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Abstract
The study of the lifetimes of contrails from a satellite perspective benefits from the extended coverage and
close temporal monitoring. However, the initial stages of the contrail development are not observed from a
satellite platform due to the sub-pixel size of the forming cloud. The final stages may be unobserved as well
when the contrails get spatially diluted and when they lose contrast with their background. In this paper we
apply a Weibull distribution model to describe the survival rate of contrails during their observed life-span
and adjust its two defining parameters (λ and k) to fit a dataset of over 2300 contrails. Using the Weibull
distribution, it is possible to estimate the expected further lifetime of the contrails after satellite observation
ceased. Depending on the actually observed lifetime, the expected extension can range from about 1 to 4 h,
but the overall mean of this duration is about 1.3 h. The time elapsed between contrail formation and first
satellite observation is estimated from the initial width distribution of the contrails. Under the assumption of
a 5 km/h spreading rate, the average age of contrails at the time of their first satellite detection is 1.5 ± 0.4 h.
Using a Monte Carlo simulation, we are able to compute the cumulative distribution of the complete (i.e.
initial spreading, tracking, and after-tracking periods) lifetime of persistent contrails. This complete lifetime
has a mean value of 3.7±2.8 h. The Weibull distribution (k < 1) shows that the probability to survive increases
with contrail age, which corresponds to the actual decay rate of contrails in nature. Additionally, we analyse
lifetime differences between daytime and nighttime contrails. We find that nighttime contrails have slightly
shorter lifetimes than daytime contrails. Although this difference is statistically significant, it remains to be
shown whether this has important physical consequences.
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1 Introduction

In order to determine the impact of contrails on the cli-
mate system, it is necessary to observe their evolution
during their entire lifetime. Geostationary satellites con-
stitute an excellent tool because of their coverage, spa-
tial resolution and temporal resolution. With their help
it is possible to follow closely how different properties
associated with contrails evolve in time. However, the
limited spatial resolution of the satellite causes one in-
herent problem: how long does the contrail live before
it is observed on the satellite image. Currently the only
way to answer the question is by direct observation of a
contrail and a subsequent positive detection on a satellite
image. There have been several case studies in this man-
ner such as the works by Duda et al. (2004) and Atlas
et al. (2006).

Using satellite imagery, tracking algorithms can be
developed that allow us to identify large numbers of in-
dividual contrails and closely study the evolution of their
properties and statistically describe their behaviour. Two
examples are the Automatic Contrail Tracking Algo-
rithm (ACTA) by Vázquez-Navarro et al. (2010), and
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ForTRACC (forecast and tracking the evolution of cloud
clusters) from Vila et al. (2008).

Observations suggest that contrails in suitable en-
vironments can be persistent and cover the sky during
several hours before vanishing. However, an analysis
of the contrail lifetimes is not complete if the elapsed
time between formation and observation on satellite is
unknown. Furthermore, a contrail does not necessarily
cease to exist after it is no longer seen on the satellite
image; it might be too optically thin or might have too
low contrast with its background. Contrail lifetimes are
thus longer than the satellite data suggest. It is important
to estimate the unobserved fraction of contrail lifetimes.
Without such information it is not possible to correctly
quantify the effect of contrails on the climate system. We
have used a mathematical approach based on a Weibull
distribution to describe the observed part of contrail life-
times. This distribution is a generalised form of the ex-
ponential distribution and with a negative exponent it de-
scribes processes whose chance to proceed a further unit
of time increases with time. We show that this is a nat-
ural property of longliving contrails (or contrail cirrus).
The Weibull distribution allows furthermore to compute
the expected additional lifetime of a contrail after its
observation ceases. Unfortunately, it seems there is no
analogous statistical method for the determination of the
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time elapsed between contrail formation and its detec-
tion by the satellite, that is, for the pre-detection time.
Instead, we use the initial width information, which is
part of the ACTA data as well.

We have applied the analysis to a large dataset of
contrails tracked by ACTA over the heavily flown areas
of the North-Atlantic and Europe. The Rapid Scan Ser-
vice of the Meteosat Second Generation satellite en-
ables ACTA to track contrails in 5 minute intervals. The
dataset used in this work is described in Vázquez–
Navarro et al. (2015); it spans a full year and comprises
over 2300 contrails. The longest lived contrail sucess-
fully tracked by ACTA lasted 18 hours.

We present the mathematical analysis in Section 2
and apply it to the dataset in order to retrieve the elapsed
time between contrail formation and first detection as
well as the average survival time of a contrail after ob-
servation. A Monte Carlo method is used to determine
the cumulative distribution of the total lifetime. In Sec-
tion 3 we discuss the results and consider whether there
are lifetime differences between daytime and nighttime
contrails. Section 4 summarises the results.

