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Abstract Coordinated flight allows the replacement of a single monolithic spacecraft
with multiple smaller ones, based on the principle of distributed systems. According
to the mission objectives and in order to ensure a safe relative motion, constraints
on the relative distances need to be satisfied. Initially, differential perturbations are
limited by proper orbit design. Then, the induced differential drifts can be properly
handled through corrective maneuvers. In this work several designs are surveyed,
defining the initial configuration of a group of spacecraft while counteracting the
differential perturbations. For each of the investigated designs, focus is placed upon
the number of deployable spacecraft and on the possibility to ensure safe relative
motion through station keeping of the initial configuration, with particular attention
to the required AV budget and the constraints violations.

Keywords multiple spacecraft - coordinated flight - station keeping

1 Introduction

In recent years, the interest in spacecraft coordinated flight has increased considerably
due to the numerous potential advantages associated with the replacement of a sin-
gle monolithic object with several smaller ones. A group of small spacecraft working
together could enhance scientific observations, augment flexibility and redundancy,
reduce costs and risks, and overcome physical limitations. At the same time, however,
new challenges are introduced concerning, for example, the sharing of data, the com-
munication, and the relative motion among the objects. Focusing on this last aspect, it
is trivial to observe that when multiple objects are considered, careful attention must
be paid to the way they move with respect to each other. Constraints may be applied
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in order to ensure a safe relative motion and, according to the relative configuration
and cooperation among the objects, the two branches of formation flight and clus-
ter flight can be distinguished. Due to many technical limitations the spread of the
two architectures did not evolve in the same manner. Consequently, formations are
currently a well researched area, whilst work on clusters has so far been lacking.

In a formation of satellites, the relative configuration is fixed and control actions
are required to maintain it. In a typical mission scenario, the involved sensors and in-
struments require an operational distance on the order of hundreds of meters or more,
which cannot be achieved using a single spacecraft. The resultant design would not
comply with the launch vehicle volume constraints, even if deployment mechanisms
were employed. To overcome this issue, the devices can be distributed on different
spacecraft which fly together, therefore guaranteeing the satisfaction of the relative
distances requirements through the use of control actions. Examples of missions im-
plementing the formation flight concept can be found in TanDEM-X [23], PRISMA
[24], and GRACE [29].

In the case of a cluster there is no need for precise geometry, because the success-
ful outcome of the mission does not strictly depend on specific relative configuration
as in the formation flight case. As long as the distances among the spacecraft are held
within a maximum and a minimum value to ensure inter-module communication and
to avoid collisions, respectively, no control action is required. This results in less
strict relative motion requirements, and consequently, constraints become more re-
laxed, as interventions from the control system are less frequent. In a typical scenario
each member of the cluster allocates a different functionality, like payloads, com-
munications, data storage, etc. and all the functionalities are shared through wireless
connections. Examples for potential application of the cluster flight can be identified
in the missions PLEIADES [18] and SAMSON [16].

In the design of a coordinated spacecraft-based mission, an extremely important
task is the definition of the initial configuration, since the application of proper con-
straints on the relative states will induce a particular desired behavior in the evolution
of the relative motion. Over time corrective maneuvers are required to counteract the
changes in the initial relative geometry deriving from the differential perturbations.
Therefore, to limit the required fuel and the missions costs, it is highly desirable to
have orbits that naturally satisfy the relative motion constraints. Over the years many
authors have worked on the development and improvement of mathematical models
in order to grasp the evolution of the relative motion and simplify the application of
the required constraints (see e.g., [7, 8, 17, 19, 20, 28, 30, 34]).

Once the initial configuration is defined and the spacecraft are deployed, a station
keeping approach could be used to cancel the drifts induced by differential perturba-
tions. Indeed, the initial states ensure satisfaction of the distance constraints and can
be considered reference states to be tracked. This approach is certainly meaningful in
a formation, where the relative geometry constraints considerably limit the tolerable
differential drifts. Perhaps less clear is the benefit posed by station keeping in a clus-
ter scenario. In this case the loose constraints imply that the distance boundaries are
infrequently violated and when this happens the drift from the reference state could
be so large that the recomputation of a new reference state could become more mean-
ingful than the station keeping of the old one. The goal of this work is to evaluate



Multiple Spacecraft Configuration Designs for Coordinated Flight Missions 3

if and if so, by how much the station keeping logic could be beneficial for coordi-
nated flight missions characterized by a different number of spacecraft and different
distance boundaries. To study and implement the station keeping logic, it can be ad-
vantageous to express the relative motion through relative orbital elements, since the
variation over time of the orbital elements is much smaller than that of the Cartesian
coordinates. In addition, corrections of specific elements with theoretically no effect
on the others can be obtained using impulsive control (see e.g., [4, 14,21,25-28]).

According to the type of constraints initially imposed, various initial configura-
tions can be found, differing from each other by the number of deployable spacecraft,
their relative geometry and the effort, in terms of AV, they require for station keep-
ing. A survey and comparison of such initial configurations is the topic of this paper,
which extends the work of Fumenti and Theil [15] and is organized as follows. Sec-
tion 2 introduces the problem and the techniques used to define the initial states of
a group of spacecraft. Section 3 describes how the comparison has been established,
along with the key parameters used, and presents the results of the study. Section 4
reports the final conclusions.

2 Problem Statement

The successful outcome of a coordinated flight-based mission strictly depends on the
relative motion among the involved spacecraft. To ensure satisfaction of relative mo-
tion constraints, much attention must be paid in terms of control actions to counteract
differential perturbations. In order to reduce the fuel expenditure, specific constraints
can be imposed in the definition of the initial conditions according to the desired
behavior, which is dictated by the mission objectives.

From the literature research it emerged that several techniques used to define
the relative initial conditions of a group of satellites are available, hence it has been
decided to examine and compare them, to determine if and how the computed initial
conditions could be used for the deployment of a cluster of objects.

The techniques for the definition of the initial conditions (TIC) that have been
studied are introduced in the upcoming sections but first, in order to make their com-
parison meaningful, a common test setup with the following features is identified:

— the cluster is centered on a virtual point (VP), which is mass-less and moves on
a Low Earth Orbit (LEO); its state at the initial time 7 is defined in Table 1 in
terms of osculating keplerian elements @X,(t0) = (a ¢ i ® Q M)T.

— a minimum distance D,,; must be ensured between any pair of spacecraft to pre-
vent collisions

— amaximum distance D,,,, must be ensured between any spacecraft and the VP to
prevent escaping drifts.

Let us denote with d; and d, the generic distances between any two spacecraft of
the cluster and between a spacecraft and the VP, respectively. The minimum and the
maximum distance constraints are given by:

ds > Dmin (la)
dr < Dmax- (lb)
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Element Value Units
semi-major axis - a 7000.92 km
eccentricity - e 0.01
inclination - 50.99 deg
right ascension of the ascending node - Q2 11.48 deg
argument of perigee - @ 19.12 deg
mean anomaly - M 21.00 deg

Table 1 Initial state of the virtual point.

Although the reason for limiting the distances ds should be trivial, the use of a vir-
tual point and the application of the maximum distance constraint to the distances d,
might be unclear. To ensure that the spacecraft do not drift apart and the cluster does
not disintegrate, instinctively one would upper bound the distances d; and properly
adapt Eq. (1b). The use of the virtual point, however, brings some interesting advan-
tages, such as the opportunity to have direct information about the nominal behavior
of the cluster and, computationally speaking, the reduction of the number of con-
straints used in the definition of the cluster configurations, since only one constraint
of type Eq. (1b) is required for each spacecraft.

The description of each technique is structured in two parts. First the basic logic
is introduced while using the simple chief-deputy framework. The chief is the virtual
point and the state of the deputy is defined such that their relative distance is bounded
by Dyin and Dy,,,. Afterwards, it is shown how the same logic can be adapted to
configure a cluster of n,, modules while also maximizing n,,. Indeed, for cluster flight
the chief-deputy approach does not fit very well as it is, and for several reasons. In the
first place, from the stated assumptions it is clear that there is no need to lower bound
the distances d, and to upper bound the distances d;. Secondly, when several modules
are placed into the cluster and the chief-deputy technique is applied to every module,
information about the motion of the spacecraft with respect to the VP is available, but
nothing can be said about a deputy-deputy type of motion. Plus, the idea of studying
the motion of each agent with respect to all the others is inconceivable, since as n,,
grows the problem quickly becomes extremely complex and unmanageable (for a
given n,, the number of pairs to be considered is in fact equal to 0.5n,,(n,, — 1)).

