ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

QUANTUM CIRCUIT SYNTHESIS

M.Sc. THESIS

Omer Can SUSAM

Department of Nanoscience and Nanoengineering

Nanoscience and Nanoengineering Programme

JANUARY 2015

ISTANBUL TECHNICAL UNIVERSITY * GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

QUANTUM CIRCUIT SYNTHESIS

M.Sc. THESIS

Omer Can SUSAM
(513121011)

Department of Nanoscience and Nanoengineering

Nanoscience and Nanoengineering Programme

Thesis Advisor: Asst. Prof. Mustafa ALTUN

JANUARY 2015

ISTANBUL TEKNIK UNIiVERSITESI % FEN BiLIMLERI ENSTITUSU

KUANTUM DEVRE SENTEZI

YUKSEK LiSANS TEZi

Omer Can SUSAM
(513121011)

Nanobilim ve Nanomuiihendislik Anabilim Dali

Nanobilim ve Nanomuhendislik Program

Tez Damismam: Yrd. Do¢. Mustafa ALTUN

OCAK 2015

Omer Can Susam, a M.Sc. student of ITU Institute of / Graduate School of
Science Engineering and Technology student ID 513121011, successfully defended
the thesis entitled “QUANTUM CIRCUIT SYNTHESIS”, which he prepared after
fulfilling the requirements specified in the associated legislations, before the jury
whose signatures are below.

Thesis Advisor : Asst. Prof. Mustafa ALTUN
Istanbul Technical University

Jury Members : Prof. Dr. Hilmi UNLU e,
Istanbul Technical University

Asst. Prof. Faik Baskaya
Bogazigi University

Date of Submission : 15 December 2014
Date of Defense : 20 January 2015

Vi

To my family,

vii

viii

FOREWORD

| owe a great debt of gratitude to my supervisor Asst. Prof. Mustafa Altun for his
inspiration and guidance.

I would like to thank The Scientific and Technological Research Council of Turkey
(TUBITAK) (2210-C) and Scientific Research Projects Agency of Istanbul Technical
University (BAP).

Finally, 1 would like to thank my parents, my brother and my friends for their great
support.

December 2014 Omer Can SUSAM
(Electrical Engineer)

TABLE OF CONTENTS

Page

FOREWORD ..ottt sttt sttt et saestenneeneene e iX
TABLE OF CONTENTS ..ottt e Xi
ABBREVIATIONS ...ttt nneans Xiii
LIST OF TABLESot XV
LIST OF FIGURES ...ttt Xvii
SUMMARY ettt re e XIX
(@)74 = T XXi
1. INTRODUCTION......ctiiiiiieie ettt sttt 1
2. QUANTUM COMPUTINGocviiiieieieiesie ettt 3
2.1 Building Blocks of Quantum Computation : QUDItS...........cccevveviiieiicieceen, 3
2.2 QUANTUM GALES ...ttt sttt et sbe e nb e e be et e 5
2.3 QUANTUM CIICUILS ...vviiveeitieiie ettt ettt e e be e be e saeesnbeesbeeennee e 8
2.4 QuantumM AIGOTTENMS ..o 9
2.5 Construction Of the GALESccvviiieieiie e 9
2.6 COSEIMIBIIIC ..ottt ettt be et e sreeteeneenreenne e 12
2.7 Realization of Quantum Computation..............cccevveveiiieieese e 13
3. REVERSIBLE COMPUTING......c.coocitiieieiece et 15
3.1 REVEISIDIE CIFCUITS .vevveuviieiieiiieieeie ettt 16
4. QUANTUM CIRCUIT SYNTESIS ..o 19
4.1 Negative CONtrol LINEScoveieiiecieee ettt 20
4.2 ESSential FUNCLIONS.......coviiieiiee et 21
1o 1 1o PSSR TOSOSURRPRN 23
4.3.1 TOP-DOWN ..o 26
4.3.2 PICK SMAIIEST.....oeiiieiiiie et 26
4.3.3 OPTIMUIM Lottt bbbt 26

4.4 OPLMIZALIONc.viieiecieccie ettt e e st a e s re e aeaneesres 26
4.4.1 Templates Using Circuit LiDrary ... 27
4.4.2 Templates Using Quantum Structure of Gatesccccceevvevveveiieveenene, 28

5. RESULTS ettt ettt st nneere e e e 31
6. CONCLUSIONS AND RECOMMENDATIONS.......coooieiiieieceneeeeeeie s 33
REFERENCES.ottt na e 35
APPENDICES ...ttt 39
APPENDIX A oottt ettt ne e 40
APPENDIX B ..ottt sttt ne e 45
CURRICULUM VITAE ...ttt 49

Xi

Xii

ABBREVIATIONS

App : Appendix

C-NOT : Controlled Not

CNT : C-Not, Not, Toffoli
NCL : Negative Control Lines
NCV : Not, C-Not, V gate
OPT > Optimum

PN-CNT : Positively and Negatively Controlled CNOT, Not, Toffoli
PS : Pick Smallest

RC : Reversible Cost
QC : Quantum Cost
B : Top to Bottom

Xiii

Xiv

LIST OF TABLES

Table 2.1 :
Table 2.2 :
Table 2.3 :
Table 2.4 :
Table 3.1 :
Table 3.2 :
Table 4.1 :
Table 4.2 :
Table 4.3 :
Table 4.4 :
Table 4.5 :
Table 4.6 :
Table 5.1 :

Page
CNOT gate input and OULPUL FESUILS.ooiiiiiiieicce e, 7
Toffoli gate input and output reSUltS.cccvveveiieiecce e 8
ElemMentary Gatescooiiiiieieieieeic e 10
COMIMON GALES......ccueieiieiiie e 11
Truth tables for bit size 2: (a)identity function, (b)arbitrary function. ... 16
Total reversible functions for bit Size N. ... 17
Truth table of negative controlled gates...........cccoovriniienininenieee 21
Essential Function Number According To Bit Size............cccccveeveiveenen, 22
Realization of a Function With Essential Functions.c.cccceoeiienn. 23
Realization of a Function With Essential Functions.c.cccceeveienn. 25
SeqUENCE COMPANISON. ...c..iviriiriieieeieresie sttt 26
Experimental Results for Toffoli Realization.ccccccooveveiieiiennenn, 29
Reversible Functions Obtained With Specific Gate Number According
TO B BIlS. ettt 32

XV

XVi

LIST OF FIGURES

Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :

Figure 2.5 :
Figure 2.6 :

Figure 2.7 :
Figure 2.8 :
Figure 2.9 :
Figure 2.10
Figure 3.1 :
Figure 3.2 :
Figure 3.3 :
Figure 3.4 :
Figure 4.1 :

Figure 4.2 :
Figure 4.3 :
Figure 4.4 :

Figure 4.5 :
Figure 4.6 :

Figure 4.7 :
Figure 4.8 :

Figure 4.9 :
Figure 4.10

Page
Representation of a qubit in an atom with two electron levels................ 5
Geometric representation of a qubit, Bloch sphere. ... 5
(@) Not operation on classical bit and (b) qubit.ccoovriiiiiiiiieee, 6
(a) Classical gates, (b) quantum CNOT gate and its matrix
FEPIESENTALION.vieieieteit et 7
(a) Representation of Toffoli gate, (b) FANOUT operation with Toffoli
gate, (c) NAND gate simulated with Toffoli. ... 8
Quantum Circuit example, Full-Adder constructed with CNOT and
Toffoli gates, time flows left to right...........ccooeiiiiiii 8
Controlled U gate implementation with quantum gates. 11
Controlled-Controlled U gate with V and CNOT gates.ccccevene, 12
Controlled-Controlled U gate with VV and CNOT gates.c.ccuene.n. 12
: NCV-111 cost metric, each of these gates are costed as 1. 13
BIJeCtion FUNCLION.coviiiie e 15
Reversible logical Operation. ..o 15
Irreversible logical Operation............cccccvvveiievi e 15
Reversible circuit for bit SIZ€ 7.cccoveiiiiiiiice e, 16
CNT and PN-CNT libraries with showing Quantum Costs for each gate.
... 20
Negative control lined gates, (a)n-CNOT, (b)np-Toffoli, (c) nn-Toffoli.
... 21
Essential Function for 3 bit circuit, 2 row switched their position
between each Other. ..o 22
Flow chart of the algorithm. ... 23
Essential Function f1 and f2 used to obtain F function. 24

Sorting process with essential functions: (a) Selection Sort, (b) Merge
Sort, (c) Insertion Sort. Numbers near arrows counts used essential

FUNCHIONS. .o 24
Representations of the functions in Table 4.4. ..o, 25
Sorting sequence with identical neighbor gates; 4 gates removed from
tNE CIFCUIL. oo s 27
Templates for gates with a negative control line..............cccceeveveiieenenn, 27
> (a) Toffoli gate with its inner quantum realization. (b) Template for

positively controlled Toffoli. (c) Single negatively controlled Toffoli
gate its quantum realization. (d) Template with single negative
controlled TOFFOlI.oooiiee s 28

Xvii

Xviii

QUANTUM CIRCUIT SYNTHESIS

SUMMARY

This thesis presents a new approach for the synthesis of quantum circuits. Quantum
computers, more specifically quantum algorithms, take on the eyes with their
computational promises. They paved the way for calculation of the complex
problems that can't be solved in polynomial time by traditional counterparts.

