

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

M.Sc. THESIS

JANUARY 2015

QUANTUM CIRCUIT SYNTHESIS

Ömer Can SUSAM

Department of Nanoscience and Nanoengineering

Nanoscience and Nanoengineering Programme

JANUARY 2015

ISTANBUL TECHNICAL UNIVERSITY  GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

QUANTUM CIRCUIT SYNTHESIS

M.Sc. THESIS

Ömer Can SUSAM

 (513121011)

Department of Nanoscience and Nanoengineering

Nanoscience and Nanoengineering Programme

Thesis Advisor: Asst. Prof. Mustafa ALTUN

OCAK 2015

İSTANBUL TEKNİK ÜNİVERSİTESİ  FEN BİLİMLERİ ENSTİTÜSÜ

KUANTUM DEVRE SENTEZİ

YÜKSEK LİSANS TEZİ

Ömer Can SUSAM

(513121011)

Nanobilim ve Nanomühendislik Anabilim Dalı

Nanobilim ve Nanomühendislik Programı

Tez Danışmanı: Yrd. Doç. Mustafa ALTUN

v

Thesis Advisor : Asst. Prof. Mustafa ALTUN

 İstanbul Technical University

Jury Members : Prof. Dr. Hilmi ÜNLÜ

İstanbul Technical University

Asst. Prof. Faik Başkaya

Boğaziçi University

Ömer Can Susam, a M.Sc. student of ITU Institute of / Graduate School of

Science Engineering and Technology student ID 513121011, successfully defended

the thesis entitled “QUANTUM CIRCUIT SYNTHESIS”, which he prepared after

fulfilling the requirements specified in the associated legislations, before the jury

whose signatures are below.

Date of Submission : 15 December 2014

Date of Defense : 20 January 2015

vi

vii

To my family,

viii

ix

FOREWORD

I owe a great debt of gratitude to my supervisor Asst. Prof. Mustafa Altun for his

inspiration and guidance.

I would like to thank The Scientific and Technological Research Council of Turkey

(TÜBİTAK) (2210-C) and Scientific Research Projects Agency of Istanbul Technical

University (BAP).

Finally, I would like to thank my parents, my brother and my friends for their great

support.

December 2014

Ömer Can SUSAM

 (Electrical Engineer)

x

xi

TABLE OF CONTENTS

Page

FOREWORD ... ix
TABLE OF CONTENTS .. xi
ABBREVIATIONS ... xiii

LIST OF TABLES ... xv
LIST OF FIGURES ... xvii

SUMMARY ... xix
ÖZET .. xxi
1. INTRODUCTION .. 1
2. QUANTUM COMPUTING .. 3

2.1 Building Blocks of Quantum Computation : Qubits .. 3

2.2 Quantum Gates ... 5
2.3 Quantum Circuits ... 8

2.4 Quantum Algorithms .. 9
2.5 Construction of the Gates ... 9
2.6 Cost Metric ... 12

2.7 Realization of Quantum Computation .. 13

3. REVERSIBLE COMPUTING .. 15
3.1 Reversible Circuits ... 16

4. QUANTUM CIRCUIT SYNTESIS .. 19
4.1 Negative Control Lines .. 20
4.2 Essential Functions ... 21
4.3 Sorting .. 23

4.3.1 Top-Down ... 26

4.3.2 Pick Smallest ... 26
4.3.3 Optimum ... 26

4.4 Optimization ... 26
4.4.1 Templates Using Circuit Library .. 27
4.4.2 Templates Using Quantum Structure of Gates ... 28

5. RESULTS ... 31
6. CONCLUSIONS AND RECOMMENDATIONS ... 33
REFERENCES ... 35

APPENDICES .. 39
APPENDIX A .. 40
APPENDIX B .. 45

CURRICULUM VITAE .. 49

xii

xiii

ABBREVIATIONS

App : Appendix

C-NOT : Controlled Not

CNT : C-Not, Not, Toffoli

NCL : Negative Control Lines

NCV : Not, C-Not, V gate

OPT : Optimum

PN-CNT : Positively and Negatively Controlled CNOT, Not, Toffoli

PS : Pick Smallest

RC : Reversible Cost

QC : Quantum Cost

TB : Top to Bottom

xiv

xv

LIST OF TABLES

Page

Table 2.1 : CNOT gate input and output results. .. 7
Table 2.2 : Toffoli gate input and output results. .. 8
Table 2.3 : Elementary Gates .. 10
Table 2.4 : Common Gates .. 11

Table 3.1 : Truth tables for bit size 2: (a)identity function, (b)arbitrary function. ... 16

Table 3.2 : Total reversible functions for bit size n. ... 17

Table 4.1 : Truth table of negative controlled gates. ... 21
Table 4.2 : Essential Function Number According To Bit Size. 22
Table 4.3 : Realization of a Function With Essential Functions. 23
Table 4.4 : Realization of a Function With Essential Functions. 25

Table 4.5 : Sequence Comparison. .. 26
Table 4.6 : Experimental Results for Toffoli Realization. .. 29

Table 5.1 : Reversible Functions Obtained With Specific Gate Number According

To 3 Bits. ... 32

xvi

xvii

LIST OF FIGURES

Page

Figure 2.1 : Representation of a qubit in an atom with two electron levels. 5
Figure 2.2 : Geometric representation of a qubit, Bloch sphere. 5
Figure 2.3 : (a) Not operation on classical bit and (b) qubit. 6
Figure 2.4 : (a) Classical gates, (b) quantum CNOT gate and its matrix

representation. .. 7

Figure 2.5 : (a) Representation of Toffoli gate, (b) FANOUT operation with Toffoli

gate, (c) NAND gate simulated with Toffoli. .. 8
Figure 2.6 : Quantum Circuit example, Full-Adder constructed with CNOT and

Toffoli gates, time flows left to right. .. 8
Figure 2.7 : Controlled U gate implementation with quantum gates. 11

Figure 2.8 : Controlled-Controlled U gate with V and CNOT gates. 12
Figure 2.9 : Controlled-Controlled U gate with V and CNOT gates. 12

Figure 2.10 : NCV-111 cost metric, each of these gates are costed as 1. 13
Figure 3.1 : Bijection Function. .. 15
Figure 3.2 : Reversible logical operation. ... 15

Figure 3.3 : Irreversible logical operation. .. 15

Figure 3.4 : Reversible circuit for bit size 𝑛. .. 16
Figure 4.1 : CNT and PN-CNT libraries with showing Quantum Costs for each gate.

 ... 20
Figure 4.2 : Negative control lined gates, (a)n-CNOT, (b)np-Toffoli, (c) nn-Toffoli.

 ... 21

Figure 4.3 : Essential Function for 3 bit circuit, 2 row switched their position

between each other. ... 22

Figure 4.4 : Flow chart of the algorithm. .. 23

Figure 4.5 : Essential Function 𝑓1 and 𝑓2 used to obtain 𝐹 function. 24
Figure 4.6 : Sorting process with essential functions: (a) Selection Sort, (b) Merge

Sort, (c) Insertion Sort. Numbers near arrows counts used essential

functions. ... 24
Figure 4.7 : Representations of the functions in Table 4.4. 25
Figure 4.8 : Sorting sequence with identical neighbor gates; 4 gates removed from

the circuit. .. 27
Figure 4.9 : Templates for gates with a negative control line. 27

Figure 4.10 : (a) Toffoli gate with its inner quantum realization. (b) Template for

positively controlled Toffoli. (c) Single negatively controlled Toffoli

gate its quantum realization. (d) Template with single negative

controlled Toffoli. .. 28

xviii

xix

QUANTUM CIRCUIT SYNTHESIS

SUMMARY

This thesis presents a new approach for the synthesis of quantum circuits. Quantum

computers, more specifically quantum algorithms, take on the eyes with their

computational promises. They paved the way for calculation of the complex

problems that can't be solved in polynomial time by traditional counterparts.

Exploiting quantum mechanical phenomena and its features is the main power source

of the quantum computing idea. This is also leaning on the concept that accepts

information as a physical item. In addition, quantum mechanical unitarity brings

reversibility for quantum algorithms and quantum circuits. This creates ideal

application area for reversible computing and reversible circuit design. Reversible

computing is motivating scientist and researchers for years to achieve energy

efficient computation.