After a brief introduction of the different techniques, a comparison of their per-
formances will be discussed. Results based on their application to the obtainment of
clusters of different sizes will be presented while focusing on the features of capac-
ity, i.e. how many spacecraft can populate the clusters, and of consumption, i.e. how
much AV is required for cluster keeping. In order to establish a meaningful compar-
ison, a simple and uniform metric is applied to all the techniques: each spacecraft
tracks a reference spot and cluster keeping is investigated through station keeping.

In order to clarify the descriptions of the investigated techniques in the upcom-
ing sections, the distinction between keplerian and non-singular orbital elements is
briefly revised here, since both of them will be used. The keplerian set of elements
@k has been actually already introduced through Table 1, while the non-singular set
is givenby @" = (a u e, e, i 2)7, where e, = ecos® and e, = esin @ are the com-
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ponents of the eccentricity vector E = (e, ey)T and u = @+ M is the mean argument
of latitude. In addition, it is worth recalling that when two spacecraft are considered
and their states are expressed in terms of orbital elements, the relative motion of the
deputy D with respect to the chief C can be expressed in terms of relative orbital el-
ements. In the keplerian case, given the vectors (Bg and (f:g, the relative elements are
simply computed as the difference between the elements of the two objects:

Ak =l — @k = (Aa Ae Ai AQ A0 AM)T. (2)

In the non-singular case, the vectors e} and e} lead to the relative elements through
a nonlinear combination:

AV = ( Aa AL Ae,  Aey  Aip  Aiy )

3)
—( Aafa Au+AQcosi Ae. Aey Ai AQsini )'
where Ad is an additional measure of the differential semi-major axis, AA is the dif-
ferential mean longitude, Ae, and Ae, are the components of the relative eccentricity
vector AE = (Aey Aey)T, and finally Ai, and Aiy are the components of the relative
inclination vector AT = (Ai, Aiy)T.

2.1 Eccentricity/Inclination Vector Separation Technique

The Eccentricity/Inclination (E/I) vector separation technique (EIVS) is particularly
attractive since it can naturally enforce collision avoidance. It has been originally
proposed to face the problem of satellites colocation in geostationary slots [13] and
in the last years widely investigated and successfully applied also for formations of
satellites in LEO ([9, 10, 22]).

To better observe the relative orbit, a rotating reference frame as shown in Fig. 1
can be introduced. This is known as the local vertical local horizontal (LVLH) frame
and has the origin coincident with the chief spacecraft C, while the r8-plane is as-
sumed to lie on its orbital plane with the r-axis parallel to its position vector (positive
outwards).

Fig. 1 LVLH reference frame.
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Through the use of the LVLH frame, the relative motion can be expressed in non-
dimensional form through:

Z — Sx(u)~ Ad — AEcos (u— ) (4)
% = Sy(u) ~ —%A@MA +2AEsin (u—0) (4b)
2 = 8z(u) ~ +Alsin(u— @) (4¢)

where AE and AT are expressed in polar notation, with AE = ||AE|| and A = || AT,
and with ¥ and ¢ being the relative perigee and the relative ascending node [9]. An
overview of the relative motion as described by Eq. (4) is given in Fig. 2.

e, e,

u=9+m
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Fig. 2 Relative motion described by relative eccentricity and inclination vectors. Projections of the relative
orbit on xy-plane (left) and zx-plane (right).

Assuming AL = 0 and Aa = 0 to cancel the offsets and to prevent the drift in the
along-track direction, the collision risks can be reduced by setting:

9 = (p+k7r (5a)
Dyin < amin{AE,AI} (5b)

with integer k, while the constraint

aVAAE? +AI? < Dyax 6)

ensures satisfaction of the maximum distance constraint. In particular, Eq. (5a) repre-
sents the so-called (anti-)parallelism condition, which not only ensures that the radial
and the cross-track distances never vanish together, but also that when one of them
is zero, the other assumes its maximum value, so that even in the presence of posi-
tion uncertainties in the along-track direction, the risks of collisions are minimized.
Equations (5b) and (6) permit instead to define the magnitude of the E/I relative vec-
tors, such that the relative orbit respects the minimum and maximum distances. If the
J» perturbation is included in the model represented by Eq. (4), Aa = 0 is not valid
anymore and Egs. (5) and (6) need to be adapted [9].
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To better relate the E/I relative vectors with the distances, it could be useful to
consider their dimensional version obtained by multiplying them by the semi-major
axis of the VP. The new dimensional parameters can be distinguished from the origi-
nal ones by the presence of a small hat (7), so that AE = aAE , AT = aAI and so on.
Then, in the design phase, it can be helpful to define the elements of the spacecraft in
the planes Ae,Ae, and A;‘;A?y.

Let us now see how the EIVS approach can be used to configure a cluster with
multiple objects. The problem can be geometrically approached in two steps:

1. in each of the two planes AeyAe, and A’z;Ag,, the Dyqy is used to identify a
region around the origin, which includes points satisfying the maximum distance
constraint;

2. in each region, points are chosen with a mutual distance at least equal to D,;y,.

An example of how the described geometric logic can be applied is given in Fig. 3,
where each point represents the relative eccentricity (left plot) and the relative incli-
nation (right plot) vector of a spacecraft with respect to the VP, which is highlighted
as a small circle at the origin of the planes.

20 20
£ ) E o
= 0 @QO ® =0 @OO ©
< 00 < i
~20 -20
—20 0 20 -20 0 20
A%, [km] Aiy [km]

Fig. 3 Example of relative eccentricity (left) and inclination (right) vectors for a cluster of 6 spacecraft.

Provided that in each plane every point is sufficiently spaced from all the oth-
ers and that corresponding points from the two planes satisfy the (anti-)parallelism
condition (Eq. (5a)), the satisfaction of the minimum distance can be ensured. In the
given example, the minimum distance constraint is based on a value D,,;, = 5 km
and is represented by the small circles. The fulfillment of the maximum distance con-
straint can instead be studied by taking into consideration the distance of the points
from the origin of the planes. These constraints are based on a value Dy, = 30 km
and are represented by the gray regions, which can be evaluated through Eq. (4). It
can be noted that in Fig. 3 corresponding points from the two planes, do not only
share the same phase of the relative vectors, but also have the same magnitude. This
is the reason why in the right plot of Fig. 3 the points are concentrated in the center,
leaving the outer part of the gray region empty. The condition of equal magnitudes is
not required by the EIVS technique, but it has been introduced to limit the differential
perturbations experienced by the spacecraft.

With the above-mentioned example it has been shown how the selection of the
relative E/I vectors can be performed while using simple 2-D geometry. Six points
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have been chosen from the gray regions, but this number can easily grow if a smarter
selection is performed and the points are taken, for example, from a regular grid. The
maximization of the spacecraft number n,, therefore becomes a packing problem,
since it turns into the research of the maximum number of points that can be placed
into a given 2-D region. In this study three regular grids have been considered to place
the points in the two planes and they are shown in Figs. 4(a) to 4(c).

(a) Grid N.1

(b) Grid N.2

(c) Grid N.3

Fig. 4 Regular grids for the 2-D packing problem of the EIVS technique.

The grid in Fig. 4(a) is obtained through a square packing, where each point and
the eight surrounding it are located at the center and on the perimeter of a square, re-
spectively. In a similar way, Fig. 4(b) gives an example of a hexagonal packing, since
each point occupies the center of a regular hexagon and is surrounded by six points
located at the vertices of the hexagon. To conclude, the grid presented in Fig. 4(c) is
simply a particular example of the square packing case.

