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Abstract The fresh-cut industry must treat process water to
guarantee its microbial quality before reuse or recirculation
back into the processing line. In the present study, the suit-
ability of high-power ultrasound (HPU) for disinfecting and
recycling process water was evaluated. An ultrasonic horn
(20 kHz) was used to inactivate Escherichia coli O157:H7
inoculated in five types of process water which showed dif-
ferent physical and chemical characteristics. Differences in the
inactivation level of E. coli O157:H7 at different HPU densi-
ties (0.14, 0.28, 0.56, and 1.12 kW/L) with controlled (20—
25 °C) and uncontrolled (15-72 °C, 3.6 °C/min) temperature
increase were studied. Results showed that the higher the
power density and temperature, the higher the efficiency,
reaching up to 6 log reductions of . coli O157:H7. Alkalinity
(between 0 and 253 mg HCO;5 /L) and organic matter con-
centration (between 9 and 3,525 mg O,/L) in water did not
reduce ultrasonic efficacy against E. coli O157:H7. Agglom-
erates >90 um, which represented 34 % of those present in the
process water, were reduced to only 11 % by HPU. Results
indicate that HPU can be successfully applied to treat process
water of the fresh produce industry because the antimicrobial
efficacy was not affected by the continuous variation of the
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process water quality. HPU can be a suitable technology for
the fresh produce industry to be able to reduce consumption of
water and decrease wastewater and the generation of disinfec-
tion by-products.

Keywords Food safety - Disinfection - Sanitation - Water
reuse - Water saving

Introduction

Most postharvest processes in the fresh produce industry reuse
process water to conserve water and energy (Suslow 1997;
Olmez and Kretzschmar 2009). However, reuse of process
water can lead to the accumulation of dirt, organic matter, and
disease-causing pathogens, allowing the cross-contamination
of the produce (Gil et al. 2009). Furthermore, the water used
for washing and chilling the produce after harvest has to be
free of any chemical risks (CDC 2009). Therefore, there is a
trend within the water treatment industry to develop and
employ more environmentally responsible technologies to
help reduce the impact of chemicals in effluent waters and
reduce water consumption in the process (Broekman et al.
2010). As a result, nonchemical treatments have been increas-
ingly demanded as disinfectant treatments for the process
water, mostly because their disinfection against foodborne
pathogens is independent of the process water quality charac-
teristics, while they are safe for workers and consumers.
High-power ultrasound (HPU) at low frequencies (from 20
to 100 kHz) is a chemical-free method with the power to cause
cavitation, which can inactivate microorganisms (Piyasena
et al. 2003). During cavitation and subsequent collapse of
microbubbles, large amounts of energy are released, generat-
ing high temperatures (of the order of 700—4,700 °C) and
pressures (100-5,000 bar) as well as release of free radicals
due to pyrolysis of water (Mason and Lorimer 2002; Gogate

@ Springer



Food Bioprocess Technol

et al. 2003; Mason et al. 2005; de Brilhante Sao José et al.
2014). Several reviews have described the application of
ultrasound to treat fluids alone or in combination with other
technologies to degrade pollutants in wastewater (Gogate and
Pandit 2004; Gogate and Kabadi 2009), in physical food
transformation and enzyme inactivation (Patist and Bates
2008), wastewater disinfection (Gibson et al. 2008), and fruit
and vegetable decontamination (Bilek and Turantag 2013). As
revised by Gogate (2007), many different bacteria can be
inactivated by HPU such as Escherichia coli, Salmonella,
and even soil spore-forming bacteria like Bacillus subtilis in
which the thick cell wall does not offer any special protection
(Scherba et al. 1991; Gao et al. 2014). This technology alone
or in combination with other technologies is used already at an
industrial scale (Patist and Bates 2008; Broekman et al. 2010;
Gogate et al. 2014). However, there is very little information
about the application of HPU for the disinfection of process
water of the fresh produce industry. In our preliminary study,
we demonstrated that HPU effectively eliminates E. coli
0157:H7 in process water of a specific physical and chemical
quality (Elizaquivel et al. 2012). However, how the physical
and chemical quality of the process water affects the efficacy
of HPU was not addressed. Hence, the present study was
designed to gain insight on the suitability of HPU as a disin-
fection treatment to allow the reuse of process water in the
fresh-cut industry. To achieve this goal, the inactivation of
E. coli O157:H7 in process water with different physical and
chemical characteristics and under different HPU conditions
has been evaluated.

