah functional and is subordinated tottke of shapes of
the image. We carry out the minimization of thedumnal using a
hierarchical processing algorithm. At the end wevglsome results of
segmentation.

2.1 The simplified Mumford-Shah functional on
the Tree of Shapes

Letbeu:Q — R an image defined in a doma@R?. The idea
of computing a segmentation by selecting a subkd¢heo family of
level lines ofu canbe applied to the simplified version of Mumford-
Shah energy functional, leading to a version @ulbordinated to the
Topographic Map of the image.

According to Mumford-Shah [71], a segmentation ofiamageu is
defined as a paifB, ) where( is piecewise regular function, regular

in Q\B, and B is a the set of boundaries whaefeis discontinuous.
The set of curve® represents a partition of the image dom@inin
particular, if we assume thdt is piecewise constant, thed\Bis a
union of regions andi takes a constant value on each of them which
is equal to the mean value af on it. We define the simplified

Mumford-Shah functionak;. as
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2

Evs (B0 kys) =AH'(B)+[_ (u-0) (2.2)

Q
where Hl(B) denotes the length of the system of cur&sd is a

piecewise constant image, i.e., constant on eagibrmeof Q\ B, and
A>0is a parameter. We observe that, givBn the minimum of

Ef,,s with respect to the variabi@ is explicitly given by

1
Uq —@J'qu dp

O being the connected component<bfB (as usual, for any s€?,

Xo, =1if pOO, Xo, =0, if pdO). This observation permits us to
write the energy as a function & and denote it b)EfAS(B)instead

of Eys(B,Ulg)- This energy is a multiscale energy which can be
written asE;s(B)=(C,D,A) where

2

C(B)=H(B), D(B)=] (u-d)dp

Observe thaC(B) s strictly subadditive (See Definition 5 of [73]).
We shall restrict us to the case of digitized insagee., we assume
that the domainQ ={1,....N} x{1,..M} ,N MON, and the image
u:Q - {1..L} ,LON. Let S(u) be the tree of shapes of.
Observe that any set of shapes] S(u)can be endowed with a tree

structure whose nodes are the shapeg in two consecutive shapes
of 7~ being related by an edge. Let
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ST (u) ={7:7 0 S(u)} .
Let us denote

97 =0, 0A

We consider the minimization of (2.1) restricted the set

{67‘ =7 0ST (u)} i.e.

Bzarm;er(u) Els ( B) (2.2)

Minimizing the simplified Mumford-Shah functionaligordinated to

the topographic map is a segmentation which costairsimilarity

criterion and computes regions whose boundarieteaet lines. This

is not the most general context for a segmentasimece boundaries of
objects may be bounded by curves formed by pietksel lines and

may not coincide with full level lines. In spite tfis, level lines are
robust and contrast invariant objects, and the radges of the image
are contained in them.

Observe that the computation of the optimum hasxgonential
complexity on the number of shapes if all possitenbinations of
them are taken into account. This computation besof@asible if we
restrict our search space to a hierarchy of panttiof Q .

2.1.1 Optimization of a multiscale energy on a hierarchy
of partitions

There are several alternative but related stradgetgieninimize an
energy on a hierarchy of partitions, see [28], [48¢ [40]. We shall
follow here the approach in [6]. L& be the image domain, and let

P(Q), Part(Q) denote the family of subsets and partitionsCdf

respectively.

Definition 2.1: Let R, OPart(Q). We say thatH is hierarchy of
partitions of Q constructed ovelR, if H is a family of nonempty

subsets of) such that
1. QUH.
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2. Any two sets inH are either nested or disjoint.
3. Any set inH contains a set iff,

A family H' of nonempty subsets @ satisfying 2 and 3 is called a
pre-hierarchy oveR, .

A cut of H is a partition ofQ whose elements are iH . Figure 8
displays a hierarchy with two possible cuts. Theafecuts of H is

the set of partitions of2 that we can build fronH . We shall assume
that the hierarchies we consider are finite, & ,assume thal has

a finite number of elements. In this case,is a tree whose nodes are
the subsets of2 in H . Two nodes are related by an edge (of the
tree) if one is contained in the other and no osleeiin the hierarchy is

in between. The sets iR, are the leaves of the tre®@ is the root,

and the concepts of father, children and siblingsya

{a.bcde.fg}

{c.defg}

Figure 8: Hierarchy representation in dendrogram form witlo ossible cut€1
andC2 [43].

Definition 2.2: We say thatE":Part(Q) -~ R* is an affine
energy onPart(Q)if there exist two function<, D : Part(Q) - R*
such thatE" (R) = AC(R) + D(R) for any ROPart(Q). In this case,
we denoteE” =(C,D, ).
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Definition 2.3: We say thatE:Part(Q) — R"is separable if

there exists a function on the subsetstfwhich we denote byE
such that

E(0)=> E(R) OOOPart(Q).
ROO

We say that E:Part(Q)- R'is subadditive if
E(ROS)<E(R)+E(S) OR,SOQ
such thatRn S=g.

Definition 2.4: Let E' =(C,D,A) be an affine energy. We say
that E* is a multiscale energy ifC, D are separable and is
subadditive. The valud is called the scale parameter of the energy.

From now on we assume th&’' =(C,D,A) is a multiscale

energy. We assume that the multiscale energy inatkbn the cuts of
H . For anyA, let C,(H)be the cut ofH minimizing E*. Let us

review the main ideas of the algorithm proposedhgues in [43] to
compute C, (H)for any A1>0 which is based on a the dynamic

programming functional relation.
For eachROH , let

H(R)={SOH:SOR}
We call H (R)) the partial hierarchy on the nodre. As it is proved in
[43], if ROC,(H)then R is locally optimal in H, that is,
E'(R)<E"(Y) for any cutY of the partial hierarchyH (R). Let
R, (H)the set of nodes off which are locally optimal irH for the
energyE”.

Let
A (R)={A0R":ROC; (H)}.
The set\’ (R) represents the set of scales such ®Ras in the cut of
H minimizing E”.

Let
N, (R)={A0R":ROR, (H)}.
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The setA,, (R).represents the set of scales for whiehis locally
optimal in H for the energyE". As proved in [43],A,, (R)is an

interval of type[a,).. We denote byA"(R) the left point of the

interval and we refer to it as the scale of apariof R in an optimal

cut of the multiscale energf’. Then Guigues [43] proved the
following result:
Proposition 2.5: For any

ROH, Ay (R)=[4"(R).A7(R)) whereA™(R) =ming, ;s A" (S).
Thus

C,(H)={ROH:A"(R)< A< (R)}.
We call the set/\’;p(R) the interval of persistence of the regiéh
The persistent hierarchy obtained frdfnand E” is
H ={ROH A, (R) 24 .
On the persistent hierarchy” we haveA™ (R) =" (Rf)where R'
denotes the father d® in H™ .

For eachROH , A0OR", we define
E(4,R)=AC(R)+D(R).
We define the partial energy of the noB&IH as the energy of the
optimal cut of H(R)with respect to E' and we denote it by
E (A,R). Thatis
E'(4,R)=E"(C, (H(R))).
Observe that for any leaveR of the hierarchy we have
E (A4,R)=E(A,R) forany AOR".

Proposition 2.6: The partial energie&” (A, R) of the nodes oH
are related by the dynamic programming equation
E (A,R)zinf{E()l,R), > E ()l,s)} OROH,

S]F(R)

where F (R)is the family of children oR.



45

Proposition 2.7: Assume thaE" =(C, D, A)is a multiscale energy on
the hierarchyH . Then for anyR[OH we have:
1. E (/1, R) is a piecewise affine, nondecreasing, continuous an

concave function ofl .
2. We have E'(AR)=% __E (4S) if A<A"(R), while

E' (1, R)=E(A,R) foranyA1=1"(R).
3. If C is strictly subadditive, i.e., i’C(X)<ZYDF(X)C(Y)for
any XOH, then A*(R)ORand is the only solution of

E(/" R) = ZSDF(R) E* (/]’S) :
Combining the results of Propositions 2.5, 2.6 arndwe are able to
compute thed —cuts C, (H).

The above algorithm can be implemented once we lihge
hierarchy as it happens with the algorithms usd@8&, [40]. Usually
this hierarchy is constructed with a different meggalgorithm [40].
On the contrary, the climbing algorithm proposed Gyigues [43]
constructs the hierarchy at the same time thamplements the
dynamic programming principle of Proposition 2.6.

2.2 Proposed approach

Our approach is based on the construction of teefghy from
an initial partition using the mergings obtainedthwia greedy
optimization algorithm for the simplified Mumforda&h energy at
several scales. Then we use Guigues algorithm idbegcm Section
2.1 to obtain the minimum of the energy on thigdmehy at any scale
A. This approach can be used for computing mul&ssagmentations
with the simplified Mumford-Shah energy.

Starting with the initial partition determined b}S(u)we construct a
hierarchy using the mergings produced by a greégtyithm applied



46

to the energy (2.1) at several scalgs k=1. The greedy algorithm

produces a local minimum of (2.2) and the hieraraiiy contain all
the merging steps to compute the local minima atrsé scales. Then
by the algorithm described in the last section wmpgute the global

minimum of E;,; on this hierarchy for any value of. Notice that the
global optimum corresponding td= A, does not necessarily coincide

with the local one obtained using the greedy atgori
The basic operation of the greedy algorithm is iierging of two
neighboring regions which, in the present contex¢quivalent to the

suppression of a shape. GivenDST(u), the suppression of a shape
A in 7 gives 7 \{ AAOST(u). Let us describe this operation as a
merging of two regions of2\d7 . For that, letA" be the father of
A, let {Bl,...,Bp} be the children ofA, and let {A,...,A} be the

siblings of A. It is implicitly understood that, iA is a leaf of7 , the
family of children of A is empty. Similarly, it may happen that the
family of siblings of A is empty. The shapeA determines two
regions

A= AND(ADDLA)
= A\O(02,8).

and the merging of these two regions producesdf®m (see Figure
9)

G(A)=A'OA=A"\O(DLB OOLA)

2.2.1 Merging algorithm

Let us describe the greedy algorithm proposed 2h §d [70] which
finds a local minimum of (2.2). Since this algontlcould be applied

to any energy, let us denote it b instead of E).. Let
AE(7,A)=E(7)-E(7\{A}).
Set 7, =S(u).
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Figure 9: The domainG(A) obtained after suppression of the shafe It is the

region determined by the father @&, denoted byAf , the external shape in the
Figure, the siblings ofA, denoted byA, A,and the children ofA, denoted by

B, B,.