Exploiting quantum mechanical phenomena and its features is the main power source
of the quantum computing idea. This is also leaning on the concept that accepts
information as a physical item. In addition, quantum mechanical unitarity brings
reversibility for quantum algorithms and quantum circuits. This creates ideal
application area for reversible computing and reversible circuit design. Reversible
computing is motivating scientist and researchers for years to achieve energy
efficient computation.

With the help of advancing technology, quantum computation become applicable. At
this point, reversible quantum circuit design is coming forward that is the core of this
computation. When compared with classical computation methods, quantum systems
are very sensitive. This is one of the main reasons to synthesize these circuits
minimally as possible. Depending on quantum computation method, each gate in
quantum circuits corresponding to one or more pulse operations. Therefore,
optimized circuits will improve both the security and the run time of the
computation. Still, optimal circuit synthesis for higher bit count is hard to achieve, it
can take very long time which is not practical at all. To compete with classical
computation in a realistic manner, this is one of the main obstacles to overcome and
it constitutes the main motivation why we aim at a fast synthesis algorithm in this
thesis.

To fulfill the needs of this upcoming technology, we perform synthesis and
optimization of quantum circuits in two main parts. In the first part, we propose a fast
synthesis algorithm that implements any given reversible Boolean function with
quantum gates. Instead of an exhaustive search on every given function, our
algorithm creates a library of essential functions and performs sorting to obtain
desired function. In the second part, we optimize our circuits by using templates. The
proposed templates mainly consist of identical neighbor gates and Toffoli gates,
realized with V, V™ and CNOT gates. We also improve the CNT library by taking
negative control lines into account which provides important circuit cost reduction.
We call this new library as PN-CNT that stands for “Positively and Negatively
Controlled CNOT, Not, Toffoli”.

Quantum computers implemented in various ways so far. Each implementation has
its own physical cost. For the calculation of quantum circuit cost, we preferred to use
widely accepted NCV-111 cost metric in this thesis. Finally we compared our results
with studies in the literature.

XiX

XX

KUANTUM DEVRE SENTEZI

OZET

Bu tez, tersinir devre sentezine dayali kuantum devrelerin sentezlenmesi i¢in yeni bir
yontem sunmaktadir. Kuantum bilgisayarlar, o0zellikle kuantum devrelerle
olusturulan kauntum algoritmalar, hesaplamali alanda vaat ettikleriyle son yillarda
dikkatleri iizerine ¢ekti. Bu bilgisayarlar, klasik bilgisayarlarin ¢6zemedigi kompleks
problemleri hesaplamanin 6niinii agmaktadir.

Geleneksel olarak bilgisayarlar 0 veya 1 degeri alabilen bitler ile hesaplamalar
gerceklestirirler. Bitler ile hesaplama genel anlamda olduk¢a etkin ve verimli
olmasina ragmen bazi énemli problemlerin ¢ziimiinde yetersiz kalmaktadir. Bunun
en 6nemli nedeni ise bitlerin deterministik olarak calismasi, yani belirli bir zaman
araliginda sadece 0 veya 1 degeri alabilmesidir. Richard Feynman tarafindan 6nerilen
kuantum bilgisayar fikri, kuantum mekaniginden faydalanarak hesaplama iglemlerini
gerceklestirme mantigina dayanmaktadir. Bu hesaplama yonteminde, veri saklama
elemanlar “kiibit” olarak adlandirilir. Kuantum mekaniginin siiperpozisyon prensibi
geregi, kiibitler 0 veya 1 ayn1 anda hem 0 hem 1 konumunda bulunabilir. Bir bagka
deyisle bir kiibitin degeri, 0 veya 1 olma olasiligini belirtir. BOylece, pratik limitler
dahilinde olanaksiz olan bir ¢ok problem, kuantum algoritmalar1 ile rahatlikla
cozebilmektedir. Bu problemlerin belki de en inliisii kriptolojide yaygin kullanilan
yari-asal sayilarin ¢arpanlarina ayrilmasidir. Shor’un kiibit tabanli ¢arpanlara ayirma
algoritmasi, geleneksel anlamda ¢o6ziimi ylizyillar siiren durumlari, hizlica
cozmektedir.

Kuantum devreler, kiibitler lizerinde islem yapan kuantum kapilar kullanilarak inga
edilir. Kuantum devrelerin en 6nemli 6zelliklerinden birisi ayni zamanda tersinir
(reversible) devreler olmalaridir. Bu devrelerde, devrenin girisindeki ve cikisindaki
bit sayis1 esittir. Devrenin c¢ikisindaki degerler bize devrenin girisindeki degerler
hakkinda bilgi verir. Bu sayede devreleri ¢ift yonlii olarak kullanabilmemize imkan
saglarlar. Tersinir devrelerin en buyik getirisi, bilgisayarlarda ylksek enerji
tasarrufuna olanak saglamalaridir.

Kuantum bilgisayarlar ile ilgili yapilan deneysel uygulamalar her ne kadar emekleme
asamasinda olsa da, kuantum hesaplamanin uygulanabilir oldugunu gostermektedir.
Bu noktada kuantum hesaplamanin en 6nemli boliimii olan kuantum devre tasarimi
on plana ¢ikmaktadir. Calismalar en az sayida kapi kullanarak optimum devreleri
sentezlemeyi amacglamaktadir. Optimize edilmis devreler, bir yandan giivenilirligi
artirirken, diger bir yandan calisma siiresini diisiirmektedir. Suana kadar yapilan
caligmalarda, optimum devre sentezi sadece 4 bite kadar gergeklestirildi. Son yapilan
ve 84 kiibit kullanilan deneyler géz 6niine alindiginda, optimal devre sentezi pratik
olmaktan olduk¢a wuzak kalmaktadir. Bu, c¢alismamizi hizli sentezleme
algoritmalarina yonelten motivasyonlarin basinda gelmektedir.

Literatirdeki birka¢ calismada, Ozellikle yiksek bit sayisi ile sentezleme

XXi

yapilanlarda, ‘“garbage output” birimleri kullanilmistir. Bu birimler, ihtiyag
oldugunda kullanilmak iizere devrede fazladan bulundurulan veri yollar1 olarak
diisiiniilebilir. Bir ¢ok yontemde, enerji verimililigi ile ilgili problemlerinden o6tiirti
kullanim1 diistiniilmemistir. Bu nedenle ¢alismamizda “garbage ouput” kullanmadik.

Onerdigimiz ydntem, istenilen fonksiyonu kuantum kapilar1 kullanarak verimli bir
sekilde elde etmekte ve bunu iki ana asamada yapmaktadir. Ilk asamada,
permiitasyona dayali bir algoritma ile segilen bit biiyiiklii§iine gére optimum sayida
kap1 kullanilan “temel fonksiyonlar” sentezlenmektedir. Her temel fonksiyon igin, en
az kap1 sayisindan baglayip, tiim kapilar1 ve permiitasyonlarini deneyerek,
fonksiyonu gergeklestiren devreyi temel fonksiyonlar kiitiiphanesine ekler ve bir
sonraki temel fonksiyonu aramaya baglar. Kiitiiphane tamamlandiktan sonra siralama
asamasina gecilmektedir. Algoritmanin bu agamasi, en ¢ok vakit alan kisim olmasina
ragmen, temel fonksiyonlarin sayisinin azligi ve siralama algoritmasinin hizi, bu
yontemi literatiirdeki g¢alismalardan olduk¢a hizli kilmaktadir. Optimum ¢6zim
iiretmeyen yontemlerle bu devreler cok daha hizli bir sekilde elde edilebilir ancak
devre maliyetleri ¢cok daha yiiksek olacaktir. Temel fonksiyonlarn maliyetleri,
olusturulacak olan tiim devrelerin maliyetini etkileyeceginden, devreleri optimum
olarak sentezlemeyi tercih ettik.

Devre sentezleme asamasi, istenilen fonksiyonu elde etmemizi saglayan siralama
stireci ile devam eder. Bu siireg, algoritmamiza hizim1 kazandiran, yontemimizin en
onemli bolimdur. Siralama algoritmalari, matematik ve bilgisayar biliminde uzun
stredir caligilan bir konu oldugundan, birgok farkli siralama algoritmasi
gelistirilmistir. Biz calismamizda, “Se¢meli Siralama” algoritmasini kullandik. Bu
siralama yontemi, verilen fonksiyonu, dogruluk tablosu ile karsilagtirarak satir satir
kontrol edip, eslesmeyen her durum i¢in temel fonksiyonlardan birini kullanarak,
fonksiyonu adim adim birim fonksiyona ¢evirmektedir. Diger siralama
algoritmalarinin aksine kaydirma veya bolme islemlerini uygulamadigindan,
fazladan temel fonksiyon kullanimini 6nleyerek, devre maliyetini diislik tutmaktadir.
Ornegin, birlestirmeli siralama, verilen siralama kiimesini oncelikle alt kiimelere
ayirip, bu alt kiimeleri siralamaktadir. Ardindan, olusturulan alt kiimeler, parca parca
birlestirilerek her yeni birlesmede yeni bir siralama yapilmaktadir. Siralamalardaki
yer degistirme islemlerinin her biri ek bir temel fonksiyon kullaninmina neden
olmaktadir. Ayn1 sekilde, eklemeli siralama algoritmasinda kullanilan kaydirma
islemlerinin her biri, bir temel fonksiyona karsilik gelmektedir. Segmeli algoritma ile
olusturulan devrelerin maliyeti, yerdegistirilecek olan satirlarin degistirilme sirasinin,
dogru bir sekilde belirlenmesiyle iyilestirilebilecegini gosterdik. Bu amagla,
calismamiza her fonksiyon i¢in optimum siralamayir bulan ek bir bolim ekledik.
Ekledigimiz bu kistm bazi devrelerin maliyetini azaltirken, programin ¢alisma
stiresini artirmistir.