Materials and Methods
Process Water

Five types of water were used during the experiments: (1)
distilled water (DW), (2) tap potable water (TW), and
three types of process water (PW)—(3) process water 1
(PW1), (4) process water 2 (PW2), and (5) process water 3
(PW3). The characteristics of the different water types are
shown in Table 1. PW was artificially generated as previ-
ously described (Lopez-Galvez et al. 2012). Briefly, leaves
of Romaine lettuce (Lactuca sativa L.) were cut in 3 cm
pieces. Then, 67 g of those lettuce pieces were disposed in
a sterile stomacher filter bag (Seward Limited, London,
UK). Two hundred milliliters of potable water was added
to the bag and the mixture was homogenized for 120 s in a
stomacher (IUL Instruments, Barcelona, Spain). This pro-
cedure was repeated until the required volume of PW3
was generated. The PW1 and PW2 were obtained by
diluting 1/15 and 1/7 (v/v) of PW3 in potable water at
4 °C, respectively.
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High-Power Ultrasound (HPU) Equipment and Treatments

Calorimetry was applied to establish the actual ultrasonic
power density of the sonication system according to standard
procedures (Gogate et al. 2001). The calorimetric calibration
was executed on a horn sonotrode (Branson Sonifier S-450A,
Emerson Electric, CT, USA) with a tip of 1.3 cm in diameter
and a fixed frequency of 20 kHz. Calibration lines using
volumes of 400 and 500 mL and a duration time of 150 s
were obtained by linear regression analysis, and the Pearson’s
correlation coefficient was calculated. With a nominal power
output of 400 W corresponding to a calorimetrically deter-
mined power of 0.056 kW, different volumes (400, 200, 100,
and 50 mL) were treated continuously during different times.
During HPU treatments, process water samples were placed
on ice to avoid temperature increase. The tip of the horn was
placed in the center of the sample and immersed 1 cm below
the level of the water.

Bacterial Strains and Inoculum Preparation

A five-strain cocktail of E. coli O157:H7 isolated from human
and foods associated with hemorrhagic colitis and hemolytic
uremic syndrome (HSU) (CECT 4076, 4267, 4782, 4783 and
5947) obtained from the Spanish Type Culture Collection
(CECT, Valencia, Spain) was used in the study. Cultures were
rehydrated in brain heart infusion (BHI) broth (Oxoid,
Basingstoke, UK). Nalidixic acid-resistant (NalR) E. coli
O157:H7 cultures were obtained by consecutive 24 h transfers
in BHI broth with increasing concentrations of nalidixic acid
(Nal) (Merck, Darmstadt, Germany) until strains were resis-
tant to 50 ng of Nal per mL BHI. The strains were subcultured
twice in 5 mL of BHI supplemented with Nal (50 pg/mL) at
37 °C for 20 h. After the second incubation, cultures were
vortexed, and equal volumes of cell suspensions were com-
bined to give approximately the same population for each
culture. The final concentration of the . coli O157:H7 cock-
tail was approximately 10° colony-forming unit (CFU)/mL
and was used to inoculate the different types of water
obtaining a final concentration of 10*~10° CFU/mL. Process
water was inoculated with E. coli O157:H7 at two inoculum
levels (10° and 10° CFU/mL).

Microbial Analysis

During the HPU treatments, aliquots of 1.5 mL were
taken at different times (0, 15, 30, 45, and 60 min) for
microbial analysis. To obtain the appropriate 10-fold sam-
ple dilution, peptone water (Oxoid) was used. The Eddy
Jet Spiral Plater (IUL Instruments, Barcelona, Spain) was
used to spread the aliquots on the plates. The pathogenic
Nal® E. coli O157:H7 strains were enumerated using
Chromocult coliform agar (Oxoid) containing 50 pg/mL
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Table 1 Microbial and physical and chemical quality characteristics of the different types of water—distilled water (DW), tap water (TW), and three
types of process water (PW): process water 1 (PW1), process water 2 (PW2), and process water 3 (PW3)

Types of  Parameters
wash water

Total plate counts Total coliforms Molds and yeast Lactic acid bacteria COD Alkalinity pH Turbidity

(log CFU/mL) (log CFU/mL) (log CFU/mL)  (log CFU/mL) (mg O,/L) (mg HCO; /L) (NTU)
DW ND ND ND ND 9+7 0 5.90+0.10 0.07+0.02
™ ND ND ND ND 18+16 253+8 8.23+0.12 0.08+0.03
PW1 4.89+0.28* 2.58+0.48* 3.39+0.50° <1* 244+55 78+£25 7.09+0.19 45.10+10.70
PW2 5.23+0.28" 2.91+0.48* 3.72+0.50° <1* 466+25 111£17 7.32+0.06  80.50+0.90
PW3 6.07+0.28 3.76+0.48 4.55+0.50 1.33+1.16 3,525+7 382430 6.49+£0.05 516.50+83.90