2 Analysis

2.1 Distribution of observed lifetimes

The ACTA data set contains observational records of
2305 individual contrails, including their effects on the
radiation field at the top of the atmosphere, their length
and width. The individual contrails carry an identifi-
cation number (ID) and are generally observed several
times, that is, they appear in up to 225 subsequent 5-min
scans of Meteosat-SEVIRI. For each contrail ID the
maximum observation number is collected which equals
its observation period in units of 5 min. We start with an
analysis of the observed lifetimes. If the last observa-
tion time is t, one does not know whether the contrail
actually ceased to exist between t and the next SEVIRI
scan or whether it has merely grown too optically thin
or otherwise too faint against the background scene to
be still observable. This possibility is considered later in
Section 2.3 where we make the reasonable assumption
that the contrail “process” does not change at the end
of the observation, or equivalently, that the observation
does not cease because the contrail “process” undergoes
a certain change that is not reflected in the lifetime dis-
tribution parameters to be derived in the present section.
The initial part of contrail lifetime, between contrail for-
mation and its first detection in satellite images will be
treated in Section 2.2.

The ACTA observed lifetime data have roughly been
fitted with exponential distributions in previous publica-
tions (e.g. Vázquez-Navarro et al. 2015) to get rough
estimates of typical contrail lifetimes. But exponentials
are not appropriate for thorough analyses because the
assumption of memorylessness which is exclusively ful-
filled for exponential decay processes (like radioactive
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Figure 1: The distribution of contrail’s observed lifetimes in the
ACTA data base plotted as a survival function.

decay) is not justified for atmospheric phenomena. A
better lifetime model is the Weibull-type decay process;
it takes the memory of atmospheric processes into ac-
count and is more flexible. We shall use it in the fol-
lowing, beginning with the construction of an empirical
survival function.

The survival function, S (t), describes the fraction of
objects (contrails) that are still existent (alive) at time t,
in relation to the number of objects that existed initially,
at t = 0. The data base has n(0) = 2305 contrails and in
each 5 min time step the number of contrails decreases
or stays constant. Let the number of contrails at time t
be n(t), then the empirical survival function is

S (t) = n(t)/n(0), (2.1)

which is a non-increasing function with values in the
real interval [0, 1]. The empirical survival function for
the ACTA data is shown in Figure 1. One can see that the
number of contrails decreases quickly at small observa-
tion times, but the decay rate gets smaller and smaller
over time until the final contrail terminates after more
than 18 h of observation. An exponential decay would
lead to a straight line in such a (half-logarithmic) plot,
and it is seen that such a model would be incorrect.

A better model is the Weibull-model (Weibull
1951), which is a generalisation of the exponential one.
Its survival function has the form

S (t) = exp[−(λ t)k], (2.2)

with a generalised rate coefficient λ > 0 and an exponent
k > 0. The exponential model has the special exponent
k = 1, but in the case of contrails it turns out that k < 1.
The two parameters can be estimated using a Weibull
plot. It is easy to see that

ln[− ln(S )] = k ln λ + k ln t =: a + b ln t. (2.3)

Thus plotting ln[− ln(S )] vs ln t should result in a
straight line if the survival function, S (t), is indeed of
the Weibull-type. This is demonstrated in Figure 2.
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Figure 2: Weibull-plot of the observed contrail lifetimes (black), of
the empirical survival function (thick blue, nearly congruent with the
data curve) together with the corresponding 95 % confidence limits
(thin blue). The red straight line is the best fit (in the chi-square
sense) Weibull survival function from which the parameters can be
determined.

The ACTA data are represented by the black line
which is almost hidden behind the blue line, which in
turn represents an empirical estimate of the survival
function, the so-called Kaplan-Meier estimate (Kaplan
and Meier 1958; Owen 2001). While this estimate it-
self is unnecessary (because it is essentially identical
to the S taken directly as described above), it allows
to compute a confidence band around the S (t) estimate
(thin blue lines, using Greenwood’s formula, see Owen
2001). The confidence band is quite narrow in our case,
only at the high end of the data range where the data be-
come sparse, the confidence band gets broader. The red
line represents a linear fit of ln[− ln(S )] with parame-
ters intercept a = 0.325 and slope b = 0.630. Note that
the value of the intercept depends on the time unit on
the abscissa, for which we choose 1 h. As the slope di-
rectly gives the exponent of the Weibull distribution, we
get k = 0.630, that is, indeed a value below unity. This is
characteristic for processes with ever increasing residual
lifetime. This means, the probability that a contrail sur-
vives another 5 min increases with its age. In contrast,
if the exponent were k = 1, the probability of surviving
the next 5 min would be constant. This is not the case for
contrails. Their tendency to survive the longer the older
they are is a noteworthy property.

It can be seen that the red straight line in Figure 2
is occasionally outside the 95 % confidence band. This
should neither be a problem nor a surprise. The Weibull
decay model is just a simple but flexible model, not
more. It cannot be derived from first principles or from
contrail physics. It is a tool that condenses information
on the individual atmospheric situations of 2305 con-
trails to two numbers, k and λ. It cannot be expected
that this works perfectly. But we are confident that one
can learn certain properties of contrails from such a con-
densation of information, for instance the property men-

tioned above, namely that the survival chance of a con-
trail during the next time unit increases with the con-
trail’s age.

It remains to determine the parameter λ. This can
be computed from the intercept value: λ = ea/k =

1.676 h−1. The mean observed lifetime according to the
Weibull fit is given as

t = λ−1 Γ

(
1 +

1
k

)
, (2.4)

where Γ(·) is the gamma function. In our case we find
t = 0.84 h, while directly from the data we get 0.91 h,
which is a satisfactory agreement. The variance is

σ2
t = λ−2

[
Γ

(
1 +

2
k

)
− Γ2
(
1 +

1
k

)]
, (2.5)

which is 1.96 h2, implying a standard deviation of 1.40 h.
Directly from the data we find 1.41 h. The standard de-
viation is considerably larger than the mean value, a
consequence of the distribution being right-skewed. The
skewness determined from the data is 3.65.