Ikinci asama, olusturdugumuz sablonlar1 kullanarak, sentezlenen devrelerde
optimizasyon yapmaktadir. Sablonlar, ayn1 fonksiyonu daha az sayida kapiyla
gercekleyen ve devredeki esdegeri ile degistirilerek toplam kapi sayisinda diisiis
saglayan devrelerdir. Sablonlarimizi iki farkli yolla olusturduk. Birincisi, tersinir
kapi kiitiiphanemizi kullanarak. Ikincisi de bu kiitiiphanedeki kapilarin iglerinde
bulunan kuantum kapilar1 géz 6niine alarak. Birinci yontem, siralama algoritmasinin
uygulanmasindan sonra, ayni iki kapinin yanyana gelebilecegi gbéz Onilinde
bulundurularak retilmistir. ikinci tiirdeki sablonlarda, sentezledigimiz devrelerde
sikca kullandigimiz Toffoli kapisinin, kuantum kapilarla (V, VT ve CNOT) kag farkli
sekilde gerceklestirilebilecegini inceledik. Bu asamada, kompleks sayilardan olusan

xXxii

matrisleri kullanacagimiz i¢in, MATLAB programimi kullandik. Devre igiersinde
Toffoli kapisinin yanina gelen CNOT kapilarindan bir kisminin optimizasyon ig¢in
kullanilabilecegini gosterdik.

Ayrica calismamizda, pozitif kontrolli kapilara (CNT) ek olarak negatif
kontrollilerinde sentezleme asamasina eklenmesiyle devre maliyetlerinde onemli
Olciide iyilestirmeler elde ettik.

Kuantum hesaplama, deneysel olarak bir ¢ok farkli sekilde gerceklestirilmistir. Her
gerceklemenin, kendine 6zgii prensipleri ve dzellikleri oldugundan, algoritmalardaki
kapilarin uygulanig bicimi de farkli olmaktadir. Bu nedenle, her yontem igin ayri
kapt maliyetleri olusmaktir. Calismamizki kuantum devrelerin maliyetlerini
literatiirde yaygin olarak kullanilan NCV-111 maliyet metrigini kullanarak
hesapladik. Son olarak, yontemimizi literatiirde bulunan ¢alismalar ile kiyasladik.

XXiii

XXiV

1. INTRODUCTION

With experimental realization of quantum computation, quantum circuit synthesis
and optimization methods come into prominence. There is few reasons to synthesise
these circuits optimally. Quantum systems are very sensitive when compared with
our classical computation methods. Since each gate in quantum circuits
corresponding to one or more pulse operations depending on quantum computation
method, optimized circuits will boost the security on one hand and decrease the run
time of the computation on the other hand. Nevertheless, optimal circuit synthesis for
higher bit count still an issue. To compete with classical computation in a realistic
manner, this is one of the main obstacles to overcome and it constitutes the main

motivation why we aim at a fast synthesis algorithm in this study.

In this thesis, a new quantum circuit synthesis approach is presented which works
with deterministic input and output values for a function. The thesis is organized as
follows. In Second Chapter, background information for quantum computation
introduced. In Third Chapter, reversible computation, including reversible circuits is
explained. Chapter Four presents our synthesis algorithm by explaining essential
functions, sorting section and optimization method based on template matching
mechanism. In Chapter Five and Six, experimental results and conclusions presented

respectively.

2. QUANTUM COMPUTING

Quantum computation is a concept that is based on the idea of using quantum
mechanical phenomena and its features to make computation. It is first proposed by
Richard Feynman at 1982 [1]. Quantum computation takes its power with promising
to out-perform the calculation of certain problems when compared with classical
computation. This is theoretically proved with few algorithms. One of them is Shor’s
factoring algorithm [2]. It shows that, quantum computers can easily factorize a
semi-prime number which is actually leading to overcome our current security
systems called RSA [3]. The other one is Grover’s search algorithm, illustrates faster
searching of database than any other classical algorithms [4].

On the other hand, according to Moore’s law, integrated circuit performance will be
doubled every 18 months [5]. This performance improvement is basically leaning on
the transistor number in a single chip, and so far this is accomplished by shrinking
transistors. Since the ultimate limit of this shrinkage is corresponding to the size of
an atom [6], quantum computation provides a way out for this predicament.
Although experimental applications are still in crawling stage, studies show that

quantum computation is being applicable [7].

2.1 Building Blocks of Quantum Computation : Qubits

Bit is the basic unit of information that can only have one of two states, 0 or 1. In
qguantum information, this basic unit called as qubit (abbreviation of quantum bit).
Additionally to 0 and 1 states, a qubit can also exist as a linear combination of the
states |0) and |1) which is known as superposition state. General representation of
this state is written as in Equation (2.1). a and B are complex numbers, that satisfies

the normalization condition (2.2)
) = al0) + BI1) 2.1)

lal? + 18] =1 (2.2)

The explanation of this concept as follows, measurement of the qubit iy can be
resulted as state |0) with probability |a|?, and can be resulted as state |1) with
probability |52

State of 1 is a vector, in two-dimensional complex vector space. It is written in a

vector notation as (2.3)

a
lﬁ l (2:9)

As we live in our perceptional world in a deterministic way, it becomes harder to
understand quantum mechanics probabilistic structure. To understand this
phenomena in a better way lets give an example. A coin, can be considered as
classical bit and every flip will have only one result, heads or tails. For the same
example, before pulling your hand over the coin, the probability of having tails and
heads as a result is 50% as shown (2.4)

, 1 1
|coin) = —10) + —2 [1)

N N (2.9)
When result is seen (in other words, measurement is performed), qubit will collapse

to measured basis state, tails or heads.

Realization of qubits may occur in different ways such as, polarizations of a photon
in two different state, nuclear spin alignment in a uniform magnetic field, electron
orbiting states of a single atom (Figure 2.1). For example, electron can exist in either
ground ‘|0)’ or excited ‘|1)’states, in the atom model. When light beam hits the atom
with needed energy and time length, electron state can be changed from |0) to |1)
and vice versa. The most important part is, if the time of beaming decreased, it is
possible to move electron with |0) initial state, to the state between |0) and |1) which

is showed as |+) state.

When Equation (2.1) and Equation (2.2) combined, i can be written as (2.5)

[p) = e (cosﬁ |0) + ei“”sing |1))
= . . (2.5)

The pure state of a qubit is geometrically represented with Bloch sphere (Figure 2.2).

0)'X 1>

Figure 2.1 : Representation of a qubit in an atom with two electron levels.

07

Figure 2.2 : Geometric representation of a qubit, Bloch sphere.
2.2 Quantum Gates

In classical computation, circuits constructed with wires that carries information
around the circuit and logic gates which are used to manipulate this information.
NOT gate is the easiest way to explain this situation, it operatess 0 - 1 or1 - 0
depending on its input, which interchanges between 0 and 1 states as can be seen.
Same gate used in quantum computation, can be represented with 2x2 matrix as
follows (2.6)

0 1
”x=l1 0] (2.6)

As we defined in classical computation, quantum not gate operates in the same way,
but in this concept, it interchanges the probability of |0) and |1) states between each
other (2.7).

o2 1) = [‘1’ 3“2]=[§]=ﬁ|o>+am 2.1

Figure 2.3 shows classical NOT gate and quantum NOT gate respectively operating

on a bit and qubit.

=
=|

a)

b) «l0)+ B 04 310) + a 1)

Figure 2.3 : (a) Not operation on classical bit and (b) qubit.

Also, multiple qubit operations can be realized in quantum computation. To
understand multiple qubits and gates, here is an example with two qubits. In classical
computation, with two bits we would have four possible states denoted as 00, 01, 10
and 11. In quantum computation these four states are called as “computational basis
states” and denotation as follows |00),|01),|10), |11) (2.8). The most important part
is, qubits can exist in superpositions of these states which gives its power to quantum

computation.
[) = agol00) + @01[01) + a10|10) + a;14]11) (2.8)

In contrast to classical computation gates (Figure 2.4 (a)), input and output numbers
of quantum gates are always same (Figure 2.4 (b)). This difference can be seen in
Figure 2.4. The unitary operation of U(2™) group is carried by the gate with n inputs.
Controlled-NOT or CNOT gate one of the essential gates in quantum computation. It
has 2 inputs thus it carries U(4) group unitary operation. One of its inputs called as
control qubit and the other one is target qubit. CNOT gate represented in Figure 2.4
(b), control qubit and target qubit represented respectively on the top line and bottom

line.

