On the Use of the "Southern Horizons Plate" (al-ṣafīha al-āfāq̄̄ya dhāt al-janūb) ${ }^{1}$

Paul Kunitzsch
Richard Lorch

Abstract

In the following is edited an anonymous text, in twenty-one unnumbered chapters, on the use of the southern horizons plate, from a manuscript in Istanbul dated in Jumādā II 676/November 1277. The horizons plate is a drawing of the horizons engraved on one side of one of the plates of certain astrolabes. There existed - since the tenth century AD as it seems - some literature on the construction of such plates and on their use, but it has not been studied so far. The twenty-one chapters found in the Istanbul manuscript and edited here look rather like a fragment from a longer work. Most of the chapters describe astronomical applications of these plates, but some also their use for astrological purposes.

Keywords: horizons plate (șafîha āfāqūya), astrolabe, declinations, altitude (Sun, stars), seasonal hours, ascendant, houses, arc of day (of a star).

The plate of horizons belongs to the domain of the astrolabe. It was, however, obviously not an astrolabe as such, but rather a construction engraved on one side of one of the plates of certain astrolabes. ${ }^{2}$

There seem to have existed texts on the construction of the ṣafiha al-āfāqūya such as the one by Abū Ja‘far al-Khāzin (ioth c. AD) cited by al-Bīrūnī, ${ }^{3}$ and Najm al-Dīn al-Miṣrī's book on astronomical instruments (probably ca. 725-740 H/I325-I340, edited in Charette 2003) gives i.a. a short technical description of the construction of the horizons plate in Chapter 26 (= p. 259f. of the English translation, p. 39 of the Arabic text).

[^0]Charette (p. 60, note 34) also mentions some texts on the use of the horizons plate, al-'amal bi-l-safiha al-āfāqūya. Here he mentions first fragments ascribed to 'Alī b. 'Īsā in MS London, BL Or. 5479, with reference to Sezgin VI, I44 note I, where also some other manuscripts are mentioned, but with the author's name in several variants, so that its authenticity is still dubious. Second, Charette mentions a similar risäla, in 64 chapters, in MS Oxford, Bodl. Marsh 663, pp. I15-I26; this one is also listed in Sezgin VI, 285f., who also gives the titles of the first four chapters of the first part; now, we happen to have paper copies of fols. IO5r-IO7v of the London MS mentioned earlier, and here we see that obviously the content in the two manuscripts in Oxford and in London is identical; the titles of the first four chapters in MS London (fols. IO5r-v) are identical with those in MS Oxford as cited by Sezgin. But the authorship of 'Alī b. 'Īsā is somehow uncertain: in MS Oxford the treatise is anonymous, in MS London the title of the text is slightly different: al-'amal bi-l-safihha al-äfāqūya al-jāmi'a al-ma'rūfa bi-l-äfāqīya, and the author, 'Alī b. ‘Īsā, is explicitly mentioned. Third, Charette cites al-Sijzū’s treatise, in I20 chapters, in MS Damascus, Z̄āhirīya 9255; cf. Sezgin VI, 226 (work no. 6). Charette's fourth, and last, quotation is a reference to al-Bīrūnī’s Istī ' $\bar{a} b$.

Now, recently we found in an Istanbul manuscript another, relatively short, text on the use of the horizons plate, of which we edit the Arabic text accompanied by its English translation below. The text is anonymous and relatively short, only 8 folios in the manuscript, in 21 (unnumbered) chapters, and therefore perhaps only a fragment of some longer composition. The whole manuscript appears to be written by the same hand. At the end, on fol. 327r, the copyist states that the copying of all the texts in this manuscript was finished on II Jumādā II 676 ($=9$ November 1277).