2.2 Initial unobserved lifetime

As SEVIRI cannot observe the initial expansion of a
contrail the initial lifetime is unknown. We can how-
ever estimate it from the initial width distribution using
the rule of thumb that contrails expand with pedestrian
speed (as the late Hermann Mannstein stated in a pri-
vate communication), that is, at about 5 km/h. The initial
width distribution is shown in Figure 3. Directly from
the data we determine the cumulative distribution func-
tion (black curve). The shown probability density func-
tion of the widths is determined using a kernel density
estimate (Epanechnikov kernel with bandwidth 300 m).
This density looks quite symmetric and indeed a Gaus-
sian fit with mean and standard deviation determined
from the width data, 7.7 km and 2.2 km, respectively,
looks quite appropriate for further analysis purposes. A
plot of observed lifetimes against initial widths of the
contrails does not display any kind of correlation, so
we assume that contrail ages at the beginning of ob-
servation and the lifetimes under observation are inde-
pendent variables. However, uncorrelatedness does not
generally imply independence, so we check this further
using the relation WT = W · T between mean values
of independent random variables, W and T . Indeed we
find that this relation is valid for the ACTA data (the dif-
ference between the two sides of the equation is 0.5 %).
Thus, initial widths of the contrails and the total dura-
tions of their observation seem independent quantities.
Using Mannstein’s rule of pedestrian speed (see also
Freudenthaler et al. 1995), the mean age of the con-
trails when they start to appear in the ACTA data is
1.5 ± 0.4 h. The given standard deviation of 0.4 h rep-
resents only the variation of initial widths in the ACTA
data set. The actual uncertainty of the initial spreading
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Figure 3: Contrail widths at the moment when they are first detected
by the satellite. Shown are the empirical cumulative distribution
function (black) and a density function (red, multiplied by 5 for
better visibility) determined using a kernel density estimate. Most
contrails are about 8 km wide initially, but there are also very narrow
ones with a width of less than 1 km and very broad ones with a width
exceeding 15 km. The blue line is a normal distribution (times 5)
with mean 7.7 km and standard deviation 2.2 km. It can be used as
an analytical model for the initial width distribution.

time is larger because contrails expand with different
speeds. The mean age of a contrail when its observa-
tion commences is inversely proportional to the assumed
spreading rate. That is, a relative uncertainty of p per-
cent in the spreading rate leads to the same relative un-
certainty of in the derived initial time.

The total lifetime before the end of observation of
each contrail in the ACTA data can thus be estimated
as the sum of the observed lifetime and the time it took
for the contrail to reach its initial width with an expan-
sion rate of 5 km/h. Figure 4 shows both the cumulative
distribution (black) and the corresponding probability
density (red curve, determined using an Epanechnikov
kernel with bandwidth 0.1 h). These curves are com-
puted from the data and are thus representative for the
ACTA data set. However, if the duration of the initial
unobserved expansion phase is independent from the ob-
served lifetime one can get a more general result by de-
termination of the probability density of the initial plus
observed lifetime as a sum of these independent com-
ponents. This is achieved as a convolution of the two
probability densities fitted to the data above, the Weibull
density for the observed lifetimes and the normal distri-
bution for the initial expansion phase. This convolution
has to be performed numerically since no simple analyt-
ical treatment for this case is known to us. As a convo-
lution is equivalent to the product of the characteristic
functions, we compute the Fourier transforms of the two
pdfs, multiply them and Fourier transform back into the
time domain. The result is shown as the blue curve in
Figure 4 and it is quite similar to the curve obtained from
the data directly. We conclude from this that the result is
not too special for just the ACTA data and we expect
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Figure 4: Cumulative distribution (black curve) of the initial plus
observed lifetime of contrails in the ACTA data set estimated as the
sum of the observed lifetime and the time it took to reach the respec-
tive initial width with an expansion rate of 5 km/h. The red line is
the corresponding probability density computed from the data using
a kernel density estimate. The similar blue line is the convolution
of the Weibull distribution that describes the observed lifetimes and
the normal distribution that describes the initial unobserved times
(computed from the initial widths). The computed maximum is close
to 20 h.

that the pdf of the total lifetime before observation ends
should be similar to the one obtained here when other
observation systems were used.

According to Figure 4 most contrails that can be
observed in satellite imagery reach an age of almost 2 h,
90 % have an age below 4 h until the observation ends,
but some can reach very long lifetimes. The lifetime pdf
is strongly right-skewed.