ND: counts below the detection limit of 1 log CFU/mL

#Microbial values of PW1 and PW2 were estimated according to dilution (1/15 and 1/7, v/v) of the PW3 in potable water at 4 °C

of nalidixic acid and incubated at 37 °C for 24 h. Aliquots
were taken from the wash water of lettuce and spread-
plated on different agar media. Total aerobic mesophilic
bacteria were enumerated by the standard plate count
method on plate count agar (PCA) (Scharlau, Barcelona,
Spain) after incubation at 30 °C for 48 h. Total coliforms
were enumerated using Chromocult coliform agar after
incubation at 37 °C for 24 h. Molds and yeasts were
enumerated on Rose Bengal chloramphenicol agar
(Oxoid) after incubation at 25 °C for 3 days. Lactic acid
bacteria were enumerated on de Man Rogosa Sharpe
(MRS) agar (Scharlau, Barcelona, Spain) after incubation
at 30 °C for 72 h under microaerophilic conditions. Each
experiment was repeated twice and each replicate was
prepared in duplicate. The amount of viable bacteria in
the different samples was counted and expressed as log
colony-forming unit per milliliter.

Physical and Chemical Analyses

Alkalinity was determined by potentiometric titration until
pH 4.3 with HCl and a pH meter (Crison, Barcelona,
Spain). Turbidity was measured by a turbidity meter
(Turbiquant 3000 IR, Merck, Darmstadt, Germany) fol-
lowing the nephelometric method (APHA 1998) and
expressed as nephelometric turbidity units (NTU). Chem-
ical oxygen demand (COD) was used as an estimation of
the organic matter content of the process water, deter-
mined by the standard photometric method (APHA
1998) using a photometer (Spectroquant NOVA 60,
Merck). During the tests, the temperature of the process
water was also recorded. Particle size distribution in the
different types of process water was determined by laser
diffraction using a Beckman Coulter LS200 (Brea, USA).
Particle counts and size distributions were calculated and
displayed automatically.

Data Analysis

Statistical analysis was done by analysis of variance
(ANOVA) followed by Tukey’s multiple range test with a
significant level of P<0.05, using the software IBM SPSS
version 19 (Chicago, USA). Data for the effect of COD on
HPU disinfection efficacy at high inoculums levels were fit to
the model of Bigelow and Esty by using GinaFiT (Geeraerd
et al. 2005).

Results and Discussion

High-Power Ultrasound Treatments and Calorimetric
Calibration

In the present study, the power output was measured indirectly
by following the increase in temperature due to sonication in
two water volumes (400 and 500 mL). The calorimetrically
determined power was similar for both water volumes. This is
in consonance with Mancier and Leclercq (2008), who did not
observe differences in the linearity when using different vol-
umes (Vina/4 and Via/2). A linear relation between calori-
metrically determined power (actual power) and nominal
power was obtained (R*>0.98) (Fig. 1). A maximum actual
power of 56 W was obtained when nominal power was
400 W. Thus, actual power displayed was seven times lower
than the nominal power output. Schmidt et al. (1999) also
found that the actual energy output can differ widely from the
nominal output and even proved that two models of the same
type of instrument can show differences in the actual energy.
Therefore, the calorimetric calibration of the applied energy of
the equipment was crucial to ensure reproducibility and allow
comparison between results. The maximal actual power for
the test volume of 400 mL gives a power density of 0.14 kW/
L, which corresponded to a specific acoustic energy of 504 kJ/
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Fig. 1 Calorimetric calibration of the Branson Sonifier S450-A using a

fixed frequency of 20 kHz. Correlation between nominal power displayed

and calorimetrically determined power using water volumes of 400 and

500 mL

L for a 60-min test time. Power densities of 0.28, 0.56, and
1.12 kW/L were obtained when the maximal actual power was
applied on water volumes of 200, 100, and 50 mL, respec-
tively. Intensities displayed were constant during the
treatments.

Effect of Power Density on E. coli O157:H7 Inactivation
by HPU

The disinfection capacity of HPU at different power densities
(0.14, 0.28, 0.56, and 1.12 kW/L) and contact times was
determined (Fig. 2). Potable water was inoculated with
10° CFU/mL of E. coli 0157:H7 and log reductions of 4.77,
4.29, and 4.18 log CFU/mL were obtained after 60 min of
treatment for densities of 1.12, 0.56, and 0.28 kW/L, respec-
tively. A lower log reduction (1.96 log CFU/mL) was ob-
served at the lowest power density tested (0.14 kW/L). There-
fore, power density increases resulted in faster disinfection of
E. coli O157:H7. Madge and Jensen (2002) also reported that
the disinfection efficiency on fecal coliforms increases with
increased ultrasound power input, changing from 0.003 log
CFU/min at 0.07 kW/L to 1.8 log CFU/min at 1.25 kW/L.
However, an unlimited increase of disinfection with increas-
ing power density is not expected, an optimal power density
will exist beyond which cavitational yield decreases (Gogate
et al. 2003), and consequently, bacterial inactivation will be
lower. According to the classification proposed by Madge and
Jensen (2002) to evaluate the disinfection performance of a
proposed method, disinfection capacity is classified as poor if
a total log reduction is <1, intermediate for a total log reduc-
tion between 1 and 2, good for total log reduction between 2
and 3, and very good if the reduction is >3. HPU application at
intensities of 0.28, 0.56, and 1.12 kW/L can be considered
very good and suitable for process water disinfection of E. coli
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Fig. 2 Effect of power density (kW/L) on Escherichia coli O157:H7

