Supported by:

on the basis of a decision by the German Bundestag

Next generation energy modelling -

Benefits of applying parallel optimization and high performance computing

Frieder Borggrefe

System Analysis and Technology Assessment DLR - German Aerospace Center Stuttgart

Modelling Smart Grids 2017 26.10.2017, Prague

A PROJECT BY

- 2. The project BEAM-ME
- 3. Decomposition
- 4. Model annotation and PIPS-IPM

2

26.10.2017

It is not all about rocket science in DLR...

DLR

Institute of Engineering Thermodynamics

Systems Analysis and Technology Assessment

26.10.2017

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

3

DLR Energy System Model REMix

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

26.10.2017

DLR Energy System Model REMix

Installed capacities and power generation profile: Energy system models: renew

HVDC lines long-range power and and imports

Transmission grid based on current European AC arid

Electricity demand

and

les

eration of

& electric

Simulate

- policy and technology choices
- influence on future energy demand and supply, and investments
- -> are mostly used in an exploratory manner
- Depend on external assumptions/boundary conditions:
 - Development of economic activities,
 - demographic development,
 - or energy prices on world markets.

generation	pumped hydro	management
nuclear, coal,	compressed air	industry & households,
gas power plants	hydrogen	increases system efficiency

icles (EV) : charging

26.10.2017

5

The Energy System Model REMix

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

26.10.2017

Requirements for Energy System Models Increase

Modelling comes at a cost:

- Small number of time steps
- Or small number of regions
- Or small number of technologies

JRC Times model:

26.10.2017

Energy Sector Integration

The Energy System Model REMix

CMaT 0.2.1.52 - ZIB						hereaster, h	-	100.0 million	And the second second	
File Sync AutoCode Options										
1	×	1= 🖍 🗷 🧕 🧐	<u>Q</u>					- Tefe - en		
Name: ZIB							ноје	ct mo		
User: cao_ka			CodeBase: D:/REMix_	odeBase: D:/REMix_OaM/OptiMo						
000000 Project Modules / Scenario 000000										
Project O CodeBase Find Items	Mo	duleInfo ScenarioInfo Optio	ons Parameter Sets	TimeSeries						
Modules	Mod	lule:convBase								
Basic										
ParameterAndOptions ValidateFunctionHel StartScenario] convBase_distribute.dat 🛅 co	onvBase_fuelCost.dat 🛅 c	onvBase_installe	dCapacities.dat	convBase_sco	enarioCapacities.d	lat 🛅 convBase_technol	logyParameter.dat 🖪	convBase_techToFu
ModuleVersionSummary		Add lines filter 🔻 shown co	olumns, 🛛 🕱 Show parent va	lues 🗌 Disable d	heck on edit					
SaveGdx		convBase_technologies ∇	convBase_yearBuild	EffBrutto	EffNetto	Availability	CapCredit	AmortizationTime	InterestRate	InvestmentSpecifi
TimeSeries_Global Foundation	0	CCGT	_/ 1970	0.409	0.4	0.96	0 (NA)	25	0.06	
Fuels Noder SubAndSuper		0007	1000	0.420	0.42	0.05	0.010		0.00	
Techs	1	CCGI	1980	0.429	0.42	0.90	0 (NA)	25	0.06	
Module	2	CCGT	1990	0.509	0.5	0.96	0 (NA)	25	0.06	
hy_Balance	3	CCGT	2000	0.559	0.55	0.96	0 (NA)	25	0.06	
Leat_demand FuelsAndACost	4	CCGT	2010	0.59	0.581	0.96	0 (NA)	25	0.06	
Transport_ACSimple			2020	0.00	0.001	0.00	0,000		0.00	
Transport_DCSimple	2	CCGI	2020	0.61	0.601	0.96	0 (NA)	25	0.06	
Chp_standard	6	CCGT	2030	0.63	0.621	0.96	0 (NA)	25	0.06	
- X demand_electrical	7	CCGT	2040	0.63	0.621	0.96	0 (NA)	25	0.06	
eCars smpl	8	CCGT	2050	0.63	0.621	0.96	0 (NA)	25	0.06	
🗶 heat_balance										
heat_boller heat_electricBoiler	9	CCG1_H2Cen	1970	0.409	0.4	0.96	0 (NA)	25	0.06	
heat_geothermal	10	CCGT_H2Cen	1980	0.429	0.42	0.96	0 (NA)	25	0.06	
heat_solar	11	CCGT_H2Cen	1990	0.509	0.5	0.96	0 (NA)	25	0.06	
heat_storage	12	CCGT H2Cen	2000	0.559	0.55	0.96	0 (NA)	25	0.06	
hy_FixedAnnualDemand hy_NaturalGasNat	-	0007.000	2000		0.504	0.00	0,000	25	0.00	
hy_ReconversionCentral	13	CCG1_H2Cen	2010	0.59	0.581	0.96	0 (NA)	25	0.06	
hy_Storage	14	CCGT_H2Cen	2020	0.61	0.601	0.96	0 (NA)	25	0.06	
	15	CCGT_H2Cen	2030	0.674	0.665	0.96	0 (NA)	25	0.06	
E- ZIB_Base	•									
i → NoP2PCSP								Errors, War	nings totatatatatata	
2050 = 2050 central	• Al ((68) CErrors (36) Warning	s (32) 🔿 Fatal (0)							