Sep 1: For any Al 7 ComputeAE(Z;, A) and insert it in a queue
Q with priority AE(7;,A), the highest priority corresponding to the
highest value ofAE (7, A) .

Step 2: Iterate the following procedure: ChoosesthgpeA 07

which corresponds to the first element in the qumarestructed irstep
1if AE(7,A)>0, and defines;, = 7\{ A} . Recompute the values

of AE(7(+1,A')>Ofor all shapesA which are adjacent to\" (i.e.,

parent, children, or siblings of') and reorder again the queue in
decreasing order of the valueAE(7;,,A), AO7,,(the highest

priority corresponding to the highest value). Wepsivhen no shape
A exists withAE (7, A') > 0.

The last tree obtained~ determines the boundaries and the
regions of the segmentation. It is a local optis@ution of (2.2), in
the sense that any other merging of regions of dbgmentation
increases the energy [52], [70].
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2.2.2 Construction of hierarchy

Since E].is a multiscale energy, we can compute its mininanma

hierarchy of partitions using Guigues algorithm ][48ee Section
2.1.1). To explain our construction of the hiergroii partitions let us

recall the definition of completion. Le®, 0 Part(Q) and letH be a

pre-hierarchy overR,. The operation of adding t¢d a node R

constructed by merging two regions Bif without father is called a
completion. Then we start with the initial partitid?, determined by
0S(u) and we take the pre-hierarchiy ={R:ROR}. Then we

chooseA, >0 and we minimizeE;, using the algorithm described in

the previous section, adding to the hierarcHy the completions
corresponding to the merging of neighboring regigresformed
during the execution of the algorithm. L& be the locally optimal
solution obtained. We continue iteratively this gges by minimizing
the simplified Mumford-Shah energgk:, A, =24.,k=1, (one
could also useA,,, =A, +A, for some valueA>0) on the initial
partition R, using the greedy algorithm and storing the sucdeess

mergings as nodes of the hierarchy. The constmuctiay be stopped
either when the value of, attains a maximum scale valug,,, or

when we reach the s€ . The value ofA” at each node is computed
using Propositions 2.6 and 2.7. Then, using Préiposi 2.5, we are
able to compute thel —cutson the constructed hierarchy for any
A>0. TheseA —cutsare local minima ofE\. ; they are also global

minima when restricted to the hierarchy. The immatation of this
algorithm is based on the results of Guigues [#3¢an be used for
computing multiscale segmentations.
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2.3 Experimental results

We display some results obtained by minimizing #gimplified
version of the Mumford-Shah functiond. given by (2.2). The

functional E;\is minimized on a hierarchy of partitions consteatt

with the algorithm described in Section 2.2. Inasrtb simplify the
nomenclature we call the complete algorithm hidrgiicased

algorithm. To construct it we started with the wald, =2 and
updated it withA,,, =2A4,, k=1, up to a maximal scale which gives

the regionQ as segmentation.

For each experiment, we shall display the origimahge, the
boundaries of the segmentati@® and the imagai which takes the
mean value ofi on each region of the segmentation.

The energy functional is a multiscale one. The &abf A
determines the minimal size of the regions of ggnsentation [70]. If
we do not know a priori this size, by taking ,fostance,A = 2“we
can obtain a multiscale family of segmentationghaf image which
contain the information at several scales [52]].[Figure 10 displays
the results obtained minimizing;,, (2.2) applied td_ena image with

severalA values. Figure 10 (a) display the original imagelumn at
the right displays the set of curv@s obtained, and column at the left
displays the reconstructiain.

Figure 11 shows different segmentation of the samginal
image with differentd values. Is possible to observe that whenhe
value increase the number of regions that compbs#ecrease and,
consequently, the image segmentation is charaetéyzfew details
according to the algorithm used. Indeed in thisecd® number of
region of the hierarchy of partition that satishetProposition 2.5
decrease. Vice versa when thevalue is little there are a lot of nodes
of hierarchy that satisfy the Proposition 2.5 amdthis case, the
image U is composed by a lot of region and, consequeistlgpssible
to observe more detalils.
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Figure 10: Segmentation result of the Lena image obtainedmizing E,C,S with

several values ofd using the hierarchy-based algorithm. a) First rowginal
image. Column at the left: segmentation bounda@esumn at the right: imagél .
b) Second rowA = 20, ¢) Third row:A = 60, d) Forth rowA = 100.
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e

Figure 11: Image partition with differentd values. a) On top original image. b)
Second row: image partition witbl =20. ¢) Third row: image partition with
A =500. d) Fourth row: image partition witd = 2000.



52

We select some reasonable value/dofdepending on the image
for the rest of the experiments. Using a differdnhear to the one we
used will not change much the results. On the offaexd one could
filter the hierarchy of partitions so that all regs obtained have a
minimal size, but this is not related with the aptation of the
functional on the hierarchy.

Figure 12 displays the results obtained minimizE applied to

the Bureau image in Figure 12 (a) wilh=60. Figure 12 (b) displays
the set of curve8 obtained, Figure 12 (c) displays the reconstructio
a.

Figure 12; Segmentation result of the Bureau image obtainednmiing E,Cls with

A =60 using the hierarchy-based algorithm. a) Top: Osbimage. b) Bottom
left: Segmentation boundaries. ¢) Bottom right:ithage U .

Figure 13 displays the results obtained minimizE, applied to
the geographic image in Figure 13 (a) widlh=200. Figure 13 (b)
displays the set of curveB obtained, Figure 13 (c) displays the
reconstructiond .
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Bl GO B

Figure 13: Segmentation result of the geographic image pbthiminimizing
E,f],,s with A = 200using the hierarchy-based algorithm. a) Top: Odbimage. b)
Bottom left: Segmentation boundaries. c) Bottonhtiighe imagel .

Figure 14 displays the results obtained minimizEg applied to

the Hamburg Taxi image in Figure 14 (a) wilh=50. Figure 14 (b)
displays the set of curveB obtained, Figure 14 (c) displays the
reconstructiond .
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Figure 14: Segmentation result of the Hamburg taxi imageaioled minimizing
E,f‘,ls with A =50using the hierarchy-based algorithm. a) Top: Odfjimage. b)
Bottom left: Segmentation boundaries. c) Bottorhtighe imagell .
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Chapter 3

M otion estimation

In this chapter we introduce the motion estimafwablem and
we review some basic aspects involved in the digitage sequence
formation. Some classical and more recent optiltad festimation
methods are commented.

3.1 Introduction

Computing the apparent motion of objects in a seceeof
images is one of the key problems in video proogsknown as the
optical flow computation. Once computed, the meas@nts of image
velocity can be used in a number of applicationsid®o processing
and compression as well as in computer vision [38].video
compression, the knowledge of motion helps to resmewmporal data
redundancy and therefore attain high compressioosrf29]. In video
processing, motion information is used for debhgri(motion-
compensated restoration), noise suppression (motoipensated
filtering) or standard conversion (motion-compeadaBD sampling
structure conversion). Tracking moving objects nether important
application in video processing. In computer visidD motion
usually serves as an intermediary in the recovéamera motion or
scene structure. For references in these topicb8¢g87].

The required features of the motion field are apion
dependent. Tasks such as the inference of egomaiioin surface
structure require velocity measurements being ateuand dense,
providing a close approximation of the 2D motiotedi whereas
motion detection only needs approximated motiondfibut well
located.

Most known motion estimation methods, in one formanother,
employ the optical flow constraint which statestthlihe image
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intensity remains unchanged from frame to framen@lthe true
motion path. The movement of objects present insittene may be
recovered by minimizing an error measure basedh@assumption
[87]. However, it is known that motion estimatios an ill-posed
problem: the solution can not be unique, or sohgimay not depend
continuously on the data [10].

Current approaches try to solve this issue by inmgoadditional
assumptions about the structure of the 2D motiagld.fi These
constraints are introduced into the error measitheereby adding a
smoothness term to it, or by restricting it to &ipalar motion model.
The former strategies are called dense motion fieddimation
approaches, whereas the latter ones are usuallgdcphrametric
motion estimation approaches.

Classical methods for dense motion field estimageek for a
motion field that satisfies the optical flow cormsiit with a minimum
pixel-to-pixel variation between the flow vectommoothness term).
Parametric motion estimation methods usually carsadpartition of
an image into disjoint regions and estimate theanatf these regions
restrained them to parametric motion models. Weé msiliew dense
and parametric methods in Section 3.4.

The optical flow constraint assumption is generafiglated in
image sequences taken from the real world. Globklaal changes in
illumination due to, for instance, a moving camera change in the
shade of an object can make the optical flow caimsgtrto fail.
Alternatives to the classical brightness constaasgumption have
been already proposed in the literature (see Sedt?2).