inactivation by high-power ultrasound (HPU). Bars represent standard

deviation. Asterisks, counts below the detection limit of 1 log CFU/mL.

Intensities of 0.14, 0.28, 0.56, and 1.12 kW/mL were obtained in water

volumes of 400, 200, 100, and 50 mL, respectively

0157:H7. Trying to reduce as much as possible the operating
cost, the power density of 0.28 kW/L was selected for further
experiments on E. coli O157:H7 inactivation. However, future
studies should be done in order to know HPU efficacy on
other pathogenic microbial forms and viruses that can be
potentially present in process water.

Effect of Water Temperature on E. coli O157:H7 Inactivation
by HPU

The inactivation of E. coli O157:H7 under controlled and
uncontrolled water temperatures was tested. Temperature of
water samples placed on an ice bath did not increase above
22 °C during 60 min of HPU treatment. In contrast, the
temperature of the HPU-treated samples without control of
temperature reached 72 °C after 20 min (Fig. 3a). The inacti-
vation of E. coli O157:H7 in water by HPU (0.28 kW/L) with
and without control of temperature was compared (Fig. 3b).
During the first 8 min, similar microbial reductions were
observed in HPU-treated water with and without control of
temperature although temperature greatly differed (18 and
49 °C, respectively). After 10 min, the temperature of the
samples without control of temperature increased more than
50 °C, resulting in a drastic reduction of bacteria survival. In
fact, after 20 min of sonication, no microbial survivors were
detected. However, a slower disinfection was observed in the
water samples with control of temperature, and HPU treat-
ment of 60 min was needed to reduce 5 log units of the initial
E. coli O157:H7 inoculum. Madge and Jensen (2002) reported
that of the total kill produced by ultrasound, approximately
52 % was attributed to heat, 36 % to mechanical stresses
associated with ultrasonically induced cavitation, and 12 %
to uncharacterized synergistic effects. As expected, due to the
heat, we found high disinfection capacity in the samples
without temperature control (6 log reductions E. coli
O157:H7 after 60 and 20 min with and without temperature
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Fig. 3 Effect of controlled (a) and uncontrolled (b) temperatures on

Escherichia coli O157:H7 inactivation by high-power ultrasound

(HPU) at 0.28 kW/L. Bars represent standard deviation. Asterisks, counts

below the detection limit of 1 log CFU/mL

control, respectively). This is also in agreement with Salleh-
Mack and Roberts (2007) who observed that after 3 min, 6.29
log unit reductions were achieved with no temperature con-
trol, while a reduction of only 1.79 log was achieved when the
temperature was controlled. In that study, the average temper-
atures of the samples after 3 and 4 min with no temperature
control were 60 and 68 °C, respectively. Therefore, the report-
ed reduction was not only reached by sonication but also by
thermal inactivation, and this temperature effect could be
advantageous under some circumstances. However, water
recirculation back into the processing line at high temperature
can affect the food texture and enhance deterioration of
sensory quality, particularly in fresh fruits and vegetables
(Seymour et al. 2002; Madigan and Martinko 2006). In
fact, the fresh-cut industry uses cold water (4 °C) and
short times (1-2 min) for washing. Therefore, HPU can be
a suitable technology to recycle/disinfect process water
but requires a water cooling system before water is reused
in the processing line.

Effect of Water Alkalinity on E. coli O157:H7 Inactivation
by HPU

The efficacy of HPU (0.28 kW/L) against E. coli O157:H7
inoculated in TW (very hard water) and in DW (soft water)
was investigated (Table 1). More than 3 log reductions of

E. coli O157:H7 were achieved after 45 min of HPU treatment
in TW and DW containing very different levels of alkalinity
(253 and 0 mg HCO5 /L, respectively) (Fig. 4). Differences
observed were lower than 0.5 log units. After 60 min, counts
were lower than the detection limit in both types of water (4
log reductions). No reports on the effect of alkalinity and the
interferences of scavenged hydroxyl radicals on the disinfec-
tion capacity using ultrasonic technology have been found in
the literature. However, treatments such as H,O,/UV and
ozone, which generate a high content of hydroxyl radicals,
were very sensitive to scavenging (Liao et al. 2001; Hofmann
and Andrews 2006). When bicarbonate or carbonate scav-
enges the hydroxyl radicals, fewer hydroxyl radicals were
present in the wash water and this could reduce the disinfec-
tion capacity of the treatment. However, we observed that
high water alkalinity did not reduce HPU efficacy against
E. coli O157:H7. These results indicate an advantage of
HPU treatment over electrochemical and ozone disinfection
treatments and also over chlorine, the most widely used
sanitizer in the fresh-cut industry since Pangloli and Hung
(2013) have recently demonstrated that the disinfection effi-
cacy of chlorine also decreases with water hardness.