With the help of advancing technology, quantum computation become applicable. At

this point, reversible quantum circuit design is coming forward that is the core of this

computation. When compared with classical computation methods, quantum systems

are very sensitive. This is one of the main reasons to synthesize these circuits

minimally as possible. Depending on quantum computation method, each gate in

quantum circuits corresponding to one or more pulse operations. Therefore,

optimized circuits will improve both the security and the run time of the

computation. Still, optimal circuit synthesis for higher bit count is hard to achieve, it

can take very long time which is not practical at all. To compete with classical

computation in a realistic manner, this is one of the main obstacles to overcome and

it constitutes the main motivation why we aim at a fast synthesis algorithm in this

thesis.

To fulfill the needs of this upcoming technology, we perform synthesis and

optimization of quantum circuits in two main parts. In the first part, we propose a fast

synthesis algorithm that implements any given reversible Boolean function with

quantum gates. Instead of an exhaustive search on every given function, our

algorithm creates a library of essential functions and performs sorting to obtain

desired function. In the second part, we optimize our circuits by using templates. The

proposed templates mainly consist of identical neighbor gates and Toffoli gates,

realized with V, V† and CNOT gates. We also improve the CNT library by taking

negative control lines into account which provides important circuit cost reduction.

We call this new library as PN-CNT that stands for “Positively and Negatively

Controlled CNOT, Not, Toffoli”.

Quantum computers implemented in various ways so far. Each implementation has

its own physical cost. For the calculation of quantum circuit cost, we preferred to use

widely accepted NCV-111 cost metric in this thesis. Finally we compared our results

with studies in the literature.

xx

xxi

KUANTUM DEVRE SENTEZİ

ÖZET

Bu tez, tersinir devre sentezine dayalı kuantum devrelerin sentezlenmesi için yeni bir

yöntem sunmaktadır. Kuantum bilgisayarlar, özellikle kuantum devrelerle

oluşturulan kauntum algoritmalar, hesaplamalı alanda vaat ettikleriyle son yıllarda

dikkatleri üzerine çekti. Bu bilgisayarlar, klasik bilgisayarların çözemediği kompleks

problemleri hesaplamanın önünü açmaktadır.

Geleneksel olarak bilgisayarlar 0 veya 1 değeri alabilen bitler ile hesaplamaları

gerçekleştirirler. Bitler ile hesaplama genel anlamda oldukça etkin ve verimli

olmasına rağmen bazı önemli problemlerin çözümünde yetersiz kalmaktadır. Bunun

en önemli nedeni ise bitlerin deterministik olarak çalışması, yani belirli bir zaman

aralığında sadece 0 veya 1 değeri alabilmesidir. Richard Feynman tarafından önerilen

kuantum bilgisayar fikri, kuantum mekaniğinden faydalanarak hesaplama işlemlerini

gerçekleştirme mantığına dayanmaktadır. Bu hesaplama yönteminde, veri saklama

elemanları “kübit” olarak adlandırılır. Kuantum mekaniğinin süperpozisyon prensibi

gereği, kübitler 0 veya 1 aynı anda hem 0 hem 1 konumunda bulunabilir. Bir başka

deyişle bir kübitin değeri, 0 veya 1 olma olasılığını belirtir. Böylece, pratik limitler

dahilinde olanaksız olan bir çok problem, kuantum algoritmaları ile rahatlıkla

çözebilmektedir. Bu problemlerin belki de en ünlüsü kriptolojide yaygın kullanılan

yarı-asal sayıların çarpanlarına ayrılmasıdır. Shor’un kübit tabanlı çarpanlara ayırma

algoritması, geleneksel anlamda çözümü yüzyıllar süren durumları, hızlıca

çözmektedir.

Kuantum devreler, kübitler üzerinde işlem yapan kuantum kapılar kullanılarak inşa

edilir. Kuantum devrelerin en önemli özelliklerinden birisi aynı zamanda tersinir

(reversible) devreler olmalarıdır. Bu devrelerde, devrenin girişindeki ve çıkışındaki

bit sayısı eşittir. Devrenin çıkışındaki değerler bize devrenin girişindeki değerler

hakkında bilgi verir. Bu sayede devreleri çift yönlü olarak kullanabilmemize imkan

sağlarlar. Tersinir devrelerin en büyük getirisi, bilgisayarlarda yüksek enerji

tasarrufuna olanak sağlamalarıdır.

Kuantum bilgisayarlar ile ilgili yapılan deneysel uygulamalar her ne kadar emekleme

aşamasında olsa da, kuantum hesaplamanın uygulanabilir olduğunu göstermektedir.

Bu noktada kuantum hesaplamanın en önemli bölümü olan kuantum devre tasarımı

ön plana çıkmaktadır. Çalışmalar en az sayıda kapı kullanarak optimum devreleri

sentezlemeyi amaçlamaktadır. Optimize edilmiş devreler, bir yandan güvenilirliği

artırırken, diğer bir yandan çalışma süresini düşürmektedir. Şuana kadar yapılan

çalışmalarda, optimum devre sentezi sadece 4 bite kadar gerçekleştirildi. Son yapılan

ve 84 kübit kullanılan deneyler göz önüne alındığında, optimal devre sentezi pratik

olmaktan oldukça uzak kalmaktadır. Bu, çalışmamızı hızlı sentezleme

algoritmalarına yönelten motivasyonların başında gelmektedir.

Literatürdeki birkaç çalışmada, özellikle yüksek bit sayısı ile sentezleme

xxii

yapılanlarda, “garbage output” birimleri kullanılmıştır. Bu birimler, ihtiyaç

olduğunda kullanılmak üzere devrede fazladan bulundurulan veri yolları olarak

düşünülebilir. Bir çok yöntemde, enerji verimililiği ile ilgili problemlerinden ötürü

kullanımı düşünülmemiştir. Bu nedenle çalışmamızda “garbage ouput” kullanmadık.

Önerdiğimiz yöntem, istenilen fonksiyonu kuantum kapıları kullanarak verimli bir

şekilde elde etmekte ve bunu iki ana aşamada yapmaktadır. İlk aşamada,

permütasyona dayalı bir algoritma ile seçilen bit büyüklüğüne göre optimum sayıda

kapı kullanılan “temel fonksiyonlar” sentezlenmektedir. Her temel fonksiyon için, en

az kapı sayısından başlayıp, tüm kapıları ve permütasyonlarını deneyerek,

fonksiyonu gerçekleştiren devreyi temel fonksiyonlar kütüphanesine ekler ve bir

sonraki temel fonksiyonu aramaya başlar. Kütüphane tamamlandıktan sonra sıralama

aşamasına geçilmektedir. Algoritmanın bu aşaması, en çok vakit alan kısım olmasına

rağmen, temel fonksiyonların sayısının azlığı ve sıralama algoritmasının hızı, bu

yöntemi literatürdeki çalışmalardan oldukça hızlı kılmaktadır. Optimum çözüm

üretmeyen yöntemlerle bu devreler çok daha hızlı bir şekilde elde edilebilir ancak

devre maliyetleri çok daha yüksek olacaktır. Temel fonksiyonların maliyetleri,

oluşturulacak olan tüm devrelerin maliyetini etkileyeceğinden, devreleri optimum

olarak sentezlemeyi tercih ettik.

Devre sentezleme aşaması, istenilen fonksiyonu elde etmemizi sağlayan sıralama

süreci ile devam eder. Bu süreç, algoritmamıza hızını kazandıran, yöntemimizin en

önemli bölümdür. Sıralama algoritmaları, matematik ve bilgisayar biliminde uzun

süredir çalışılan bir konu olduğundan, birçok farklı sıralama algoritması

geliştirilmiştir. Biz çalışmamızda, “Seçmeli Sıralama” algoritmasını kullandık. Bu

sıralama yöntemi, verilen fonksiyonu, doğruluk tablosu ile karşılaştırarak satır satır

kontrol edip, eşleşmeyen her durum için temel fonksiyonlardan birini kullanarak,

fonksiyonu adım adım birim fonksiyona çevirmektedir. Diğer sıralama

algoritmalarının aksine kaydırma veya bölme işlemlerini uygulamadığından,

fazladan temel fonksiyon kullanımını önleyerek, devre maliyetini düşük tutmaktadır.