3.2 Geometricimage formation

Imaging systems capture time-varyingD scenes as2D
projections. These projections can be representes thapping from

4D space to 8D space,m:R* - R*:(X,Y,Z,t) - (x,yt) where
(X,Y,Z)are the3D world coordinates(x,y) are the2D image
coordinates, andt is the time, and all of them are continuous
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variables. These projections can gmespective or orthographic [49],
[87] and entail some loss of depth information, etthiengenders
several problems such as aperture and occlusieasSgction 3.3).
Per spective projection (or central projection) is the projection of
points in the scene onto the intersection of thagenplane with the
ray connecting the points and the focal point @nmter of projections)
C. We consider the image-centered coordinate systemere the
image plane is parallel to theY — planeof the 3D world coordinates

and the focal poinC is a distancd away from the image plane on
the negative side of th& —axis. That is, C is placed on(0,0,-1).
The distance from the focal point to the image @Janis called focal

length. In Figure 15 perspective projection is sthated for this
configuration.

/PIXY.Z)
.

Figure 15: Perspective projection model

The perspective transformation for this configumatigives the
following relations:

IX Y
and y=

X = .
|+Z |+Z
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Orthographic projection (or parallel projection)tie projection
by parallel rays orthogonal to the image plane. Sgare 16 for an
example of orthographic projection when image-aaatecoordinate
system is considered.

* 1

y |
|

e I :Y

* (xy)

Ceo -1
Figure 16: Orthographic projection model

The orthographic projection can be describexasX and y = X..

Note that the orthographic projection correspoidhe limit case
of the perspective projection whén- . It appears when the objects
are, compared with the focal length very small or located very far
away from the viewer (i.e.|/Z -1, where Z denotes the
Z —coordinate of the object in the world coordinate system).

The perspective projection produces a distortiorangles and
distances. The size of the view will vary when tékative positions of
the eye, the image plane, and the object are dlténethe case of
orthographic projection the size of the view of tigect will not vary
with the distance between the object and the inmdgee; projected
parallel straight lines stay parallel; distancesd aangles are
transformed consistently. It is usual to replace thberspective
projection (non-linear transformation) by orthodrap projection
(linear transformation) if it is possible.
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3.3 2D Motion estimation

Image video sequences agD projections of 3D scenes at
different time instants. ThuD motion refers to the projection of the
3D motion of objects and camera onto the image plenEigure 17
the pointR moves with velocity\j to point P. . The 3D motion is

projected over the image plane by a perspectivge@ion. The
corresponding image poirg, moves on the image plane with velocity

w, to point p. .

I
I
100!

X / p .:, i

Image plane

C -1

Figure 17: 3D motion projection

The presence 02D motion manifests itself on the image plane
by changes of the intensity values of the pixetsngltime. These
changes are referred as optical flow field or appamotion field. The
optical flow field is, in general, different froniné 2D motion field
due to the following effects:

1. The2D motion field may not always be observable:
Lack of sufficient spatial image gradient may progan
unobservable motion; think, for instance, in thetioro
generated by a circle with uniform intensity whichates
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about its center. This motion is unobservable. Same
thing may happen when an image made by a periodic
structure moves and stays unchanged after the mdtio
Figure 18 we display the two examples mentioned
previously. This problem is a particular case oé€ th
aperture problem.

Figure 18: Examples of projected motion that do not generateal
flow.

. An observable motion may not always corresponds to

an actual motion:

If external illumination varies from frame to fraptben a
change will be observed in the sequence image sityen
even though there is no motion. In Figure 19 we 2@

the effect of an illumination change over a scdnehis
example the shades change the geometry of the image
This problem may appear in satellite images, and is
difficult to solve. However, generally the situatics not

so dramatic as in this example of optical flowdiel

N
h
b
N

Figure 19: Example of projected objects that generate optioal.
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Therefore, since only the optical flow field can bbserved,
generally it is assumed that the estimated opfioal corresponds to
the 2D motion field. Thus, the objective of motion estiioa
techniques is to estimate the optical flow fielagufe 20 shows an
example.

a) b) c)
Figure 20: Optical flow estimation example: a) wheel at tirheb) wheel at time

t+1, c) estimated optical flow field.

Optical flow constraint

As we have mentioned in the Introduction, the masual
assumption is that image intensity remains constbortg the motion
trajectory (optical flow constraint). This assunoptiinvolves that the
intensity changes are due exclusively to motioensdllumination is
constant, and the object surface is Lambertian.

Let |:[T,,T,]xQ -~ Rbe an image sequence with rectangular
spatial domainQ OR*and time interval[T,,T,]. The optical flow
constraint can be written as:

L(t, %, y) =1 (t+At,x+u(t X,y) Ly +v(t x y)) (3.1)
where t, t+At0[T,,T,] are two different time instants, and
(u(t,x, y), v(t,x,y)) is the optical flow field. When no confusion

arises(t, X, y) will be dropped out.
Assuming that the displacemenfs,v) are small or that the image

changes slowly in space, this constant-intensiguption leads to
the linearized optical flow constraint, which idled theOptical Flow
Equation (OFE).
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0,1 +0,Ju+0 Iv=0 (3.2)
where 0,, 9, and 0, denote the partial derivatives with respect to
X, Y andt respectively.

I1l-posed problem

The 2D motion estimation problem based only on frames and

constrained only by Equation (3.1) is #@hposed problem in the
absence of any additional assumptions about theenaf the motion.
A problem is called ill-posed if a solution is nanique, or does not
exist, or the solution do not continuously depemdtioe data [87].
Estimation of 2D motion has the existence, unigqasrand continuity
problems:

» Existence of a solution: No correspondence can be
established for covered/uncovered points. Thisniewn
as theocclusion problem. This concept is illustrated in
Figure 21 where the object indicated by the saimd
translates in thex direction from timet to t+1. The
dotted region in the frame t indicates the backgdowo be
covered in framet+1. Thus, it is not possible to find
correspondence for these pixels in fratrel. The dotted
region in framet +1lindicates the background uncovered
by the motion of the object. Clearly, there is no
correspondence for these pixels in fratme

frame t _ frame t+1

Figure 21: the occlusion problem

* Uniqueness of the solution: If the components of the
displacement at each pixel are treated as indepénde
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variables, then the number of unknowns (two vector
components) is twice the number of observation)(3.1
This leads to the so-calledperture problem. In such
cases, we can only determine motion that is in the
direction of the spatial image gradient, called moemal

flow, at any pixel: we denote =(v,v)and write the OFE
(3.2) as

ul v =—1,

where the operator nabla denotes the spatial gradie
0l =(0XI,6yI)T. The optical flow field w can be

decomposed intow =w, +w,, where the normal flow
w_and the tangential flowv, are respectively parallel and
perpendicular tdll . Then, the OFE becomes
01 fw, +w,)+1, =01 Ov, +1,=0
Hence, only the normal flow can be determined and i
given by

Ol I,
W, =W, —— wherew, = ————

o] o]
In Figure 22 we display an illustration of the dpes
problem. In particular, we consider an object wotves

following the vectorw up to the lineL . If we estimate
the motion vector based on the poipt, then it is not

possible to determine which of the vectors pairmteer p

corresponds to the motion of the object, and ohky t
normal flow can be determined. The same problem may
appear if we estimate the motion based on a nerpobd

of pixels which has uniform gray level patches.sTisi the
case of the window of the Figure 22 indicated asrApe

1. However, the aperture problem may be overcomed b
considering a neighborhood that contain sufficigray-
level variation. This is achieved in the seconddein of

the Figure, indicated as Aperture 2.
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Normal flow

Apetture 1

MNormal flow

A i Aperture 2

Figure 22: The aperture problem

» Continuity of the solution: Motion estimation is highly
sensitive to the presence of noise in video imagesen,
small amount of noise may result in large deviaionthe
estimates.

These problems can be solved using different otstn over the
optical flow as will be seen in next Section.

3.4 Optical flow estimation method

One of the first works about the optical flow esition problem
was developed in [10]. The algorithm proposed is gaper is based
on the OFE. In particular, it follows the variatsdrapproach which
define the following energy to be minimized ovee tWwhole image
domainQ

min [ (9,lu+a,lv+a,1)’ (3.3)

Many other works have been developed based orathe snergy
function. These methods are caltitferential techniques, because the
time and space derivatives of the image intensihction are needed
for estimating the motion.

Equation (3.3) is not sufficient to uniquely spgdiie 2D motion
field (aperture problem). Current motion estimatapproaches try to
solve the latter issue by imposing additional ragalng assumptions
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about the structure of th2D motion field. They can be classified into
two groups: dense motion estimation techniques, and parametric
motion estimation techniques. The first ones introduce additional
constraints into the error measure by adding a #mess term to it,
whereas the second ones restrict the error medsuee particular
motion model. In the first case, the domain is Wele image and
each pixel has a displacement vector associatethelrsecond case,
the domain can be a different size window or antramy region
whose pixels follow the same motion model. Theelathethods may
be also calledregion-based approaches. Furthermore, the dense
motion estimation techniques are also classified giobal and local
techniques according to the involved smoothnessi tE8]. The
smoothness term is also called regularization ténnglobal methods
(for instance, Horn and Schunck method) the re@aton term is
applied globally on the whole image domain, wheréaslocal
methods (for instance, Lucas and Kanade methasapplied locally
on a neighborhood. We discus below more detaitee@Mmethods.

Before continue, remark that we deno:]z!(x, y) the general

transformation of pixel(x, y) and in the dense motion estimation

techniques we can writg(x, y) = (x+u,y+v)".

3.4.1 Dense Motion Estimation techniques

Global dense motion field estimation approachekl yiew fields
with 100% density, but are experimentally knowréomore sensitive
to high gradient noise, as we will see later irs tBiection. These
methods differ mainly in the particular smoothitigagegies adopted.