Effect of Organic Matter Content on E. coli O157:H7
Inactivation by HPU

Process water obtained from the processing of lettuce
showing three different CODs (244, 466, and 3,525 mg
O,/L for PW1, PW2, and PW3, respectively) and TP
(COD 18 mg O,/L) was compared to examine the
differences in microbial inactivation of E. coli
O157:H7 by HPU. Although alkalinity, pH, and turbid-
ity were also different in the water types, the greatest
differences among these samples were the COD levels
(Table 1). Selma et al. (2008) found that COD levels of
process water obtained in a fresh-cut industry after
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Fig. 4 Effect of alkalinity on Escherichia coli O157:H7 inactivation by
high-power ultrasound (HPU) at 0.28 kW/L. Distilled water (DW) and
tap water (TW) alkalinity were 0 and 253 mg HCO; /L. Bars represent
standard deviation
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washing for 2 h six different types of vegetables ranged
from 18 to 750 mg O,/L. Therefore, the COD range of
the different types of water used in the present study
represented the process water characteristics that can be
found in the fresh-cut industry, although in some cases,
it can be even worse (3,525 mg O,/L).

Process water was inoculated with E. coli O157:H7 at two
inoculum levels (1x10° and 6x10° CFU/mL). High-power
ultrasound (HPU) treatments of 30 and 60 min were needed
for E. coli O157:H7 inactivation in water samples inoculated
with 1x10% and 6x10° CFU/mL, respectively (Fig. 5a, b).
Linear inactivation constants in the different types of water
(TW, PW1, PW2, and PW3) inoculated with high inoculum
levels were 0.168-0.181/min with R*>0.99 and mean sum of
square roots of 0.0016—0.0084. Mean D value obtained for the
different water types was 13.2+0.4 min. Thus, the quality of
the water did not significantly affect the inactivation of E. coli
O157:H7 in PW using HPU. This is a very encouraging result
because the COD of PW in the fresh-cut industry is very
dynamic during the working cycle, starting with clean water
and increasing continuously with the entrance of produce.
This is an important advantage compared with chlorine which
has a high variability on the disinfection capacity depending
on the COD (Van Haute et al. 2013). Madge and Jensen

Microbial inactivation (log N/N,)

B
2 -
I g
H P,
2 31 L4
g vy, 4
'E 4 - -T i
s .. I
s ceses TW o PW1 et *
g 51
2 .
5 & pPW2 PW3
S 67
-7 T T T T T T
0 10 20 30 40 50 60
Time (min)

Fig. 5 Effect of chemical oxygen demand (COD) on Escherichia coli
O157:H7 inactivation by high-power ultrasound (HPU) at 0.28 kW/L. a
E. coli O157:H7 initial inoculum (2% 10° CFU/mL). b E. coli 0157:H7
initial inoculum (6 x 10> CFU/mL). Tap water (TW) and different types of
process water (PW1, PW2, and PW3). Bars represent standard deviation
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(2002) also found no effect on the physical and chemical
parameters on ultrasound disinfection of municipal water.
There is little information about the effect of organic matter
in the PW on microbial disinfection. In literature, some papers
discuss the effect of the physical and chemical parameters on
microbial disinfection by ultrasound in different liquids. Most
of them are for disinfection of drinking water, wastewater, and
some other liquid foods such as milk, orange juice, and liquid
whole eggs. The effect of pH on the ultrasonic treatment
(700 kHz) on E. coli was discussed by Utsunomiya and
Kosaka (1979) who observed that E. coli suspension in saline
solution (pH around 7) resulted in 0.2 % survival after 30 min.
However, the survival of E. coli in milk containing 10 %
orange juice at pH 2.6 increased to 0.3 %. In our study, the
pH differences were lower than those mentioned in that study,
so it was expected that pH differences did not cause differ-
ences in the disinfection efficacies. These authors also de-
scribed the potential effect of organic matter on the disinfec-
tion efficacy as orange juice contains higher organic matter
level than a saline solution (Utsunomiya and Kosaka 1979).
Lee et al. (1989) also reported that ultrasonic treatment
(10 min) of Salmonella reduced up to 4 log CFU/mL in
peptone water and only 0.78 log units in milk chocolate even
after treatment for 30 min. Our results showed that the organic
matter did not affect the disinfection efficacy of HPU treat-
ment as samples with huge differences in COD levels were
compared and the disinfection efficacy did not show signifi-
cant differences. Therefore, other physical and chemical pa-
rameters such as viscosity could influence ultrasound disin-
fection efficacy. Viscosity affects HPU efficacy because the
cohesive forces present in a liquid oppose the occurrence
of cavitation (Gogate et al. 2003). When Salmonella
Typhimurium was treated in BHI broth, cell numbers
decreased by more than 3 log units compared with 1 log
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0 @ — T
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B2 oA, 0P 6 oV D A AW qO° O
TN ST ATy S 7
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Fig. 6 Particle size distribution before and after high-power ultrasound
(HPU) application in process water (PW3) at 0.28 kW/L for 45 min
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reduction when cells were in liquid whole egg (Wrigley
and Llorca 1992).