The manuscript is Saray, Ahmet III, 3509. It contains seven texts, all on the use of certain astronomical instruments. All its texts are listed by Krause (1936), except for the sixth one. We have a bound volume of paper copies of the MS, covering fols. 26 Ir- 327 r, i.e. texts $2-7$ in the manuscript. Here we give a short survey of the seven texts transmitted in MS Ahmet III, 3509:
(I) al-Ṣūfì, On the use of the astrolabe, 402 chapters, fols. I-260; Krause p. 464 (entry no. 138, work no. 5); Sezgin VI, 2 I 5 (work no. 2). ${ }^{4}$
(2) Ḥāmid b. 'Alī al-Wāsiṭī, On the use of the spherical astrolabe, Introduction (5 chapters) and two Books (57 and 20 chapters), fols. 26Ir-28Ir; Krause p. 458 (entry no. 76); Sezgin VI, 207.
(3) Anonymous, On the use of the crab-shaped astrolabe, 23 chapters, fols. 282r295v; Krause p. 526, Anonymous no. 20; Sezgin VI, 289.
(4) Anonymous, On the use of the southern horizons plate, 2 I (unnumbered) chapters, fols. 296r-303r; Krause p. 526f., Anonymous no. 22; Sezgin VI, 288. This is the text that is edited below.
(5) 'Alī b. 'Īsā, On the knowledge of the use of the Moon table and the eclipse box, 9 chapters, fols. 304r-309v, which is followed by an (unnumbered) chapter "On the use of the șafīha $\bar{a} f \bar{a} q \bar{\imath} y a "$, fols. $309 \mathrm{v}-3$ Iov; Krause p. 447 (work no. 2); Sezgin VI, I43f. (work no. 2).
(6) Anonymous, On the use of the sine-quadrant, 24 chapters, fols. 3IIr-3I9v; not in Krause; Sezgin VI, 287.
(7) Ni'ma b. Aḥmad al-Zaydī, The dustūr-circle and its use, I8 chapters, fols. 320r-327r; Krause p. 520f. (entry no. 23); Sezgin VI, 287.

Our text in MS Ahmet III, 3509/4 was not mentioned or discussed in Charette's book of 2003 (cf. the Index of Manuscripts Quoted, p. 394, where only 3509/3 is listed).

References

Charette: F. Charette, Mathematical Instrumentation in Fourteenth-Century Egypt and Syria. The Illustrated Treatise of Najm al-Dīn al-Mişrı̄, Leiden- Boston: Brill, 2003. Krause: M. Krause, "Stambuler Handschriften islamischer Mathematiker", in: Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, Abteilung B: Studien, Band 3, Heft 4 (Berlin, 1936), pp. 437-532.
Sezgin VI: F Sezgin, Geschichte des arabischen Schrifttums, Vol. VI: Astronomie bis ca. 430 H., Leiden: Brill, 1978.

[^1]
الصفيحة الآفاقية

$$
\begin{aligned}
& \text { [عفوك [} \\
& \text { كيفية العمل بالصفيحة الآفاقية ذات الجنوب وفيها أبواب }
\end{aligned}
$$

[1] الأول، فى عمل حصة الميل ومعرفة جهته ، خذ من أول الخمل إلى الدرجة التى تريد أن تعرف ميلها فإن كان من درجة إلى ص فهو الخصة ونى وهو شمالى

 كان أكثر من رع إلى شس فألق من شس وما بقى فهو الحصة وهو جنوبى صاعد .

وجه آخر، وإن شئت فألق الدرجة التى تريد ميلها من أقرب الاعتدالين إليها وما I0 بقى فهو الحصة فإن كانت الشمس فى البروج الشمالية فالميل شمالى وإن كانت فى البروج الجنوبية فهو جنوبى .
 المجيب المقسوم ص فهمها قطعت العضادة من قوس الميل فهو ميل تلكا الدرجة فـر فإن لم يكن الميل قوساً خطوطة وضعنا العضادة على خط نصف النهار ثم أخرجنا نحا نحوها I5 على خط مرسوم أو متوهم من ميل عدد حصة الميل فى القوس المقسومة فإذا ألقيت العضادة علمنا هناك علامة ثم حركنا العضادة على ميل عدد غاية الميل ونظرنا تلك العلامة وما وافقت من الخطوط المستقيمة المخطوطة أو المتوهمة فنرجع معه نحو القوس فههما صادفنا هناك من الأجزاء فبمثله يكون الميل وجه آخر ، نضع درجة الشمس على تلك البروج على أحد الخطين المتقاطعين فى الصغيحة الآفاقية ونظظر ما وافق من أقسام الميل الذى يكون مرسوماً فيما بين
 мs

دائرتى السرطان والحمل أو الحمل والجدى فما وافت درجة الشمس من تلك الأقسام فهو الميل وابتداء العدد من دائرة الحمل والميزان فإن وقعت درجة المان الشمس على الأقسام التى بين دائرتى الحمل والسرطان فاليل شهالى وإن وقعت على الئلى الأقسام التى بين دائرق الحمل والجدى فاليل جنوبى .