The definition of CNOT gate is similar with classical XOR gate, additional modulo
two. The operation CNOT perform can be summarized as |a,b) — |a,b @ a).
Result is stored in target qubit. Table 2.1 shows inputs and outputs for this gate.
Matrix representation of this operation shown in Equation (2.9).

u-—|>o—:. a ;::D—u b ;::Da—u b = :D—[>O~

a)
s) D—ast () Dmawnd 5T pmant < T e
|a) —e— |a) 1 0 0 0
b ' ‘ - 01 0 0
) . | , Uex=14 0 0 1
|b) —&—|b&a) 0010

Figure 2.4 : (a) Classical gates, (b) quantum CNOT gate and its matrix
representation.

Table 2.1 : CNOT gate input and output results.

CNOT
Input Output
|a, b) la,b @ a)
|00) |00)
[01) |01)
[10) |11)
[11) |10)
[1 0 O 0]|[aoo|00)] [a00|00)]|
_|0 1 0 0[] anl01) _ @p1/01)
UCNW’)_[O 0 0 1J|a10|10)|_|a11|11)| (2.9)
0 0 1 0lfayl11)| [agl10) |

Quantum computers are capable to simulate every classical computation with using
Toffoli gate [8] [10]. Toffoli is similar to CNOT gate except it has one additional
control bit. If both of the control bits are set to 1, target bit is flipped. Here is the

summarized version of this operation |a, b,c) = |a,b,c @ ab).

Simulation of all the classical gates can be realized by using Toffoli gate, in Figure
2.5(c) one of them is shown. Moreover, Toffoli can be used to do FANOUT. In the
meaning of classical computation, FANOUT operation corresponds to creating
copies of a bit from single wire which is forbidden by quantum mechanics in
guantum computation [8]. On the other hand, Toffoli gate realizes this banned
operation with initially set control and target bit, illustrated in Figure 2.5(b). Table

2.2 shows truth table of the Toffoli operation.

Table 2.2 : Toffoli gate input and output results.

Toffoli
Input Output

a b c a b ¢

0 0 O 0 0 O

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 O 1 0 O

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0
a a’ 1 1 a a
b b’ a a b b
c ¢ =cdab 0 a 1 1 & ab

(a) (b) (c)

Figure 2.5 : (a) Representation of Toffoli gate, (b) FANOUT operation with Toffoli
gate, (c) NAND gate simulated with Toffoli.

2.3 Quantum Circuits

Quantum circuits are constructed with quantum gates in a sequence. Each line in this
circuit represents a qubit and it may correspond to a physical particle like a photon.
Therefore, line number corresponds to qubit number of the computation. Quantum
circuits (for example Figure 2.6) are read from left side to the right side. Since they

are reversible, previous states of the qubits can be found by reading to backwards.

Time Flow
—
| | | |
a=1 1 1 , 1 L 1
ST SRR
L] \UI | |
0 !o !0 !0 !ozg
| | || \UI
_ | | | | _
Cfn—o f\l .1 .1 .1—Cout
L/ 1 ! L/ T !
| | | |
Ty ' T, ' T ' T, ' Ts

Figure 2.6 : Quantum Circuit example, Full-Adder constructed with CNOT and
Toffoli gates, time flows left to right.

Figure 2.6 represents a quantum circuit. The circuit realizes a Full-Adder with using
Toffoli and CNOT gates. Quantum circuits can be considered as a model for

quantum computation to design quantum algorithms.

2.4 Quantum Algorithms

Classical computers are insufficient to solve some computational problems. Quantum
computers can provide solution for these type of problems. Quantum algorithms are
instruction sequences performed by quantum computers. These algorithms are
generally exploits some features of quantum mechanics such as superposition and

entanglement.

So far few examples of quantum algorithms has shown. Shor’s factoring algorithm
one of these. It is exponentially faster than any classical algorithm that performs
same factoring calculation. The other one is Grover’s searching algorithm for
searching an unsorted database. It is quadratically faster when compared with
classical algorithms.

Quantum algorithms includes also classical functions to realize their task. Therefore,
it is important to synthesize these functions in quantum computational form. This is

one of the aims of this thesis.

2.5 Construction of the Gates

Toffoli gate is one of the essential gates to realize computations in quantum
computing as we described before. But the implementation of it requires few basic
operations. To understand how it is constructed we should examine how elementary

operations are build.

Matrix representations of quantum gates described with U, which stands for unitary
matrix. This is explained as, if multiplication of the matrix and its adjoint (transpose
of complex conjugation of the matrix (2.10)) equals to identity matrix then it is

unitary (2.11). Any unitary matrix can be used as a quantum gate [8].
ut =T (2.10)

utu = vut =1 (2.11)

Each 2x2 unitary matrix can be shown in the form as in the Equation (2.12) [9],

where §, a, 6 and £ are real-valued,

[.. aB 0 ..apB 0]
I el(6+2+2)cos§ e'0*273 sinE I

2.12
[—ei(‘s_%g)cos g ei(‘s_%_g)cos g J (212

Every 2x2 unitary matrix can also be expressed as follows

[eiS 0 Heia/z 0 “ cos8/2 sine/ZHeiﬁ/Z 0 l
0

0 eid 0 e~@/2||—sinB/2 cos6/2 o—iB/2 (2.13)
Here is the simplified representation of these matrices respectively,
U = Ph(8) R, ()R, (O)R(B) (2.14)

Table 2.3 shows gates that can be used to obtain every unitary matrix, which is the
reason to call them as Elementary Gates. They can be obtained by giving certain

values to the §, a, 6 and S variables in the matrix in (2.10).

Table 2.3 : Elementary Gates.

Representation Gate Matrix 6V36|(U9300f,ﬁ
cos8/2 sinB/2

Ry(e) I—sinG/Z cosB/Zl 0 06 O
ei(l/z O

Rz(a) l 0 e_l'a/zl 0 a 0 O
e 0
0 1

Ox 1 0 00 m O
| 10

0 1 0 0 00

To implement all of the unitary matrices as a quantum gate, U = Ao, Bo,C gate
combination can be used where, A,B,C are single qubit gates that provides the
equation ABC = I [8] [9] (Figure 2.7).

10

I:—A\%BLC—

L/

Figure 2.7 : Controlled U gate implementation with quantum gates.

In Figure 2.7, if control bit is set as |1) then U = Ao, Ba,C operation is applied on
the second qubit, on the contrary if control bit is set as |0), ABC =1 operation is

applied on the second qubit, which is resulted without any change.

Quantum algorithm development process looks similar with low-level programming
language in computer science, with elementary gates. In contrast, high level
programming language is easier to use and may automate some parts of the
computing system that makes developing process simpler and understandable. To
increase the simplicity of quantum algorithm development process, more
understandable and functional gates are needed then elementary gates. For this
reason, highly used operations in quantum algorithms, in other words common gates,
can be considered as higher-level versions of elementary gates, which are listed in
Table 2.4.

Table 2.4 : Common Gates.

Gate Name Representation Gate Matrix
1
Hadamard H — l Lt l
vzl -1
. 0 1
Pauli-X X l 1 0 l
Pauli-Y Y l 0 — l
i 0
. 1 0
Pauli-Z Z l 0 —1 l
1 0
Phase S [0 i l
1 0
/8 T l 0 ein/4 l

As we explained the implementation of controlled unitary matrices before,
implementation of the multiple qubit gates with more than two qubits has similar

realization as it shown in Figure 2.8.

11

{U} VI vi—V |

Figure 2.8 : Controlled-Controlled U gate with VV and CNOT gates.

To realize Toffoli gate with V and CNOT gates, where U = V2 = g, , following

value must be given to V gate,

0.5—0.5{ 0.5+ 0.5 (2.15)

Given value can be obtained by using common gates Phase (S) and Hadamard (H) as

shown in Figure 2.9 and Equation (2.16).

1 = I

vt {aHsHH}

Figure 2.9 : Controlled-Controlled U gate with V and CNOT gates.

There is two possible condition for this V gate, control bit can either be 1 and 0. If

control bit is set to 1;

l 11+ 1—q

21— 1+ (2.16)

=gl Al s

If control bit is set to O:

\/—l l\/—l l - %[(2) [0 1] (2.17)

As a result \V operation successfully realized with using Phase and Hadamard gate

combination.

2.6 Cost Metric

Since each realization has its own methods to perform same operation, it is hard to
synthesize quantum circuits optimally for each of these techniques. On the other

hand, few cost metrics are suggested for high-level quantum gate operations [16]. In

12

this thesis, we consider these suggestions and selected widely used cost metric NCV-
111 [17]. In this cost metric, each NOT, CNOT and V operations are costed with 1 as

shown in Figure 2.10.

1

(NN

Figure 2.10 : NCV-111 cost metric, each of these gates are costed as 1.
2.7 Realization of Quantum Computation

It is very challenging to physically realize quantum computation. Qubit
representation and preparation process not the only issue. There is also another
problems such as close quantum system time-evolution which is described by unitary
operator determined with its Hamiltonian. Hamiltonians of the system must be
controlled to perform a quantum operation. Every quantum system has different
Hamiltonians with different physical machine description and its applicability
changable on one system to another. Which means, one quantum gate operation may
simply applicable in one system but it may be difficult to apply same operation in

other systems. Few of these physical realizations are listed below:

e Optical Photon Quantum Computer: Optical photons can be represented as

qubits. They can be prepared to interact with each other in principle [8] [11] .

e lon Trap: Confined lons are used to represent qubits which is included in 2D
lattice and can be moved within this lattice to serve local interactions [8] [12].

e Nuclear Magnetic Resonance: Nuclear spin states manipulation and
detection is possible with using radiofrequency electromagnetic waves [8]
[13].

e Quantum Dot: Spin states of two electrons within quantum dots are
represented as quibts. It has a tunneling barrier between its two potential
wells [14].