Örneğin, birleştirmeli sıralama, verilen sıralama kümesini öncelikle alt kümelere

ayırıp, bu alt kümeleri sıralamaktadır. Ardından, oluşturulan alt kümeler, parça parça

birleştirilerek her yeni birleşmede yeni bir sıralama yapılmaktadır. Sıralamalardaki

yer değiştirme işlemlerinin her biri ek bir temel fonksiyon kullanımına neden

olmaktadır. Aynı şekilde, eklemeli sıralama algoritmasında kullanılan kaydırma

işlemlerinin her biri, bir temel fonksiyona karşılık gelmektedir. Seçmeli algoritma ile

oluşturulan devrelerin maliyeti, yerdeğiştirilecek olan satırların değiştirilme sırasının,

doğru bir şekilde belirlenmesiyle iyileştirilebileceğini gösterdik. Bu amaçla,

çalışmamıza her fonksiyon için optimum sıralamayı bulan ek bir bölüm ekledik.

Eklediğimiz bu kısım bazı devrelerin maliyetini azaltırken, programın çalışma

süresini artırmıştır.

İkinci aşama, oluşturduğumuz şablonları kullanarak, sentezlenen devrelerde

optimizasyon yapmaktadır. Şablonlar, aynı fonksiyonu daha az sayıda kapıyla

gerçekleyen ve devredeki eşdeğeri ile değiştirilerek toplam kapı sayısında düşüş

sağlayan devrelerdir. Şablonlarımızı iki farklı yolla oluşturduk. Birincisi, tersinir

kapı kütüphanemizi kullanarak. İkincisi de bu kütüphanedeki kapıların içlerinde

bulunan kuantum kapıları göz önüne alarak. Birinci yöntem, sıralama algoritmasının

uygulanmasından sonra, aynı iki kapının yanyana gelebileceği göz önünde

bulundurularak üretilmiştir. İkinci türdeki şablonlarda, sentezlediğimiz devrelerde

sıkça kullandığımız Toffoli kapısının, kuantum kapılarla (V, V† ve CNOT) kaç farklı

şekilde gerçekleştirilebileceğini inceledik. Bu aşamada, kompleks sayılardan oluşan

xxiii

matrisleri kullanacağımız için, MATLAB programını kullandık. Devre içiersinde

Toffoli kapısının yanına gelen CNOT kapılarından bir kısmının optimizasyon için

kullanılabileceğini gösterdik.

Ayrıca çalışmamızda, pozitif kontrollü kapılara (CNT) ek olarak negatif

kontrollülerinde sentezleme aşamasına eklenmesiyle devre maliyetlerinde önemli

ölçüde iyileştirmeler elde ettik.

Kuantum hesaplama, deneysel olarak bir çok farklı şekilde gerçekleştirilmiştir. Her

gerçeklemenin, kendine özgü prensipleri ve özellikleri olduğundan, algoritmalardaki

kapıların uygulanış biçimi de farklı olmaktadır. Bu nedenle, her yöntem için ayrı

kapı maliyetleri oluşmaktır. Çalışmamızki kuantum devrelerin maliyetlerini

literatürde yaygın olarak kullanılan NCV-111 maliyet metriğini kullanarak

hesapladık. Son olarak, yöntemimizi literatürde bulunan çalışmalar ile kıyasladık.

xxiv

1

1. INTRODUCTION

With experimental realization of quantum computation, quantum circuit synthesis

and optimization methods come into prominence. There is few reasons to synthesise

these circuits optimally. Quantum systems are very sensitive when compared with

our classical computation methods. Since each gate in quantum circuits

corresponding to one or more pulse operations depending on quantum computation

method, optimized circuits will boost the security on one hand and decrease the run

time of the computation on the other hand. Nevertheless, optimal circuit synthesis for

higher bit count still an issue. To compete with classical computation in a realistic

manner, this is one of the main obstacles to overcome and it constitutes the main

motivation why we aim at a fast synthesis algorithm in this study.

In this thesis, a new quantum circuit synthesis approach is presented which works

with deterministic input and output values for a function. The thesis is organized as

follows. In Second Chapter, background information for quantum computation

introduced. In Third Chapter, reversible computation, including reversible circuits is

explained. Chapter Four presents our synthesis algorithm by explaining essential

functions, sorting section and optimization method based on template matching

mechanism. In Chapter Five and Six, experimental results and conclusions presented

respectively.

2

3

2. QUANTUM COMPUTING

Quantum computation is a concept that is based on the idea of using quantum

mechanical phenomena and its features to make computation. It is first proposed by

Richard Feynman at 1982 [1]. Quantum computation takes its power with promising

to out-perform the calculation of certain problems when compared with classical

computation. This is theoretically proved with few algorithms. One of them is Shor’s

factoring algorithm [2]. It shows that, quantum computers can easily factorize a

semi-prime number which is actually leading to overcome our current security

systems called RSA [3]. The other one is Grover’s search algorithm, illustrates faster

searching of database than any other classical algorithms [4].

On the other hand, according to Moore’s law, integrated circuit performance will be

doubled every 18 months [5]. This performance improvement is basically leaning on

the transistor number in a single chip, and so far this is accomplished by shrinking

transistors. Since the ultimate limit of this shrinkage is corresponding to the size of

an atom [6], quantum computation provides a way out for this predicament.

Although experimental applications are still in crawling stage, studies show that

quantum computation is being applicable [7].

2.1 Building Blocks of Quantum Computation : Qubits

Bit is the basic unit of information that can only have one of two states, 0 or 1. In

quantum information, this basic unit called as qubit (abbreviation of quantum bit).

Additionally to 0 and 1 states, a qubit can also exist as a linear combination of the

states |0⟩ and |1⟩ which is known as superposition state. General representation of

this state is written as in Equation (2.1). α and β are complex numbers, that satisfies

the normalization condition (2.2)

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ (2.1)

|𝛼|2 + |𝛽|2 = 1 (2.2)

4

The explanation of this concept as follows, measurement of the qubit 𝜓 can be

resulted as state |0⟩ with probability |𝛼|2, and can be resulted as state |1⟩ with

probability |𝛽|2.

State of 𝜓 is a vector, in two-dimensional complex vector space. It is written in a

vector notation as (2.3)

[

𝛼
𝛽

] (2.3)

As we live in our perceptional world in a deterministic way, it becomes harder to

understand quantum mechanics probabilistic structure. To understand this

phenomena in a better way lets give an example. A coin, can be considered as

classical bit and every flip will have only one result, heads or tails. For the same

example, before pulling your hand over the coin, the probability of having tails and

heads as a result is 50% as shown (2.4)

|𝑐𝑜𝑖𝑛⟩ =
1

√2
|0⟩ +

1

√2
|1⟩ (2.4)

When result is seen (in other words, measurement is performed), qubit will collapse

to measured basis state, tails or heads.

Realization of qubits may occur in different ways such as, polarizations of a photon

in two different state, nuclear spin alignment in a uniform magnetic field, electron

orbiting states of a single atom (Figure 2.1). For example, electron can exist in either

ground ‘|0⟩’ or excited ‘|1⟩’states, in the atom model. When light beam hits the atom

with needed energy and time length, electron state can be changed from |0⟩ to |1⟩

and vice versa. The most important part is, if the time of beaming decreased, it is

possible to move electron with |0⟩ initial state, to the state between |0⟩ and |1⟩ which

is showed as |+⟩ state.

When Equation (2.1) and Equation (2.2) combined, 𝜓 can be written as (2.5)

|𝜓⟩ = 𝑒𝑖𝛾 (𝑐𝑜𝑠
𝜃

2
|0⟩ + 𝑒𝑖𝜑𝑠𝑖𝑛

𝜃

2
|1⟩) (2.5)

The pure state of a qubit is geometrically represented with Bloch sphere (Figure 2.2).

5

Figure 2.1 : Representation of a qubit in an atom with two electron levels.

Figure 2.2 : Geometric representation of a qubit, Bloch sphere.

2.2 Quantum Gates

In classical computation, circuits constructed with wires that carries information

around the circuit and logic gates which are used to manipulate this information.

NOT gate is the easiest way to explain this situation, it operates 0 → 1 or 1 → 0

depending on its input, which interchanges between 0 and 1 states as can be seen.

Same gate used in quantum computation, can be represented with 2x2 matrix as

follows (2.6)

𝜎𝑥 = [

0 1
1 0

] (2.6)

As we defined in classical computation, quantum not gate operates in the same way,

but in this concept, it interchanges the probability of |0⟩ and |1⟩ states between each

other (2.7).