Horn and Schunck method:
The Horn and Shunck method [45] is a classical owkfbr dense
motion field estimation. It attempts to determiree toptical flow

vector field (u,v) based on two assumptions:
* The OFE (3.2) is satisfied.

* The optical flow vector field varies smoothly frquixel to
pixel. This can be expressed by requiring the iratieg
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JolIDulf +[o*) oy ®
to be minimum. Recall thafl = (ax,ay) :

The energy functional to be minimized includes both
constrains, and is defined as

Eus = [, (0,0u+,Iv+0,1 ) +a? ([0uf” +[0v) ox dy

where a >0 is the weight to control the influence of the

smoothness constraint. Larger values @f result in stronger
penalization of large flow gradients and lead tasther flow fields.
This functional is well-posed (as established Schifg2]). Thus, it
has a unique minimizer that implicitly entails awerpolation process:
at locations wherg0l | = 0, no reliable local flow estimate is possible,

but the regularizer of Equation (3.4) fills in imfoation from the
neighboring flow. This method is classified as abgll technique,
since the used regularization term is global. Nlb&t this method and,
in general, global dense motion field estimationthmds may be
sensitive to high gradient noise as is discuss¢tidh

Lucas and Kanade method:

Lucas and Kanade [48] proposed to estimate theomati a pixel
by assuming that the motion vector associated €0QRE remains
unchanged in a neighborhood of the pixel. Thusptleéhod allows to
estimate a translational motion vector for thatckland assign this
vector to the pixel.

The authors propose to determime and v, at some location
(x,y) and timet, from a weighted least-square fit by minimizing th

functional:
E, =K, *(9,Ju+d,lv+a )’
where K, represents a neighborhood ()f(, y) of size o. The

window function K, may be a Gaussian with standard deviaton

Let us remark that in this case the regularizatierm is applied
locally on a neighborhood. Thus, this method isgifed as a local
technique. A sufficiently large value for s makés tmethod robust
under noise.
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A minimum (u,v)of E, satisfies the equation,E , =0 and
d,E « =0. This gives the system

K,*(0,0) K, *(a,10,1) (uj:[_Kg*aij

K,*(0,00,1) K,*(a,1)" J\v) (7K.*9,lad

which can be solved if its symmetric matrix is inugde. This is not
the case of flat regions, where the image gradranishes. In some
other neighborhoo, , the smallest eigenvalue of the system matrix

may be close to zero and consequently, the data dot allow a
reliable determination of the full optical flow. iBhis a form of the
aperture problem mentioned earlier.

Nagel and Enkelmann method:

The method of Horn-Schunck imposes the OFE and the
smoothness constraint globally over the whole imags a
consequence, the flow is also smoothed across mdwundaries.
Thus, the result is a blurry flow field which isnigrant of the true
motion boundaries. This is an important drawbacthf method. The
first modification to alleviate this problem hasebeproposed by
Nagel. In [74], he introduces the oriented smoatknéor image
driven) constraint, which imposes that optical flfield should vary
piecewise smoothly in space.

They formulate the problem as the minimizationhaf tunctional:

Ewe = [ (0,lu+a,lv+9,1)+a?| (Du) D(01)Du+(0v)" D(D1)Ov |dx dy

where D(DI ) is a projection matrix perpendicular fid defined as:

1 [()+s  {a)(o,1)
Iotl+25| - @,1)(a,1) (8,1) +o

D(O1)=

Here, 0 serves as regularization parameter that prevéetsnatrix
D(01) from getting singular.

Using this new functional to computer the optickwf, the
diffusion across image boundaries with ladfel | is reduced. This
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attenuates the variation of the flow in the directiof the spatial
gradient. Well - posedness for this functional hasn established in
[82].

Weickert et al. methods

Weickert et al. [84], [14], [5] and [88] are curthninterested in
the study of improved optical flow estimation terjues based on
Horn-Schunck and Nagel methods. They noted thatstheothness
term proposed by Nagel has an important drawbackspecific
situations image discontinuities may not coincidathwflow
discontinuities. For instance, in the case of amgen containing
strongly textured objects, it has many texture edghich are not
motion boundaries. Thus, the previous method mag lan over-
segmentation flow. In such cases, a smoothnesswdrich respects
flow discontinuities instead of image discontinestis desirable.

Therefore, the authors of [83] and [84] introdudbe flow-
driven smoothness term by replacing the quadratmoghness term of
Equation (3.4) by the following term

Jo o (1o +1ov) ax dy

where ,o(sz) is a robust function. In this case, the modifietrgy
functional is

Eyv = jQ(axm +0,lv+0,l )2 +cr2,o(||Du||2 +||Dv||2) dx dy (3.5)

The functionp has an associated functiqr(sz) =p'(sz) that is

called theinfluence function [4] or diffusivity function [84] and
controls the activity of the Euler-Lagrange equagiof the Functional
(3.5). In [88], for instance, the following regulser have been

considered:p(sz):\/sz+£2, where the parametee serves to

ensure that the functiop is differentiableldsJR, and the influence
function is
1
Y(s)=—=—
( ) N
Observe that this function takes small values &oyge arguments.
Then, this choice ofp for the Functional (3.5) penalizes diffusion
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across flow discontinuities and, consequently, fiétppreserve them
in a better way. Moreover, in [83] a complete rewieand
classification of rotation invariant convex regidars can be found.

In [14] the authors apply a robust functign over the data term,

as well as the spatio-temporal smoothness term. ddta term is
derived from the intensity constancy assumption andjradient
constancy assumption. Note that incorporating gradi geometry
information is considered. Furthermore, the apgnaacembedded in
a coarse-to-fine strategy. Finally, a very intarggstcombination of
Horn-Schunck method and Lucas-Kanade method witleféaient

implementation based on multigrid schemes has lpgeposed in
[18]. Multigrid strategies are developed in seveaatas included
motion estimation [36] and [63]. The multigrid fin@work [44] is

nowadays an active and important subject of rebearc

3.4.2 Parametric Motion Estimation techniques

Parametric motion estimation approaches may ofédatively
high robustness under noise, but the estimatedomati constrained
to motions described by the specific model. Thesartiques are well
suited when there is enough confidence that theenlyidg structure
behaves as the enforced model.

Models for Motion Representation

Motions present on an image sequence can be dedcniba
parametric form using a finite, usually small, nienlof parameters.
Since the 2D motion results from the projection D moving
objects onto the image plane, a model & motion fields can be
derived from models describir@D motion, 3D surface function and
camera projection geometry. Note that identi2B®l motion models
may result from different assumptions ab&t motion, surface and
camera projection models [87], [49] and [53].

We shall assume that motion of objects in an insegpience can
be modeled locally with an affine model. An affitransformation

@(x, y)of a point(x, y)is described as:
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{234

To understand the incidence 8D subjacent motion on each
term of this Equation we refer to Chapter 7 of buok [49], where
there is a very accurate study of the transformatitat derives from
the projective geometry when observing the movenoéra planar
surface. We give some of the ideas.

Z {00, 0y, o)

Z=pX+qY+r

PX.Y.Z) i
Q_—'.».

Figure 23: A planar surface moving with translation veloci()a,ﬂ,y) at
(0,0,r) and rotation velocity(a)l,a)z,a)?,) around it. An optical flow is induced

on the image plane by perspective projection froenfocal point(O, 0,—|) .

We consider a planar surface moving in the scewnengby the
equation:Z = pX +qY +r, where p,q are the gradient of the surface

and r designates the distance of the surface from tregénplane
along theZ —axis. In Figure 23 we display a planar surface moving

with translation velocity(a,3,y) at (0,0,r)and rotation velocity
(a)l,a)z,a)s) around it. An optical flow is induced on the imggane

by perspective projection from the focal po{i@,0,~I). This optical
flow is denotedw and is given by
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o212 3G )

The flow w uses a different notation from one in Equatior6),3.
sincew only models the flow vectors, and not the fulhsBrmation.
To obtain the transformation as is describegpjrwe just need to add

the original vectorp=(x,y), we use the identity denoted b, for
that purpose.

@(p)=w(p)+1d(p).
That is,

EY (A+1 B \(x) (x)(G) (x

(o(p)z - + C D+1 + (3.7)
y yA \H) Yy

The flow parametersA, B, C,D,E,F ,G, andd are related with

the motion parameters, 3, y, &, w, ,a, and the surfacgp,q,r)
by following equations:

:Ia,F:I,B
| +r [ +7r
_ _paty o_ _,,_9a
+
~pag+,~- P2 p=—qu- 9L

(W et

The parameter& and F are zero order parameterd, B, C, D are
first order parameters and tl&e H are second order parameters. It is
also important to notice that and| are, respectively, the distance of
the surface to the camera and the focal lengthnaunst be treated as
constants.

From the projective model in Equotion. (3.7) we adotain simpler
models. If we consider an orthographic projectioe, the case

| — o, the second order parameteds and H are 0. If we also
assume there is not any3D rotation in the scene, i.e.

(w,@,0;)=(0,0,0, then the first order parametess B, Cand D



72

are also0. Therefore, if the second order parameters vanigh,
obtain an affine model with six parameters; wheréathe first and
second order parameters vanish, we lead to a &teorshl model with
two parameters.

In Figure 24 we display four examples of parametriotion
vector fields which correspond to a translationaldei (a), an affine
model (b), a projective model (c) and a model irliby perspective
or orthographic projecton of rigid motion of cursarfaces (d). The
corresponding motion-compensated predictions oéraered square
[53] are displayed in the column at the right.