 النتصان ألقيناه من صَ فا بقى فهو غاية ارتفاع الشمس فی دائرة نصف الهار فإنٍ

 30 عرض البلد من الميل وما بقى ألقيناه من ص ول وما بقى فهو غاية ارتفاع الشمس فى ذلك اليوم فق دائرة نصف النهار .
 شمالياً زدناه على ارتفاع رأس الحمل وإن كان جنى
 35 غاية ارتفاع ذلك اليوم من جهة الشمال عن سمت الرأس ومذا لا لا يكون إن إلا في في البلاد التى عروضها أقل من جملة اليل كله .
[8] معرفة الميل من قبل غاية الارتناع ، يلقى أحد القوسين من غاية الارتفاع

 40 الجنوب وإن كانت [. .] فالشمس على دائرة معدل النهار .
[0] معرفة موضع الشمس من قبل غاية الارتناع واليل ، ، إذا كان اليل معلوماً أخذنا هثله من دائرة اليليل وعلمنا علامة ثم وضعنا حرف العضادة على تلك العلامة ثي

نظرنا ما وافق المرى من عدد قوس الارتفاع فما كان فهو حصة الميل فإن كانت
 45 فعلى رأس السرطان وإن كانت هابطة فى الجنو ب فعلى رأس الميزان أو صاعدن المدة فـى الجنوب فعلى رأس الجدى فما اجتمع فهو موضع الشمس ، فإن لم يكن الما الميل معلوماً

 للميل وضعنا العضادة على غاية الميل وخرجنا بخط مستقا 50 العلامة إلى القوس فما وجدنا فهو حصة الميل .

 نصف النهار فنأخذ ارتفاعها حينئذٍ هو غاية ارتفاعها فى ذلك اليوم فإن كانت فـى

 العضادة خفيث ما بلغنا علّمنا هناك علامة ثم نرفع العضادة حتى نضعها على خط نصف النهار ثم نرجع من تلك العلامة على خط مستلى مستيم نحو القوس خفيث ما ما بلغنا فبمثل ذلك العدد تكون حصة الميل ويعمل بها كما وصفنا .

القوسين ذاهبين نحو العضادة فحيث ما بلغنا منها علّمنا عليه علامة ثم نرفعها حتى نضعها على خط نصف النهار ونعود فنرجع من العامة بخط مستقيم نحو القوس

 70 معاك من الساعات وكسورها فهى الساعات الزمانية الماضية الما قبل نصف النهار أو الباقية منه إن كان بعد نصف النهار إن شاء الله .
[^] فى الارتفاع من قبل الساعات الزمانية ، إذا أعطينا ساعات زمانية ماضية من

 علامة ثم نضع العضادة على خط نصف النهار ونخرج .كخط مستقيم من تلك العلامة
 مثل غاية الارتفاع لليوم فههما وقعت عليه تلكا العلامة من الخطوط المستقيمة

 جزء الشمس للأفق الذى بدأنا بالحركة منه فما قطع المرى من أجزاء الحار الحجرة فهو قوس النهار فإذا قسمناه على يب؟ كان الخارج من القنم أجزاء ساعات من الساعات
الزمانية لذلك اليوم .

85 عمل الدوائر بوجه آخر ، وهو أن نضرب الارتفاع الماع العدل فی نصف قوس الهنار ونقسم ما يخرج على ص فا فا خرج فهو الدائر من الفلك إن شاء الله تعالى الى

76 MS
[9] معرفة الطالع ، إذا علمنا الدائر من الفلك وضعنا جزء الشمس على أفق البلد ثم
 وإن كن الدائر من الفلك قوساً باقية النهار وأردنا أن نعلم من قبلها الـنا الطالع فإنا نضع 90 نظير جزء الشمس علي أفق المشرق ثم نحرك المرى بخـا

 على خلاف دور الفلك وإن كانت القوس من آخر النهار حركنا المرى بمنّه بقدر بُعد 95 الشمس من خط وسط السماء فما وافى أفق البلد فهو الطالع .
[•1• معرفة الساعات ، نضع جزء الشمس على الأفق ثم نعلم على المرى من أجزاء
 المرى من أجزاء الحجرة فهو ما دار من الفاء الفلك فإن أردنا قضاء الساء الساعات الزاء المانية قسمناه على أجزاءها وإن أردنا الساعات المعتدلة قسمناه على 10 فما كان فها Ioo الساعات المطلوبة

 قطع المرى فنقسمه على
 I05 ثم نحرك بقدر البيت أيضاً وفى تلكا الحهة فما وافى خط وسط الِّ السط السماء فهو البيت الثانى عشر ثم نحرك بذلك القدر أيضاً وفى الحهة فإن وافى الطالع بعينه خطط وسط السماء وإلا أعدنا العمل فإذا صح لنا ذلك ألقينا ذلك البيت من •7 واحتفظنا

97ادر [97 وأدرنا MS

بالباقى وحركنا المرى بقدره فما وافى خط وسط السماء فهو البيت $\begin{array}{r}\text { } \\ \text { والبيوت الباقية }\end{array}$ نظائر هذه البيوت .