For the evaluation of the number of points, clearly the first and the second grid
should be preferred over the third one. In most of the cases the highest number of
points is obtained with the second grid, but according to the size of the 2-D region,
there are a few cases where the first grid performs better. The third grid returns a num-
ber of points much smaller than the others, but it has been included in the study, as it
is perhaps promising for the analysis of the corrective maneuvers, which will be pre-
sented in the following sections. To properly understand the interest in the Grid N.3,
let us apply it on the A?XA?y plane for the definition of the relative inclination vectors.
The fact that all the points belong to the y-axis leads easily to the result that all the ob-
tained state vectors have the same inclination. Less intuitive is instead the result that
also the semi-major axes are all the same, due to the tight connection between the
differential inclination and the differential semi-major axis [9]. The absence of a dif-
ferential semi-major axis limits considerably the effect of differential perturbations,
with the consequence that the fuel consumption required to cancel the experienced
drifts should be much smaller than that associated with state vectors obtained from
the first or the second grid.

2.2 J, Invariance Technique

The technique of the J, invariance (J2In) consists in placing the spacecraft in orbits
for which the relative drift is minimized [1, 26]. To focus on the long term behavior,
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the mean orbital elements ®X are used, with Eq. (7) showing the effect of the J,
perturbation on their evolution [3]:

aQ 3 (Rg\? .

7d[ = —5.]21’1 (p) COS1 (73.)

d® 3 (Rg\’ 5-

_— = —— —_— —1

= 4J2n ( = > (5cos”i—1) (7b)

dm Rg\? )

== ﬁ+%J2ﬁ <E> V12 (3cos?i—1). (7¢)
P

where 7 = \/t /@ and p = @/ 1 — & are the mean mean motion and the mean semi-
latus rectum of the VP, while y and Rg are the gravitational parameter and the radius
of the Earth. It can be noted that the J, term only alters the elements [Q @ M| and
that these elements only depend on the remaining elements [a € i] (the elements [a € i
remain instead constant, which is why their rates are omitted in Eq. (7)). Therefore,
the minimization of the spacecraft relative drift must be sought by selecting proper
sets of [a e i] that match the rates of variation of [Q @ M].

Several strategies can be followed to perform the matching process [1,26]. For
example, instead of focusing on the rates [§ 0] M], one can decide to combine them
in order to cancel other kinds of drifts, such as the drift in the argument of latitude,
or the drift in the along-track direction. In this paper, the approach from Schaub and
Alfriend [26] is used, which aims at minimizing the drift in the ascending node and in
the argument of latitude. The constraints are expressed in terms of the deputy relative
elements, hence the following expressions can be retrieved:

NAG+2DaeAe =0 (8a)
n*taniAi —4eAe =0 (8b)

where the absolute and differential elements used are the ones of the chief and of the

deputy, respectively. In addition, n = \/1 —2%, D = 4Lﬁ2n5 (443n)(1+5cos?i) and

L = \/a/R, hold. Note that Eq. (8) allows for conputation of Aa and Ai when Ae
is fixed, but it also remains valid if Aa or Ai are given. Finally, in concerns to the
remaining differential elements [AQ A® AM)], they can be freely chosen as long as
they satisfy all the constraints on the relative distances.

Let us now approach the problem for the cluster case. If multiple objects are in-
volved in the process, the J, invariance should be ensured for all of them, meaning
that the relative orbit between any pair of objects should be J, invariant. In this per-
spective Eq. (8) should be applied for each pair of elements (sat/VP and sat/sat), thus
turning into a set of 2n,, conditions, with n, = 0.5n,,(n,, + 1) denoting the number of
the pairs. As soon as n,, > 2 the system becomes over-determined and needs then to
be solved numerically, and so it becomes useful recasting Eq. (8) into the form

|[nAa+2DaeAe| < € (9a)

|n?taniAi —deAe| < € (9b)
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where € is a user-defined threshold within which the solution must satisfy the con-
straints. According to the approximations used in the derivation of Eq. (8) (only
terms of & (J,) have been retained) [26], in the performed study it has been assumed
€ = 1073, in order to have the same order of magnitude of the J, coefficient.

The next step towards the definition of a cluster configuration consists in identi-
fying the range of values from which the parameters A, A€, and Ai can be chosen.

Given two objects A and B and assuming that their relative orbits are J; invariant,
it should be implied that the relative orbit of A with respect to B, as well as the relative
orbit of B with respect to A, is invariant. It should not matter which object is the chief
and which is the deputy. Mathematically speaking Eq. (9) must hold both when it uses
the orbital elements of A with the relative elements of B with respect to A, and when
it uses the orbital elements of B with the relative elements of A with respect to B. In
this paper this condition has been called double invariance and particular attention
has been placed on it, as it has been noted that this condition is not fulfilled if the
differential elements [A@ Ae Ai] are too large. There are cases in which the elements
of B are selected to ensure that its relative orbit with respect to A is J, invariant, but
then inverting the roles and checking the relative orbit of A with respect to B, the J;
invariance constraints are violated.

To avoid this situation, the ranges of the differential elements which are able to
ensure the desired double invariance have been researched. According to the eccen-
tricity of the VP, the attention has been focused on the interval —0.009 < Ae < 0.039,
which has then been divided into a regular grid. For all grid points the double invari-

39

Ae, - 102[—]
"
I

0.3 |

0.9 I I i J
-0.9 0.3 L5 2.7 3.9

Az -107[—]

Fig. 5 Map of the J, double invariance shown in terms of relative eccentricities.

ance has been pairwise checked and the results are depicted in Fig. 5. The gray area
emphasizes the satisfaction of the double invariance, which for example, is fulfilled
by two objects which have orbital elements defined with differential eccentricities
equal to 2.7 x 1072 and —0.3 x 102, but not for those two with orbital elements
obtained from the values 3.9 x 1072 and 1.5 x 1072, Note that the plot is symmetric
with respect to the plane bisector and therefore for both given examples, the results
do not depend on the assignment of values to objects. Finally the black-sided square
highlights the desired range for the differential eccentricity, so that if all the relative
orbits of the cluster satisfy
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~0.023 km < Aa < 0.048 km
—0.007 < Ae < 0.033 (10)
—0.00025rad < Ai < 0.00120 rad

they are all J, invariant with respect to each other. In Eq. (10) the range of Ae comes
directly from Fig. 5, while the ranges for A@ and Ai can be easily computed through
Eq. (8).

To investigate the cluster case, the definition of the initial configuration can be
expressed as the determination of those vectors A@,K (with i = 1,2,...,n,,), whose
elements are bounded by the conditions given in Eq. (10) and at the same time fulfill
a system of nonlinear conditions given by the 2n,, equations obtainable from Eq. (8)
and by additional equations deriving from the application of Eq. (1).

In the way the problem has been described and implemented, it is trivial that
n;, 1S not a variable, but a parameter provided by the user. Therefore, to maximize
the number of spacecraft n, that the cluster can allocate, the problem can be solved
heuristically, by searching for optimal solutions while using different values of n,,.
The search process starts with a low n,,, and constantly increases it, as long as an
optimal solution can be obtained. The search is over and the maximum #,, is detected
when the problem becomes infeasible and no solutions can be found anymore.

2.3 Distance Bounded Natural Orbits Technique

The technique of the distance-bounded natural orbits (DBNO), as suggested by the
name itself, aims at finding orbits that naturally satisfy the distance constraints. The
technique is presented in Mazal and Gurfil [19] and relies on a constraint which is
proven to ensure bounded relative distances when a time invariance assumption for
the environmental perturbations is made. This idea is similar to the J2In approach,
but this time the invariance can take all perturbations imposed by the gravitational
potential into account.
As proven in [19], given two objects A and B with equal ballistic coefficients, if

to+At
®p(to) = ea(fo) + &adt+1000A200]" (11)

fo
then the following condition holds

. AQ . AQ
2Ypin SIN (|2> — Vinax|At] < ds(t) < 2%pqx sin <|2> + Vinax|At] (12)

where V,,,, denotes the maximum speed of A, while %, and ¥,;, denote its maxi-
mum and minimum equatorial projections. It holds indeed () = \/X3(t) + Y2(1),
with X and Y components of the position vector in an inertial frame.
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For a given set of constraints on the minimum and maximum distances D,,;, and
D4y, the values At and AL can be chosen while satisfying

. AQ

2’ymin sin <|2|) _Vmax|At| > Dmin (133-)
. AQ

2Ymax Sin <2|> +Vmax|At| < Dyax (13b)

—14 | | J
—0.02 —-0.01 0 0.01 0.02

AQ [rad]

Fig. 6 Example of At and AL selection while satisfying the constraints on the minimum distance ()
and on the maximum distance ([ ).