Many different methods are suggested for the implementation of quantum
computation [15].

13

14

3. REVERSIBLE COMPUTING

Bijection functions in mathematics is a great example to understand reversibility in
computing. In these functions, input and output sets have the same number of
elements and each element has only one counterpart in other set (Figure 3.1). This
means, the input value can be deduce by looking at the output value of a reversible
function (Figure 3.2). This is not the only feature of these functions.

Figure 3.1 : Bijection Function.

Conventional computers are working with irreversible operations (Figure 3.3).
Theoretical lower energy dissipation limit of an irreversible computation is
calculated by Rolf Landauer [18]. It is suggested, if the computation is reversible,

then computation can be performed nearly without dissipating energy [18] [19] [20].

D adding & subtracting D) ’ <<[adding & subtracting m
computer computer
> | 2 1] 2]
(@) (b)

Figure 3.2 : Reversible logical operation.

adding adding
computer D 4 computer m

(a) (b)

Figure 3.3 : Irreversible logical operation.

15

The main problem in irreversible computation is every logical delete operation on a
bits information is leading an energy dissipation into the environment. The
theoretical limit of this dissipation is calculated by the formula k,TIn2 where k,, is
the Botlzman constant, T is the temperature of the circuit. When this limit compared
with today’s computers, it can be seen that, modern CPUs are far away from this
limit [21].

On the other hand, instead of irreversible computation, reversibility can used to make
energy efficient devices to achieve reversible computation. Last experimental

approaches are promising for this purpose [22].
Examples of reversible operations with truth table shown in Table 3.1.

Table 3.1 : Truth tables for bit size 2: (a) identity function, (b) arbitrary function.

ab a'b’ ab a'b’

00 00 00 11

01 01 01 01

10 10 10 10

11 11 11 00
(@) (b)

3.1 Reversible Circuits

Reversible logic circuits form a group for a specific bit size n (Figure 3.4). Row
number for this specific bit size n equals to 2™. As the function is reversible, all of
the input values must be on the output side as well. Which means, a reversible
function can be form a permutation of these input values. Since there is 2™ inputs, all
possible reversible functions number is equals to 2"!. Table 3.2 showing total

reversible function numbers for a specific bit size.

A, —] I
Ap — P,

Figure 3.4 : Reversible circuit for bit size n.

16

Table 3.2 : Total reversible functions for bit size n.

n # of Reversible Function # of Quantum Function
1 2 ot

2 24 ool®

3 40320 o

4 20922789888000 0?56

Since quantum computing is also reversible, reversible computing can be considered
as a subset of quantum computing. The possible total function comparison between
these computation types can be seen in Table 3.2. In quantum computing, matrices
has n? degrees of freedom for n bit sized circuits (n x n square matrix) therefore total
possibilities can be calculated as oV (there is oo possible ways to describe a real
element in unitary matrix). Unitary matrices (UTU = UUT = I) restricts 2n? degrees
of freedom that formed by qubits which has two degrees of freedom (real and

imaginary parts).

To synthesize all reversible functions, a universal gate library can be constructed
with using the gates explained in Quantum Computing chapter.

17

18

4. QUANTUM CIRCUIT SYNTESIS

In this thesis, we focus on synthesis of deterministic quantum circuits. In literature,
various circuit synthesis methods proposed to synthesis these deterministic quantum
circuits [17] [23] [24] [25]. Most of them focused on heuristic synthesis. There are
also optimal synthesis methods, but these are way behind when run times compared
with others. Contrariwise, optimized circuits will decrease the run time of quantum
computer, because each gate in these circuits are corresponding one or more signals
depending on realization method [27]. Moreover, optimized circuits will boost the
security of the computation [26]. Nevertheless, optimal circuit synthesis achieved
only up to four bits in the literature [28]. When we consider recent experiments [29]
where 84 qubits are used, optimal circuit synthesis can take very long time, therefore
it is not practical at all. This is the main motivation why we aim at a fast synthesis

algorithm in this study.

In our synthesis process, we face a decision of whether or not to use garbage outputs.
Few academic works use garbage outputs, especially those synthesizing functions
with high number of bits [30]. Garbage outputs are additional bits to use when they
needed. In general, they are not considered favorable because of the problems in
energy efficiency [10]. In this thesis, we do not use garbage outputs. In the literature,
it is well known that all reversible functions can be implemented without a need of a
garbage bit by using the CNT (CNOT, Not, Toffoli) gate library. This library
includes gates with only positive control lines. In this thesis, we improve the CNT
library by taking negative control lines into account which provides important circuit
cost reduction. We call this new library as PN-CNT that stands for “Positively and
Negatively Controlled CNOT, Not, Toffoli”. Figure 4.1 illustrates CNT and PN-CNT

libraries.

19

= o = = = = = = = = = — = = = = —————

! CNT :
| P === 1 1
| INOT CNOT Toffoli Negatives i
:: : ~ ~ !
11 1 |
| : D |
1T T O !
1 1 !
1 I !
1 . Lo L L
D L/ L ANUZEEEAN N N N
'_:'_'_'_‘_'_'_'_'_'_'_'_'_'_'_'_'_'_'_‘____________________________I
Q.C.: 1 1 5 5 5 6 1

Figure 4.1 : CNT and PN-CNT libraries with showing Quantum Costs for each gate.

Our synthesis method efficiently implements any desired reversible function with
quantum gates. Our method has two steps. In the first step, we use permutational trial
based algorithm to find “essential functions” with optimum gate usage for selected
bit size. Instead of using optimal circuits for essential functions, one could use
circuits that are not necessarily optimal that would result in a faster algorithm, but
also a larger circuit. Circuit synthesis approach, is followed by a sorting process to
obtain desired functions. This is the key part of our algorithm, where we gain our
synthesis speed. Although optimum circuit synthesis a time consuming process,
because of the essential functions’ fewness and sorting algorithms’ speed, total
synthesis time is still very short compared to the studies in the literature. In the
second step, we perform optimization by constructing our templates. Templates are
reversible circuits realizing the same function with different gate combinations that
results in different circuit area costs. We construct our templates in two ways that are
by directly using the gates from our PN-CNT library and by considering the inner
quantum structure of these gates. The proposed templates not only optimize our
synthesized circuits but also show us that optimum area solutions proposed in the

literature are not actually optimum; they can be improved.

4.1 Negative Control Lines

Toffoli gates with negative control lines based on the same principle like their
positive counterparts. Unless, they accept zero instead of one for its negative control
line (s) to invert the target value. Table 4.1 and Figure 4.2 illustrates how these

negative gates are work.

20

Table 4.1 : Truth table of negative controlled gates.

n-CNOT np-Toffoli nn-Toffoli
Input Output Input Output Input Output
cha cha’ cha cha’ cha c'ba’

000 100 000 000 000 000
001 101 001 001 001 001
010 010 010 110 010 110
011 011 011 011 011 011
100 000 100 100 100 100
101 001 101 101 101 101
110 110 110 010 110 010
111 111 111 111 111 111

n-CNOT np-Toffoli nn-Toffoli

a —— a" a a’ a a}"

b b’ b i b b b

c g d c d c d
(a) (b)

(c)

Figure 4.2 : Negative control lined gates, (a)n-CNOT, (b)np-Toffoli, (c) nn-Toffoli.
4.2 Essential Functions

For a certain bit size n, a reversible Boolean function has a truth table with 2™ rows
that is resulting in 2™! possible functions. Instead of implementing each of these
functions separately, we consider very small amount of the total functions called as
essential functions. To implement an essential function, we first consider a truth table
such that input and output bit values are always identical. Then we switch any two
rows (elements) without changing others. The result is an essential function (Figure
4.3). The total number of essential functions for a specific bit size n is:

C (2”) _ @ 2 1x (2n—1) (4.1)

2 2
Table 4.2 visualizes this formula. The ratio of the number of total and essential
functions increases exponentially with the bit size. This means that the more bits we
have, the more beneficial our approach is. The reason behind this the function
synthesis process is the main time consuming part of all approaches. By limiting this

process, we minimize the run time of our algorithm.

21

cha c'b'a’

000 000
001 001
010 010
011 - 101
C 100) 100
101 011
110 110
111 111

Figure 4.3 : Essential Function for 3 bit circuit, 2 row switched their position
between each other.

Table 4.2 : Essential Function Number According To Bit Size.

Bit _Functions
. # of Essential # of Total
Size . .
Functions Functions
2 6 24
3 28 40320
4 120 20922789888000
5 469 2.613308¢e + 35
6 2016 1.268869¢ + 89

To synthesize essential functions, we develop an algorithm that results in optimal
circuit sizes in terms of the reversible gate costs. Our algorithm based on permutation
trials. At first, essential functions are determined by our algorithm and essential
function library is created. For considered bit size, all possible gates are placed into
gate library. Seeking process picks one of these essential functions respectively and
starts circuit construction trials with circuit size 0, which results with identical
function. The function obtained by this trials, compared with the picked essential
function, if it is the one that algorithm is looking for, the circuit added to essential
function library and program picks another essential function to realize it. If it is not,
permutational trials are continued where it left. When all possible permutations are
applied for the certain circuit size, circuit size incremented by one. Figure 4.4
represents a diagram for this part of the program. After all essential functions are

obtained, any desired function can be synthesized by sorting them.