Figure 24: Examples of pérametric motion vector fields (skdp and
corresponding motion-compensated predictions @raered square [53].
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These models can be used efficiently for the estomainterpretation
and transmission of certain classes of motion $iel@bserve that
more model parameters imply more complexity in thactional

minimization, but more precision, whereas less patars imply
more computational simplicity and more robustnebsit less

precision. We conclude that the affine motion mo@etuced by
orthographic projection of rigid motions of plansurfaces) gives a
good trade-off between complexity and represereaggs.

Parametric motion estimation methods:

In [35] a region-based affine motion estimation moek for the
identification of 2D and 3D motion models in image sequences is
presented. In this case two images at two diffetene instants,
generally consecutive, of an image sequence aentakhe first of
them is partitioned into disjoint connected regions
These regions are assumed to be extracted fronnmtage using a
particular partitioning strategy, such as a lumogrhomogeneity
criterion. Matching of regions is carried out bynmizing a cost
functional based on the brightness constancy adsoump in
particular, the functional is the mean square rstantion error after
motion compensation
E= > DFD*[xV.¢]

(x,y)OR
where R is the region, andDFD denote the displaced frame
difference: DFD[x, y,¢] = I (t.x,y) =1 (t + Lg(x,y)). Their approach

assume an affine motion model for each region. E\eg the
technique is embedded in a multiresolution schemeorder to
improve the robustness of the method.

Robust motion estimation
Assumptions about the world embedded into algosthfor

recovering optical flow (like constant intensityyea necessarily,
simplifications and hence, will be violated. Theref, at the same
time that realistic constraints that avoid modeblations are
formulated, other optical flow estimation approaclae developed
with the goal of performing well even when violatoare present.
These approaches are called robust methods, aindjtia is to detect
and reduce the violations of the adopted assumption
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In motion estimation algorithms presented in thesvygus
Section, there is an assumption which is implicdbrived from the
brightness constancy and spatial smoothness assmsipin a finite
image region only a single motion is present. Herewhen a region
contains pixels of two different objects, multipletions may appear
within this region and cause violations of thessuagptions. The large
error values produced are calladliers.

Note that these gross errors may be arbitrarilydand therefore
cannot be averaged out, as is typically done withlkscale noise. A
popular robust technique is based on the kndivestimators [46].

Let X ={p} be a set of data points and Iet be a k-dimensional
parameter vector to be estimated. The objectivetioms used in
robust estimation are defined in terms of an edistance or residual
function, denoted byf, = f (p.,m), (p OX) that may correspond,
for instance, to the displaced frame differer(dilFD). The standard
least-squares method tries to minimize the quadeator, ZQ 2,
which is unstable if there are outliers presenthm data (Figure 25 ).
The M-estimators try to reduce the effect of outliby replacing the
squared residualf,®> by another function of the residual. The M-
estimate ofm is defined as

m=argmin, > o(f, o)

pOX
where ,o(u) is a robust error function and is the scale parameter

associated withf,, which may or may not be present [11].

The choice of different functiong results in different robust

estimators. The robustness of a particular estimedfers to its
insensitivity to outliers. A tool to analyze thebustness of the
function p is the associated influence functiaf,[86]. The influence

function, characterizes the bias that a particeitesr measurement has
on the solution and is defined as the derivativéheffunctionp. We

next gather some functions used in computer vision:
« Quadraticerror (L2 norm): p(s)=5, with ¢(s)=2s
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» Absoluteerror (L1 norm):
p(s)=|d, with ¢ (s) =sign(s)

« German and McCIure(L1 norm):

SZ

. 2
,o(s)=m, with ¢ (s) = e

e Cauchy function:

p(S):Iog(H%GD,withw(s): 2s

20 +¢°

See Figure 25 for illustrations of these functiops and the
associatednfluence functions, . As can be seen the quadratic and

the absolute errors are convex functions, this mgpis very
interesting for the function minimization and istrfalfilled by the

other error estimators. However, the quadraticrerese not robust,
because their influence function is not boundedrijure 25 (b) one
can observe that the outlying points are less wedyjhHowever, the

absolute errors are not stable, since the fun¢tias not differentiable

in s=0. The Cauchy and German and McClure do not guazaate
unique solution. For these two functions the infice of large errors
decreases linearly with their size as can be sedfigure 25 (c) and
(d). Concave functions have been used as robustiéus in [64]. For
more details about robust parameters estimatiocomputer vision
see [86], [4] and [11].

Black and Anandan [4] present a framework basedratoust
estimation that addresses the problem to improveuracy and
robustness of flow estimates in regions containmgtiple motions
by relaxing the single motion assumption. Theymeate the dominant
motion (that is, the apparent camera motion) adelyragnoring the
other existing motions. Additionally the approacktetts where the
single motion assumption is violated (i.e.,where #iror measure is
large). Then, these positions are examined tofdbey correspond to
a consistent motion.
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a) Quadratic error

b) Absolut error

c) German & McLure

d) Cauchy
Figure 25: Common robusto -functions andy/ functions

Other motion estimation approaches

The classical brightness constancy assumption isergéy
violated in image sequences taken from the realdwv@iobal or local
changes in illumination due to, for instance, a mgwamera or a
change in the shade of an object may change theaegpuce of a
region. These kind of situations may prevent theeobd motion to be
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estimated. Alternatives to the optical flow consirahave been
already proposed in the literature [50], [66], [AAd [56].

A common approach to handle non constant intensitiirough
explicit modeling of the illumination change in ti@FE [12]. This
approach requires complex minimization since, imitwh to the
motion field, illumination fields must also be es#ted. A parametric
affine motion model is chosen. The defined fundiois linearized,
and robust estimation is used. Furthermore thensehe embedded in
a multiresolution scheme.

In [10] a constraint based on spatial gradient'sistancy is

proposed. This constraint can be written §tSDI (t.x,y)=0. It

relaxes the classical assumption, but requires thatamount of
dilation and rotation in the image be negligiblagtlimitation is often

satisfied in practice according to [53]). The réiggl technique has
been demonstrated to be very robust in the preseintime-varying

illumination.

More recently, it has been shown empirically in [@pgt the
direction of the intensity gradient is invariantgtmbal light changes.
In particular, the authors of [9] propose a probstic approach in
which they analytically determine a probability tdisution for the
image gradient as a function of the surface’s gépmend
reflectance. Their distribution reveals that theediion of the image
gradient is also relative insensitive to changes ililamination
direction. They verify this empirically by consttirgg a distribution
for the image gradient from more than 20 milliomgées of gradients
in a database of 1280 images of 20 inanimate abjetten under
varying lighting conditions. The work presented[20] is based on
the latter properties. In particular, a sort oficglt flow constraint
equation based on probability distributions of gead directions is
proposed. The problems in computing the gradieméctons in
homogeneous regions (where they are not definetipaproximity of
straight edges (where they do not vary) are avoiogdising the
stochastic approach. Furthermore, the probabiltgsdy function is
made dependent on the gradient magnitude, becoshiagper on and
at proximity of edges, and flatter in homogeneagans.
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An interesting requirement for motion estimatiopm@aches is to
be contrast invariant. We shall say that an operatidn on an image
| is contrast invariant if

T(g(1))=7(1)
for any no decreasing contrast charg¢23].

In [33] a contrast invariant approach for morphatay image
registration is presented. The proposed functioizalbased in
measuring the errors between the unit normals mitmages, and is
presented together with suitable regularizationis Tapproach is
contrast invariant, since it is based in unit ndenahich are contrast
invariant image elements. In [32] alignment of urormals and other
geometric features like curvature have been usedefgistration of
brain images. Other contrast invariant functioraé been proposed
based on mutual information [58] and [8]. This kmfdfunctionals are
widely used in medical image registration. In pautar, [58] deals
with the image registration problem and analyzes #ffects of
interpolation methods and resampling in the regisin results.
Another contrast invariant functional, based on é&#gn inference,
was proposed in [31], for piecewise parametric orosegmentation.
The authors interpret geometrically the opticalfloonstraint, then
derive a model for the conditional probability detspatio-temporal
image gradient (given a particular velocity vectaahd propose a
priori assumption on the estimated motion field ofi@awvg motion
boundaries of minimal length. In that way, theiergy functional is
an extension of the Mumford- Shah functional [7@nfi the case of
gray value segmentation to the case of motion setatien.

The proposed functional is

|, +ud,l +vo, | ’
oy (o0 o))

r 2
i (0.1 0,00, )]
where w is the velocity of regiomr [OR , R a given image partition,

L(C) is the length of the boundasy separating regions, antl is a

weight of the second constraint. Observe that tiignt in the first
term is related with the angle between the vectavs and

(a,1.0,1.0,1).

dx dy+AL(C)
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Chapter 4

Video segmentation

In this paper we present a video segmentation groeeobtained
minimizing a modified version of the simplified Mdiond - Shah
functional used for image partition. This proceduses a graph with
spatial and temporal connections to model a videguence. The
temporal connections are defined pre-computing deese optical
flow using methods available in the literature. Sonplify the
functional minimization we construct the hierarabfypartitions that
allows to obtain a very quickly computation.

4.1 Introduction

Video segmentation problem has attracted the atenbf many
researchers in the computer vision field becauselays a very
important role in many applications, such as videmnpression,
tracking and motion detection. It refers to pastitng video into
spatial - temporal regions that correspond to iedéepntly moving
objects.

Although video segmentation has been studied forersé
decades, it still remains a difficult problem tolveo and various
methods for segmentation of images into coherentimgoregions
have been proposed.