We note that the pdfs in Figure 4 can be fitted up
to t ≈ 3 h with a gamma distribution (shape parame-
ter k = 8, rate parameter λ = 4), but the right tail of
the gamma pdf falls off too fast (not shown). Plotting
the survival function (one minus the cdf of Figure 4)
on Weibull probability paper yields a curve (black) that
consists of two straight “arms” with a slope change at
ln(T/h) ≈ 0.7, corresponding to about 2 h. This is shown
in Figure 5. The survival behaviour of contrails younger
than that age differs very much from the older ones,
which is signified by the exponents of the Weibull dis-
tributions which are greater than unity for young con-
trails but lower than unity for old contrails. For young
contrails up to about 2 h age the probability to survive
the next 5 min thus decreases with age, while for older
contrails the survival probability increases, as we have
already seen above. This is clearly a peculiar behaviour
that has so far neither been reported nor been explained.
This peculiar behaviour is best shown using the hazard
function

h(t) = −
dn
n dt

= −
dS
S dt

, (2.6)

see Figure 6. n(t) is here the number of contrails that
reach the age t. The hazard function thus describes the
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Figure 6: The hazard rate function for the initial plus observed
contrail lifetimes in the ACTA data versus time. h(t) computed
directly from the data (thin black line) is very noisy due to taking
the logarithmic derivative of noisy data. The red fit is constructed
from the two straight line fits to the survival function in Figure 5.

current relative rate of contrail disappearance from the
data set. Despite of the strong noise caused by taking
the derivative of noisy data, Figure 6 shows clearly that
the hazard rate increases within the first 2 hours or so,
and then decreases. The red line in Figure 6 is a hazard
rate function constructed from the two Weibull fits of
Figure 5; it shows the peculiar behaviour of contrail
lifetimes more clearly than the noisy data.

2.3 Mean extended residual life function

As already stated, a contrail either does cease to exist
or it becomes unobservable for SEVIRI after its final

record in the ACTA data. Both these cases can be treated
as follows.

The probability that the actual lifetime, T , of an ob-
ject exceeds a time τ is given by the survival func-
tion, S (τ). Thus the probability that the actual lifetime
even exceeds τ + δ is S (τ + δ). With these probabili-
ties one can compute the conditional probability that an
object that existed at τ is still present at τ + δ. This con-
ditional probability is

P{T > τ + δ|T > τ} =
S (τ + δ)

S (τ)
, (2.7)

which is to be read as P{event in question | given
condition}. The corresponding conditional probability
density, f (δ|τ), is given as the negative derivative of
P{T > τ + δ|T > τ}:

f (δ|τ) = −
d
dδ

(
S (τ + δ)

S (τ)

)
. (2.8)

Note that this is a probability density for δ with τ being
a parameter. Now,

δ̄(τ) =

∫ ∞
0

δ f (δ|τ) dδ. (2.9)

δ̄(τ) is the expected (i.e. mean) additional lifetime of
all objects that have an actual age τ. Since it depends
on the age, it is possible to compute an overall mean
by integrating it using the age distribution density as
weighting function:

〈δ̄〉 =

∫ ∞
0

δ̄(τ) f (τ) dτ, (2.10)

which does not anymore depend on age.
Now we apply this theoretical program to the resid-

ual lifetime distribution determined above, that is, the
Weibull distribution with rate parameter λ = 1.676 h−1

and shape parameter k = 0.630. Assuming that the
statistics determined above are characteristics of the
contrails’ dispersion phase (i.e. of contrail evolution
more than about 5 min after formation, when aircraft in-
fluence is no longer effective) the Weibull model with
its two parameters is sufficient for the characterisation
of the post-tracking part of the lifetime, which is part of
the dispersion phase as well.

The survival function for a Weibull-type decay pro-
cess has been given above in Eq. (2.2). The conditional
probability for contrails of age τ that their lifetime is ex-
tended at least by δ is thus

P{T > τ + δ|T > τ} =
exp{−[λ(τ + δ)]k}

exp[−(λτ)k]
. (2.11)

The conditional probability density for the extended
lifetime δ, given an age τ, is the derivative of equa-
tion (2.11) times minus one, that is

f (δ|τ) = − exp[(λτ)k]
d
dδ

exp{−[λ(τ + δ)]k}. (2.12)
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It is not necessary to perform the derivative since we
compute the conditional expectation of δ as the first
moment of this conditional density.

δ̄(τ) = − exp[(λτ)k]
∫ ∞

0
δ

d
dδ

exp{−[λ(τ + δ)]k} dδ.

(2.13)

The integral is computable via partial integration.
∫ ∞

0
δ

d
dδ

exp{−[λ(τ + δ)]k} dδ =

[
δ exp{−[λ(τ + δ)]k}

]∞
0

−
∫ ∞

0
exp{−[λ(τ + δ)]k} dδ. (2.14)

The first rhs term is zero and the remaining integral (sub-
stitute t for [λ(τ+δ)]k) is given by an incomplete gamma
function (Γ(·, ·), Abramowitz and Stegun 1972, for-
mula 6.5.3) such that the final expression for the desired
conditional expectation is

δ̄(τ) =
exp[(λτ)k]

kλ
Γ

[
1
k
, (λτ)k

]
. (2.15)

This means, if a contrail has been observed for a pe-
riod τ, one can expect that its lifetime is extended on
average by δ̄(τ). Generally this expression depends on τ.
It differs from the mean value of the Weibull density, but
in the limit limτ→0 δ̄(τ) = τ̄.

As δ̄(τ) depends on age τ, it can be integrated further
over τ with the Weibull density f (τ) as the weighting
function.