Essential functions are very few when compared with the whole function set for a
specific bit. That is the reason why we preferred to use an optimal synthesis

algorithm among non-optimal algorithms based on exact methods, constructive

22

approaches, decision diagrams and exclusive sum of products [31] . Since circuit size

Is another criteria, the run time of our algorithm is slightly worse than non-optimal

algorithms, but it results in optimal circuit size.

Select New
Essential
Function

Permutation

based Circuit

Apply Circuit to
Identity
Function

Check Equality

4.3 Sorting

with Essential

Not Matched Enneitan

Figure 4.4 : Flow chart of the algorithm.

Add Circuit to

The Essential

Function Library

Matched

After achieving essential functions, they can used to implement any given function

with desired sorting algorithm. Table 4.3 shows an example of this; f; and f, are

essential functions used to obtain F. Red lines are indicating the swapped rows.

Figure 4.5 shows the circuit realization of F.

Table 4.3 : Realization of a Function With Essential Functions.

f1 + f2 =
Input Output Input Output Input Output
cha cha cha cha cha cha
000 000 000 100 000 100
001 001 001 001 001 001
010 010 010 010 010 010
011 101 011 011 011 101
100 100 100 000 100 000
101 011 101 101 101 011
110 110 110 110 110 110
111 111 111 111 111 111

23

fi fa
a a a /T\
b [N0 PR O 9 A W

Figure 4.5 : Essential Function f; and £, used to obtain F function.

N
L/

i i

C —p

Sorting algorithms well studied in the literature. We use a selection sort algorithm
among many different options. The reason is that it checks the equivalence of the
input and output bits row by row. If input and output bits are equal, the algorithm
goes to the next row; if they are not equal, the algorithm makes them equivalent
using essential functions. This process uses essential functions effectively. However,
operations like sliding or dividing used in other sorting algorithms necessitates
relatively larger amount of essential function usage. For example, merge sort divides
the set into subsets, and sorts these subsets first. After subset sorting completed,
equal sized subsets are joined together in pairs forming new subsets. These new
subsets sorted again. This process results with extra usage of essential functions.
Similarly, sliding process used in insertion sort method has the same handicap. Each
slide requires an extra essential function. Figure 4.6 illustrates difference between

sorting algorithms, using essential functions.

1] 2]
N nN

(a)
[a]3f2fa1]|=>[1]3]2]a]|=>[1]2]3]4]

0 0
l4f3l2f1] [3]a] |1|2|->|1|4|3|2|

e v
[4]3] [2]1] lllﬂ ﬂ

o\ o\
0N e
[a]3]2]1]|=>|3[a|2]1|=>[3]2]a]1]
(4]
" \of * \ A

LT
z

.0
Figure 4.6 : Sorting process with essential functions: (a) Selection Sort, (b) Merge
Sort, (c) Insertion Sort. Numbers near arrows counts used essential functions.

24

Selection sort can be improved when correct sequence applied to the function. Table
4.4 shows an example for this situation; reds represent mismatched rows, greens
represents corrected rows. Four rows are not in their correct line for a given function.
This creates 12 possible ways and two of them presented in this table. Top-Down
column of Table 4.4 shows a selection algorithm that starts from the first row and
proceeds through to the last row. Optimal column of Table 4.4 column shows the
optimal sorting algorithm for this function that obtained after a trial of all possible
sequences. E.F. stands for essential functions, shows which essential function is
used. Cost of each essential function written in the below it and total cost of the
function shown at right bottom corner of the table. Circuit realizations can be seen in

Figure 4.7.

If we call mismatching line number as m for a function, all possible sequences can
be calculated with m!/2. For the higher mismatched line numbers, total possible

ways increases.

Table 4.4 : Realization of a Function With Essential Functions.

Top-Down Optimal
oo 0 0 0 O 000 0O 0 0 O
1117 7 1 1 1 111 7 3 1 1
oL 1 7 2 2 001 1 1 3 2
o0 2 2 7 3 010 2 2 2 3
100 4 4 4 4 100 4 4 4 4
1060 5 5 5 5 101 5 5 5 5
110 6 6 6 6 110 6 6 6 6
o11 3 3 3 7 011 3 7 1 7
EF. 17 2-7 37 VvV EF. 73 13 23 VvV
Cost 4 4 1 9 Cost 1 2 2 5

Figure 4.7 : Representations of the functions in Table 4.4. (a) TD approach, (b) OPT
approach.

25

We try different sequences; top-down, pick smallest and optimal circuit. Worst case
complexities for these sequences are calculated by considering the time spent on row

check procedure. k representing the total line number that equals to 2™ for bit size n.

4.3.1 Top-Down

Top-down checks identical function and desired function row by row from top to
bottom. Each time mismatched row found, essential function is applied (Table
4.4(a)). Its complexity is 0 (k).

4.3.2 Pick Smallest

This one checks mismatched lines like previous. Instead of correcting each
mismatched line instantly, it stores the costs of essential functions in memory. When
checking process complete, it applies the low costed essential function and repeats

checking process. For this one, complexity is 0 (k?).

4.3.3 Optimum

Optimal circuits found by checking all possible sequences. The first sequence and its
cost directly saved to the memory. When new sequence obtained, the cost for this
sequence compared with the cost in the memory. Low costed circuit and its cost
stored in the memory after each comparison thus optimal sequence found within all

possibilities. Complexity of this method is 0 (k¥).

These methods compared with their run time (in seconds) and reversible average cost
for bit size 3 in Table 4.5.

Table 4.5 : Sequence Comparison.

TD PS OPT
R.C. 16.69 15.75 14.48
Time 8 8 377

4.4 Optimization

Optimization process used to minimize gate number in a circuit that realizes a
function. We divided this process in mainly two parts. In the first part, after synthesis
of each function, circuits are scanned to find identical neighbor gates and templates.

In the second part, synthesized circuits scrutinized in quantum circuit level. Each

26

gate corresponding to a mixture of subgates expanded to its quantum structure. Thus,
invisible identical neighbors and templates revealed.

In both optimization sections, we use templates that includes only two gate. New
templates can be constructed by increasing the gate number within it. Unfortunately,
this is limitless process to follow up. Main reason to limit them with two gates is to

keep the balance between run time and optimization in the circuits.
4.4.1 Templates Using Circuit Library

We look for pre-defined templates in our sorting based synthesis and replace them
with their optimal equivalent to reduce total quantum cost. Because of the sorting
sequence, essential functions used one after the other that sometimes forms identical
neighbor gates. This results at least two or more gate reduction in the final circuit,
shown in Figure 4.8. Additionally we create 12 more templates for negative gates.

One of them shown in Figure 4.9.

Jany Jan
wlx;
NP

Jany
}\\J,L_@
NP,

P

+
€
| §
o
oy
+

2

|

ﬁ’

_ L

)

NP

o

Jany

NP
69—% [

S
<
|
L
T

o o o
——e
Jany

N
e e
)

NP
oo
SP)

Figure 4.8 : Sorting sequence with identical neighbor gates; 4 gates removed from
the circuit.

Figure 4.9 : Templates for gates with a negative control line.

27

4.4.2 Templates Using Quantum Structure of Gates

After optimizing our circuits using PN-CNT library based templates, here we
perform a second optimization process using quantum inner structure of the gates. In
this part, Toffoli gates are expanded to their quantum circuit structure (Figure 4.10a,
Figure 4.10c). Rescan process begins to find new identical neighbors. If a Toffoli
gate has an appropriate CNOT gate neighbor (Figure 4.10b, Figure 4.10d), second
reduction is applied. There are 12 different situations for positive controlled Toffoli-

CNOT case in 3 bit reversible circuits.

(c) (d)

Figure 4.10 : (a) Toffoli gate with its inner quantum realization. (b) Template for
positively controlled Toffoli. (c) Single negatively controlled Toffoli gate its quantum
realization. (d) Template with single negative controlled Toffoli.

We experimentally obtain all Toffoli realizations with using permutation based
algorithm in MATLAB. This is similar to optimal circuit synthesis process in
essential functions section. Permutation starts with using a gate from NCV library. If
there is no match after checking all possibilities, gate number increases in the circuit.

This process continues until a match found. Table 4.6 shows the results. Minimum

28

size row shows how many gates needed to realize the specific Toffoli function. For
this minimum size, total realization row shows how many different ways this

function can be realize. All realizations are shown in Appendix I.

Table 4.6 : Experimental Results for Toffoli Realization.

Toffoli pn-Toffoli nn-Toffoli
Minimum Size 5 5 6
Total Realizations 40 40 112

29

30

5. RESULTS

Implementations realized in C. All experiments run on a 3.20-GHz Intel Core i5 CPU

(only single core used) with 4.00 GB memory.