6

𝜎𝑥 |𝜓⟩ = [

0 1
1 0

] [

𝛼
𝛽

] = [

𝛽
𝛼

] = 𝛽|0⟩ + 𝛼|1⟩ (2.7)

Figure 2.3 shows classical NOT gate and quantum NOT gate respectively operating

on a bit and qubit.

Figure 2.3 : (a) Not operation on classical bit and (b) qubit.

Also, multiple qubit operations can be realized in quantum computation. To

understand multiple qubits and gates, here is an example with two qubits. In classical

computation, with two bits we would have four possible states denoted as 00, 01, 10

and 11. In quantum computation these four states are called as “computational basis

states” and denotation as follows |00⟩, |01⟩, |10⟩, |11⟩ (2.8). The most important part

is, qubits can exist in superpositions of these states which gives its power to quantum

computation.

|𝜓⟩ = 𝛼00|00⟩ + 𝛼01|01⟩ + 𝛼10|10⟩ + 𝛼11|11⟩ (2.8)

In contrast to classical computation gates (Figure 2.4 (a)), input and output numbers

of quantum gates are always same (Figure 2.4 (b)). This difference can be seen in

Figure 2.4. The unitary operation of 𝑈(2𝑛) group is carried by the gate with 𝑛 inputs.

Controlled-NOT or CNOT gate one of the essential gates in quantum computation. It

has 2 inputs thus it carries 𝑈(4) group unitary operation. One of its inputs called as

control qubit and the other one is target qubit. CNOT gate represented in Figure 2.4

(b), control qubit and target qubit represented respectively on the top line and bottom

line.

The definition of CNOT gate is similar with classical XOR gate, additional modulo

two. The operation CNOT perform can be summarized as |𝑎, 𝑏⟩ → |𝑎, 𝑏 ⊕ a⟩.

Result is stored in target qubit. Table 2.1 shows inputs and outputs for this gate.

Matrix representation of this operation shown in Equation (2.9).

7

Figure 2.4 : (a) Classical gates, (b) quantum CNOT gate and its matrix

representation.

Table 2.1 : CNOT gate input and output results.

CNOT

Input Output

|𝑎, 𝑏⟩ |𝑎, 𝑏 ⊕ a⟩
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

𝑈𝐶𝑁 |𝜓⟩ =

[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

[

𝛼00|00⟩

𝛼01|01⟩

𝛼10|10⟩

𝛼11|11⟩

]

=

[

𝛼00|00⟩

𝛼01|01⟩

𝛼11|11⟩

𝛼10|10⟩

]

 (2.9)

Quantum computers are capable to simulate every classical computation with using

Toffoli gate [8] [10]. Toffoli is similar to CNOT gate except it has one additional

control bit. If both of the control bits are set to 1, target bit is flipped. Here is the

summarized version of this operation |𝑎, 𝑏, 𝑐⟩ → |𝑎, 𝑏, 𝑐 ⊕ ab⟩.

Simulation of all the classical gates can be realized by using Toffoli gate, in Figure

2.5(c) one of them is shown. Moreover, Toffoli can be used to do FANOUT. In the

meaning of classical computation, FANOUT operation corresponds to creating

copies of a bit from single wire which is forbidden by quantum mechanics in

quantum computation [8]. On the other hand, Toffoli gate realizes this banned

operation with initially set control and target bit, illustrated in Figure 2.5(b). Table

2.2 shows truth table of the Toffoli operation.

8

Table 2.2 : Toffoli gate input and output results.

Toffoli

Input Output

𝑎 𝑏 𝑐 𝑎′ 𝑏′ 𝑐′

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Figure 2.5 : (a) Representation of Toffoli gate, (b) FANOUT operation with Toffoli

gate, (c) NAND gate simulated with Toffoli.

2.3 Quantum Circuits

Quantum circuits are constructed with quantum gates in a sequence. Each line in this

circuit represents a qubit and it may correspond to a physical particle like a photon.

Therefore, line number corresponds to qubit number of the computation. Quantum

circuits (for example Figure 2.6) are read from left side to the right side. Since they

are reversible, previous states of the qubits can be found by reading to backwards.

Figure 2.6 : Quantum Circuit example, Full-Adder constructed with CNOT and

Toffoli gates, time flows left to right.

9

Figure 2.6 represents a quantum circuit. The circuit realizes a Full-Adder with using

Toffoli and CNOT gates. Quantum circuits can be considered as a model for

quantum computation to design quantum algorithms.

2.4 Quantum Algorithms

Classical computers are insufficient to solve some computational problems. Quantum

computers can provide solution for these type of problems. Quantum algorithms are

instruction sequences performed by quantum computers. These algorithms are

generally exploits some features of quantum mechanics such as superposition and

entanglement.

So far few examples of quantum algorithms has shown. Shor’s factoring algorithm

one of these. It is exponentially faster than any classical algorithm that performs

same factoring calculation. The other one is Grover’s searching algorithm for

searching an unsorted database. It is quadratically faster when compared with

classical algorithms.

Quantum algorithms includes also classical functions to realize their task. Therefore,

it is important to synthesize these functions in quantum computational form. This is

one of the aims of this thesis.

2.5 Construction of the Gates

Toffoli gate is one of the essential gates to realize computations in quantum

computing as we described before. But the implementation of it requires few basic

operations. To understand how it is constructed we should examine how elementary

operations are build.

Matrix representations of quantum gates described with 𝑈, which stands for unitary

matrix. This is explained as, if multiplication of the matrix and its adjoint (transpose

of complex conjugation of the matrix (2.10)) equals to identity matrix then it is

unitary (2.11). Any unitary matrix can be used as a quantum gate [8].

𝑈† = (𝑈̅)𝑇 (2.10)

𝑈†𝑈 = 𝑈𝑈† = 𝐼 (2.11)

10

Each 2𝑥2 unitary matrix can be shown in the form as in the Equation (2.12) [9],

where 𝛿, 𝛼, 𝜃 and 𝛽 are real-valued,

[

𝑒𝑖(𝛿+
𝛼
2
+

𝛽
2
)cos

θ

2
𝑒𝑖(𝛿+

𝛼
2
−

𝛽
2
)sin

θ

2

−𝑒𝑖(𝛿−
𝛼
2
+

𝛽
2
)cos

θ

2
𝑒𝑖(𝛿−

𝛼
2
−

𝛽
2
)cos

θ

2

]

 (2.12)

Every 2𝑥2 unitary matrix can also be expressed as follows

[

𝑒𝑖𝛿 0
0 𝑒𝑖𝛿

] [

𝑒𝑖𝛼/2 0

0 𝑒−𝑖𝛼/2

] [

𝑐𝑜𝑠θ/2 𝑠𝑖𝑛θ/2
−sinθ/2 𝑐𝑜𝑠θ/2

] [

𝑒𝑖𝛽/2 0

0 𝑒−𝑖𝛽/2

] (2.13)

Here is the simplified representation of these matrices respectively,

𝑈 = 𝑃ℎ(𝛿) 𝑅𝑧(𝛼)𝑅𝑦(𝜃)𝑅𝑧(𝛽) (2.14)

Table 2.3 shows gates that can be used to obtain every unitary matrix, which is the

reason to call them as Elementary Gates. They can be obtained by giving certain

values to the 𝛿, 𝛼, 𝜃 and 𝛽 variables in the matrix in (2.10).

Table 2.3 : Elementary Gates.

Representation Gate Matrix
Values of,

𝛿 𝛼 𝜃 𝛽

𝑅𝑦(𝜃) [

𝑐𝑜𝑠θ/2 𝑠𝑖𝑛θ/2
−sinθ/2 𝑐𝑜𝑠θ/2

] 0 0 𝜃 0

𝑅𝑧(𝛼) [

𝑒𝑖𝛼/2 0

0 𝑒−𝑖𝛼/2

] 0 𝛼 0 0

𝑃ℎ(𝛿) [

𝑒𝑖𝛿 0
0 𝑒𝑖𝛿

] 𝛿 0 0 0

𝜎𝑥 [

0 1
1 0

] 0 0 π 0

I [

1 0
0 1

] 0 0 0 0

To implement all of the unitary matrices as a quantum gate, 𝑈 = 𝐴𝜎𝑥𝐵𝜎𝑥𝐶 gate

combination can be used where, 𝐴, 𝐵, 𝐶 are single qubit gates that provides the

equation 𝐴𝐵𝐶 = 𝐼 [8] [9] (Figure 2.7).