Equation (13) can be observed graphically in Fig. 6, showing for which values of
AQ and At the distance constraints are satisfied, when D,,;;, = 5 km and D,,,,, = 100
km are considered. The satisfaction of each constraint is highlighted with a different
color and therefore for the mission design a pair [AQ At] must be selected from the
overlapping area.

In the case of n,, spacecraft, the DBNO technique retains validity as long as the
constraints expressed through Eq. (13) are applied to each pair. The differences in
time and right ascension of the ascending node (RAAN) of the i-th spacecraft with
respect to the VP can be denoted as A Q; and At;, while the differences between any
pair of spacecraft (i, j) can be denoted as

{AQU’ =AQj —AQ L i,j=1,2,...nyand j #i. (14)

At,'j = At()j — Aty

In addition, the small angles approximation can be introduced to replace the sine
functions with their arguments. In this work several D,,,, up to few hundreds of km
will be considered, leading to a maximum differential RAAN of few degrees totally
compatible with this approximation. Equation (13) then turns into:

Ymin|AQij| - Vmax|Atij| >Dpin (15a)
}/mux|A-QOi| + Vmax|At0i| <Dimax- (15b)

It is worth noticing that for the current study the assumptions required by the DBNO
technique do not entirely hold, because in its original formulation the technique re-
quires the equality of the ballistic coefficients, while in the considered scenario the
VP is a mass-less point. This means that if the environmental model includes the
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atmospheric drag, the satisfaction of Eq. (15b) will still ensure a substantial reduc-
tion of the differential perturbation between a spacecraft and the VP, however, the
drifts in their relative motion will be larger than the ones predicted by the original
formulation.

When approaching the problem while trying to maximize the number of mod-
ules n,,, Eq. (15b) is immediately used to define the domain of the differential time
and RAAN from which the sets [A€; Afy;] should be selected. On the other hand,
Eq. (15a) is exploited for the actual selection of the sets [AQq; Afy;]. From a first
glimpse at Eq. (15a) and with the help of Fig. 6, it can be seen that it is never possible
to satisfy the minimum distance constraint with a pure time shift and that a minimum
differential RAAN |AQ]|,in is always required. Indeed, exploiting Eq. (15a) and the
fact that |Az;;| > 0, the minimum value |AQ|,,;, can be retrieved

D .
|AQ;j| > =

= |AQin (16)

min

and the differential RAAN can be chosen according to |[AQ;;| = (1 + k@ )|AL|min
with a small ko > 0. In turn an upper bound for the time shift can be defined as

kQ D min

max

|Al‘,‘j‘ < E|Al‘|max a7
and similarly to what has been set for the differential RAAN, the differential times can
be chosen according to |At;j| = (1 —k;)|At| e With a small k, > 0. It is worth noting
that the determination of the two boundaries |AQ |y, and |A# gy and the selection
of the two coefficients kg and k; do not depend on the specific pair (i, j), therefore it
is possible to define the values of the four parameters just once and subsequently use
them to find the initial condition of all the spacecraft.

At this point, it is clear that dividing the AQ domain into a grid of points equally
spaced by (1 + kg )|AQ|my facilitates the definition of the differential RAAN AQ;
and the maximization of the number of spacecraft n,, at the same time. Concerning
the time shifts, a trivial solution can be obtained assuming Azy; = 0 Vi. Otherwise, if
time shifts different from zero are desired, they can be selected through the knowl-
edge of the |Af|nqx-

2.4 Delayed Elements Technique

The technique of the delayed elements (DeEl) is very similar to the DBNO technique,
since it aims at finding relative orbits which are invariant with respect to the pertur-
bations deriving from the full gravitational potential. The main difference consists in
the fact that the elements of the spacecraft in this case are obtained only through the
use of the time difference Az, which means that all the members of the cluster pass
through the same positions of the virtual point, but with a time difference Az [11]. In
this way, all the spacecraft experience the same perturbations with minimal variations
from the gravitational field and with the consequence that maneuvers to counteract
differential perturbations are greatly reduced.
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The cluster obtainable with this technique can be imagined as a train of space-
craft separated in the along-track direction, just like pearls on a string. Reference to
separation distance d or time difference At is equivalent, since these two quantities
can be easily related by exploiting the knowledge of the mean motion. Indeed, given
a spacecraft with mean motion n moving for a time Az, the distance d between the
initial and the final positions can be approximated with the traveled arc of trajectory
d, which exploiting Kepler’s second law can be expressed as

g abnAt
r

where b is the semi-minor axis of the orbit and r is the position vector magnitude.
It is worth noticing that on an elliptical orbit r changes with time; thus, according
to the location of the spacecraft along the orbit, a different d can correspond to the
same At. For this reason, as soon as the maximum and the minimum values of r are
computed, the minimum and the maximum distances corresponding to the given Az
are also known. From a different point of view, when the D,,;, and D,,,, values are
given, the evaluation of the required time difference At is straightforward. This is
exactly how the initial conditions of two spacecraft can be defined, since in this case
the D,,i, and Dy, are assumed to be known and can be used to retrieve a range of
values from which the At should be picked to satisfy the distance constraints. After
the At is chosen, the initial state of a spacecraft B can be computed from the state of
a spacecraft A through Eq. (11), assuming AQ = 0.

In a similar way, the configuration of an entire cluster can be approached, with
the core of the process consisting in the identification of the time shifts associated
with the different objects of the cluster. From this perspective, following the example
of the DBNO technique, it can be useful to distinguish between the time shifts of the
spacecraft with respect to the VP Afg; and the time shifts among the spacecraft

(18)

AtijZAtoj—Atoi (19)

with i, j = 1,2,...,n, and i # j. The constraints on the distances only appear indi-
rectly, in as much as they are used to define an upper and a lower bound for the
values of the time shifts Azy;, which need to be researched while satisfying Eq. (19).
In particular, the constraint on the maximum distance defines the maximum allowed

time shift |A¢|,,, of a spacecraft with respect to the VP, meaning that it should result
Atg;
‘At ‘mwc

account computing the minimum time shift |Az|,;;, that corresponds to the minimum
distance D,yin, and ensuring that |A#;;| > |At|min V(i, j).

Finally, when the interval [—|A#|nqx |A?|max] is divided into sub-intervals of length
|At|min, the problem of maximizing the number of spacecraft n,, is also addressed,
with the nodes of the grid denoting the time shifts Af;.

in € [—1 1]. On the other hand, the minimum distance constraint is taken into

2.5 Brute Force Packing Technique

The last technique examined is based on brute force to pack the maximum number
of objects inside a fixed volume of space, thus the acronym BFPa has been used.
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The packing logic is similar to the one used for the grids in the EIVS technique,
being that the goal is the maximization of the number of spacecraft while keeping
them at a mutual distance at least equal to D,,;,,. Nevertheless, the problem must now
be formulated in three dimensions. Indeed, in the EIVS case the points represent
mathematical quantities and have to be packed in a 2-D region, while this time they
represent positions in 3-D space.

From the EIVS section the arrangements of the points within a plane are already
known, and for the BFPa technique the first and the second grid can be recycled.
Additional investigation is instead required for the arrangement of the planes in the
third direction, since no information was available from the previously considered
techniques. The simplest solution consists in stacking on top of each other planes of
points of the same type, leading to a structure that can be denoted as simple vertical
stacking. In addition, since the packing problem is well-known in mathematics, it
has been deemed appropriate to use the regular arrangements known as cubic close
packing [31] and hexagonal close packing [32]. An overview of how the described
arrangements are built is given in Fig. 7.