I Io
 على 「 أقسام واحتفظنا بأحدها وسميناه أجزاء ساعات النى النهار المضعّفة ثم ننقص أجزاء ساعات النهار المععفة من •־َ ونسمى الباقى أجزاء ساعات الليا الليل

 وإن أردنا الثالث أدرنا المرى بقدر أجزاء ساعات الليل المار الضعفة مرتين والثامن نظير
 المرى بقدر أجزاء فما وافى خط وسط السماء فهو الحادى عشر وإن أردنا الثا الثنى عشر أدرنا المرى بقدر أجزاء ساعات النهار مرتين والخامس نظير الحادى عشر والسادس I20 نظير الثانى عشر إن شاء الله .
[ّ [1] فى معرفة الطالع إذا كانت أجزاء المراكز معلومة ، إنها كان إما معرفة ذلك من
 على ما وصغنا وإن كان مركز الثانى عشر هو المعلوم زدنا عليه بعد تحا تحويله إلى إلى

 المستقيم وإن كان هو الثانى [ا • $ا$ المظ] ألقينا منه س الثانى عشر وإن كان الثالث ألقينا منه . . ثح نتمم العمل على ما وصفنا وإن كان المعلوم هو الخامس أو السادس نقلناهما إلى الما
 I30 نقلناهما إلى الثانى والثالث وتممنا العمل كما تقد م .
 كا MS
[٪ [1] الآعمال الليلية فى > بعد > الكوكب عن معدل النهار ، آما الكواكب التى
 وأما ما سوى ذلك من الكواكب الثابتة التى ترسم فى الأسطرلابات فإنا
 I35 والجدى فإنا نضع شطبة الكوكب على خط وسط السماء ونعد من دائرة معدل النهار
 مدار الحمل فما كان فهو بعد الكوكب عن معدل النهار وإن كار المن شطبنته دالين

 I40 إلى جهة القطب فلا بد فى معرفة بعده من معدل النهار من جدول الأبعاد فيو جد من موضعه
[10] فى معرفة درجة الكوكب فى الطول من فلك البروج وهو بعده من الحمل ، ضع شطبة الكوكب على خط وسط السماء وانظر ما وافى خط خط وسط وسط السماء من درج البروج فما كان فهى الدرجة التى فيها الكوكب من فلك البروج

I45 [7 17] فى معرفة عرض الكوكب وجهته ، إذا كان مدار الكوكب الذى نريد معرفة عرضه فيما بين مدارى السرطان والجدى فإنا نضع شطبة الكوكب على خط الـي وسط

 I50 الكوكب خارجاً عنها فالعرض جنوبى وإن كان مدار الكوكب داخل مدار السرطان أخذنا عرضه من جدول الأبعاد .
 على ارتفاع رأس الحمل ببلدنا إن كان البعد شمالياً ونتقصه منه إن كان الن جنو بياً فـا فـا
 وإن MS

كا كن من
155 [1A] معرفة بعد الكوكب عن معدل الههار من قبل العرض ، نأخذ عرض الكوكب ونعلم جهته ثم نحفظه ثم نأخذ ميل درجة الكوكب ونـ ونعلم جهتها أيضاً ثم نتظر فإن كان فى جهة واحدة جمعناهما فما كان فهو بعد الكوكب وإن اختلفا نقصنا الأقل من الأكثر فما بقى فهو البعد منسوب إلى جهة الأكثر .
[19] فى معرفة عرض الكوكب من قبل غاية الارتفاع المعلوم ، انقص أقل القوسين
 فإن كن ارتفاع الكوكب أكثر من غاية ارتفاع درجته فالعرض شمالى وراع وإن كان غاية ارتفاع درجته أكثر فالعرض جنوبي أكـي
[٪•] معرفة قوس نهار الكوكب المفروض ، نضع شطبة الكوكب على الأفق ونعلم على المرى فى الحجرة علامة ثم ندير الشبكة حتى نضع الكوكب على خط الما نصف نصف
 كان القوس كاملاً وإذا قسمناه على الكوكب
[[[

Translation

[296r] Treatise on the use of the southern horizons plate.
[296v] In the name of God, the Merciful, the Compassionate. [I ask] your forgiveness, my Lord.