11

Figure 2.7 : Controlled U gate implementation with quantum gates.

In Figure 2.7, if control bit is set as |1⟩ then 𝑈 = 𝐴𝜎𝑥𝐵𝜎𝑥𝐶 operation is applied on

the second qubit, on the contrary if control bit is set as |0⟩, 𝐴𝐵𝐶 = 𝐼 operation is

applied on the second qubit, which is resulted without any change.

Quantum algorithm development process looks similar with low-level programming

language in computer science, with elementary gates. In contrast, high level

programming language is easier to use and may automate some parts of the

computing system that makes developing process simpler and understandable. To

increase the simplicity of quantum algorithm development process, more

understandable and functional gates are needed then elementary gates. For this

reason, highly used operations in quantum algorithms, in other words common gates,

can be considered as higher-level versions of elementary gates, which are listed in

Table 2.4.

Table 2.4 : Common Gates.

Gate Name Representation Gate Matrix

Hadamard 𝐻
1

√2
[

1 1
1 −1

]

Pauli-X 𝑋 [

0 1
1 0

]

Pauli-Y 𝑌 [

0 −𝑖
𝑖 0

]

Pauli-Z 𝑍 [

1 0
0 −1

]

Phase 𝑆 [

1 0
0 𝑖

]

𝜋/8 𝑇 [

1 0
0 𝑒𝑖𝜋/4

]

As we explained the implementation of controlled unitary matrices before,

implementation of the multiple qubit gates with more than two qubits has similar

realization as it shown in Figure 2.8.

12

Figure 2.8 : Controlled-Controlled U gate with V and CNOT gates.

To realize Toffoli gate with V and CNOT gates, where 𝑈 = 𝑉2 = 𝜎𝑥 , following

value must be given to V gate,

𝑉 = (1 − 𝑖)(𝐼 − 𝑖𝑋)/2 = [
0.5 + 0.5𝑖 0.5 − 0.5𝑖
0.5 − 0.5𝑖 0.5 + 0.5𝑖

] (2.15)

Given value can be obtained by using common gates Phase (S) and Hadamard (H) as

shown in Figure 2.9 and Equation (2.16).

Figure 2.9 : Controlled-Controlled U gate with V and CNOT gates.

There is two possible condition for this V gate, control bit can either be 1 and 0. If

control bit is set to 1:

𝐻𝑆𝐻 =
1

√2
[

1 1
1 −1

] [

1 0
0 𝑖

]

1

√2
[

1 1
1 −1

] =

1

2
[
1 + 𝑖 1 − 𝑖
1 − 𝑖 1 + 𝑖

] (2.16)

If control bit is set to 0:

𝐻𝐻 =
1

√2
[

1 1
1 −1

]

1

√2
[

1 1
1 −1

] =

1

2
[
2 0
0 2

] = [
1 0
0 1

] (2.17)

As a result V operation successfully realized with using Phase and Hadamard gate

combination.

2.6 Cost Metric

Since each realization has its own methods to perform same operation, it is hard to

synthesize quantum circuits optimally for each of these techniques. On the other

hand, few cost metrics are suggested for high-level quantum gate operations [16]. In

13

this thesis, we consider these suggestions and selected widely used cost metric NCV-

111 [17]. In this cost metric, each NOT, CNOT and V operations are costed with 1 as

shown in Figure 2.10.

Figure 2.10 : NCV-111 cost metric, each of these gates are costed as 1.

2.7 Realization of Quantum Computation

It is very challenging to physically realize quantum computation. Qubit

representation and preparation process not the only issue. There is also another

problems such as close quantum system time-evolution which is described by unitary

operator determined with its Hamiltonian. Hamiltonians of the system must be

controlled to perform a quantum operation. Every quantum system has different

Hamiltonians with different physical machine description and its applicability

changable on one system to another. Which means, one quantum gate operation may

simply applicable in one system but it may be difficult to apply same operation in

other systems. Few of these physical realizations are listed below:

 Optical Photon Quantum Computer: Optical photons can be represented as

qubits. They can be prepared to interact with each other in principle [8] [11] .

 Ion Trap: Confined Ions are used to represent qubits which is included in 2D

lattice and can be moved within this lattice to serve local interactions [8] [12].

 Nuclear Magnetic Resonance: Nuclear spin states manipulation and

detection is possible with using radiofrequency electromagnetic waves [8]

[13].

 Quantum Dot: Spin states of two electrons within quantum dots are

represented as quibts. It has a tunneling barrier between its two potential

wells [14].

Many different methods are suggested for the implementation of quantum

computation [15].

14

15

3. REVERSIBLE COMPUTING

Bijection functions in mathematics is a great example to understand reversibility in

computing. In these functions, input and output sets have the same number of

elements and each element has only one counterpart in other set (Figure 3.1). This

means, the input value can be deduce by looking at the output value of a reversible

function (Figure 3.2). This is not the only feature of these functions.

Figure 3.1 : Bijection Function.

Conventional computers are working with irreversible operations (Figure 3.3).

Theoretical lower energy dissipation limit of an irreversible computation is

calculated by Rolf Landauer [18]. It is suggested, if the computation is reversible,

then computation can be performed nearly without dissipating energy [18] [19] [20].

Figure 3.2 : Reversible logical operation.

Figure 3.3 : Irreversible logical operation.

16

The main problem in irreversible computation is every logical delete operation on a

bits information is leading an energy dissipation into the environment. The

theoretical limit of this dissipation is calculated by the formula 𝑘𝑏𝑇𝑙𝑛2 where 𝑘𝑏 is

the Botlzman constant, T is the temperature of the circuit. When this limit compared

with today’s computers, it can be seen that, modern CPUs are far away from this

limit [21].

On the other hand, instead of irreversible computation, reversibility can used to make

energy efficient devices to achieve reversible computation. Last experimental

approaches are promising for this purpose [22].

Examples of reversible operations with truth table shown in Table 3.1.

Table 3.1 : Truth tables for bit size 2: (a) identity function, (b) arbitrary function.

a b a′b′ a b a′b′
0 0 0 0 0 0 1 1

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

1 1 1 1 1 1 0 0

(a) (b)

3.1 Reversible Circuits

Reversible logic circuits form a group for a specific bit size 𝑛 (Figure 3.4). Row

number for this specific bit size 𝑛 equals to 2𝑛. As the function is reversible, all of

the input values must be on the output side as well. Which means, a reversible

function can be form a permutation of these input values. Since there is 2𝑛 inputs, all

possible reversible functions number is equals to 2𝑛!. Table 3.2 showing total

reversible function numbers for a specific bit size.

Figure 3.4 : Reversible circuit for bit size 𝑛.

17

Table 3.2 : Total reversible functions for bit size n.

n # of Reversible Function # of Quantum Function

1 2 4
2 24 16
3 40320 64
4 20922789888000 256

Since quantum computing is also reversible, reversible computing can be considered

as a subset of quantum computing. The possible total function comparison between

these computation types can be seen in Table 3.2. In quantum computing, matrices

has n2 degrees of freedom for n bit sized circuits (n x n square matrix) therefore total

possibilities can be calculated as 𝑛2
 (there is  possible ways to describe a real

element in unitary matrix). Unitary matrices (𝑈†𝑈 = 𝑈𝑈† = 𝐼) restricts 2n2 degrees

of freedom that formed by qubits which has two degrees of freedom (real and

imaginary parts).

To synthesize all reversible functions, a universal gate library can be constructed

with using the gates explained in Quantum Computing chapter.

18

19

4. QUANTUM CIRCUIT SYNTESIS

In this thesis, we focus on synthesis of deterministic quantum circuits. In literature,

various circuit synthesis methods proposed to synthesis these deterministic quantum

circuits [17] [23] [24] [25]. Most of them focused on heuristic synthesis. There are

also optimal synthesis methods, but these are way behind when run times compared

with others. Contrariwise, optimized circuits will decrease the run time of quantum

computer, because each gate in these circuits are corresponding one or more signals

depending on realization method [27]. Moreover, optimized circuits will boost the

security of the computation [26]. Nevertheless, optimal circuit synthesis achieved

only up to four bits in the literature [28]. When we consider recent experiments [29]

where 84 qubits are used, optimal circuit synthesis can take very long time, therefore

it is not practical at all. This is the main motivation why we aim at a fast synthesis

algorithm in this study.