Table 5.1 represents results of our proposed approach and optimal methods in the
literature. Run times are in seconds. Reversible costs are calculated by counting each
gate in CNT library cost as one. Quantum costs are calculated by considering each
gate in NCV library cost as one (Figure 4.1). Numbers in “size” column represents
the number of gates used. Numbers in other columns represents the number of
functions implemented with the corresponding gate number in size column. For
example, the first row tells that 28 gates are used to implement 4 different functions
based on the TD approach. “Proposed Approach” column shows the results of our
algorithm. CNT library based synthesis results shown under CNT column.
Comparing PS and OPT approaches, OPT overwhelms PS with a 22.06%
improvement in reversible circuit cost and 15.17% improvement in quantum circuit

cost. When run times compared, PS is far better than OPT.

Our PN-CNT approach uses the library of PN-CNT presented in Figure 4.1. Note
that this approach gives the best result in reversible costs. Column named Optimal,
presents optimal results of the studies in the literature that focused on synthesis with
reversible gates. We convert these reversible circuits to quantum form and apply our
quantum optimization method illustrated in Figure 4.10. Thus, we reduce the optimal
CNT quantum cost by 5.61%, from 13.88 to 13.10.

Comparing our synthesis approach with the optimal ones, our run times are always
better at the cost of the circuit size. This is an expected result for 3 bit circuits. Here,
an important point is that our synthesis approach can effectively work in higher bits.
For example to implement 4 bit circuits, 120 essential functions are needed out of all
20922789888000 functions. However, the optimal synthesis method is not practically
applicable even for 5 bit circuits. If the optimal method is used to synthesize 5 bit

circuits, it will take 447x10%8 years that is justified using the numbers in Table 4.2.

31

Table 5.1 : Reversible Functions Obtained With Specific Gate Number According

To 3 Bits.
Proposed Approach Optimal

Size CNT PN-CNT

TD PS OPT TD PS OPT CNT NCL
28 4
27 29
26 90 10
25 207 31
24 436 145
23 791 238
22 1252 682 1
21 1954 1031 0
20 2523 1625 5
19 3349 2720 47 4 9
18 3772 3129 167 22 11
17 4125 4022 473 132 156
16 4211 4383 1283 249 224
15 3842 4179 2748 1126 582
14 3522 4126 4657 1758 @ 1422 1
13 2835 3528 6018 2988 2388 64
12 2308 3104 6586 4686 3690 364
11 1706 2389 5696 5158 5509 1160
10 1239 1772 4347 5945 6493 2500
9 843 1203 3137 5752 5906 5820
8 547 818 2178 4485 5007 8756 577
7 340 531 1354 3512 3966 8656 10253
6 194 322 825 2321 2623 6837 17049 3236
5 111 181 438 1190 1400 3996 8921 20480
4 52 80 208 615 623 1611 2780 13282
3 25 43 100 286 232 452 625 2925
2 9 18 42 78 66 90 102 369
1 3 9 9 12 12 12 12 27
0 1 1 1 1 1 1 1 1
R.C. 1597 1482 1155 9.79 9.50 7.31 5.86 4.57
Q.C. 3414 2563 21.74 3285 3082 2897 13.88 -
Time 9 9 6m33s 12 12 5m59s 40[32] -[33]

32

6. CONCLUSIONS AND RECOMMENDATIONS

Quantum computation became one of the most valuable computer science topic in
last years. Quantum circuit synthesis and optimization methods come into
prominence with the experiments that focuses quantum computation. Reversible
quantum circuit design has an important role at this point, which is the core of this

computation.

In this thesis, a new method for synthesis and optimization of quantum circuits
presented. A fast synthesis algorithm that implements any given reversible Boolean
function with quantum gates is proposed. Instead of an exhaustive search on every
given function, proposed algorithm creates a library of essential functions and
performs sorting. Our synthesis algorithm is considerably faster than the optimal
ones presented in the literature. We assume that this difference will increase

exponentially for large bit sizes.

Circuits optimized by using templates. We limit our templates with considering only
two gates to balance run time and cost reduction. The templates that we propose
mainly consist of Toffoli gates with negative and positive controlling lines. These
templates not only optimize our synthesized circuits but also show us that they can
used to optimize proposed solutions in the literature. We reduce the previously
proposed optimal CNT synthesis cost by 5.61%.

We are currently working on our sequence selection algorithm to find optimal
sequences in heuristic way. Additionally, low-level circuit synthesis is one of our
primary aims to reduce quantum operations in quantum computers. As a future work,
we will seek deeper optimization methods with using elementary gates and pulse

signals.

33

34

REFERENCES

[1] Feynman, Richard P. (1982). Simulating physics with computers. International
journal of theoretical physics 21.6 467-488.

[2] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM journal on
computing, 26(5), 1484-15009.

[3] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining
digital signatures and public-key cryptosystems. Communications of
the ACM, 21(2), 120-126.

[4] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.
In Proceedings of the Twenty-Eighth annual ACM Symposium on
Theory of Computing, pp. 212-219. ACM.

[5] Moore, G. E. (1965). Cramming more components onto integrated circuits.

[6] Stolze, J., & Suter, D. (2008). Quantum computing: a short course from theory
to experiment. John Wiley & Sons.

[7] Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A.,
et al. (2012). Computing prime factors with a Josephson phase qubit
quantum processor. Nature Physics, 8(10), 719-723.

[8] Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum
information. Cambridge university press.

[9] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N.,
Shor, P., et al. (1995). Elementary gates for quantum computation.
Physical Review A, 52(5), 3457.

[10] Toffoli, T. (1980). Reversible computing, pp. 632-644. Springer Berlin
Heidelberg.

[11] O'Brien, J. L. (2007). Optical quantum computing. Science, 318(5856), 1567-
1570.

[12] Kielpinski, D., Monroe, C., & Wineland, D. J. (2002). Architecture for a
large-scale ion-trap quantum computer. Nature, 417(6890), 709-711.

[13] Cory, D. G., Laflamme, R., Knill, E., Viola, L., Havel, T. F., Boulant, N.,
et al. (2000). NMR based quantum information processing:
Achievements and prospects. Fortschritte der Physik, 48(9-11), 875-
907.

[14] Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum
dots. Physical Review A, 57(1), 120.

[15] DiVincenzo, D. P. (2000). The physical implementation of quantum
computation. arXiv preprint quant-ph/0002077.

35

[16] Maslov, D., & Miller, D. M. (2005). Comparison of the cost metrics for
reversible and quantum logic synthesis. arXiv preprint quant-
ph/0511008.

[17] Shende, V. V., Bullock, S. S., & Markov, I. L. (2006). Synthesis of quantum-
logic circuits. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 25(6), 1000-1010.

[18] Landauer, R. (1961). Irreversibility and heat generation in the computing
process. IBM journal of research and development, 5(3), 183-191.

[19] Bennett, C. H. (2003). Notes on Landauer's principle, reversible computation,
and Maxwell's Demon. Studies In History and Philosophy of Science
Part B: Studies In History and Philosophy of Modern Physics, 34(3),
501-510.

[20] De Vos, A. (1999). Reversible computing. Progress in Quantum Electronics,
23(1), 1-49.

[21] Markov, Igor L. (2014). Limits on fundamental limits to computation. Nature
512.7513, 147-154.

[22] Lambson, B., Carlton, D., & Bokor, J. (2011). Exploring the thermodynamic
limits of computation in integrated systems: Magnetic memory,
nanomagnetic logic, and the landauer limit. Physical review letters,
107(1), 010604.

[23] Maslov, D., Dueck, G. W., & Miller, D. M. (2005). Toffoli network synthesis
with templates. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 24(6), 807-817.

[24] Grole, D., Wille, R., Dueck, G. W., & Drechsler, R. (2009). Exact multiple-
control toffoli network synthesis with SAT techniques. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 28(5), 703-715.

[25] Gupta, P., Agrawal, A., & Jha, N. K. (2006). An algorithm for synthesis of
reversible logic circuits. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 25(11), 2317-2330.

[26] Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer
memory. Physical review A, 52(4), R2493.

[27] Fedorov, A., Steffen, L., Baur, M., Da Silva, M. P., & Wallraff, A. (2011).
Implementation of a Toffoli gate with superconducting circuits.
Nature, 481(7380), 170-172.

[28] Golubitsky, O., & Maslov, D. (2012). A study of optimal 4-bit reversible
toffoli circuits and their synthesis. Computers, IEEE Transactions on,
61(9), 1341-1353.

[29] Bian, Z., Chudak, F., Macready, W. G., Clark, L., & Gaitan, F. (2013).
Experimental Determination of Ramsey Numbers. Physical review
letters, 111(13), 130505.

[30] Wille, R., & Drechsler, R. (2009). BDD-based Synthesis of Reversible Logic
for Large Functions. In Proceedings of the 46th Annual Design
Automation Conference, pp. 270-275. ACM.

36

[31] Schénborn, E., Datta, K., Wille, R., Sengupta, I., Rahaman, H., &
Drechsler, R. (2014). Optimizing DD-based Synthesis of Reversible
Circuits using Negative Control Lines. Proceedings of the 2014 IEEE
Seventeenth Design and Diagnostics of Electronic Circuits &
Systems.

[32] Shende, V. V., Prasad, A. K., Markov, I. L., & Hayes, J. P. (2003). Synthesis
of Reversible Logic Circuits. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 22(6), 710-722.