Effect of HPU on the Physical and Chemical Quality
Characteristics of Process Water

The effect of HPU (0.28 kW/L) on the physical and chemical
quality characteristics of lettuce process water (PW3) was
evaluated. No reductions in alkalinity, COD, and pH were
observed after 60 min of HPU treatment. A higher HPU power
density (0.56 kW/L) was also ineffective in reducing alkalin-
ity, COD, and pH. A previous study also showed a low COD
reduction (<5 %) of landfill leachate after 60 min of ultrasound
treatment when the initial COD was 4,470 mg O,/L (Wang
et al. 2008). However, these authors showed that the initial
COD concentration affects COD reduction efficiency. There-
fore, COD reduction efficiency could be improved by diluting
the PW before HPU treatment.

The effect of operating ultrasound on the particle size
distribution was also evaluated (Fig. 6). Before sonication,
agglomerates bigger than 90 pm in diameter represented
34.4 % of the total particle composition. After 45 min of
sonication, this proportion of particles larger than 90 um
was reduced to only 11.5 %. In contrast, the proportion of
particles between 1 and 25 pm diameters increased from 38.1
to 66.1 % after the 45-min HPU treatment. Therefore, HPU
operating at low frequency (20 kHz) was able to bring down
the size of agglomerates of particles by declumping and
reduce particles higher than 90 um in diameter. This phenom-
enon could facilitate ultrasonic disinfection because of
declumping of bacterial aggregates (Joyce et al. 2011) that
would be then more susceptible to radicals generated by
sonication. Previous studies also mentioned the reduction
capacity of ultrasonic waves on the particle size of wastewater
(Blume and Neis 2003; Gogate 2007). For this reason,
ultrasound has been proposed as a more suitable water
pretreatment for UV-C disinfection than sand filters which
are expensive in construction and cleaning maintenance
(Blume and Neis 2003).

Conclusions

The efficacy of HPU on the inactivation of E. coli O157:H7
increased with power density and temperature but was unaf-
fected by lettuce process water hardness and COD. High-
power ultrasound was also able to bring down the size of
agglomerates of particles in the vegetable process water. The
efficiency of ultrasound technology to disinfect process water
together with the broad efficacy for very different water qual-
ity characteristics typical in the processing lines of fresh-cut
produce makes it suitable for recycling process water

generated in the fresh-cut industry, which would have positive
consequences for the industry and the environment in terms of
lower consumption of water and lower generation of waste-
water and disinfection by-products.

Acknowledgments The research leading to these results has received
funding from the European Community’s Seventh Framework Program
(FP7) under grant agreement no. 244994 (project VEG-i-TRADE, www.
veg-i-trade.org) and the MICINN (AGL2009-08603 and IPT-2012-0169-
060000). The support provided by the COST ACTION FA1202
BacFoodNet is also appreciated.

References

APHA, American Public Health Association. (1998). Standard methods
for the examination of water and wastewater (20th ed.).
Washington, DC: American Public Health Association.

Bilek, S. E., & Turantas, F. (2013). Decontamination efficiency of high
power ultrasound in the fruit and vegetable industry, a review.
International Journal of Food Microbiology, 166, 155-162.

Blume, T., & Neis, U. (2003). Improved wastewater disinfection by
ultrasonic pre-treatment. Ultrasonic Sonochemistry, 11, 333-336.

Broekman, S., Pohlmann, O., Beardwood, E. S., & Cordemans de
Meulenaer, E. (2010). Ultrasonic treatment for microbiological con-
trol of water systems. Ultrasonic Sonochemistry, 17, 1041-1048.