In our synthesis process, we face a decision of whether or not to use garbage outputs.

Few academic works use garbage outputs, especially those synthesizing functions

with high number of bits [30]. Garbage outputs are additional bits to use when they

needed. In general, they are not considered favorable because of the problems in

energy efficiency [10]. In this thesis, we do not use garbage outputs. In the literature,

it is well known that all reversible functions can be implemented without a need of a

garbage bit by using the CNT (CNOT, Not, Toffoli) gate library. This library

includes gates with only positive control lines. In this thesis, we improve the CNT

library by taking negative control lines into account which provides important circuit

cost reduction. We call this new library as PN-CNT that stands for “Positively and

Negatively Controlled CNOT, Not, Toffoli”. Figure 4.1 illustrates CNT and PN-CNT

libraries.

20

Figure 4.1 : CNT and PN-CNT libraries with showing Quantum Costs for each gate.

Our synthesis method efficiently implements any desired reversible function with

quantum gates. Our method has two steps. In the first step, we use permutational trial

based algorithm to find “essential functions” with optimum gate usage for selected

bit size. Instead of using optimal circuits for essential functions, one could use

circuits that are not necessarily optimal that would result in a faster algorithm, but

also a larger circuit. Circuit synthesis approach, is followed by a sorting process to

obtain desired functions. This is the key part of our algorithm, where we gain our

synthesis speed. Although optimum circuit synthesis a time consuming process,

because of the essential functions’ fewness and sorting algorithms’ speed, total

synthesis time is still very short compared to the studies in the literature. In the

second step, we perform optimization by constructing our templates. Templates are

reversible circuits realizing the same function with different gate combinations that

results in different circuit area costs. We construct our templates in two ways that are

by directly using the gates from our PN-CNT library and by considering the inner

quantum structure of these gates. The proposed templates not only optimize our

synthesized circuits but also show us that optimum area solutions proposed in the

literature are not actually optimum; they can be improved.

4.1 Negative Control Lines

Toffoli gates with negative control lines based on the same principle like their

positive counterparts. Unless, they accept zero instead of one for its negative control

line (s) to invert the target value. Table 4.1 and Figure 4.2 illustrates how these

negative gates are work.

21

Table 4.1 : Truth table of negative controlled gates.

n-CNOT np-Toffoli nn-Toffoli

Input Output Input Output Input Output

cba c'b'a' cba c'b'a' cba c'b'a'

000 100 000 000 000 000

001 101 001 001 001 001

010 010 010 110 010 110

011 011 011 011 011 011

100 000 100 100 100 100

101 001 101 101 101 101

110 110 110 010 110 010

111 111 111 111 111 111

Figure 4.2 : Negative control lined gates, (a)n-CNOT, (b)np-Toffoli, (c) nn-Toffoli.

4.2 Essential Functions

For a certain bit size n, a reversible Boolean function has a truth table with 2𝑛 rows

that is resulting in 2𝑛! possible functions. Instead of implementing each of these

functions separately, we consider very small amount of the total functions called as

essential functions. To implement an essential function, we first consider a truth table

such that input and output bit values are always identical. Then we switch any two

rows (elements) without changing others. The result is an essential function (Figure

4.3). The total number of essential functions for a specific bit size n is:

C (
2𝑛

2
) =

2𝑛 ∗ (2𝑛 − 1)

2
= 2𝑛−1 ∗ (2𝑛 − 1) (4.1)

Table 4.2 visualizes this formula. The ratio of the number of total and essential

functions increases exponentially with the bit size. This means that the more bits we

have, the more beneficial our approach is. The reason behind this the function

synthesis process is the main time consuming part of all approaches. By limiting this

process, we minimize the run time of our algorithm.

22

Figure 4.3 : Essential Function for 3 bit circuit, 2 row switched their position

between each other.

Table 4.2 : Essential Function Number According To Bit Size.

Bit

Size

Functions

of Essential

Functions

of Total

Functions

2 6 24

3 28 40320

4 120 20922789888000

5 469 2.613308e + 35

6 2016 1.268869e + 89

To synthesize essential functions, we develop an algorithm that results in optimal

circuit sizes in terms of the reversible gate costs. Our algorithm based on permutation

trials. At first, essential functions are determined by our algorithm and essential

function library is created. For considered bit size, all possible gates are placed into

gate library. Seeking process picks one of these essential functions respectively and

starts circuit construction trials with circuit size 0, which results with identical

function. The function obtained by this trials, compared with the picked essential

function, if it is the one that algorithm is looking for, the circuit added to essential

function library and program picks another essential function to realize it. If it is not,

permutational trials are continued where it left. When all possible permutations are

applied for the certain circuit size, circuit size incremented by one. Figure 4.4

represents a diagram for this part of the program. After all essential functions are

obtained, any desired function can be synthesized by sorting them.

Essential functions are very few when compared with the whole function set for a

specific bit. That is the reason why we preferred to use an optimal synthesis

algorithm among non-optimal algorithms based on exact methods, constructive

23

approaches, decision diagrams and exclusive sum of products [31] . Since circuit size

is another criteria, the run time of our algorithm is slightly worse than non-optimal

algorithms, but it results in optimal circuit size.

Figure 4.4 : Flow chart of the algorithm.

4.3 Sorting

After achieving essential functions, they can used to implement any given function

with desired sorting algorithm. Table 4.3 shows an example of this; 𝑓1 and 𝑓2 are

essential functions used to obtain 𝐹. Red lines are indicating the swapped rows.

Figure 4.5 shows the circuit realization of 𝐹.

Table 4.3 : Realization of a Function With Essential Functions.

𝒇𝟏 + 𝒇𝟐 = 𝑭

Input Output Input Output Input Output

cba cba cba cba cba cba

000 000 000 100 000 100

001 001 001 001 001 001

010 010 010 010 010 010

011 101 011 011 011 101
100 100 100 000 100 000

101 011 101 101 101 011

110 110 110 110 110 110

111 111 111 111 111 111

24

Figure 4.5 : Essential Function 𝑓1 and 𝑓2 used to obtain 𝐹 function.

Sorting algorithms well studied in the literature. We use a selection sort algorithm

among many different options. The reason is that it checks the equivalence of the

input and output bits row by row. If input and output bits are equal, the algorithm

goes to the next row; if they are not equal, the algorithm makes them equivalent

using essential functions. This process uses essential functions effectively. However,

operations like sliding or dividing used in other sorting algorithms necessitates

relatively larger amount of essential function usage. For example, merge sort divides

the set into subsets, and sorts these subsets first. After subset sorting completed,

equal sized subsets are joined together in pairs forming new subsets. These new

subsets sorted again. This process results with extra usage of essential functions.

Similarly, sliding process used in insertion sort method has the same handicap. Each

slide requires an extra essential function. Figure 4.6 illustrates difference between

sorting algorithms, using essential functions.

Figure 4.6 : Sorting process with essential functions: (a) Selection Sort, (b) Merge

Sort, (c) Insertion Sort. Numbers near arrows counts used essential functions.

25

Selection sort can be improved when correct sequence applied to the function. Table

4.4 shows an example for this situation; reds represent mismatched rows, greens

represents corrected rows. Four rows are not in their correct line for a given function.

This creates 12 possible ways and two of them presented in this table. Top-Down

column of Table 4.4 shows a selection algorithm that starts from the first row and

proceeds through to the last row. Optimal column of Table 4.4 column shows the

optimal sorting algorithm for this function that obtained after a trial of all possible

sequences. E.F. stands for essential functions, shows which essential function is

used. Cost of each essential function written in the below it and total cost of the

function shown at right bottom corner of the table. Circuit realizations can be seen in

Figure 4.7.

If we call mismatching line number as 𝑚 for a function, all possible sequences can

be calculated with 𝑚!/2. For the higher mismatched line numbers, total possible

ways increases.

Table 4.4 : Realization of a Function With Essential Functions.