How to use the horizons plate for the south. In it are [several] chapters.
[I] The first [chapter]. On constructing the argument of the declination and knowing its direction. Take [the arc] from the beginning of Aries to the degree of which you wish to know the declination. If it is of a degree up to 90 , then it is the argument, and it is northern, rising. If it is greater than 90, up to 180 , then subtract it from 180: what remains is the argument and it is northern, sinking. If it is greater than 180 , up to 270 , then subtract 180 from it: what remains is the argument and it is southern, sinking. If it is greater than 270 , up to 360 , subtract [it] from 360: what remains is the argument and it is southern, rising.

Another way. If you wish, subtract the degree of which you want the declination from the nearer to it of the two equinoxes: what remains is the argument. So, if the Sun is in the northern signs, then the declination is northern; and if it is in the southern signs, it is southern.
[2] On the construction of the declination. We place the pointer of the alidade on [297r] the equivalent of the number of the argument from the sine-quadrant divided [into] 90 [degrees]. So whatever the alidade cuts from the arc of the declination: that is the declination of that degree. If the declination is not [on] a drawn arc, we place the alidade on the midday line. Then we produce towards it on a drawn or imagined line of declination the number of the argument of the declination in the divided arc. When the alidade is thrown, ${ }^{5}$ we make there a mark. Then we move the alidade on the declination of the number of the extremity of the declination and we see that mark and what it reaches from the straight lines drawn or imagined. We return with it towards the arc. So whatever we meet there of degrees, in that [amount] is the declination.

Another way. We put the degree of the Sun on those signs on one of the two intersecting lines in the horizons plate and we see what it reaches from the divisions of the declination, which is drawn between the circles of Cancer and Aries or [between the circles of] Aries and Capricorn. So what the degree of the Sun fits from those divisions: it is the declination. The beginning of the numbering is from the circle of Aries
5. ulqiyat. If lqyt is to be read, perhaps "When it meets the alidade".
and Libra. If the degree of the Sun falls on the divisions which are between the circles of Aries and Cancer, the declination is northern; and if it falls on the divisions that are between the circles of Aries and Capricorn, then the declination is southern.
[3] Knowing the maximum altitude of the Sun. If the declination is southern, we add it [297v] to the latitude of the region in which we are calculating. If it is northern, we subtract it from it. What results after adding or subtracting we subtract from 90: what remains is the maximum altitude of the Sun in the meridian circle. If the declination of the Sun is on that day equal to the latitude of our region, the Sun goes through our zenith in that day and its maximum altitude is 90 . If the declination is greater than the latitude of the region on that day, we subtract the latitude of the region from the declination, and what remains we subtract from 90: what remains is the maximum altitude of the Sun on that day in the meridian circle.

Another way. We subtract the latitude of the region from 90, and what remains is the altitude of the beginning of Aries. If the declination is northern, we add it to the altitude of the beginning of Aries. If it is southern, we subtract it from it: what it is is the maximum altitude on that day. If it is northern, it is greater than 90 . We subtract it from 180 . What remains is the maximum altitude on that day, on the northern side of the zenith - this is only in the regions whose latitudes are less than the whole of the total declination.
[4] Knowing the declination from the maximum altitude. One of the two arcs is subtracted from the maximum altitude, and the altitude of the beginning of Aries in our region from the greater of the two: what remains is the declination of the Sun on that day. If the arc [298r] of the altitude is greater, the declination is in the direction of north; and if it is smaller, it remains in the direction of south. If it is [equal to it], then the Sun is on the equator-circle.
[5] Knowing the position of the Sun from the maximum altitude and the declination. When the declination is known, we take its equal from the declination circle and we make a mark. Then we place the edge of the alidade on that mark and see what corresponds to the pointer from the numbering of the arc of altitude: what it is, is the argument of the declination. If the Sun is rising in the north, we add the argument to the beginning of Aries; if it is sinking in the north, then to the beginning of Cancer. If it is sinking in the south, then to the beginning of Libra; or [if it is] rising in the south, then to the beginning of Capricorn. What results is the position of the Sun.