CDC, C.F.D.C.A. P (2009) Investigation of outbreak of infections caused
by Salmonella Typhimurium. Available online: http://www.cdc.gov/
Salmonella/typh1209/ (accessed: 18.01.14).

de Brilhante Sao José, J. F., José de Andrade, N., Mota Ramos, A., Dantas
Vanetti, M. C., César Stringheta, P., & Paes Chaves, J. B. (2014).
Decontamination by ultrasound application in fresh fruits and veg-
etables. Food Control, 45, 36-50.

Elizaquivel, P., Sanchez, G., Selma, M. V., & Aznar, R. (2012).
Application of propidium monoazide-qPCR to evaluate the ultra-
sonic inactivation of Escherichia coli O157:H7 in fresh-cut vegeta-
ble wash water. Food Microbiology, 30, 316-320.

Gao, S., Lewis, G. D., Ashokkumar, M., & Hemar, Y. (2014). Inactivation
of microorganisms by low-frequency high-power ultrasound: 1.
Effect of growth phase and capsule properties of the bacteria.
Ultrasonics Sonochemistry, 21, 446-453.

Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a
freeware tool to assess non-log-linear microbial survivor curves.
International Journal of Food Microbiology, 102, 95-105.

Gibson, J. H., Yong, D. H. N., Farnood, R. R., & Seto, P. (2008). A
literature review of ultrasound technology and its application in
wastewater disinfection. Water Quality Research Journal of
Canada, 43, 23-25.

Gil, M. L, Selma, M. V., Lopez-Galvez, F., & Allende, A. (2009). Fresh-
cut product sanitation and wash water disinfection: problems and
solutions. International Journal of Food Microbiology, 134, 37-45.

Gogate, P. R. (2007). Application of cavitational reactors for water
disinfection: current status and path forward. Journal of
Environmental Management, 85, 801-815.

Gogate, P. R., & Kabadi, A. M. (2009). A review of applications of
cavitation in biochemical engineering/biotechnology. Biochemical
Engineering Journal, 44, 60-72.

Gogate, P. R., & Pandit, A. B. (2004). Sonophotocatalytic reactors for
wastewater treatment: a critical review. AICHE Journal, 50, 1051—
1079.

Gogate, P. R., Shirgaonkar, 1. Z., Sivakumar, M., Senthilkumar, P.,
Vichare, N. P., & Pandit, A. B. (2001). Cavitation reactors:

@ Springer


http://www.veg-i-trade.org/
http://www.veg-i-trade.org/
http://www.cdc.gov/Salmonella/typh1209/
http://www.cdc.gov/Salmonella/typh1209/

Food Bioprocess Technol

efficiency assessment using a model reaction. AICHE Journal, 47,
2526-2537.

Gogate, P. R., Wilhem, A. M., & Pandit, A. B. (2003). Some aspects of
the design of sonochemical reactors. Ultrasonics Sonochemistry, 10,
325-330.

Gogate, P. R., Mededovic-Thagard, S., McGuire, D., Chapas, G.,
Blackmon, J., & Cathey, R. (2014). Hybrid reactor based on com-
bined cavitation and ozonation: from concept to practical reality.
Ultrasonics Sonochemistry, 21, 590-598.

Hofmann, R., & Andrews, R. C. (2006). Impact of H,O, and
(bi)carbonate alkalinity on ammonia’s inhibition of bromate forma-
tion. Water Research, 40, 3343-3348.

Joyce, E., Al-Hashimi, A., & Mason, T. J. (2011). Assessing the effect of
different ultrasonic frequencies on bacterial viability using flow
cytometry. Journal of Applied Microbiology, 110, 862-870.

Lee, B. H., Kermasha, S., & Baker, B. E. (1989). Thermal, ultrasonic and
ultraviolet inactivation of Salmonella in thin films of aqueous media
and chocolate. Food Microbiology, 6, 143—152.

Liao, C. H., Kang, S. F., & Wu, F. A. (2001). Hydroxyl radical scaveng-
ing role of chloride and bicarbonate ions in the HO,/UV process.
Chemosphere, 44, 1193-1200.

Lopez-Galvez, F., Posada-lIzquierdo, G. D., Selma, M. V., Pérez-
Rodriguez, F., Gobet, J., Gil, M. 1., & Allende, A. (2012).
Electrochemical disinfection: an efficient treatment to inactivate
Escherichia coli O157:H7 in process wash water containing organic
matter. Food Microbiology, 30, 146—-156.

Madge, B. A., & Jensen, J. N. (2002). Disinfection of wastewater using a
20 kHz ultrasound unit. Water Environment Research, 74, 159-169.

Madigan, M. T., & Martinko, J. M. (2006). Brock biology of
microorganisms (11th ed.). New Jersey: Pearson Prentice Hall.

Mancier, V., & Leclercq, D. (2008). Power dissipated measurement of an
ultrasonic generator in a viscous medium by flowmetric method.
Ultrasonic Sonochemistry, 15, 973-980.