〈δ̄〉 =

∫ ∞
0

exp[(λτ)k]
kλ

Γ

[
1
k
, (λτ)k

]
f (τ) dτ (2.16)

=

∫ ∞
0

(λτ)k−1 Γ

[
1
k
, (λτ)k

]
dτ.

The integral can be solved using the substitution x =

(λτ)k which leads to

〈δ̄〉 =

∫ ∞
0

Γ(1/k, x)
dx
kλ

(2.17)

=
1

kλ
Γ

(
1 +

1
k

)

=
1

k2λ
Γ

(
1
k

)
=
τ

k
.

(Abramowitz and Stegun 1972, formula 6.5.37).
The result for the ACTA data is shown in Figure 7.

The expected extension of contrail lifetime after it can
no longer be observed increases with the actual duration
of observation. For contrails that can only be observed
for a period of less than about two hours, the expected
extension after observation is even larger than the obser-
vation period. The overall mean is given in the plot as a
symbol, ⊗. Its value for the ACTA data is 1.34 h, that is,
a little bit longer than the average observation time.
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Figure 7: Expected lifetime extension of contrails in hours versus
duration of observation. The small symbol (⊗) in the lower left cor-
ner marks the overall expectation of lifetime extension irrespective
of the actual duration of observation.

So, taking all results of the analysis together, it can
be seen that the actually observed lifetime of a contrail
is sometimes the smallest part of its actual lifetime. At
least the average values are thus: The average observed
duration is about 0.9 h, but the mean age when they ap-
pear in the satellite imagery is about 1.5 h and the over-
all expected lifetime after the observation with SEVIRI
is no longer possible is about 1.3 h. Thus the actual life-
time of a contrail can easily be 3 times larger than its
observed lifetime.

2.4 Complete lifetime

In section 2.2 we had computed the cumulative distribu-
tion (and the probability density function) of the sum of
the initial unobserved contrail spreading phase and the
tracking period. It was possible to do this via a convo-
lution exploiting the analytical expressions for the two
pdfs at hand. Now we try to compute the distribution for
the complete lifetime, i.e. the two phases just mentioned
plus the unobserved extended lifetime after tracking. Al-
though we have an analytical expression for the latter,
we do not use a convolution here. Instead we employ a
much more simple method, namely Monte Carlo simu-
lation. We draw triples of random numbers. The first one
represents the initial spreading phase and is drawn from
a normal distribution with the parameters given above
(very rare negative numbers are discarded). The second
one represents the tracking period and is taken from a
Weibull distribution as given above. For getting these
random numbers we need the quantile function of the
Weibull distribution which is

Q(p) = λ−1 [− ln(1 − p)]1/k. (2.18)

Here, p is produced by a random number generator for
uniform deviates in the range [0, 1), and the resulting
Q is then Weibull distributed. The third random number
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depends on the one just determined in the same way the
extended lifetime depends on the tracked lifetime. The
needed quantile function in this case is

Q∗(q|Q) = λ−1 {− ln[(1 − q) exp(−(λQ)k)]}1/k − Q.
(2.19)

Again, q is uniformly distributed in [0, 1) and Q∗ has the
desired distributional type, as derived above.

We draw 100000 triples of random numbers (from
these 23 are discarded) and compute the complete life-
time as the sum of the three parts. The result is shown in
Figure 8. The blue line repeats the black line of Figure 4
for comparison and the red line is the distribution of the
complete lifetime according to the Monte Carlo simu-
lation. The increasing horizontal distance between the
blue and red curves may be noted; it reflects the mono-
tonically increasing nature of the expected lifetime ex-
tension as function of the observation time (Figure 7).
The Monte Carlo simulation yields a complete lifetime
distribution of persistent contrails with mean 3.7 h and
standard deviation 2.8 h. 80 % of all persistent contrails
have a liftime of at most 5 h and only about 5 % have
a lifetime exceeding 10 h. It is also noteworthy that the
cdf curves are flat near zero, that is, very short lifetimes
(say less than an hour) are very improbable for persis-
tent contrails and the most probable value is between 2
and 3 h.

3 Discussion

3.1 The peculiar hazard rate behaviour

It is easy to understand that the hazard rate for old con-
trails decreases over time, that is, the probability to sur-
vive the next five minutes increases with contrail age.
Indeed, this should be so because if a contrail gets old it
is located in an ice-supersaturated airmass which in turn

is often characterised by upward air motion (Gierens
and Brinkop 2012). As the air cools, more and more hu-
midity is available for condensation and the contrail total
ice mass grows on and on. The longer the ice mass has
grown (that is the older the contrail is) the longer it will
take to sublimate the ice completely. In other words, the
probability that the ice sublimates completely within the
next five minutes decreases with the ice mass present.
This explains the decreasing hazard rate function for old
contrails.