[33] Wille R., Soeken M., Przigoda N., Drechsler R., (2012) Exact synthesis of
Toffoli gate circuits with negative control lines. Multiple-Valued
Logic (ISMVL), 2012 42nd IEEE International Symposium on. IEEE,
pp. 69- 74.

37

38

APPENDICES

APPENDIX A: Toffoli Realizations

APPENDIX B: Test Program

This program was developed and used during my thesis studies.

39

APPENDIX A

Toffoli

R

B
Ry
N~ O
Fany r a a N
P = + + - m. B =] =] B 2 - -
p b e b = S S
pu 7 g
- S H
= b | > sle
H. >~ >] > T n. [>] >~
=~ =N =S 7 g = = G—e =
- + + + + +
3 = > 5] > A B | B | 2) i | B N
& g 9 B e o N O wmowme NP s s oW S N - o™ ~ o 9 3
+ + + + + - + + + . + +
5 o S =3 24 = -4 B = = =
N B
N g i it i i o
S = + = S she s + “
d 5 > S > > 2 +
- Pany 5 [F B =S
B | 2 > - B g]
iH 5 : : 1 @
pe vy ﬁV V B g V o V v vy V V
N -~ O N - O &N ~ O «N (2} o N - O &8 - O O - O O —~ N - O N ~~ O N N
= S B s s S~ By | By (B B (B (B (R
n B) pupj ui B (3 Lui +
d [>] F £ F 5 + B + + “
B b = 2 e A =
+ + + + + +] 1
B > = [>] 2 g B B = > S
; ; 5 =) =) 5| e > >
N - O N - O N - O N N O N = O N - O N - O N ™ N - O N - O

Figure A.1 : Subgates of Toffoli with positive control lines.

40

pn-Toffoli

1

37

v

\4

a

VHV]

7Hv4]

VH7

N - O N - O &N - O &

+
-4
n.
N —~ O
N B s \ b q
. + + +
> > = = i m.
JT
D
- = > N b
> N +
“ r r. B o
+ + +
B = b > e B
AR e o O R N oo e
i + ¥ ¥ + 5
S =S - = =S “'
>l f B
o— B | [o N
i | Bt B > | e B
b & mm. m .
N+ O 0 N 40 & 40 & —+ o &
=S =S =S =S =S =
H. E. b S S
- =S
= 5]

V

VEH7

©c N -~ O N ~ O

o™

- o O ~ O

P i

- O N — O

a

V+HV]

A g
p

|4

A 24
(VHV
%

.
A

VT

B By B By B B
+ + P S g
=S —~

+ o A +

a =S = “ “

- H rﬂ - g
~ =~ S S

- +

=S e =S
[B AN - O N - O a N o O N O

A >4

Figure A.2 : Subgates of Toffoli with positive and negative control lines.

41

(=N =R VR e Ve L =R Ve R e A e R R e R e R i e R R T e B)

® v vHv
7

SV VHV

<> VHV
——
n V

.

—VHV v
S{VHV v

-n v
D v VHV]
ANl
eV VHV]

74 AN
P VHV]

O = N O = N O = N O = N

(S

% 2n-Toffoli

2 &V] VHV]
1 -3 P
o+ T1
2 —pHv v
1

0

9 @D VHV
1

0

2 eVvHV
1 —® P
o 1T
9 —@ VHV]
1

0

9 e {vHV]
1 B

0

2 v
1 . .
0

7]

P Vi Vo

b vV Vi

ViHvE

NV e R 2 = R R e B

e ="

N O

L =R - R e B R e B e . " =R SR e B R B

o

D V+ Vit

e—v+ Vit
7

e V+ V+
. 3

0 VT
57

ViV HV+]

V+ V+

V+

P V+HV+

S{V+ Vi
L

T Ve

. N

o-{ViHTE

* F—e

{7
7

o{v+Hvy

Figure A.3 : Subgates of Toffoli with negative control lines.

42

V+HV+ @

V+HV+ S

V4

2
1

V+

Vi

V+HV+

2

gl

2
1

V+

V

|4

i

V

it

ViHvA]

v

%

VEH7A

T

V

2

v+

2

V+

V4

{VaHVS

2

Vi HV+]

2

VAV ib

V

VHV -

—D —D
8P S%
=S S

(5
B [> -~
A | B
& N —~ O (]

Figure A.4 : Subgates of Toffoli with negative control lines.
43

= N O = N

N o

[l =R Ve L e L A e R

O = D O = N O = N O = N O = N O = N

Vv VHV 2 V+HV+ B 2
* 1 1
0 0
2 vt V+l—{v+le 2
1 . 1
0 4 a
2 — VeV {Vile 2
. 1 1
o 0
; 2 AvHV—{v}I—a
1
1
5 0
X > {T—{THTE—o
1 . ®
0
7o . e) TE—TEE
fan Jany 1 * *
1 s
71 1 0 0
1% Vv V+ P 2 V+V+ V+
+ + 2V v . 1 -
. L]
ra 0
0
2 [ViHV Vv
EHEe e ? e
v Y M -
1 .
. 0
V+HV Vi
+ + 9 % V Fan)
.)]
L
0
T e
1 .
’ 0 >
VAHV+ —{V+ b 2 JVeHVE —{V+—@
. L
0
VAF® o [HvA Ve
. . . T
0

V4 v+ &

Figure A.5 : Subgates of Toffoli with negative control lines.

44

APPENDIX B

1 Ch\Users\ecc_can\Dropbox\Programlar\Visual Studio 2013\Projects\C Calismala.. — =

Hiiii——Reversible Circuits——HitH

Tabhle
ﬁ#ﬂﬂﬂﬁ#ﬂﬂﬂ##ﬂﬂﬂ##ﬂﬂﬂ##ﬂﬂﬂ##ﬂﬂ
column no —> B 1

z'target
e.g: =12

t'target

e.g: tA1L2

column no’

column no’

column no’

‘control column no”

‘notcontrol column no’

Haft———1N-Toffoli———til

h'target

e.g: haiz

column no’

‘notcontrol column no’

i ———2N-Toffoli———til

d’'target
e.g: daiz

Hitt——GeneralTof foli——#iH

g’ target

column no’

column no’

e.g: gB41234
Hift———LatexPrint———#it#

Enter hit

size

Figure A6 :

‘notcontrol column no’

45

‘controll column no’’controlZ sutun no’

‘control sutun neo’

‘notcontrol sutun no’

‘control wnit number’ ‘controll’’control2” ...

Instructions are shown at strat screen.

Ch\Users\ecc_can\Dropbox\Programlar\Visual Studio 2013\Projects\C Calismala.. — =

Enter bhit size = 3

Felect your operation

Truth Tahle

Shuffled Table

Create a Table

Find Table Humber

Create a Table with row numbher

CA\Users\ecc_can\Dropbox\Programlar\Visual Studio 2013\Projects\C Calismala.. — =

Truth Tahle

Shuffled Tabhle

Create a Table

Find Table MWumhewr

Create a Table with row number

[l el a1 1]
P
HEESE QS

Sequence - A1 2 3 456 7

—Enter Your Command——

Figure A.7 : Desired operation can be selected after enterin bit size.

C\Users\ecc_can\Dropbox\Programlar\Visual Studio 2013\Projects\C Calismala.. = =

—Enter Your Command——

a12

HEFRGFRGEE

Bequence = B 1 2 7456 3

—Enter Your Command——

Figure A.8 : Circuits can be applied to the truth table by leaving blank space
between gates, e.g “t012 c02 nl”.

46

2 —e— 9

1 —— 1

0 - o
‘ Table |
o 1r 200 1 2
O 0 0o 0 0
O 0 10 0 1
0O 1 00O 1 0
1 1 190 1 1
1 0 O0f1 0 0
1 0 11 0 1
1 1 01 1 0
0 1 11 1 1

Figure A.9 : After entering desired circuit, circuit layout can be exported in latex
format, as shown.

47

48

CURRICULUM VITAE

%

Name Surname: Omer Can Susam

Place and Date of Birth: Istanbul 24.10.1988

E-Mail: susam@itu.edu.tr

B.Sc.: Electrical Engineering - Kocaeli University - 2010
Professional Experience and Rewards:

2014-2015 Istanbul Technical University Research Support Program

2014-2015 TUBITAK MSc Scholarship Program in Priority Areas

01.2012 — 04.2012 Ilkotek Automation

Designing Motion Control (servo motor — driver — controller), PLC and HMI
projects, developing object oriented programs with C# (4 axis race simulator).

10.2011 — 01.2012 Teksan GenSet

Designing and setting up control panels, GenSet remote control systems, GenSet-
Mains Synchronous panels and programing PLC-HMI systems.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

= Susam O. C., Altun M., 2014: Kuantum Devre Sentezi ve Optimizasyonu Igin
Verimli Bir Algoritma. Elektrik — Elektronik, Bilgisayar ve Biyomedikal

Miihendisligi Sempozyumu, ELECO November 27-29, 2014 Bursa, Turkey.

= Susam O. C., Altun M., 2014: An Efficient Algorithm to Synthesize Quantum
Circuits and Optimization — twenty-first IEEE International Conference on

Electronics Circuits and Systems, ICECS December 7-10, 2014 Marseille, France.

49