@ plane |
@ plane3

() (b) (c)

Fig. 7 Regular arrangements for close packing of spheres in a 3-D region: a) simple vertical stacking b)
cubic close packing c) hexagonal close packing

The knowledge of the parameter D,,,, can be easily exploited to compute the
volume around the VP accessible by the spacecraft. Then, applying to this region of
space the regular arrangements previously introduced, the positions of the spacecraft
are identified in the LVLH frame. By construction of the grid, those positions ensure
the satisfaction of the constraints at the initial time #y but nothing can be said about the
evolution of the relative motion. To see what happens for ¢ > 7y, one should propagate
the initial state for each spacecraft, compute all the relative distances and check if the
distance constraints hold. In this way, the spacecraft that violate the constraints can
be discarded and a safe cluster can be identified.

To perform the propagation of the initial states it is first required to finish forming
the initial states themselves, given that so far only the positions are known, while the
velocities are still to be determined. For each point of the grid the velocity compo-
nents in the x and y direction can be computed through:

2%+ny=20 (20a)
y+2nx=0 (20b)
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which play the role of constraints required to ensure closed relative motion, as it can
be recovered from Eq. (4) or from the classical definition of the cartesian relative
motion in the Hill frame [5]. It is worth pointing out that while it is fundamental to
minimize the drifts in the along-track direction (Eq. (20b)), it is not strictly necessary
to have relative orbits centered on the virtual point (Eq. (20a)). The use of Eq. (20a)
represents a tradeoff between the computational effort and the size of the state space,
since it allows the reduction of the domain for the search of the velocity components.
No information is in fact available for the computation of the third component z,
which is totally free and has to be necessarily explored in a brute force manner. By
constraining the X, one can already determine two out of three components of the
velocity vector and thus, the brute force has to deal only with one parameter.

Due to the weak conditions imposed to limit the differential perturbations, the
BFPa technique is not expected to be fuel friendly, since the spacecraft drift very fast
from/into each other and a considerable amount of maneuvers is required to keep the
distance constraints satisfied. The advantage of this technique is in the cluster ca-
pacity, since the poor constraints should be able to provide configurations of clusters
populated by a large number of objects.

3 Comparison of the Techniques

To analyze the behavior of the different techniques and perform an effective compar-
ison, the number of spacecraft populating the cluster and the AV they require for the
corrective maneuvers have been considered.

The maximum number of points 7, that can be packed into a given volume of
space around the VP clearly depends on the distance constraints, since for a given
value of Dy, an increase of D,,,, involves a larger volume around the VP with the
opportunity to allocate more points in it, while for a given value of D, an increase
of D,,i,, involves a larger safety distance between any pair of points with a consequent
reduction of their total number for that same volume. This makes n,, dependent on
three different aspects of the problem: the TIC, the D,;,,, and the D,;,,.. To observe the
effect of the distances, the constraints given in Eq. (1) have been applied with several
values of D,,;, and D,,.,. For the sake of brevity, in the following a specific set of
values [Dyin Diay] is denoted as Dg = Diyin/Dinax 0 that, for example, the notation
Dg = 1/10 indicates that the cluster needs to satisfy a D,;, = 1 km and a D,yq = 10
km.

Concerning the AV, it is clear that due to the differential perturbations experi-
enced, the spacecraft will naturally drift over time and even if the cluster is initialized
in such a way to satisfy the distance constraints, sooner or later the relative configu-
ration might become unsafe. The safety of the cluster can be ensured through proper
corrective maneuvers, hence the required AV can be used as a second key parameter
to compare the different techniques.
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3.1 Spots versus Spacecraft

For a better understanding of the techniques comparison, a distinction between the
spots occupied by the spacecraft and the spacecraft themselves has been made.

The spots are reference locations in which the spacecraft are deployed and which
should be tracked. They are directly involved in the search process and are treated
as mass-less points. The ultimate goal is to find locations that satisfy the distance
constraints indefinitely, so that when the spacecraft are deployed in them and track
them through station keeping maneuvers, one can be sure that the distance constraints
will not be violated. Due to this distinction, in the early phase of the study, for each
set [TIC Dyin Dimax], the TIC is used to identify spots that ensure satisfaction of the
distance constraints. Once the spots that meet these constraints have been established,
they are occupied by the spacecraft, and their subsequent motion is studied.

3.2 Number of Spots

For each set [TIC D,y Dynaxl a certain number of candidate spots n, . is obtained
with the initial state of each spot defined as such:

®;(to) = f(a@vr(to),As(TIC)) 1)

where s = 1,2,...,ns .. The function f specifies that the initial state of the s, spot
depends on the initial state of the virtual point ceyp(ty) and on some differences
A(TIC), which are applied to it and in turn depend on the considered TIC. For exam-
ple, the DeEl technique deals with time shifts (A; = At) and propagates the vector
@yp(1p) in time, while the EIVS technique works with non-singular relative elements
(A; = AceY) and adds them directly to the vector @l)p(to).

The expression candidate spots has been used because Eq. (21) only refers to the
initial time 7, and a set of states satisfying the constraints at ¢y is not an insurance for
the future safety of the cluster. Each technique tries to compensate and accommodate
the differential perturbations differently, but these can never be entirely canceled and
the state vectors will always slowly drift towards an unsafe configuration. Therefore,
for the identification of the spots, an additional step is included in the search process
to take also their evolution into account: a desired time frame in which the cluster
must remain safe is fixed and the relative motion of the candidate cluster is checked
for its entire duration. In particular, after the states of the candidate spots are available,
they are converted into Cartesian coordinates and propagated for five orbits, while
also incorporating the J, effect. The choice for such a short time frame is justified
considering that some techniques (EIVS, J2In, BFPa) identify the initial configuration
by using simplified models of the relative motion, which become less reliable over
time. The decision to include the J, perturbation is instead motivated by considering
that its effect is the largest one for a LEO. A spacecraft would also be significantly
perturbed by its interaction with the atmosphere, but it is worth recalling that in this
first phase of the study the focus is on the spots, which can be treated as mass-less
points free from the effect of the drag.
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Once the Cartesian propagation is completed, the relative distances are recovered
and checked. At first the check of the maximum distance from the virtual point is
considered and the violating spots are discarded from the solution. Afterwards, the
attention shifts towards the minimum distance constraint, whose check takes advan-
tage of the graph theory [2, 12]. It is trivial to state that a spot violating the maximum
distance constraint cannot be part of the solution, but if the spots (x,y) violate the
minimum distance there is no need to remove them both; rather is it enough to dis-
card only one of them and consequently, two solutions may be used, i.e. one including
x without y and another including y without x. However, as the number of violations
of the minimum distance constraint increases, it becomes more and more difficult
to identify the spots to remove; hence the graph theory is exploited. In particular, a
graph can be constructed from all the pairs of spots satisfying the minimum distance
constraints, so that the identification of the most populated cluster is the maximum
clique problem [6, 33].

For the sake of clarity, let us consider a practical example with five candidate
spots all satisfying the constraint on the maximum distance. Suppose instead that a
violation of the minimum distance is recorded for the pairs of spots (1, 2), (1, 5), and
(2, 3). The graph associated with the problem can be expressed through its adjacency

matrix:
00110

00011
A=110011
11101
01110

which is a 5x5 symmetric matrix consisting of ones and zeros. In particular, a 0 is
placed on the entire diagonal and in all those elements (i, j) representing a violation
of the minimum distance constraint between the spot i and the spot j. The rest of the
elements are instead filled with a 1. By solving the corresponding maximum clique
problem, three maximum cliques can be found:

C={134} C,={245} C;={345}

This means that given the five candidate spots, the largest safe cluster cannot include
more than three of them, and moreover not every three-element combination of the
five candidates is acceptable, rather only the combinations Cy, Cy, and C;.