If the declination is not known, but the maximum altitude is known, we determine the declination from the maximum altitude as before. Then we determine the position of the Sun from the declination, God willing.

If there is no circle drawn for the declination, we place the alidade on the maximum declination and we proceed in a straight line from the equal of the declination to the alidade and make a mark on it. Then we raise [...] ${ }^{6}$ to the meridian line and return in a straight line from the mark to the arc: what we find is the argument of the declination.
[298v] [6] Knowing the latitude of the region from the position of the Sun when it is known. When the position of the Sun is known, the declination is known, as we have described. Then we observe the Sun until it reaches the meridian circle. We take its altitude at that moment: it is its maximum altitude on that day. If it is in the northern half, we subtract its declination from its maximum altitude; and if it is in the southern half, we add its declination to its maximum altitude. What results after that we subtract from 90; what remains is the latitude of the region.

If the Sun is in the northern half of the zodiac, its declination is not greater than its maximum altitude in either of the two northern quadrants. So that is in the southern half of the Earth. If the qawl ${ }^{7}$ has no arc, we put the pointer of the alidade on the number of the maximum declination in the arc. Then we proceed from the equal of the number of the declination of the Sun on that day in a straight line towards the alidade. Where we arrive we make a mark. Then we raise the alidade until we put it on the meridian line. Then we return from that mark in a straight line towards the arc. Where we arrive, in the equal of that number is the argument of the declination and it is proceeded with it as we have described.
[299r] [7] On determining the seasonal hours. First we determine the maximum altitude of our day. We put the pointer of the alidade on it. We proceed in a straight line from the corresponding number of the measured altitude on the two arcs, moving towards the alidade. Where we end up on it we make a mark. Then we raise it until we place it on the meridian line. Then we return and go back from the mark in a straight line towards the arc. What we reach on it, that number is called the modified altitude [al-irtifā‘ al-mu'addal]. We keep it. Every 15 [degrees] of it we make a seasonal hour and what does not complete I5 we multiply by 4: that is minutes of hours. What you obtain of hours and their fractions, that is the seasonal hours of the day [al-nah $\bar{a} r$] that have passed, if the arc is before midday; or the rest of it, if it is after midday - God willing.
6. Object not mentioned in the text; obviously intended: the alidade. Cf. a similar phrase in Chapter 7.
7. al-qawl literally means "word", which makes no sense in the context. We do not know which word has here been mistranscribed in this way.
[8] On [knowing] the altitude from the seasonal hours. When we are given seasonal hours of the day [al-nahār] that have passed or remaining ones of it and we want to know what is the altitude of those hours if those hours are fewer than six, we [...]. ${ }^{8}$ If they are more than six, we subtract them from 12 and operate with what remains, i.e. we multiply the complete hours by 15 and the minutes with them we divide by [299v] 4. We add that up and make it an arc [...] ${ }^{9}$ and at its end we make a mark. Then we put the alidade on the meridian line and proceed in a straight line from that mark towards the alidade. Where that ends we make a mark. Then we $[\ldots]^{10}$ the alidade until we place its pointer on the equal of the maximum altitude of the day. Wherever that mark falls on the straight lines, with that [value] we proceed towards the arc. Where we arrive on it, on the equal of that number is the altitude of the Sun at that time. ${ }^{\text {II }}$ Then we rotate the rete according to the rotation of the sphere until its opposite reaches the degree of the Sun at the horizon from which we began our motion. The degrees of the rim that the pointer has traversed is the arc of the day. When we divide it by 12 , the result of the division is degrees of hours from the seasonal hours of that day.