Methods which utilize spatio-temporal image intgnsand
gradient information have been chosen by some auffi8]. In [78] a
3D segmentation based on luminance informationeidopmed by
morphological operators. The scene is segmentedrding to a
criterion of uniform luminance (instead of coherenenotion).
Another common approach, presented among othddg,ims a two-
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step procedure which consists in estimating flistdptical flow field
between two frames and then segmenting the imagedban the
estimated optical flow field. In particular, thethors assume that an
image is modeled by a set of overlapping layergyTtompute initial
motion estimates using a least-squares approatimviibage patches.
Then, they use K-means clustering to group motistimates into
regions of consistent affine motion. The accuratyse@gmentation
results using this approach depends on the accufathe estimated
optical flow field. Moving object boundaries havsually inaccurate
optical flow due to occlusion and use of smoothnassstraints. A
solution for that issue is proposed in [2] where #uthors propose a
two-step iteration method similar to the previousies but
incorporating several changes such as a regiordbdabkel assignment
approach which favors the obtaining of a spatiatigntinuous
segmentation that is closely related to actualaitijeundaries.

Furthermore, some authors have proposed that optica
estimation and segmentation should be carried ioul&neously to
obtain better results. The algorithm presented3i] [assures very
precise motion boundaries by exploiting the staggmentation. In
particular it avoids problems related to occlusiand uncovered
background.

The authors of [13] treated the analysis of theaglyic content of
a scene from an image sequence. They propose doraiad
algorithm which performs a motion-based segmematising 2D
affine models, and apply a statistical regular@atapproach without
the explicit estimation of optic flow fields. Fuetmore, they build a
temporal link between partitions of successive #arof the sequence.
Finally, the interpretation process is carried outdifferent ways
depending of the application.

The authors of [31] propose to segment the imageepinto a set
of regions of parametric motion on the basis of teansecutive
frames. As in [13] they exploit the Bayesian framekvto derive a
different cost functional which depends on parametotion models
for each of the set of regions and on the boundaparating these
regions. As differences we can outline that thismigation is
continuous and uses a contour representation abmdiscontinuity
set (spline or level set based).Furthermore, tha w@am is based on a
different (normalized) likelihood.
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The authors of [42] present a method for approximgaoptical
flow by scaled piecewise regular vector field. Téreor functional
balances two terms, an evaluation of the uniforroitypixel motion
and a segmentation complexity term. The method arational
approach similar to the region merging minimizatipnocedure
described by Morel and Solumini [70].

4.2 Proposed approach for video segmetation

A video sequence can be modeled as a function
f:[T,T,] x Q - R with spatial domainQ and time interva[T,T,].

We assume that the time is discrdte} Our purpose is to

n1,N] "
compute the segmentation of a video sequence eadkfirty a pair
(C, f) such that:

« f:(T,T]xQ)-C-R is a regular function in
(T,T,] x Q) —C domain.

« Cis the set of boundaries whefeis discontinuous.
Since a video is a sequence of images, the bour@aisy given

N
by [] C, whereC, is the set of boundaries each of one is related to

n=1
the frame observed at tinte.

To solve this problem we propose a video segmemati
procedure based on two different steps. In thé $iep we construct a
new data structure to handle a video pre-comptutiegoptical flow.
In the second step we define a video segmentationmizing a
modified version of the Mumford-Shah functional idefl in Section
2.1 for image partition.

4.2.1 Datastructurefor video handling: graph
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In Section 1 we have seen that under certain topeab
conditions a single image can be modeled by adherture. In this
case is possible to define a spatial connectiowdsst different pixels
(or regions) of the same image.

In Video analysis, instead, besides the usual apabnnectivity
of pixels on each single frame, we have a natwabn of “temporal”
connectivity between pixels on consecutive frameserg by the
optical flow. In this case, it makes sense to ext#me tree data
structure used to model a single image with a gdgih structure that
allows to handle a video sequence.

Given a video sequence we can build the appropgaeh in the
following way. First, we pre-compute a dense optibaw of the
whole video sequence using any of the methodsablaiin literature
(we tried some of them with similar final resulds], [15], [24] and
[19]). This flow assigns a vector on every pixeleaich frame but the
last. Now, the vertices of the graph are definedlbathe pixels of the
video, each one assigned its corresponding gragl.ld\he edges of
the graph are of two kinds: spatial edges and teahmalges. Spatial
edges join each pixel with its 8-neighbors on tleme frame.
Temporal edges are defined using the pre-compypédab flow: If
the flow vector on pixelx, y,t)is (u,v), then we add to the graph an
edge joining pixel(x, y,t) with pixel (x+[u], y+[V, t+1), where the
square brackets denote the nearest integer. Pramdgsimplifying
the branches of this graph corresponds to applgpegial-temporal
coherent morphological operators to the video secgleA selection
of regions of this graph can be regarded as a ssgtien of the
video. For example, by selecting very few regiores abtain a very
coarse segmentation of the video. We call the satgmef this
segmentation thettbes’ of the video. The tubes encodes temporally
coherent segmentations of all the objects on tdeoyiwhich can be
used for tracking. This structure is useful to wrihigher level
algorithms on the video.

The intersections of tubes with frames are calledions’. Thus,
the regions of a given frame are segmentation aff itame. So, to
handle a video sequence, we must consider thewioigpobject that
characterize it:
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* pixels;

» frames;
* tubes;

e regioins.

The list of pixels and the list of frames are tily related, because
each frame contains the same number of pixels. rélionships
among the other lists are the true interest ofddi@ structure, since
they hint a combinatorial representation for thdew objects. See
Figure 26for a diagram illustrating the relative inclusiobhstween
these structures.

Pixels

Regions ——>Boundaries

N

Frames Tubes

N

Video

Figure 26: Inclusion relationships between the parts of tha d&ructure. A video is
divided into frames, and into tubes. The interggctdf a tube with a frame is a
region. Each region is a set of pixels. Neighboriagions on the same frame are
separated by their common boundaries.

4.2.1.1 Simple computation using the tubes

The mere act of storing a video sequence usingttthes” lends
itself to certain higher level algorithms, whiclopide raw analysis of
the objects that appear in the video. Here we fosir of these
algorithms. The algorithm for relative depth fronotion will be an
example of a more complex one.
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Tube statistics. The simplest thing that we can do with the tubes
is to compute statistics of all the regions. Fochetube, we can see
how its area evolves along frames, its mean mofion select
immediately the fastest moving objects in the v)déwe evolution of
the length of its boundary, etc.

Tube topology. The tubes can be classified by their topology,
looking how it evolves in time. The simplest casethat of a tube
which intersects each frame (from a certain inteofaframes) in a
single connected region. A different case is tifatwm objects that
merge or split as time passes, for example whenobyect occludes
another one of the same color. In that case, the lhas the shape of
the letter Y, with the junction appearing at the frame where th
objects merge or split. By single traversal of dla¢a structure, we can
build a list of the branched and unbranched tubed, of the regions
that they span long the video.

Optical flow regularization. We can use the structure of tubes
and regions to improve a given dense optical fliwve suspect, as
often happens, that the optical flow is wrong opitietise near the
boundaries of the objects, we can discard thoselsanof the dense
flow, and extrapolate their values from the innartp of the region.
This is a regularization of the optical flow in imgle frame. But we
can also smooth the flow along several framesntaece its temporal
consistency. The connectivity of the regions asstinat we will not
be mixing flow samples from different layers of neovent.

Flow from segmentation. As an extreme case of the previous
computation, we can construct an optical flow freamatch, just by
looking at evolution of the tubes in time. If wendi the best match
from each region into the next one, we already haweodel of the
movement of that region. By sampling that motiortlos pixels of the
region, we produce a dense optical flow. Whilesitvery crude, this
method does not depend on the resolution of theoyidnly on the
structure of the tubes. Thus, it can be used #&sréing point for more
precise algorithms. The quality of the results aelseon the criterion
for registering pairs of consecutive regions. Aveacriterion that
minimizes Hausdorff distance (or that matches trgar of mass) will
produce incorrect results for occluded objects, fmrfect results for
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objects which are on top of all the others, and enav a plane
perpendicular to the line of view. In some circuamsies, this may be
useful.

4.2.2 Modified version of a ssimplified Mumford-Shah
functional for video segmentation

As we have explained in Section 2 Simplified Mundf@&hah
functional is largely used in image partition ogiEna Our purpose is
to extend it to use a new version of the simpliffddmford-Shah
functional for video segmentation.

The Mumford-Shah functional (2.1) used to partitiansingle
image could be incomplete to obtain a good videgmstation
because it takes into account only the color ofréggons but there are
not information about the regions “movement”. Werdnanodified it
introducing an additional term to solve the videegreentation
problem obtaining the following functional:

O NN O I U il R (1l ) S CEY

where (u,v) is the optical flow vector of pixels of the originvideo
sequence andd,v) is the optical flow vector of pixels of the
approximate video sequence. The second integ@islto consider
the movement of the region using the optical flow-pompute in the
first step. The idea is to merge neighboring regigti similar color
and similar movement.

Observe that the minimization of (4.1) has an exptial
complexity on the size of graph that models thee@idf all possible
combinations of its nodes are taken into accouhts Tomputation
becomes feasible if we restrict our search spaca heerarchy of a
partitions of a video domaifi;, T,] x Q as we have seen in section 2

for image partition operation.
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4.2.3 Minimization of the modified version of M-S
functional using a hierarchy of partition

To minimize (4.1) we must construct the hierarchwg partitions. The
construction follows a bottom-up procedure. Inddesl leaves of the
hierarchy are the nodes of the graph that modedsvideo. We
construct next levels merging nodes of the reduesel without

father. We iterate this procedure until we reaghg®&t[T,,T,] x Q. To

choose the nodes to merge at each iteration werpethe following
steps.

Let IR=[ (F~FY+[ (uV)-@nY
SO we can rewrite (4.1) as:
J(Cf byt ]\C):AHl(C)H @{T.T, |\C).

