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Abstract. Precise knowledge of the differential inverse inelastic mean free path (DIIMFP) and 

differential surface excitation probability (DSEP) of Tungsten is essential for many fields of 

material science. In this paper, a fitting algorithm is applied for extracting DIIMFP and DSEP 

from X-ray photoelectron spectra and electron energy loss spectra. The algorithm uses the 

partial intensity approach as a forward model, in which a spectrum is given as a weighted sum 

of cross-convolved DIIMFPs and DSEPs. The weights are obtained as solutions of the Riccati 

and Lyapunov equations derived from the invariant imbedding principle. The inversion 

algorithm utilizes the parametrization of DIIMFPs and DSEPs on the base of a classical 

Lorentz oscillator. Unknown parameters of the model are found by using the fitting procedure, 

which minimizes the residual between measured spectra and forward simulations. It is found 

that the surface layer of Tungsten contains several sublayers with corresponding Langmuir 

resonances. The thicknesses of these sublayers are proportional to the periods of corresponding 

Langmuir oscillations, as predicted by the theory of R.H. Ritchie.  

1.  Introduction 

For a long time, Tungsten has attracted interest in material science since it has the highest melting 

point of all metals, excellent corrosion resistance and low sputtering coefficient. For quantitative 

studies of energy loss processes of probing electrons, the information on differential inverse inelastic 

mean free path (DIIMFP) and differential surface excitation probability (DSEP) is required. Several 

techniques have been proposed for computing DIIMFP and DSEP involving linear response theory 

and density functional theory. However, such computations are computationally expensive for real 

atomic structures since a many-body quantum-mechanical problem has to be solved. 

An alternative approach to get information on DIIMFP and DSEP is to extract them from electron 

energy loss spectra [1]. Important results using numerical deconvolution schemes have been given by 

W. Werner [2] and Afanas’ev et al [3]. However, the DIIMFP and DSEP extraction problem is 

http://creativecommons.org/licenses/by/3.0
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severely ill-posed. Consequently, numerical deconvolution procedures can lead to unstable and noisy 

results containing a set of unphysical peaks in the retrieved functions. Afanas’ev et al [4] proposed a 

so-called fitting approach, in which the desired functions are parametrized on the base of a classical 

Lorentz oscillator. Unknown parameters are found by using the fitting procedure, which consists of 

computing the simulated spectra in a given energy loss range and matching them with the 

corresponding measurements. This method has been successfully applied for extracting inelastic 

scattering parameters of Be, Mg, Al, Si and Nb. The intent of this paper is to retrieve DIIMFP and 

DSEP for Tungsten from X-ray photoelectron spectra (PES) and transmission electron energy loss 

spectra (TEELS) using the fitting approach. 

2.  Methodology 

2.1.  Forward model: simulating PES and TEELS spectra 

The forward model is used for computations of PES and TEELS. It is based on the partial intensity 

approach [5], in which a spectrum is given as a weighted sum of the cross-convolved DIIMFP and 

DSEP. The weights can be found by using either the Monte-Carlo method, or the invariant imbedding 

method. In the latter case, a set of the matrix Riccati and Lyaponov equations is derived and solved 

numerically by using the backward differential formula (BDF). The computational details are 

described in [6] and references therein. Both PES and TEELS are computed within the same 

framework. Note that this procedure rigorously accounts for multiple scattering processes (unlike, e.g., 

P1- and the transport approximations) and computationally efficient. For instance, it requires less than 

0.01 seconds for computing one PES spectrum on Intel Xeon CPU E5-1620 3.60 GHz. Hence, the 

forward model performance is not an issue in the retrieval procedure. 

2.2.  Modeling of inelastic scattering properties 

The physics of inelastic energy losses in solids is well-known. It involves excitation of collective 

Langmuir oscillations of free electrons and local ionization processes. At the sample interface, there is 

a different loss mode due to a surface plasmon with frequency approximately by a factor 2  lower 

than that of the bulk plasmon. The surface excitations are taken into account by introducing an 

additional layer at the interface, in which the inelastic energy loss is described by DSEP. For transition 

metals, the situation is more complicated since two surface plasmons can be detected in high energy 

resolution spectra (e.g., see [4, 7] for Niobium studies). Consequently, a finer spatial discretization of 

inelastic scattering properties may be required, and the surface layer is divided into two sublayers. In 

this paper, the model with the following peculiarities is used: 

• the sample is assumed to have three layers, namely, surface (S), transitional (G) and bulk (B); 

using this nomenclature, DIIMFP is related to the bulk, while DSEP is used for S- and G-

layers; 

• each layer contains a plasmon with a corresponding frequency 2 / Tω = π , where T is the 

period of oscillations. In the energy loss spectrum, these plasmons form two peaks centered at 

energies ħωS and ħωG with ħ the reduced Planck constant; 

• following Ritchie [8], the thicknesses of S- and G- sublayers are given as 

 
S S e

d T v= , 
G G e

d T v= ,  (1) 

where TS and TG are the periods of oscillations in S- and G-sublayers, respectively, and 
ev  

is 

the electron velocity. 