Construction of the circles in another way. That is that we multiply the modified altitude by half the arc of the day and divide the result by 90 . What results is what has rotated of the sphere - God Almighty willing.
[9] Knowing the ascendant. When we know the rotation of the [celestial] sphere, we put the degree of the Sun on the horizon of the location. Then we move the pointer in the amount of what we have of the number of the rotation: what reaches the horizon [300r] of the east is the ascendant. If the rotation of the [celestial] sphere is the remainder of the day and we want from this to know the ascendant, we put the opposite degree of the Sun on the horizon of the east. Then we move the pointer contrary to the rotation of the [celestial] sphere in the quantity of the number of that arc: what reaches the eastern horizon of degrees of the zodiac is the ascendant. That can be done in another way. When we have an arc of the day smaller than its half, either from its beginning or from its end, we subtract it from half the arc of day. Then we put the degree of the Sun on the meridian line contrary to the rotation of the sphere. If the arc is from the end of the day, we move the pointer - with His grace - in the quantity of the distance of the Sun from the meridian line. What reaches the horizon of the region is the ascendant.
8. The manuscript has: 'alimn $\bar{a} b i h \bar{a}$, perhaps an error for 'amiln $\bar{a} b i h \bar{a}$, as in the following sentence.
9. The following four words of the text cannot be understood in the context here.
io. The meaning of the following verb, $n-h-t$, remains obscure.
I I. After this the manuscript adds the word 'aläma, "mark", which is meaningless in this place.
[10] Knowing the hours. We place the degree of the Sun on the horizon. Then we mark on the pointer [the reading] from the degrees of the rim and rotate the degree of the Sun until the given ascendant reaches the line of the horizon. We take what the pointer has passed over of the degrees of the rim: it is what has rotated of the [celestial] sphere. If we want the termination of the seasonal hours, we divide it by its [their?] degrees; and if we want the even hours, we divide it by 15 : what it is is the hours sought.
[I I] Knowing [how] to establish the houses When the degree of the ascendant falls on the arc [300v] of the horizon, what reaches the meridian line is the tenth [house]. Then we move the degree of the ascendant to the meridian line and we take what the pointer cuts off; we divide it by 3 . Then we put back the ascendant onto the arc of the horizon and we move the pointer in the quantity of that third - with His grace - [away] from the meridian line. What reaches the meridian line is the eleventh house. Then we move in the quantity of the house again and in that direction: what reaches the meridian line is the twelfth house. Then we move by that quantity again and in that [same] direction. If the same ascendant reaches the meridian line - and if not, we repeat the operation and when that turns out for us correctly -, we subtract that house from 60 and we keep the remainder. We move the pointer in its quantity: what reaches the meridian line is the third house. The remaining houses are the opposites of these houses.
[12] On knowing any house we want after knowing the degree of the ascendant. We put the ascendant on the horizon and we make a mark on the pointer. Then we move the ascendant until it reaches the meridian line: what the pointer passes over we divide into 3 divisions. We keep one of them and we call it "double degrees of the hours of daylight". Then we subtract the double degrees of the hours of daylight from 60 and we call the remainder the "double degrees of the hours of night". If we want the second [division], we place [30Ir] the degree of the ascendant on the meridian line. We turn the pointer in the quantity of the double degrees of the hours of night: what reaches the meridian line is the second house. If we want the third [division], we rotate the pointer in the quantity of the double degrees of the hours of night twice. The eighth [sc. house] is the opposite of the second and the ninth is the opposite of the third [house]. If we want the eleventh [house], we place the ascendant on the horizon and rotate the pointer in the quantity of degrees [?]: ${ }^{12}$ what reaches the meridian line is the eleventh. If we want the twelfth, we rotate the pointer in the quantity of the degrees of the hours of daylight twice. The fifth is the opposite of the eleventh and the sixth is the opposite of the twelfth, God willing.