Top-Down Optimal

000 0 0 0 0 000 0 0 0 0

111 7 1 1 1 111 7 3 1 1

001 1 7 2 2 001 1 1 3 2

010 2 2 7 3 010 2 2 2 3

100 4 4 4 4 100 4 4 4 4

101 5 5 5 5 101 5 5 5 5

110 6 6 6 6 110 6 6 6 6

011 3 3 3 7 011 3 7 7 7

E.F. 1-7 2-7 3-7  E.F. 7-3 1-3 2-3 

Cost 4 4 1 9 Cost 1 2 2 5

Figure 4.7 : Representations of the functions in Table 4.4. (a) TD approach, (b) OPT

approach.

26

We try different sequences; top-down, pick smallest and optimal circuit. Worst case

complexities for these sequences are calculated by considering the time spent on row

check procedure. 𝑘 representing the total line number that equals to 2𝑛 for bit size 𝑛.

4.3.1 Top-Down

Top-down checks identical function and desired function row by row from top to

bottom. Each time mismatched row found, essential function is applied (Table

4.4(a)). Its complexity is 𝑂(𝑘).

4.3.2 Pick Smallest

This one checks mismatched lines like previous. Instead of correcting each

mismatched line instantly, it stores the costs of essential functions in memory. When

checking process complete, it applies the low costed essential function and repeats

checking process. For this one, complexity is 𝑂(𝑘2).

4.3.3 Optimum

Optimal circuits found by checking all possible sequences. The first sequence and its

cost directly saved to the memory. When new sequence obtained, the cost for this

sequence compared with the cost in the memory. Low costed circuit and its cost

stored in the memory after each comparison thus optimal sequence found within all

possibilities. Complexity of this method is 𝑂(𝑘𝑘).

These methods compared with their run time (in seconds) and reversible average cost

for bit size 3 in Table 4.5.

Table 4.5 : Sequence Comparison.

 TD PS OPT

R.C. 16.69 15.75 14.48

Time 8 8 377

4.4 Optimization

Optimization process used to minimize gate number in a circuit that realizes a

function. We divided this process in mainly two parts. In the first part, after synthesis

of each function, circuits are scanned to find identical neighbor gates and templates.

In the second part, synthesized circuits scrutinized in quantum circuit level. Each

27

gate corresponding to a mixture of subgates expanded to its quantum structure. Thus,

invisible identical neighbors and templates revealed.

In both optimization sections, we use templates that includes only two gate. New

templates can be constructed by increasing the gate number within it. Unfortunately,

this is limitless process to follow up. Main reason to limit them with two gates is to

keep the balance between run time and optimization in the circuits.

4.4.1 Templates Using Circuit Library

We look for pre-defined templates in our sorting based synthesis and replace them

with their optimal equivalent to reduce total quantum cost. Because of the sorting

sequence, essential functions used one after the other that sometimes forms identical

neighbor gates. This results at least two or more gate reduction in the final circuit,

shown in Figure 4.8. Additionally we create 12 more templates for negative gates.

One of them shown in Figure 4.9.

Figure 4.8 : Sorting sequence with identical neighbor gates; 4 gates removed from

the circuit.

Figure 4.9 : Templates for gates with a negative control line.

28

4.4.2 Templates Using Quantum Structure of Gates

After optimizing our circuits using PN-CNT library based templates, here we

perform a second optimization process using quantum inner structure of the gates. In

this part, Toffoli gates are expanded to their quantum circuit structure (Figure 4.10a,

Figure 4.10c). Rescan process begins to find new identical neighbors. If a Toffoli

gate has an appropriate CNOT gate neighbor (Figure 4.10b, Figure 4.10d), second

reduction is applied. There are 12 different situations for positive controlled Toffoli-

CNOT case in 3 bit reversible circuits.

Figure 4.10 : (a) Toffoli gate with its inner quantum realization. (b) Template for

positively controlled Toffoli. (c) Single negatively controlled Toffoli gate its quantum

realization. (d) Template with single negative controlled Toffoli.

We experimentally obtain all Toffoli realizations with using permutation based

algorithm in MATLAB. This is similar to optimal circuit synthesis process in

essential functions section. Permutation starts with using a gate from NCV library. If

there is no match after checking all possibilities, gate number increases in the circuit.

This process continues until a match found. Table 4.6 shows the results. Minimum

29

size row shows how many gates needed to realize the specific Toffoli function. For

this minimum size, total realization row shows how many different ways this

function can be realize. All realizations are shown in Appendix I.

Table 4.6 : Experimental Results for Toffoli Realization.

 Toffoli pn-Toffoli nn-Toffoli

Minimum Size 5 5 6

Total Realizations 40 40 112

30

31

5. RESULTS

Implementations realized in C. All experiments run on a 3.20-GHz Intel Core i5 CPU

(only single core used) with 4.00 GB memory.

Table 5.1 represents results of our proposed approach and optimal methods in the

literature. Run times are in seconds. Reversible costs are calculated by counting each

gate in CNT library cost as one. Quantum costs are calculated by considering each

gate in NCV library cost as one (Figure 4.1). Numbers in “size” column represents

the number of gates used. Numbers in other columns represents the number of

functions implemented with the corresponding gate number in size column. For

example, the first row tells that 28 gates are used to implement 4 different functions

based on the TD approach. “Proposed Approach” column shows the results of our

algorithm. CNT library based synthesis results shown under CNT column.

Comparing PS and OPT approaches, OPT overwhelms PS with a 22.06%

improvement in reversible circuit cost and 15.17% improvement in quantum circuit

cost. When run times compared, PS is far better than OPT.

Our PN-CNT approach uses the library of PN-CNT presented in Figure 4.1. Note

that this approach gives the best result in reversible costs. Column named Optimal,

presents optimal results of the studies in the literature that focused on synthesis with

reversible gates. We convert these reversible circuits to quantum form and apply our

quantum optimization method illustrated in Figure 4.10. Thus, we reduce the optimal

CNT quantum cost by 5.61%, from 13.88 to 13.10.

Comparing our synthesis approach with the optimal ones, our run times are always

better at the cost of the circuit size. This is an expected result for 3 bit circuits. Here,

an important point is that our synthesis approach can effectively work in higher bits.

For example to implement 4 bit circuits, 120 essential functions are needed out of all

20922789888000 functions. However, the optimal synthesis method is not practically

applicable even for 5 bit circuits. If the optimal method is used to synthesize 5 bit

circuits, it will take 447x1018 years that is justified using the numbers in Table 4.2.

32

Table 5.1 : Reversible Functions Obtained With Specific Gate Number According

To 3 Bits.

Size

Proposed Approach Optimal

CNT PN-CNT
CNT NCL

TD PS OPT TD PS OPT

28 4

27 29

26 90 10

25 207 31

24 436 145

23 791 238

22 1252 682 1

21 1954 1031 0

20 2523 1625 5

19 3349 2720 47 4 9

18 3772 3129 167 22 11

17 4125 4022 473 132 156

16 4211 4383 1283 249 224

15 3842 4179 2748 1126 582

14 3522 4126 4657 1758 1422 1

13 2835 3528 6018 2988 2388 64

12 2308 3104 6586 4686 3690 364

11 1706 2389 5696 5158 5509 1160

10 1239 1772 4347 5945 6493 2500

9 843 1203 3137 5752 5906 5820

8 547 818 2178 4485 5007 8756 577

7 340 531 1354 3512 3966 8656 10253

6 194 322 825 2321 2623 6837 17049 3236

5 111 181 438 1190 1400 3996 8921 20480

4 52 80 208 615 623 1611 2780 13282

3 25 43 100 286 232 452 625 2925

2 9 18 42 78 66 90 102 369

1 3 9 9 12 12 12 12 27

0 1 1 1 1 1 1 1 1

R.C. 15.97 14.82 11.55 9.79 9.50 7.31 5.86 4.57

Q.C. 34.14 25.63 21.74 32.85 30.82 28.97 13.88 -

Time 9 9 6m33s 12 12 5m59s 40 [32] - [33]

33

6. CONCLUSIONS AND RECOMMENDATIONS

Quantum computation became one of the most valuable computer science topic in

last years. Quantum circuit synthesis and optimization methods come into

prominence with the experiments that focuses quantum computation. Reversible

quantum circuit design has an important role at this point, which is the core of this

computation.

In this thesis, a new method for synthesis and optimization of quantum circuits

presented. A fast synthesis algorithm that implements any given reversible Boolean

function with quantum gates is proposed. Instead of an exhaustive search on every

given function, proposed algorithm creates a library of essential functions and

performs sorting. Our synthesis algorithm is considerably faster than the optimal

ones presented in the literature. We assume that this difference will increase

exponentially for large bit sizes.