Bearing this in mind, the unknown DIIMFP and DSEPs are sought using the following ansatz: 
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Here Npl and Nion are the numbers of plasmon and ionization processes taken into account, 

respectively, λpl and λion are the corresponding weights, while xpl(∆) and xion(∆) are the basic functions 

for the plasmon and ionization processes, respectively. For xpl(∆) the following representation is used 

 ( )
( )

pl pl 2
2 2 4

pl

i i

i i

x A
b

β

α αε −

∆
∆ =

∆ − + ∆
. (3) 

Here, Apl is the normalization coefficient, εpl is the effective plasmon energy related to the plasmon 

peak position, b is the attenuation coefficient which governs the plasmon peak width, while α and β 

are the tuning parameters which control the peak asymmetry and enhance the fitting. Essentially, 

Eq. (2) is a modification of the dispersion relation in solids and generalizes the excitation function of a 

classical Lorentz oscillator. The energy losses for ionization are described in the frameworks of 

classical Thompson theory [9] 

 ( ) ( )ion

ion ion2
η

j

j

j ja

A
x J

+
∆ = ∆ −

∆
, (4) 

with Aion j the normalization coefficient, η the Heaviside step function, Jion j the ionization potential, 

and a the coefficient accounting for the electron screening of a Coulomb potential. Finally, for λpl and 

λion the following normalization condition is used 

 
pl ion

pl ion

1 1

1

N N

i j

i j

λ λ
= =

+ =∑ ∑ .  (5) 

Unknown parameters of the model are found by using the fitting procedure, which minimizes the 

residual between the forward model simulations and corresponding measurements. The constraints (1) 

and (5) are explicitly implied in the retrieval algorithm. 

3.  Results and discussion 
For DIIMFP and DSEP retrieval we take PES and TEELS data from [10] and [11], respectively. 

Figure 1 shows the PES data. The photoelectron spectrum was induced by Kα line of Al corresponding 

to 1486.6 eV. The spectrum can be regarded as a superposition of several spectra induced by the 

photoelectron emission from levels 4f7/2, 4f5/2, 5p3/2, 5p1/2, 5s1/2. Such overlapping hinders the fine 

structure of the spectrum. Consequently, only one surface Plasmon can be observed in the PES. 

Therefore, here the two-layer model is used [3, 12]. The DIIMFP and DSEP are retrieved in the energy 

range 1360–1460 eV.  

The high resolution TEELS data is shown in Figure 2. The measurements have been performed 

along the probe direction providing high intensity of the signal. Besides the bulk plasmon at energy 

ħωB = 24.0 eV, two surface plasmons are observed at energies ħωS = 10.4 eV, ħωG = 15.6 eV. Hence, 

two DSEPs, namely, xinS(∆) and xinG(∆), should be used for the TEELS data interpretation. 

Retrieved DIIMFPs and DSEPs within the two-layer model from PES data and the three-layer 

model from TEELS data are shown in Figure 3. The extracted functions are compared against data 

from W.S.M. Werner [13] obtained assuming homogeneous inelastic scattering properties throughout 

the sample. Table 1 lists the values of the fitted parameters. From Figure 3, it can be seen that the one-

layer model can predict the energies of plasmons and ionization potentials. However, it fails to 

correctly reproduce the shape of DIIMFPs. Instead, it provides an effective DIIMFP being some kind 

of mixture of the actual DIIMFP, DSEP and their cross-convolutions. The functions retrieved from 

PES data agree well with those from TEELS. 

Fitted PES and TEELS computed using retrieved DIIMFP/DSEPs are shown in Figures 1 and 2, 

respectively. The simulated spectra are in good agreement with experimental results. Note, that both 

EELS and PES data are interpreted within the same physical model for inelastic scattering energy 

losses without accounting intrinsic excitations [14]. 
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Figure 1. PES data of Tungsten. X-ray probing by monochromatic emission of line Al Kα. 

Experimental data is taken from [10]. The circles refer to measurements, while the solid line 

corresponds to the computed spectrum using retrieved DIIMFP and DSEP functions. 

 

 

 

Figure 2. TEELS spectrum of the Tungsten foil. The thickness of the foil is about 30 nm. The incident 

electron energy is 25 keV. Sighting is in the probe direction. Measurements are taken from [11]. 

DIIMFP xin(∆) is extracted using the three-layer model. 
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Figure 3. Extracted DIIMFP for bulk xinB(∆) and DSEPs for surface layers xinG(∆) and xinS(∆). 

* Dash-and-dot line corresponds to the data from [13]. 

 

Table 1. Retrieved DIIMFP and DSEPs parameters for Tungsten and thicknesses of layers. 

Parameter 

from TEELS spectrum, E0=25 keV  from PES spectrum, E0~1.5 

keV 

B-layer G-layer S-layer  B-layer S-layer 

εpl 24.6 15.8 11.0  24.6 11.0 

b 11.9 6.8 8  12.5 8.7 

α 1.5  0.5 

β 0.5  0.5 

Jion1 41.5  41.5 

λion1 0.10  0.13 

Jion2 53  53 

λion2 0.10  0.13 

d, nm 21.0 2·2.5 2·1.0  ∞ 0.68 

4.  Summary 

The fitting approach has been applied to PES and TEELS data to retrieve DIIMFP and DSEP 

functions of Tungsten. It has been shown that for high-energy resolution TEELS data, it is mandatory 

to account for two surface plasmons at the interface, while for low resolution PES data it is sufficient 

to consider only one surface plasmon. The parametrization of DIIMFP/DSEP functions using the 

classical Lorentz oscillator expressions can be regarded as a regulation procedure, which guarantees a 

physically consistent result. 

The fitting approach for extracting inelastic scattering properties is applicable to the hydrogen 

depth profiling [15, 16] using the elastic peak electron spectroscopy [17]. There, the DIIMFP overlaps 

the hydrogen peak and introduces a systematic error in the retrieved hydrogen concentration. The 
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method described in this paper is suitable for designing an inelastic scattering background subtraction 

tool. This is a topic for our future research. 
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