The combinations of spots obtained from the resolution of the maximum clique
problem represent then solutions of the initial configuration problem, and once that
they are available the search can be considered concluded. Figure 8 shows how the
number of spots varies with the D,,,, for all the techniques examined and for D,;,
fixed at 1 km, 5 km, 9 km, 13 km, and 17 km. As expected, for every TIC, the number
of returned spots increases when increasing Dy, if the Dy, is given, and decreases
when increasing Dy, if the D), is given. The less populated clusters are the ones
obtained from the EIVS3, whose trend is always the lowest. Similar results can be
obtained through the DBNO technique, while a slight increase in the spots number
is achieved with the J2In and DeEl, which behave similarly, with trends very close
to each other. A first significant increase is achievable through the use of the EIVS1
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and EIVS2, and a second one through the use of the BFPa, which returns the largest
spots number in most of the cases. The seven techniques can then be divided into
three groups (EIVS3-DBNO-J2In-DeEl, EIVS1-EIVS2, and BFPa), whose separa-
tion becomes larger and more easily identifiable when reducing the minimum dis-
tance boundary. This behavior depends on the fact that the constraints required by
the EIVS1-EIVS2 and the BPFa are less restrictive than those imposed by the other
techniques, with the consequence that a larger number of vectors satisfying them can
be found.
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Fig. 8 Number of spots as a function of D, for the different techniques and the different D,y,;,.

Graphically Fig. 9 can also help, giving an overview of the arrangement associ-
ated with the different techniques. Each subfigure is associated with a TIC and shows
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Fig. 9 Spots arrangements returned by the different TIC: (a) EIVSI, 12 spots (b) EIVS2, 10 spots (c)
EIVS3, 4 spots (d) DBNO, 4 spots (e) J2In, 7 spots (f) DeEl, 10 spots (g) BFPa, 28 spots.



Multiple Spacecraft Configuration Designs for Coordinated Flight Missions 21

the initial configuration of spots around the VP when the distance boundaries are
given by Dg = 17/85. The representation is given in the LVLH frame centered on
the virtual point, which is then located at the center of the subfigures and colored
in black. As it can be seen, the spots from J2In and BFPa are distributed in a 3-D
region, while the spots from EIVS1 and EIVS2 are densely organized on a plane and
the spots from EIVS3, DBNO, and DeEl are arranged on a line.

3.3 Number of spacecraft

After the study of the spots had been completed, the attention has been shifted to-
wards the behavior of the spacecraft, with the final goal of evaluating the AV budget
required to ensure the distance constraints are satisfied and thus, that the cluster safety
is maintained throughout. As a matter of fact, the maximum number of spacecraft that
can be packed into a cluster is for sure an important parameter to be considered for a
cluster mission, but at the same time one cannot underestimate the key role played by
the AV budget. To perform this type of analysis, simulations have been run assigning
a spacecraft to each spot of a given initial configuration in a direct correspondence
manner, so that each spacecraft is assigned to a single spot and aims at tracking it
using station keeping maneuvers.

Before specific consideration of AV though, an additional intermediate step is
required to investigate the number of spacecraft, since this number is not necessarily
equal to the number of spots and it can occur that only some spots can host space-
craft. As it can be recalled, every spots configuration had been identified as a solution
only if it could satisfy the distance constraints for a time frame of five orbits under
the J, disturbance. If the spacecraft of the cluster were only perturbed by the J, term,
a regular cycle of corrective maneuvers performed every five orbits could be set, be-
cause the same conditions used for the configuration design would hold. Therefore,
each spacecraft would move exactly as its reference spot does and the cluster would
be safe for at least five orbits. On the contrary, if the same cluster was studied under
a different set of conditions, its safety would not be ensured because the spacecraft
trajectories would evolve differently over time and violations of the distance con-
straints could appear already within the given time frame. When this happens, it can
be decided to properly modify the current configuration, or to simply discard it and
determine a new one. The first option involves removing the spacecraft which violate
the constraints and obtaining a cluster out of a reduced version of the original config-
uration. In the second case, a brand new search process is involved to find a new safe
configuration of spots under the new set of conditions. In this study the first method
has been implemented, because in this way it is possible to see how a predefined
configuration should be modified according to the changes introduced in the design
conditions.

In the performed investigation the new sets of conditions differ from the design
ones in respect to the model describing the motion of the spacecraft and to the safety
time frame considered. In particular, the environmental model includes terms up to
Joo of the gravitational potential, as well as drag, in order to have a more realistic
scenario. Concerning the time frame instead, the constraints verification has not been
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performed only with the five orbits one, rather also time frames of 10 and 15 orbits
have been used. This choice permits the observation of two effects associated with a
time frame increase: a reduction in the spacecraft number and a reduction in the re-
quired station keeping maneuvers. If the time frame increases, the drift of a spacecraft
from its initial condition increases as well, and this in turn increases the probability
that a violation of the constraints occurs. As a consequence, it is expected that the
number of spacecraft within the cluster will decrease, which in turn means that less
maneuvers can be performed; thus, each maneuver must compensate for a larger drift.

For this study, five sample configurations have been observed, one for each value
of the Dy, parameter. The constraints for the maximum distance are instead built on
a value D;,qx = 5D, The results from the study of the number of spacecraft are
reported in Table 2, showing the number of spots n; and the number of spacecraft n,,
for the different techniques and their respective time frames.

Dg Index EIVS1 EIVS2 EIVS3 DBNO J2In DeEl BFPa

ng 12 14 4 4 4 10 27

15 N5 12 14 4 4 4 10 23

10 12 13 4 4 4 10 16

15 12 12 4 4 4 10 11

ng 12 12 4 4 6 10 28

N5 12 12 4 4 6 10 23

3025 N, 10 12 12 4 4 6 10 15
15 12 12 4 4 6 10 11

ng 12 12 4 4 8 10 30

Ny s 12 12 4 4 8 10 21

o3 M, 10 12 12 4 4 8 10 14
M, 15 10 11 4 4 8 10 11

ng 12 12 4 4 7 10 29

Homs 12 12 4 4 7 10 21

13/65 N, 10 12 11 4 4 7 10 15
T, 15 8 10 3 4 7 10 13

ng 12 10 4 4 7 10 28

N5 12 10 4 4 7 10 21

17785 N, 10 8 10 4 4 7 10 17
Ny, 15 6 9 2 4 7 10 15

Table 2 Number of spots and spacecraft obtainable for five sample cluster configurations.

It can be noticed that in Table 2 the number of spacecraft appears as n,,, with
o € [5 10 15]. Through this notation the parameter o expresses the time frame, in
terms of number of orbits, in which the distance constraints are guaranteed to be
satisfied by the n,, spacecraft. Additionally, it can be seen that for a given set of
[Dimin Dimax), the more dense the cluster is, the larger the experienced reduction is.
For the techniques EIVS3, DBNO, and DeEl that configure the cluster as a train of
elements, all the returned spots can be used to deploy spacecraft (except for the sin-
gle case [Dyin Dmayx 0] = [17 85 15] of the EIVS3), since the differential disturbances
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are highly reduced. On the contrary, when the cluster expands on a plane (EIVSI,
EIVS2) and in a volume (BFPa) the differential disturbances are considerably larger
and when the time frame increases, so does the differential drift of the spacecraft
from the path of their reference initial states. This translates to higher chances of
constraints violation, with the consequence that a larger reduction of the number of
spots available for the spacecraft deployment is detected. In this train of thought, an
exception is represented by the J2In, since it also distributes the spots in a 3-D region,
but due to the double invariance constraints they are subject to highly reduced differ-
ential perturbations and the few of them returned do not suffer from any reduction.

3.4 AV Budget

Once that the numbers of spots and spacecraft have been retrieved, the attention can
be finally moved towards the fuel consumption. The different TIC examined try to
counteract the differential perturbations in a different way, hence it is reasonable to
expect a different evolution of the spots/spacecraft over time and therefore, a different
amount of AV required for the station keeping. As already mentioned, indeed for the
AV analysis of each initial configuration a direct correspondence between spacecraft
and spots has been implemented, so that each spacecraft is assigned to a single spot
and tries to track it for the entire time frame while using station keeping maneuvers.
This choice is based on the assumption that if a set of spots satisfying the distance
constraints is available, forcing the spacecraft to track them should be enough to
ensure that their relative distances remain within the allowed boundaries. Also, it has
been deemed appropriate to perform cluster keeping through station keeping because
a proper cluster keeping strategy depends on the specific technique used to define the
initial configuration, while a station keeping approach is simple and generic enough
to represent a uniform metric for the comparison of the different techniques.