Circuits optimized by using templates. We limit our templates with considering only

two gates to balance run time and cost reduction. The templates that we propose

mainly consist of Toffoli gates with negative and positive controlling lines. These

templates not only optimize our synthesized circuits but also show us that they can

used to optimize proposed solutions in the literature. We reduce the previously

proposed optimal CNT synthesis cost by 5.61%.

We are currently working on our sequence selection algorithm to find optimal

sequences in heuristic way. Additionally, low-level circuit synthesis is one of our

primary aims to reduce quantum operations in quantum computers. As a future work,

we will seek deeper optimization methods with using elementary gates and pulse

signals.

34

35

REFERENCES

[1] Feynman, Richard P. (1982). Simulating physics with computers. International

journal of theoretical physics 21.6 467-488.

[2] Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM journal on

computing, 26(5), 1484-1509.

[3] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining

digital signatures and public-key cryptosystems. Communications of

the ACM, 21(2), 120-126.

[4] Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-Eighth annual ACM Symposium on

Theory of Computing, pp. 212-219. ACM.

[5] Moore, G. E. (1965). Cramming more components onto integrated circuits.

[6] Stolze, J., & Suter, D. (2008). Quantum computing: a short course from theory

to experiment. John Wiley & Sons.

[7] Lucero, E., Barends, R., Chen, Y., Kelly, J., Mariantoni, M., Megrant, A.,

et al. (2012). Computing prime factors with a Josephson phase qubit

quantum processor. Nature Physics, 8(10), 719-723.

[8] Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum

information. Cambridge university press.

[9] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N.,

Shor, P., et al. (1995). Elementary gates for quantum computation.

Physical Review A, 52(5), 3457.

[10] Toffoli, T. (1980). Reversible computing, pp. 632-644. Springer Berlin

Heidelberg.

[11] O'Brien, J. L. (2007). Optical quantum computing. Science, 318(5856), 1567-

1570.

[12] Kielpinski, D., Monroe, C., & Wineland, D. J. (2002). Architecture for a

large-scale ion-trap quantum computer. Nature, 417(6890), 709-711.

[13] Cory, D. G., Laflamme, R., Knill, E., Viola, L., Havel, T. F., Boulant, N.,

et al. (2000). NMR based quantum information processing:

Achievements and prospects. Fortschritte der Physik, 48(9‐11), 875-

907.

[14] Loss, D., & DiVincenzo, D. P. (1998). Quantum computation with quantum

dots. Physical Review A, 57(1), 120.

[15] DiVincenzo, D. P. (2000). The physical implementation of quantum

computation. arXiv preprint quant-ph/0002077.

36

[16] Maslov, D., & Miller, D. M. (2005). Comparison of the cost metrics for

reversible and quantum logic synthesis. arXiv preprint quant-

ph/0511008.

[17] Shende, V. V., Bullock, S. S., & Markov, I. L. (2006). Synthesis of quantum-

logic circuits. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 25(6), 1000-1010.

[18] Landauer, R. (1961). Irreversibility and heat generation in the computing

process. IBM journal of research and development, 5(3), 183-191.

[19] Bennett, C. H. (2003). Notes on Landauer's principle, reversible computation,

and Maxwell's Demon. Studies In History and Philosophy of Science

Part B: Studies In History and Philosophy of Modern Physics, 34(3),

501-510.

[20] De Vos, A. (1999). Reversible computing. Progress in Quantum Electronics,

23(1), 1-49.

[21] Markov, Igor L. (2014). Limits on fundamental limits to computation. Nature

512.7513, 147-154.

[22] Lambson, B., Carlton, D., & Bokor, J. (2011). Exploring the thermodynamic

limits of computation in integrated systems: Magnetic memory,

nanomagnetic logic, and the landauer limit. Physical review letters,

107(1), 010604.

[23] Maslov, D., Dueck, G. W., & Miller, D. M. (2005). Toffoli network synthesis

with templates. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 24(6), 807-817.

[24] Große, D., Wille, R., Dueck, G. W., & Drechsler, R. (2009). Exact multiple-

control toffoli network synthesis with SAT techniques. Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 28(5), 703-715.

[25] Gupta, P., Agrawal, A., & Jha, N. K. (2006). An algorithm for synthesis of

reversible logic circuits. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 25(11), 2317-2330.

[26] Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer

memory. Physical review A, 52(4), R2493.

[27] Fedorov, A., Steffen, L., Baur, M., Da Silva, M. P., & Wallraff, A. (2011).

Implementation of a Toffoli gate with superconducting circuits.

Nature, 481(7380), 170-172.

[28] Golubitsky, O., & Maslov, D. (2012). A study of optimal 4-bit reversible

toffoli circuits and their synthesis. Computers, IEEE Transactions on,

61(9), 1341-1353.

[29] Bian, Z., Chudak, F., Macready, W. G., Clark, L., & Gaitan, F. (2013).

Experimental Determination of Ramsey Numbers. Physical review

letters, 111(13), 130505.

[30] Wille, R., & Drechsler, R. (2009). BDD-based Synthesis of Reversible Logic

for Large Functions. In Proceedings of the 46th Annual Design

Automation Conference, pp. 270-275. ACM.

37

[31] Schönborn, E., Datta, K., Wille, R., Sengupta, I., Rahaman, H., &

Drechsler, R. (2014). Optimizing DD-based Synthesis of Reversible

Circuits using Negative Control Lines. Proceedings of the 2014 IEEE

Seventeenth Design and Diagnostics of Electronic Circuits &

Systems.

[32] Shende, V. V., Prasad, A. K., Markov, I. L., & Hayes, J. P. (2003). Synthesis

of Reversible Logic Circuits. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 22(6), 710-722.

[33] Wille R., Soeken M., Przigoda N., Drechsler R., (2012) Exact synthesis of

Toffoli gate circuits with negative control lines. Multiple-Valued

Logic (ISMVL), 2012 42nd IEEE International Symposium on. IEEE,

pp. 69- 74.

38

39

APPENDICES

APPENDIX A: Toffoli Realizations

APPENDIX B: Test Program

This program was developed and used during my thesis studies.

40

APPENDIX A

Figure A.1 : Subgates of Toffoli with positive control lines.

41

Figure A.2 : Subgates of Toffoli with positive and negative control lines.

42

Figure A.3 : Subgates of Toffoli with negative control lines.

43

Figure A.4 : Subgates of Toffoli with negative control lines.

44

Figure A.5 : Subgates of Toffoli with negative control lines.

45

APPENDIX B

Figure A.6 : Instructions are shown at strat screen.

46

Figure A.7 : Desired operation can be selected after enterin bit size.

Figure A.8 : Circuits can be applied to the truth table by leaving blank space

between gates, e.g “t012 c02 n1”.

47

Figure A.9 : After entering desired circuit, circuit layout can be exported in latex

format, as shown.

48

49

CURRICULUM VITAE

Name Surname: Ömer Can Susam

Place and Date of Birth: Istanbul 24.10.1988

E-Mail: susam@itu.edu.tr

B.Sc.: Electrical Engineering - Kocaeli University - 2010

Professional Experience and Rewards:

2014-2015 Istanbul Technical University Research Support Program

2014-2015 TUBITAK MSc Scholarship Program in Priority Areas

01.2012 – 04.2012 Ilkotek Automation

Designing Motion Control (servo motor – driver – controller), PLC and HMI

projects, developing object oriented programs with C# (4 axis race simulator).

10.2011 – 01.2012 Teksan GenSet

Designing and setting up control panels, GenSet remote control systems, GenSet-

Mains Synchronous panels and programing PLC-HMI systems.

PUBLICATIONS/PRESENTATIONS ON THE THESIS

 Susam Ö. C., Altun M., 2014: Kuantum Devre Sentezi ve Optimizasyonu İçin

Verimli Bir Algoritma. Elektrik – Elektronik, Bilgisayar ve Biyomedikal

Mühendisliği Sempozyumu, ELECO November 27-29, 2014 Bursa, Turkey.

 Susam Ö. C., Altun M., 2014: An Efficient Algorithm to Synthesize Quantum

Circuits and Optimization – twenty-first IEEE International Conference on

Electronics Circuits and Systems, ICECS December 7-10, 2014 Marseille, France.