The situation is less clear for the young contrails for
which we found an increasing hazard rate. This find-
ing is surely correct for those contrails that get suffi-
ciently broad to be detectable by satellite imagery. But
if we could take into account all those contrails that get
not detected because they do not survive until they are
broad enough, the picture could change essentially. The
initial widths of the observed contrails are roughly nor-
mally distributed with a mean of 7.7 km. This is already
quite large a width compared with the typical widths of
contrails soon after their formation, which is typically a
few 100 m (that is, a few times the wing span). As ice-
supersaturation, the condition for contrail persistence, is
given in perhaps 15 % of the flown distances (Gierens
et al. 1999), while the thermodynamic criterion for con-
trail formation, the Schmidt-Appleman criterion (Schu-
mann 1996) is fulfilled as soon as it is colder than about
−40 °C, short non-persistent contrails are much more
frequent than persistent ones that make it into satellite
data. If these unobserved contrails would be taken into
account in the statistics of initial widths, the normal dis-
tribution would probably turn into a distribution with a
mode at a few hundred metres and with probability den-
sity decreasing with width. In other words, if the satellite
instruments were so sensitive that they could see a con-
trail shortly after or even directly at formation, it can be
conceived that the observation time statistics could again
be modelled by a Weibull distribution with k < 1. In this
case the hazard rate would decrease right from the begin-
ning. In fact, all the non-persistent contrails in subsatu-
rated air have a very high hazard rate because they dis-
appear very quickly. Contrails in slightly supersaturated
air survive longer and achieve then a lower hazard rate.
It seems thus that a hazard rate function that starts with
a high value at contrail formation and decreases more
or less continuously with time would be consistent with
expectations from physical considerations. The initially
increasing hazard rate function is probably an artefact of
the observation method.

3.2 Initial lateral expansion rate

The distribution of the initial unobserved times depends
directly on the assumed lateral expansion rate of con-
trails. Of course, this rate is not a constant. Thus the
uncertainty of the initial spreading time is larger than
the 0.4 h computed from the data. Unfortunately, the
ACTA width data themselves are not good enough to
estimate the individual expansion rates, since the width
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is in ACTA defined as the area of a contrail divided by
its length. If we try estimating the expansion rate via
the final and initial widths, we often get negative results,
probably since area and lenght values decrease consid-
erably and get quite uncertain at the end of the obser-
vation, which is one reason to stop it. Freudenthaler
et al. (1995), using a scanning lidar, found lateral expan-
sion rates from 18 m/min to 140 m/min (about 1 km/h
to 8.4 km/h). A probability distribution of these expan-
sion rates is not known. For contrails older than a few
minutes it is the vertical wind shear that drives lateral
expansion. The probability distribution of vertical shear
in flight levels is right-skewed, that is, cases with low
shear predominate (Ernst 2012). It might thus be that
the assumption of an average expansion speed of 5 km/h
is too high. If so, this would mean that the unobserved
inital phase of the ACTA contrails is on average even
larger than the 1.5 h determined above. Furthermore, it
can be assumed that narrow contrails experience a low
expansion speed and broad contrails a high one. If this is
generally true, the distribution of the initial unobserved
times would be narrower than estimated from the as-
sumption of Mannstein’s rule.

3.3 Influence of the sensor characteristics

As argued above, the sensor characteristics must have
an influence on the determination of the hazard function
of young contrails. It is quite conceivable that it has
an influence as well for the lifetime statistics of old
contrails. A contrail can be observed the longer the
more sensitive the satellite instrument is. Thus, if the
instrument is more sensitive, we expect a longer mean
duration of observation. Within the Weibull model this
can be achieved with smaller (but positive) parameters
λ and k, see Eq. (2.4). The effect of a decreasing k
on the mean is very strong, such that it is rather λ
than k which would be affected. A smaller value of λ
would lead to an increased mean extended lifetime as
well (Eq. (2.15)), which sounds paradoxical, but which
is simply a consequence of a Weibull type decay of
contrails with a parameter k < 1. Thus, neither k nor λ
are probably characteristic of the atmospheric processes
alone that carry contrails. Both parameters may depend
on the sensor system used to observe contrails, but the
rate parameter λ is probably more sensitive to the sensor
characteristics than k.

As a test we have divided the dataset into 1150 con-
trails which obtained during their observation period
a maximum optical thickness at 352 nm below 0.271
(“thin” contrails) and 1155 contrails with maximum op-
tical thickness exceeding this value. The method for de-
riving the optical thickness from the IR channels is ex-
plained in detail in Kox et al. (2014) and has been ap-
plied to the ACTA dataset in Vázquez-Navarro et al.
(2015). The survival functions of these two subsets are
plotted in Figure 9, again displayed as Weibull plots (red
and blue thin lines). The optimum linear fits are shown
es well (red and blue thick lines). Obviously the Weibull
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Figure 9: Survival functions in Weibull display for two subsets of
ACTA contrails, optically thinner contrails which obtain a maximum
optical thickness of less than 0.271 during their observation time
(thin red), and contrails that reach a higher optical thickness (thin
blue). The corresponding linear fits are presented in the respective
colour as thick lines. The black line is for comparison. It is the linear
fit obtained before (cf. Figure 2) for the whole data set.

distribution is not a good model for the subset of thin
contrails. Perhaps this is partly due to the finite size of
the data sets. At the high end, where both optical thick-
ness classes have only one surviving member, the sur-
vival functions are nearly equal, 1/1150 and 1/1155, re-
spectively. Thus the curves must approach each other.
Apart from this, comparison with the black line (charac-
terising the whole data set as before) shows that both pa-
rameters (a and b) differ between the subsets themselves
and also between any subset and the whole set. The
λ values for the two subsets are 2.07 h−1 and 0.99 h−1

for the thin and thick contrails, respectively. Not sur-
prisingly, the generalised decay rate is larger for the thin
than for the thick contrails, λ varies by a factor of two
between these two subsets. The values of k vary as well,
but less strongly, and they are both below unity. The gen-
eral property of a hazard rate that decreases with con-
trail age, signified by k < 1, is valid for both subsets
and this should be so according to the physical explana-
tion of this behaviour given above. If one could take into
account contrails that are already initially too optically
thin for detection, one would probably get an even larger
decay rate than for the optically thin subset from above,
but still an exponent k < 1, because the latter is con-
trolled by the physics of contrails more than by sensor
characteristics.