The station keeping can be thought of as composed of three phases: offset evalu-
ation, maneuver computation and maneuver execution. In the first phase, the space-
craft computes the offset, in terms of differential orbital elements, of its current state
from its reference state. In the second phase, the maneuver to cancel the offset is
computed as a sequence of impulsive control actions aimed at correcting the orbital
elements [14,26]. Finally, in the third phase the maneuver is executed to steer the
spacecraft towards its reference spot. The control strategy is based on the Gauss Vari-
ational Equations and on the idea of correcting the orbital elements separately, so
that when specific elements are corrected at specific locations along the orbit the un-
desired change on the other elements is minimized [14,26]. Given the intention of
tracking a reference state, it is very useful to have a control approach that can correct
specific elements while minimizing the undesired impact on the others, but this ad-
vantage has a price. Each spacecraft requires several separate control actions and for
their computation it only takes its own offset into account, while the relative motion
with respect to the other spacecraft is neglected. As a result, at the end of the maneu-
ver the offset is removed, but during the transfer arcs between the different provided
impulses the distance boundaries might be exceeded.
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In this framework, it can be noticed that the coordination of the objects inside the
cluster is only partial. On one side, as it will be also explained further in the section,
several logics have been used to trigger the corrections and all of them are based on
the relative motion (they all exploit, directly or indirectly, the violation of the distance
constraints). On the other hand though, each spacecraft is treated individually and
controlled in an uncoordinated way, considering that the relative motion during a
maneuver is not taken into account.

For the AV budget investigation, the focus is placed upon the entire set of con-
figurations presented in Table 2. Also, given the interest in evaluating the AV which
is required by a cluster in nominal conditions, it is supposed that all the spacecraft
are always active and able to perform corrective maneuvers. As previously explained
in Section 3.3, a configuration allocating n,,, spacecraft is ensured to satisfy the
distance constraints for at least a time frame equal to o orbits, hence if a maneuver-
ing cycle is implemented periodically every o orbits, a safe relative motion should be
guaranteed. This control logic is briefly denoted as PM, since at regular time intervals
all the spacecraft measure their offsets, compute the corrective maneuver required to
cancel them and consequently perform the required control actions. In the follow-
ing, the notation PM, refers to the study of the station-keeping problem through the
PM logic for those configurations listed in Table 2 and characterized by a number of
spacecraft equal to 7y, ,.

Let us now observe once again Table 2 and focus on the first line of each hori-
zontal section. These first lines refer to the configurations of the spots and therefore
their values are always at least equal to the values of the three lines below. When
a spacecraft is placed in every spot, the resulting cluster is the densest possible, but
for the BFPa technique violations of the distance constraints occur in a time frame
shorter than five orbits. However, if the attention is paid to the DBNO, J2In, and DeEl
techniques, no violation is recorded prior to 15 orbits and thus, very large time frames
could be used in the PM logic. This suggests that each TIC could use a different time
frame for the PM logic and for this reason an alternative control scheme based on
the constraints violation is also investigated. The logic is denoted as CV and involves
only the spacecraft affected by the violation of the constraints. This means that each
spacecraft executes a correction only in reaction to the violation of one of its distance
constraints, so that the violation of the maximum and of the minimum distance causes
the activation of only one and two spacecraft, respectively.

The PM logic has the advantage that a predefined scheme for the maneuver com-
putation is available, with already known times at which the computation is per-
formed, but clearly this setting requires an a priori analysis of the constraints vio-
lations to properly set the time frame for the maneuvering cycle. Conversely, in the
CV logic the distance constraints are actively used and only the involved spacecraft
actually perform a maneuver, but as it will be seen exploring the results, it can hap-
pen that some spacecraft require very sparse but large corrections, that can produce
severe violations of the constraints.

One parameter for the evaluation and comparison of the results can be identified
in the average AV required by the cluster, i.e. the total AV required by all the space-
craft averaged with respect to n,,. This choice is suggested considering the fact that
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the number of spacecraft changes with the TIC and usually also with the selected
maneuver logic, hence the comparison of the total AV would make no sense.

Figures 10 and 11 compare the results obtained with four maneuver logics for the
initial configuration returned by the technique EIVS2 for Dg = 1/5. The considered
time horizon is 10 days.
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Fig. 10 AV budget required by an initial
configuration from the technique EIVS2 for
four maneuver logics.

Fig. 11 Number of control actions required
by an initial configuration from the tech-
nique EIVS2 for four maneuver logics.

In Fig. 10 the AV budget is shown, while Fig. 11 gives an overview of the number
of required control actions. In both plots a single circle refers to a single spacecraft
of the cluster. The spreading of the circles for a given maneuver logic depends on the
fact that according to the distance between a spacecraft and the VP, the differential
perturbations experienced vary and therefore a different amount of AV is required.
With particular reference to Fig. 11, when the CV maneuver logic is implemented
the differential perturbations cause the spacecraft to violate the distance constraints
at varying times, and so the circles are more dispersed. On the other hand, when the
PM logic is used, all the spacecraft perform the corrective maneuvers periodically,
hence they all require approximately the same number of control actions. It can thus
be summarized that for the shown example the maneuver logic does not have a big
impact on the average AV, rather it affects the number of control actions used and
the corresponding impact upon the propulsion system requirements. As a matter of
fact, an increase in the time interval between two maneuvers implies larger sparse
maneuvers instead of shorter frequent ones.

Table 3 gives instead a measure of the constraints violations recorded in the con-
sidered example, showing the minimum and the maximum distances reached. The
use of percentage values stems from the comparison of the maximum violations with
the foreseen boundaries set at D,,;, = 1 km and D,,,; = 5 km. The violations of the
maximum distance constraints stay below 10% for all the four maneuver schemes,
meaning that in all cases the maximum distance reached is up to approximately 10%
larger than the 5 km boundary value. The 0% value denotes that no violation occurs.
More severe are instead the violations of the minimum distance constraint, since in
the worst case the minimum distance reached decreases until 73% of the 1 km bound-
ary value. It must be pointed out that such constraints violations occur sporadically



26 Federico Fumenti, Stephan Theil

and always within the first one or two orbits after the execution of the first control
action, and as such this does not mean that the station keeping strategy does not work.

PMs PM;y PM;s cv

Dy 6.73% 15.00% 26.87% 21.18%
Dypax 1.22%  9.79% 0% 2.08%

Table 3 Distance violations detected for an initial configuration from the technique EIVS2.

This behavior was anticipated and can be attributed to the particular way the trajec-
tory corrections have been implemented. As a matter of fact, the station keeping is
not instantaneous, but is composed of several separate impulsive control actions, tak-
ing place at different locations along the orbit. Between the first and the last control
action the spacecraft travel on transfer orbit arcs and it is in this short time frame that
the violations are recorded. Indeed, as it can be recalled from the description of the
three phases of the station keeping, for each spacecraft the required maneuvers are
computed to ensure the reference state is tracked, but without taking into considera-
tion the relative motion with respect to the other spacecraft during the execution of
the maneuver itself.

Despite the fact that the CV control logic actually requires a violation of the
distance boundaries to trigger the computation of a correcting maneuver, in general
a violation is clearly undesirable. Nevertheless, in this part of the study the intention
was not really to prevent violations as a whole, rather to see if a station keeping
approach could be sufficient to perform cluster keeping and to obtain a raw evaluation
of the AV budget required by different configuration designs.

In Figs. 12 and 13 an overview of the violations is depicted for the constraint
of the minimum and of the maximum distance, respectively. Each figure is divided
into seven parts in order to compare the different techniques. Each part illustrates the
behavior of a TIC through four bars, which correspond to the four tested maneuvering
schemes ([a, b, ¢, d] = [PM5, PM;o, PM;5, CV]). Recalling that for a single TIC and
a single maneuver logic five sample configurations have been tested, each bar renders
the worst out of the five cases, i.e. the largest percentage violation with respect to the
reference distance boundary. For example, if one considers the EIVS1 technique and
a station keeping strategy applied regularly every five orbits, it can be seen that the
maximum violations of the minimum and of the maximum distance constraints are
below 10% and 5%, respectively.