[^2][13] On knowing the ascendant when the degrees of the centres are known. That is either to know that from the tenth and the fourth - we will establish that [?], or to know [it] from [...], ${ }^{13}$ that is the centre of the third. The rest of the operation is as we have described. If the known [thing] is the centre of the twelfth, we add to it, after transforming it into ascension [al-maṭāli'], 60; then we make it an arc: what results is the centre of the second. The rest of the operation is as before. If the known centre is $[\ldots],{ }^{14}$ namely the second and the third, we apply the contrary: that is that we transform the centre into right ascension [maṭali‘ al-mustaqīm]; if it is the second [30Iv], we subtract from it 60 ; what remains we make an arc: it is the centre of the twelfth. If it is the third, we subtract from it I20; what remains we make an arc: it is the centre of the eleventh. Then we complete the operation as we have described. If the known [centre] is the fifth or the sixth, we transform them [naqalnāhumā] into the eleventh and the twelfth. Then we complete the operation as we have explained. If it is the eighth or ninth, we transform them into the second and the third, and we complete the operation as before.
[14] The nocturnal operations on the distance ${ }^{15}$ of a star from the equator. The stars whose distance to the south is greater than the total declination [i.e. ε] do not exist on the northern astrolabes. As for the other fixed stars that are represented on the astrolabes, we look out: if the pointer of a star ${ }^{16}$ rotates between the courses of Aries and Cancer or the courses of Aries and Capricorn, we put the pointer of the star on the meridian line and count from the equator circle to the pointer of the star in the 24 divided degrees the argument between the two courses. We begin the counting at the course of Aries. What results is the distance of the star from the equator. If the pointer is within the course of Aries, the distance is northern; [302r] if it is outside, the distance is southern. If the star rotates directly on the course of Aries, it has no distance. If the pointer of the star falls within the course of Cancer towards the pole, one has to collect its distance from the equator from the table of distances, there it is found in its place.
[15] On knowing the degree of a star in longitude in the zodiac, that is, its distance from Aries. Put the pointer of the star on the meridian line and see what of the degrees of the signs reaches the meridian line. What it is is the degree on which the star stands in the zodiac.
13. Obviously the definition after "from" (min qibal) has been omitted in the manuscript.
14. Here again obviously something has been omitted in the manuscript.
15. The manuscript has a lacuna here. Obviously, the word $b u$ ' d, "distance", has been omitted.
16. shaṭbat al-kawkab; in Spanish-Arabic texts on (universal) astrolabes shaṭba means each of the two pointed ends of the alidade or the two sighting-plates near the ends of the alidade. In the present text it seems to mean the pointed end of the star-pointers in the rete.
[16] On knowing the latitude of a star and its direction. When the course of the star whose latitude we want to know is between the courses of Cancer and Capricorn, we put the pointer of the star on the meridian line and we see how much of the degrees that are divided into 24 portions among the courses is between the head of the pointer and the degree of the zodiac in which the star is. What it is is the latitude of the star. If the star is inside the zodiac, the latitude is northern; and if the star is outside it, the latitude is southern. But if the star is inside the course of Cancer, we take its latitude from the table of distances.
[302v] [17] Knowing the maximum altitude of a star. We add the distance of the star from the equator to the altitude of the beginning of Aries in our place, if the distance is northern, and we subtract it from it, if it is southern. What results from that is the maximum altitude of the star.
[18] Knowing the distance of a star from the equator from the latitude. We take the latitude of the star and mark its direction and keep it. Then we take the declination [mayl] of the degree of the star and mark its direction also. Then we see: if they are in the same direction, we add them; what it is is the distance of the star. If they are different, we subtract the smaller from the greater: what remains is the distance related to the direction of the greater.
[19] On knowing the latitude of a star from the known maximum altitude. Subtract the smaller of the two arcs from the greater of them, from its maximum altitude and the maximum altitude of its degree. The difference between the two is the latitude of the star. If the altitude of the star is greater than the maximum altitude of its degree, the latitude is northern; and if the maximum altitude of its degree is greater, the latitude is southern.
[20] Knowing the arc of day of a given star. We put the pointer of the star on the horizon and make a mark on the murī (pointer) in the rim (hujra). Then we turn the rete until we place the star on the meridian line. What the murī has passed over of degrees is the arc of half [303r] the day of the star. When we double it, the arc is complete; and when we divide it by 6 , the result of the division is the degrees of the hours of the day of the star.
[21] On knowing the ascendant from the altitude of a star. We construct the maximum altitude of the star as we have said and we construct the seasonal hours with its maximum altitude from the sine as before when operating with the Sun. Then we transform these hours into a rotation and we see: if the altitude of the measurement is westerly, we subtract the rotation from the arc of day of the star; and if it is easterly, we do not change it. We put the star on the horizon and make a mark on the
murī. We turn the rete in the amount of the rotation that has assembled for us since the rising of the star. What reaches the eastern horizon of degrees of the zodiac is the ascendant of that altitude, God willing.

Praise to God for His bounty. God is our support, the best defender, the best lord and the best helper.

[^0]: I. The authors are grateful to Prof. Menso Folkerts and Dr. Benno van Dalen for their help in bringing this publication into its final form.
 2. Cf. Charette 59f. (with two examples mentioned in note 32).
 3. Sezgin VI, 190 (work no. 11).

[^1]: 4. This work has been edited, in facsimile, from this manuscript, by F. Sezgin, Two Books on the Use of the Astrolabe by 'Abd al-Raḥmān al-Ṣūfì, Frankfurt am Main, I986 (in the book, it is the first of two edited texts, covering pp. I-5I9 Arabic).
[^2]: I2. It seems that here something has been omitted in the MS after $a j z \bar{a}$ '.