Suppose to merge each region of the segmentatitbniuvineighbor
for all neighbors. We obtain a new set of bordbra new function
f, a new functionalJ and, for the merging region, a new vector
optical flow (G, V). Follows that

AJ =J-J = AAH +Al (4.2)
where

AH =H*(C)-HYC)

and

N =1(Q]T.T, \O-1@{T.T, |\C).

SettingAJ =0 we calculated by (4.2) as:
Al

AH

Observe thaf\H is a positive number because the length of thefset
curve of the regions that compose the single integeease when we
merge together two or more adjacent regions. WAlles a negative
number because we loss energy when we merge togetheor more
adjacent regions.

We repeat this procedure for each region. At thé wa merge
the region and its neighbor that are characterigethe minimumA
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value which has been calculated. In this casegémh level of the
hierarchy, we define a local optimal solution of.1{4 for the
considered lambda value, in the sense that anyr ottexging of

regions of the segmentation leads to an increastheoffunctional
(4.1).

For each node of the hierarchy we define an intefviel, A™[
where A* indicate the lambda value in which node appearthén
hierarchy andA™ the A* of its father.

Returning at (4.1), to minimize it we fix & value and define a
cut of hierarchy selecting the nodes such Ehﬁts A< /1‘[.
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4.3 Experimental results

In this section we present some experimental resuiittained
using the video segmentation procedure describedeab
In the first example we consider the video seque&oteposed by five
frames showed in Figure 27.

Figure 27: foreman video sequence on frame 1,2,3,4 and 5 lfeéirto right and top
to bottom.

In this video sequence foreman performs a rotatibthe head
and close the eyes.

In Figure 28 is possible to observe the opticavflre-computed
between frame 1 and frame 2:
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Figure 28: optical flow between frame 1 and frame 2 of tlwefman video
sequence.

Segmentation result has showed Figure 29.

Figure 29: foreman segmentation sequence
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Observing the segmentation of the frames that cemplze video
sequence it is possible to follow the movementhefforeman.
Consider now the “Hamburg taxi” video sequenceigufe 30.

Figure 30: Hamburg taxi video sequene# frame 1,2,3 and 4 from left to right
and top to bottom.

This sequence is more complex than foreman videaus® some
objects that move in the scene (car at left antat sgle of each frame)
have a similar color of a static background (sjreet

If we try to segment this video using a graph tadeidhe video
and the original Mumford-Shah functional used forage partition
(2.1) we obtain a result showed in Figure 31.

Figure 31: Hamburg taxi video segmentation using the origiMaimford Shah
functional.
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In this case we can observe a good white taxi setatien vice
versa we lose a lot of features in the segmentatiohe car on the left
and right side of the frames. The reason is thatiginal functional
merge neighboring regions with similar color withatonsidering
their movement. So in this case is “simple” to ¢desthe white taxi
because it has a color different from the one efgtieet. Car at left
and right side of the frames have a color simitathie background so
in this case is difficult to “separate” them by Hteeet.

Figure 32 shows the segmentation result obtainmang (4.1):

Figure 32: Hamburg taxi video segmentation using the modifidumford Shah
functional.

In this case we can observe more features aboutthat move
along the scene because the chosen functional &tlonerge region
with the same color and the same optical flow vec®o the car has
the same color of the street but different optilcal vector.

In particular the latter related pixels that reproel the street are zero
(street is the static background of the scene) thedoptical flow
vector about the pixel that reproduce the carsddferent by zero
(cars are the dynamic foreground). This is confatrbg the following
the optical flow between frame one and frame twowsdd in Figure
33.
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Figure 33: optical flow between frame one and two of the Hany taxi video
sequence.

The light blue rectangle shows the boundary betwibenstreet
and the car at the left side of the frame. In tbése we have
neighboring regions with the same color but differeptical flow so
we do not merge this regions.

These examples show some video segmentation thasgble to
obtain using a video segmentation procedure based the
minimization of a modified version of the Mumforéhah functional.
This procedure use a graph to handle a video segqudinis graph
consider a spatial connection between pixels ofsdrae frame and
temporal connection between pixels of consecutisenés using the
optical flow vector. The minimization of Mumford-8h functional
can be very complex if we consider each possibiebtoation of the
graph nodes. This computation becomes easy to @ ifake into
account a hierarchy of a partitions constructediatpaby the nodes of
the graph. As we have showed this procedure altovebtain a good
segmentation also if we consider video sequencewlch the
dynamic foreground has got a similar color to tta¢is background.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

93

References

E. H. Adelson and J.Y.A. Wang. “Representing mgvimages
with layers”. IEEE Trans. on Image Processing, :Bg5H—638,
September 1994.

Y. Altunbasak, P. Erhan Eren, and A. Murat Tekd&lRegion-

based parametric motion segmentation using colfmrrimation”.

Graphical models and image processing, 60(1):1332Buary
1998.

L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morg&xioms and

fundamental equations of image processing: Mulles@nalysis
and P.D.E.”. Archive for Rational Mechanics and WAmsgs,

16(9):200-257, 1993.

P. Anandan and M.J. Black. “The robust estimatdmultiple

motions: parametric andpiecewise-smooth flow fieldSomputer
Vision and Image Understanding, 63(1):75-104, Jani@96.

L. Alvarez, J. Sanchez and J. Weickert. “Reliadd¢imation of
dense optical flow fields with large displacementsiternational
Journal of Computer Vision, 39(1):41-56, 2000.

C. Ballester, V. Caselles, L. Garrido and L. |I. ManLevel Lines
Selection with Variational Models for Segmentataond Encoding.
Journal of Mathematical Imaging and Vision, Vol, 2007, pp. 5-
27.

C. Ballester, V. Caselles, and P. Monasse. “The dfeShapes of
an image”. ESAIM: Control, Optimization and Calcsiluof

Variations, 9:1-18, 2003.

| Bardera, A. Boada, J. Rigau and M. Sbert. “Meldicaage

segmentation based on mutual information maxinopdti In

Proceedings of 7th International Conference on kwdimage
Computing and Computed Assisted Intervention (MICQ@A804),

2004.

P. Belhumeur, H. Chen, and D. Jacobs. In seardhuaiination

invariants. In International Conference on Compufesion and

Pattern Recognition, pages 254—-261, 2000.

[10] M. Bertero, T.A. Poggio, and V. Torre. lll-posedplems in early

vision. Procedings of the IEEE, 76(8):869-889, Asidif88.



94

[11] M. J. Black. Robust incremental optical flow. Phbesis, Yale
University, Computer Science Dept., sept 1992.

[12] P. Bouthemy and J.M. Odobez. Robust multiresoluéstimation
of parametric motion models applied to complex ssedournal of
Visual Communication and Image Representation,:848)-365,
December 1995.

[13] P. Bouthemy and E. Francois. Motion segmentatiahcaralitative
dynamic scene analysis from an image sequencernatienal
Journal of Computer Vision, 10(2):157-182, 1993.

[14] T. Brox , A. Bruhn, S. Didas, N. Papenberg and &idkért. High
accuracy optical flow computation with theoreticalstified
warping. International Journal of Computer Visido, appear,
2005.

[15] T. Brox, C. Bregler, and J. Malik. Large displacerneptical flow.
In Computer Vision and Pattern Recognition, pagkes48. IEEE,
2009.

[16] T. Brox, A. Bruhn, N. Papenberg, and J. WeickerghHaccuracy
optical flow estimation based on a theory for wagpiComputer
Vision-ECCV 2004, pages 25-36, 2004.

[17] A. Bruhn, C. Feddern, T. Kohlberger, C. Schnoed &nWeickert,.
“Real-time optic flow computation with variationatethods”. In
International Conference on Computer Analysis ofadges and
Patterns, pages 222—-229. Springer Verlag, Augu?.20

[18] A. Bruhn, J. Weickert, and C. Schnorr. Lucas/kanadeets
horn/schunck: Combining local and global optic flomethods.
International Journal of Computer Vision, 61(3):2231, 2005.

[19] A. Bugeau and N. Papadakis. “Tracking with occlasioia graph
cuts”. IEEE Transactions on Pattern Analysis andchitae
intelligence, 2010.

[20] P.Y. Burgi. Motion estimation based on the directaf intensity
gradient. Image and Vision Computing, 22(8):637-6B8gust
2004.

[21] B.M. ter Haar Romeny, editor. Geometry-Driven Ddfilon in
Computer Vision. Kluwer Academic Publishers, 1994.

[22] J. Canny. A variational approach to edge detectipnNational
Conference on Artificial Intelligence, pages 54-%8ashington
DC, August 1983.



95

[23] V. Caselles, B. Coll, and J.M. Morel. “Topographiaps and local
contrast changesin natural images”. Internationaurdal of
Computer Vision, 33(1):5-27, September 1999.

[24] V. Caselles, L. Garrido, M. Kalmoun. “Multilevel bmization as
computational methods for dense optical flow”, sitted to
SIAM, 2010.

[25] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapit&hape
preserving local contrast enhancement”. In Procesdi of
International Conference of Image Processing, pddesi—xx,
1997.

[26] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapi®hape
preserving local histogram modification. |IEEE Tractsons on
Image Processing, 8(2):220, February 1999.

[27] R. Chiariglioni. “Mpeg and multimedia communitatgin IEEE
Transactions on Circuits and System for Video Tetdqy, 7:5-
18,1997.

[28] P. A. Chou, T. Lookabaugh, and R. M. Gray. “Optirpalining
with applications to treestructured source coding anodeling”.
IEEE Trans. Inform. Theory, 35:299-315, 1989.

[29] G. Co6té, B. Erol, M. Gallant, and F. Kossentini26B8+: Video
coding at low bit rates. IEEE Transactions on dtscand systems
for video technology, 8(7), 1998.