Observing the different parts of the two figures individually, in most of the cases
the bar height of the PM scheme grows with the maneuvering period. This trend
depends on the fact that, as already mentioned, when the time frame between two
consecutive maneuvers increases, the differential drift of the spacecraft from the path
of their reference states increases as well, so that larger correcting maneuvers are
required; thus, larger violations can be experienced. In addition, in the CV cases the
bars can become much higher than the PM cases, due to the fact that a maneuver
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Fig. 12 Violations overview of the minimum distance constraint.
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Fig. 13 Violations overview of the maximum distance constraint.

already starts with a violation, which then is accentuated by the application of the
corrections.

As a final outcome, it is clear that the station keeping framework is not entirely
violation-free and that the relative motion during the transfer paths should also be
taken into consideration. If this aspect of the problem was implemented, the control
strategy would have been different, consisting of another sequence of control actions
but without a substantial change in the overall estimated AV budget.

To conclude this part of the study and the comparison of the different techniques,
let us now focus on the results of the station keeping investigation in terms of the
AV required by the spacecraft. To develop this analysis, two points of view can be
considered. Let us focus on a single Dg. On one side, one can fix the maneuver logic
and pay attention to the entire configurations. From another perspective, it could be
interesting to fix a maximum AV budget and see, for each TIC, how many spacecraft
comply with this limitation. For a better understanding of these two analyses, let us
have a look at Figs. 14 and 15, and at Fig. 16, respectively.

Figure 14 focuses on the case Dg = 1/5 with station keeping performed every
five orbits. Each circle denotes the AV required by a spacecraft during the entire time
frame of 10 days, while the stars and the solid line connecting them highlight the
average AV required by the entire cluster. As expected, the less differential pertur-
bations are included in the definition of the initial configuration, the larger the drift
among the spacecraft is and the less homogeneous the fuel consumption is. That is
why for the DeEl, DBNO, and J2In the AV of the single spacecraft are very close to
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Fig. 14 Station keeping AV budget for clusters obtained with different TIC, under equivalent conditions
of distance constraints (Dg = 1/5) and maneuver logic (PMs).

the average value, while the fluctuation increases for the EIVS and the BFPa. By as-
suming that each spacecraft always tracks the same spot, a differential consumption
within the cluster was expected. The analysis behind Fig. 14 helps in understanding
how penalizing this effect is for the lifetime of the cluster, and also in identifying the
spots which, in terms of fuel consumption, are the most expensive.

EIVS1 EIVS2 EIVS3 DBNO J2In DeEl BFPa

Lifetime Ratio 1.99 7.16 2.03 036 039 0.06 271

Table 4 Comparison of lifetime ratios between most and least expensive spacecraft.

By focusing, for each configuration, on the two spacecraft that consume the most
and the least, the ratio of their predicted lifetime can be computed and the results are
summarized in Table 4. It can be observed that the differential consumption highly
penalizes the EIVS and the BFPa techniques, with the most expensive spacecraft
consuming all available fuel up to seven times quicker than the most fuel efficient,
and hence cheapest, spacecraft. On the contrary, the reduced differential consumption
associated with the DeEl, DBNO, and J2In techniques, translates into a substantial
reduction in the spacecraft lifetime differences. Figure 15 gives instead an overview
of the distribution of the required AV with respect to the position of the spacecraft
inside the cluster. The configurations are depicted at the initial time.
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Fig. 15 AV distribution for the different positions inside the cluster: (a) EIVSI, 12 spots (b) EIVS2, 14
spots (c) EIVS3, 4 spots (d) DBNO, 4 spots (e) J2In, 4 spots (f) DeEl, 10 spots (g) BFPa, 23 spots.
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The second type of research led instead to Fig. 16, which refers again to the
case Dg = 1/5, but this time all the TIC and the maneuver logics are included. In
this analysis it has been identified how many spacecraft could be deployed from the
different investigated clusters, when a constraint on the maximum available AV is set.
For the case given in Fig. 16 five threshold values are considered. It can be observed
for example, that if the smallest threshold is selected, only spacecraft consuming less
than 0.1 mm/s can be used, which means that only one configuration is available,
i.e. a six-objects cluster from the DeEl technique which performs station keeping
every five orbits. If the threshold is raised to 1.1 mm/s, solutions from all the other
techniques become also available, except for the BFPa. The CV bar of the BFPa does
indeed contain a green section, but only one spacecraft can operate with less than
1.1 mm/s of AV, and in this situation one cannot refer to cluster of objects. To use
clusters from the BFPa the maximum allowed AV should be set to at least 2.1 mm/s.
Similar results are obtained from the other Dg, with the DeEl always demonstrating a
good compromise between large number of spacecraft and low AV budget, followed
by the DBNO and the J2In, and finally by the EIVS and BFPa. In comparison, the
EIVS1, EIVS2, and BFPa can always provide the most populated clusters, albeit the
price for this asset is paid in terms of high AV requirements.

~EIVS1 EIVS2 EIVS3 DBNO J2In DeEl BFPa
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Fig. 16 Number of deployable spacecraft according to different AV thresholds for different TIC and dif-
ferent maneuver logics, in the case Dg = 1/5.

4 Conclusions

By exploiting the concept of fractionation it is possible to split and replace a sin-
gle monolithic spacecraft with multiple smaller ones flying in proximity. In such a
framework a safe relative motion must be guaranteed, bounding the minimum and
the maximum relative distances to prevent collisions and escaping drifts, respec-
tively. With a proper orbit design, the spacecraft might initially satisfy the relative
motion constraints, but due to the differential perturbations acting on them, over time
their configuration slowly becomes unsafe and corrective maneuvers must be per-
formed. In this work several designs have been surveyed, each providing a cluster
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initial configuration while counteracting the differential perturbations with a differ-
ent approach. The identified test setup assumes that: 1) the cluster is centered on a
virtual point; 2) a minimum distance must be ensured between any pair of spacecraft
to prevent collisions; 3) a maximum distance must be ensured between any spacecraft
and the virtual point to prevent escaping drifts; 4) each spacecraft tracks a reference
state through station keeping maneuvers.

In the first part of the investigation, it has been studied how the number of de-
ployable spacecraft changes according to the design technique and to the distance
constraints. Every technique ensures indeed a safe relative motion through the sat-
isfaction of a different set of constraints, with the result that the arrangement (and
in turn the number) of the spacecraft varies. Concerning the distance constraints, as
expected, for every technique the number of deployable spacecraft increases when
increasing the maximum distance (if the minimum distance is given) and decreases
when increasing the minimum distance (if the maximum distance is given).

In the second part of the research, the obtained initial configurations have been
propagated in time and station keeping maneuvers have been implemented to evalu-
ate the AV budget required by the single spacecraft and the entire clusters. To start
with, the AV changes with the design technique, because according to the specific
spacecraft distribution, the differential perturbations to counteract vary. Furthermore,
a dependency on the distance constraints can also be seen, since the larger the dis-
tances are, the larger the differential perturbations to counteract are.

For the study of the AV, several station keeping schemes were analyzed, differing
from each other mainly by the time span between two consecutive maneuvers and the
number of spacecraft involved in each maneuver. In this way it has been possible
to observe and analyze two additional aspects of the problem, i.e. the differential
consumption of fuel experienced by the spacecraft and the small violations of the
distance constraints occurring over time.

Summarizing, from the detailed investigation it emerged that simple station keep-
ing can be a valid option to ensure satisfaction of relative motion constraints among
multiple spacecraft. However, in the mission design phase it is not sufficient to choose
an initial configuration only according to the desired number of spacecraft and the
predicted AV budget. Several additional aspects of the problem need to be taken into
account, such as the spatial distribution of the spacecraft, the need to introduce coun-
termeasures against violations of distance boundaries, the differential consumption
of fuel, etc. All these aspects are clearly interconnected with each other and it is not
possible to identify a configuration which has the best performances from all points
of view. According to the specific requirements of the mission the best fitting con-
figuration can be different, and that is where the performed study plays its role. This
work can indeed provide a helpful tool in order to identify which spots could be used
for specific scenarios and moreover, how a safe relative motion can be guaranteed;
thus ensuring an effective mission - one in which the safety is not compromised.
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