Mason, T. J., & Lorimer, J. P. (2002). Applied sonochemistry: uses of
power ultrasound in chemistry and processing. Weinheim: Wiley-
VCH (chapter 4).

Mason, J. M., Riera, E., Vercet, A., & Lopez-Buesa, P. (2005).
Application of ultrasound. In D.-W. Sun (Ed.), Emerging technolo-
gies for food processing (pp. 323-351). London: Elsevier.

Olmez, H., & Kretzschmar, U. (2009). Potential alternative disinfection
methods for organic fresh-cut industry for minimizing water con-
sumption and environmental impact. LWT- Food Science and
Technology, 42, 686—693.

Pangloli, P., & Hung, Y.-C. (2013). Effects of water hardness and pH on
efficacy of chlorine-based sanitizers for inactivating Escherichia

@ Springer

coli O157:H7 and Listeria monocytogenes. Food Control, 32,
626-631.

Patist, A., & Bates, D. (2008). Ultrasonic innovations in the food indus-
try: from the laboratory to commercial production. Innovative Food
Science and Emerging Technologies, 9, 147-157.

Piyasena, P., Mohareb, E., & Mckellar, R. C. (2003). Inactivation of
microbes using ultrasound: a review. International Journal of
Food Microbiology, 87, 207-216.

Salleh-Mack, S. Z., & Roberts, J. S. (2007). Ultrasound pasteurization:
the effects of temperature, soluble solids, organic acids and pH on
the inactivation of E. coli ATCC 25922. Ultrasonic Sonochemistry,
14, 323-329.

Scherba, G., Weigel, R. M., & O’Brien, W. D. (1991). Quantitative
assessment of the germicidal efficacy of ultrasonic energy. Applied
and Environmental Microbiology, 57, 2079-2084.

Schmidt, M. W. L., Rumpel, C., & Kogel-Knabner, 1. (1999). Evaluation
of an ultrasonic dispersion procedure to isolate primary
organomineral complexes from soils. European Journal of Soil
Science, 50, 87-94.

Selma, M. V., Allende, A., Lopez-Galvez, F., Conesa, M. A., & Gil, M. 1.
(2008). Heterogeneous photocatalytic disinfection of wash waters
from the fresh-cut vegetable industry. Journal of Food Protection,
71,286-95.

Seymour, 1. J., Burfoot, D., Smith, R. L., Cox, L. A., & Lockwood, A.
(2002). Ultrasound decontamination of minimally processed fruits
and vegetables. International Journal of Food Science and
Technology, 37, 547-557.

Suslow TV (1997) Postharvest chlorination: basic properties and key
points for effective sanitation. Oakland: University of California
Division of Agriculture and Natural Resources, Publication 8003.
http://anrcatalog.ucdavis.edu/pdf/8003.pdf.

Utsunomiya, Y., & Kosaka, Y. (1979). Application of supersonic waves
to foods. Journal of the Faculty of Applied Biological Science,
Hiroshima University, 18, 225-231.

Van Haute, S., Sampers, 1., Holvoet, K., & Uyttendaele, M. (2013).
Physicochemical quality and chemical safety of chlorine as a
reconditioning agent and wash water disinfectant for fresh-cut let-
tuce washing. Applied and Environmental Microbiology, 79, 2850~
2861.

Wang, S., Wu, X, Wang, Y., Li, Q., & Tao, M. (2008). Removal of
organic matter and ammonia nitrogen from landfill leachate by
ultrasound. Ultrasonic Sonochemistry, 15, 933-937.

Wrigley, D. M., & Llorca, N. G. (1992). Decrease of Salmonella
Typhimurium in skim milk and egg by heat and ultrasonic wave
treatment. Journal of Food Protection, 55, 678—680.


http://anrcatalog.ucdavis.edu/pdf/8003.pdf

	Disinfection Capacity of High-Power Ultrasound Against E.�coli O157:H7 in Process Water of the Fresh-Cut Industry
	Abstract
	Introduction
	Materials and Methods
	Process Water
	High-Power Ultrasound (HPU) Equipment and Treatments
	Bacterial Strains and Inoculum Preparation
	Microbial Analysis
	Physical and Chemical Analyses
	Data Analysis

	Results and Discussion
	High-Power Ultrasound Treatments and Calorimetric Calibration
	Effect of Power Density on E.�coli O157:H7 Inactivation by HPU
	Effect of Water Temperature on E.�coli O157:H7 Inactivation by HPU
	Effect of Water Alkalinity on E.�coli O157:H7 Inactivation by HPU
	Effect of Organic Matter Content on E.�coli O157:H7 Inactivation by HPU
	Effect of HPU on the Physical and Chemical Quality Characteristics of Process Water

	Conclusions
	References