[30] J.L. Cox and D.B. Karron. Digital Morse theory. Muaript
available from http://www.casi.net, 1998.

[31] D. Cremers and S. Soatto. “Motion competition: aiatenal
approach to piecewise parametric motion segmentatio
International Journal of Computer Vision, 62(3):24265, 2005.

[32] C. Davatzikos. “Spatial transformation and registra of brain
images using elastically deformable models”. Corap\ision and
Image Understanding, 66(2):207-222, May 1997.

[33] M. Droske and M. Rumpf. “A variational approach rion-rigid
morphological image registration”. SIAM Journal Aiepl
Mathematics, 64(2):668—687, 2004.

[34] F. Dufaux, F. Moscheni, and A. Lippman. “Spatio-teral
segmentation based on motion and static segmemitatio IEEE
Proc. ICIP’95, volume 1, pages 306—309, Octobe5199



96

[35] J.L. Dugelay and H. Sanson. Differential methods tbe
identification of 2D and 3D motionmodels in imageggences.
Image Communication, 7:105-127, September 1995.

[36] W. Enkelmann. “Investigations of multigrid algomtis for the
estimation of optical flow fieldsin image sequericeSomput.
Vision Graph. Image Process., 43(2):150-177, 1988.

[37] C. Fiorio. “A topologically consistent representati for image
analysis: the frontiers topological graph”. In Rredings of the 6th
Conference of Discrete Geometry for Computatiorimabhgery,
Lyon, France, 1996.

[38] C. Fiorio. Border map: A topological representatfon nd image
analysis. In Proceedings of Conference of Disct&emetry for
Computationial Imagery, pages 242—-257, Marne |& &aJ France,
March 1999.

[39] C. Fiorio. “Topological operators on the frontietspological
graph”. In Proceedings of Conference of Discretor@etry for
Computationial Imagery, pages 207-217, Marne |& &aJ France,
March 1999.

[40] L. Garrido and P. Salembier, “Binary partition tree an efficient
representation for image processing, segmentadiwchjnformation
retrieval”. IEEE Transactions on Image Processi(¥), Pp. 561—
576, 2000.

[41] M. Gangnet, J.C. Herv'e, T. Pudet, and J.M. Van ngho
Incremental computation of planar maps. Digital tétat
Recognition Letters, (5), 1989.

[42] F. Guichard and L. Rudin. Velocity estimation frommages
sequence and application to superresolution. InEIEEroc.
ICIP’99, volume 3, pages 527-531, October 1999.

[43] L. Guigues, “Mod'eles Multi-"Echelles pour la Segrtation
d’'Images”. PhD thesis, Universit'e de Cergy-Poro003.

[44] W. Hackbusch. Multi-grid Methods and ApplicatiorSpringer-
Verlag: Berlin, 1985.

[45] B. Horn and B Schunck. Determining optical flow. tificial
Intellience, 17:185-203, 1981.

[46] P. J. Huber. Robust statistics. John Wiley, Newky @©81.

[47] R.A. Hummel. “Representations based on zero-crgssim scale-
space”. In Proceedings of the IEEE Internationahf€mnce of
Computer Vision and Pattern Recognition, pages 209,-1986.



97

[48] K. Kanade and B. Lucas. An iterative image regigiratechnique
with an application to stereo vision. Procedingsvebh
International Joint Conference on Artificial Inigknce, pages
674—-679, august 1981.

[49] K. Kanatani. Group-Theoretical Methods in Image &hstanding.
Springer-Verlag, 1990.

[50] A.C. Kak, Y. Kim and A. M. Martinez. “Robust motiagstimation
under varying illumination”. Image and Vision Conting,
23(4):365-375, 2005.

[51] J.J. Koenderink. “The structure of images. BiolayjiCybernetics”,
50:363-370, 1984.

[52] G. Koepfler, C. Lopez and J.M. Morel. A multiscalgorithm for
image segmentation by variational method. SIAM dnmier. Anal,
31:282-299, 1994.

[53] J. Konrad and C. Stiller. Estimating motion in ireagequences.
IEEE Signal Processing Magazine, 16(4):70-91, 1889.

[54] V.A. Kovalevsky. Finite topology as applied to ineagnalysis.
Computer Vision, Graphics and Image Processing?)46{1-161,
May 1989.

[55] A.S. Kronrod. On functions of two variables. Uspbtathematical
Sciences, 5(35), 1950. (in Russian).

[56] S.-H. Lai. “Computation of optical flow under nomform
brightness variations”. Pattern Recognition Lett@&(8):885-892,
February 2004.

[57] P. Lienhardt. “Topological methods for boundaryresgntation: A
survey”. Computer Aided Design, 23(1):59-81, 1989.

[58] J.B.A. Maintz, J.P.W. Pluim and M.A. Viergever. Mat-
information-based registration of medical imag&EHR Trans. on
Medical Imaging, 22(8):986-998, August 2003.

[59] S. Mallat. A Wavelet Tour of Signal Processing. édemic Press,
New York, 1998.

[60] D. Marr. Vision: A Computational Investigation intbe Human
Representation and Processing of Visual Informatioi.H.
Freeman and Co., 1982.

[61] D. Marr and E.C. Hildreth. “Theory of edge deteotio
Proceedings of the Royal Society of London, B-287:217,
1980.



98

[62] G. Matheron. Random Sets and Integral Geometryn Wiiey,
N.Y., 1975.

[63] E. Mémin and P. Pérez. A multigrid approach forrdniehical
motion estimation. In Processing Sixth Internatid®anference on
Computer Vision, pages 933-938, January 1998.

[64] E. Mémin and P. Pérez. Hierarchical estimation segimentation
of dense motion fields. International Journal ofn@paiter Vision,
46(2):129-155, February 2002.

[65] Y. Meyer. Wavelets: Algorithms and Applications. AM,
Philadelphia, 1993.

[66] H. Miike, T. Sakurai and L. Zhang. “Detection of tiom fields
under spatio-temporal nonuniform illumination”. Ige Vision
Comput., 17(3-4):309-320, 1999.

[67] J. Milnor. Morse Theory. Number Study 51 in Annald
Mathematics Studies. Princeton University Pres6919

[68] P. Monasse. “Morphological representation of Digitaages and
Application to Registration”. PhD thesis, UniveésiParis IX-
Dauphine, June 30, 2000.

[69] P. Monasse and G. Guichard. “Fast computation aomtrast
invariant image representation”. |IEEE Transactiams Image
Processing, 9:860-872, 2000.

[70] J.M. Morel and S. Solimini. Variational Methods image
Processing. Birkhauser, 1994.

[71] D. Mumford and J. Shah. “Optimal approximations gigcewise
smooth functions and variational problems”. Comrmations on
Pure and Applied Mathematics, XLII(5):577-685, 1988

[72] D. Mumford and J. Shah. Optimal approximations lgcewise
smooth functions and associated variational problem
Communications on Pure Applied Math, 42:577-688919

[73] L. I. Munoz, “Image Segmentation and Compressiomgud he
Tree of Shapes of an Image. Motion Estimation”. Pth@sis,
Universitat Pompeu Fabra, 2005.

[74] H.-H. Nagel andW. Enkelmann. An investigation ofcsithness
constraints for the estimation of displacement eedields from
image sequences. IEEE Transactions on Pattern gisabnd
Machine Intelligence, 8:565-593, 1986.

[75] M.H.A. Newman. “Elements of the Topology of PlanetsS of
Points”. Dover, 1992.



99

[76] M. Nitzberg and D. Mumford. “The 2.1-D sketch”. Rroceedings
of the 3d International Conference on Computer dfisipages
138-144, Osaka, Japan, 1990.

[77] A. Nomura. Spatio-temporal optimization method d@termining
motion vector fields under non-stationary illumioat Image
Vision Comput., 18(12):939-950, 2000.

[78] M. Pardas and P. Salembier. “3d morphological segatien and
motion estimation for images sequences”. Signalcéssing,
38(2):31-41, September 1994.

[79] A. Rosenfeld. Adjacency in digital pictures. Infation and
Control, 26, 1974.

[80] J. Serra. “Image Analysis and Mathematical Morpgglo
Academic Press, New York, 1982.

[81] J. Serra. “Introduction to mathematical morpholagZomputer
Vision, Graphics and Image Processing, 35(3):283;-September
1986.

[82] C. Schndrr. “Determining optical flow for irregulalomains by
minimizing quadratic functional of a certain clas#iternational
Journal of Computer Vision, 6(1):25-38, 1991.

[83] C. Schnorr and J. Weickert. “Variational image rooti
computation: Theoretical framework, problems andspectives”.
In DAGM-Symposium, pages 476—488, 2000.

[84] C. Schndrr and J.Weickert. “Variational optic flavsemputation
with a spatio-temporal smoothness constraint”. Jalur of
mathematical imaging and vision, 14(3):245-255, [@91.

[85] T. Sikora. “The mpeg-7 visual standard for contdegcription - an
overview”. IEEE Transactions on Circuits and Systdior Video
Technology, 11:696-702, 2001.

[86] C. H. Stewart. “Robust parameter estimation in co@pvision”.
SIAM Rev., 41(3):513-537,1999.

[87] A.M. Tekalp. “Digital Video Processing”. Prenticealj 1995.

[88] J. Weickert. “On discontinuity-preserving opticld In Computer
Vision and Mobile Robotics Workshop, pages 115-1htorini,
1998. Springer Verlag.

[89] M. Wertheimer. Untersuchungen zur Lehre der Gestalt
Psychologische Forschung, (4):301-350, 1923.



100

[90] A.P. Witkin. “Scale-space filtering”. In Internatial Joint
Conference on Artificial Intelligence, pages 101022, Karlsruhe,
1983.