The tracking of contrails in ACTA is actually ini-
tialised with data from MODIS, the Moderate Reso-
lution Imaging Spectroradiometer on board the Terra
satellite, which is a polar orbiting satellite that gives
better spatial resolution than SEVIRI and which is thus
used for contrail detection (Vázquez-Navarro et al.
2010). As an orbiting satellite, Terra overpasses a region
with contrails in relatively short time, and only contrails
present at the satellite overpass times are detectable. The
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question therefore arises whether this can produce a bias
in the analysis. We don’t think so. To produce a such a
bias because of the discrete overpass times would re-
quire that contrail evolution is controlled by processes
with a diurnal cycle which is not the case. Instead,
contrail lifetimes depend on microphysical processes as
crystal growth followed by sedimentation. These in turn
depend on the amount of ice supersaturation, a synoptic
feature. Thus contrail lifetimes are related to synoptic
features, for instance wind speed and direction in com-
parison to the movement of ice supersaturated regions.
The coverage of persistent contrails does not follow a di-
urnal cycle but rather it varies on longer (synoptic) time
scales. This fact is evident for everybody and it makes it
very plausible that the special mode of contrail detection
in ACTA with polar orbiting satellites does not give rise
to biases in the statistical results.

3.4 Considerations on the residual life after
observation

The mean extended lifetime function can formally be
derived when a survival function is determined. In the
expression f (δ|τ), that is, the probability density for
the hypothetical unobserved residual lifetime δ given
a concretely observed lifetime τ, the latter has usually
not any special meaning apart from that it is in the
concrete case known that the lifetime is at least τ. But
in our application τ has the special meaning of being the
end time of the observation period. Or, in other words,
while τ in the theory is un-systematically chosen, here
it appears systematic. Does this pose a problem for the
application?

The question is then how systematic τ actually is. We
stress that there are various circumstances that may lead
to termination of the observation. As already noted, a
contrail might get too optically thin for satellite detec-
tion. Of course, at the end of their lifetime all contrails
get optically thin, but there are several processes that af-
fect the optical thickness of contrails. The rate at which
contrails get optically thin is not a constant. In a cloudy
sky or when multiple contrails are present as in regions
of heavy air traffic the observation of an individual con-
trail can get impossible when the contrast between the
contrail and its background scene gets too weak. Ob-
viously there are many ways this can happen, e.g. the
surface type may change when the contrail is advected,
background clouds may appear or disappear, neighbour-
ing contrails may spread and overlap with the contrail
under investigation. Hence neither in this case there is
a constant rate by which the contrast is reduced. If we
assume, for the sake of argument, that contrails vanish
from the SEVIRI image always when a certain thresh-
old of optical thickness or contrast is undercut, then it
is evident from the variety of possible reasons for this
that it would happen at different times and with contrails
of otherwise (that is apart from optical thickness or con-
trast) different properties. Furthermore, it is not probable
that the end of the observation of an individual contrail

only depends on the contrail and its backgound. It surely
depends as well on the viewing angle between the satel-
lite and the contrail and thus on contrail location. Con-
trails can also disappear from the field of view by ad-
vection and observation ceases when the situation gets
too involved, e.g. when a contrail gets surrounded by
too many other contrails. This all justifies the assump-
tion that the end of a contrail observation is hardly a
systematic point in time; it has much more random than
systematic components. For these reasons one can also
assume that the contrail “process”, if it does not actu-
ally stop before the next SEVIRI scan, proceeds with the
same parameters than before, that is, the same λ and k,
so that the mathematics can be used as shown. But even
if some contrails actually stop to exist, this is included
in the theory: f (δ|τ) is defined for all non-negative real
values of δ.

Contrail cirrus in the global model of Newinger and
Burkhardt (2012) have a considerable larger mean (to-
tal) lifetime (say, 8 h) than the contrails that have been
analysed by ACTA. This is further evidence that con-
trails may exist still after their tracking is over. Addi-
tionally the model contrails comprise specimen that are
too optically thin to be detected at all with a satellite in-
strument. For the model this poses no problem, but here
it points to the fact that satellite data inevitably underlie
selection biases.

3.5 Are there day vs. night differences?

The ACTA data set contains a day/night flag for each
record which is important for a correct interpretation of
the radiative flux data in the set. Here we use it to see
whether there are lifetime differences between contrails
at night and contrails during the day.

The data set contains 1515 contrails that exist only
during daytime, 729 contrails that exist only during
night, and 61 contrails whose lifetime extends from
night to day or from day to night. These numbers in-
dicate that most contrails do not experience a day/night
or night/day transition during their lifetime, but this im-
pression could be aroused or amplified by the mentioned
selection bias.

Figure 10 shows the survival functions for the three
groups of contrails, daytime contrails (blue), nighttime
contrails (black), and the remaining contrails (red). The
survival functions for daytime and nighttime contrails
show similar characteristics as before, a steep decay
at small times and a less steep decay later. A fit with
the same straight line ( f (t) = 0.325 + 0.63t) as before
would not look bad for both curves although it would
in neither case be optimal. From the data we find the
following means and standard deviations of their tracked
lifetimes: daytime t = 0.88±1.26 h, nighttime t = 0.70±
0.99 h. A Kolmogorov-Smirnov test (Press et al. 1989)
indicates that the survival functions differ significantly
(max. distance 0.126, p < 3·10−7). Also the mean values
differ in a statistically significant way, as a Wilcoxon
rank sum test shows (p = 0.0044). May this be as it
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Figure 10: As Figure 1, but with contrails separated for observed
lifetime during day only (blue), during night only (black), or mixed
(red).

is, it does however not show that these small lifetime
differences are physically important.

In contrast, the 61 contrails that experience a day-
night (or vice versa) transition have a lifetime distri-
bution that differs very much from that of the other
contrails. This subset contains the contrails with the
longest lifetimes. The maximum tracked lifetimes of
day- and nighttime contrails in the ACTA data set are
10.67 and 8.67 h, respectively, while that of the mixed
class is 18.75 h. This is not surprising: the longer a con-
trail exists the larger is its chance to exist during the sun-
lit and the dark hours of the day. For a contrail that ex-
ists longer than 12 h this can hardly be avoided outside
the polar circle. The mean tracked lifetime of these con-
trails, t = 4.17 ± 3.54 h, is accordingly much larger than
that of the pure day- or nighttime contrails.

4 Summary and conclusions

The lifetime data of 2305 contrails in the ACTA data
set have been analysed statistically in the present paper.
It is argued that the recorded lifetimes are only a part
of the actual lifetimes of contrails because the satellite-
borne detectors miss the formation and early expansion
phase of contrails and the observation may terminate
if a contrail gets too optically thin or if it loses con-
trast with its background scene. The three components
of contrail lifetimes are the initial expansion phase, the
observed phase, and the potential phase after observa-
tion (extended residual lifetime).

The observed lifetimes can fairly be modelled statis-
tically using a Weibull distribution. The most important
property of the Weibull distribution is its slope parame-
ter k and the fact that k < 1. This means that the prob-

ability that a certain contrail survives the next 5 min in-
creases with the contrail’s age. This property can easily
be explained from the fact that old persistent contrails
are located in ice-supersaturated regions in mostly up-
lifting air. The mean observation time of the ACTA con-
trails is about 0.9 h.

The initial expansion phase of contrails can only in-
directly be evaluated using the recorded initial widths
as proxy of the expansion times. Assuming an average
expansion speed of 5 km/h the contrails expand on aver-
age for 1.5 h before they get detected by a satellite. This
expansion time may be even larger if the average expan-
sion rate is smaller than the assumed 5 km/h. The ini-
tial widths are approximately normally distributed with
a mean of 7.7 km for contrails that live long enough to
become part of the ACTA data. For contrails in gen-
eral, including the large number of non-persistent con-
trails, the initial widths and expansion times are prob-
ably strongly right-skewed. The Weibull model with
k < 1 that works for the observed lifetimes could then
work also if younger and narrower contrails could be
observed as well. The data indicate independence of the
initial widths and the observed lifetimes of contrails.

After the observation of a contrail ceases it can still
exist for a while. The property k < 1 of the Weibull dis-
tribution of tracked lifetimes implies that the expected
lifetime after observation increases with the actual dura-
tion of the observation period. A contrail that has been
observed for two hours can be expected to exist for an-
other two hours, but a contrail that has been observed
for 18 hours can be expected to exist another four hours.
The average over all observation durations of this ex-
tended lifetime after observation is about 1.3 h for the
ACTA data set.

All in all, the actually observed contrail lifetime can
be the smallest of the three lifetime parts. Actual contrail
lifetimes can easily be at least three times as large as the
lifetime measured by satellites. In a Monte Carlo sim-
ulation we can sum the three phases of life together to
derive the distribution function of the complete lifetime.
The mean value (and standard deviation) of it amounts
to 3.7 ± 2.8 h. 80 % of all persistent contrails have life-
times up to 5 h and only about 5 % have lifetimes ex-
ceeding 10 h.

Nightime contrails have on average a slightly shorter
lifetime than daytime contrails in the ACTA data set.
The differences are statistically significant, but whether
they have important physical consequences is at least
doubtful.

Finally we remark that “lifetime” is an ill-defined no-
tion for clouds and contrails. It makes no sense to strive
for exact values. Eventually we are interested in the cli-
mate impact of contrails. In regions as those observed
by SEVIRI, that is the north Atlantic and Europe, air
traffic is dense and it is not the lifetime of individual
contrails that is important. It is rather the lifetime of the
ice-supersaturated regions (Gierens et al. 2012) that is
important since these carry persistent contrails. Studies
of the latter topic are ongoing.
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