9

26.10.2017

The Energy System Model REMix

26.10.2017

2. The project BEAM-ME

- 3. Decomposition
- 4. Model annotation and PIPS-IPM

Idea and scope of BEAM-ME

Reduction of solution times urgently needed to enable the reflection of energy system complexity in state-of-the-art models

- Evaluation of different approaches to reduce model solution times
 - Increased Modelling efficiency
 - Higher computing power
- Implementation of selected approaches into REMix
- Assessment of the transferability to other models
- Definition of best-practice strategies

Frieder Borggrefe (DLR) Modelling Smart Grids 2017, Prague

SEAM-ME

BEAM-ME: Optimizing performance of ESM

BEAM-ME: Optimizing performance of ESM

Frieder Borggrefe (DLR)

Nodes! Nodes? Nodes !? - Challenge: Common language

Frieder Borggrefe (DLR)

- 1. Introduction energy system Modelling and constraints
- 2. The project BEAM-ME
- 3. Decomposition
- 4. Model annotation and PIPS-IPM

16

26.10.2017

Categorization of speed-up approaches

Frieder Borggrefe (DLR)

Benders decomposition for two-stage stochastic optimization

Investment -> Master problem:

 Decide now which capacities should be expanded

Dispatch -> Sub problem:

• Decide later on economic dispatch to satisfy electrical demand with capacities given by master problem

Mathematical formulation in LP table

Linking variables:

Installed capacities, connecting the capacity expansion problem and the dispatch problem

26.10.2017

Deterministic Model

- Size of LP increases with number of scenarios, solved by SIMPLEX / Barrier
- **Out of memory** for typical REMix problems with scenario dimension

Benders Decomposition

 Memory demand scales with number of parallel solve processes

26.10.2017

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

19

Challenges 3: Efficient use of ressources

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

- 1. Introduction energy system Modelling and constraints
- 2. The project BEAM-ME
- 3. Decomposition
- 4. Model annotation and PIPS-IPM

Categorization of speed-up approaches

Frieder Borggrefe (DLR) Modelling Smart Grids 2017, Prague

26.10.2017

IBM Blue Gene/Q @ JSC: 28,672 nodes / 458,752 cores

CRAY XC40 @ HLRS: 3,944 nodes / 94,656 cores Efficient HPC implementation

- Benchmarking and profiling
- Distributed storage for large ESMs
- Apply new concepts for assigning tasks to cores

26.10.2017

Modelling Smart Grids 2017, Prague

Decomposition Approach

PIPS-Solver (Argonne National Lab)

- New developed PIPS-IPM can be used for non stochastic models
- PIPS-IPM will also bring benefits to stochastic Modelling

Modelling Smart Grids 2017, Prague

Modelling Smart Grids 2017, Prague

Modelling Smart Grids 2017, Prague

Annotation can be implemented directly in GAMS Modellers provide knowledge about problem and decompositions

Introducing PIPS-IPM

BEAM-ME

Parallel Interior Point Solver – Interior Point Method (PIPS-IPM)

- Petra et al. 2014: "Real-Time Stochastic Optimization of Complex Energy Systems" on High-Performance Computers"
- Wind feed-in planning in electrical power systems under uncertainty

OR 2017: D. Rehfeldt "Optimizing large-scale linear energy problems with block diagonal structure by using parallel interior-point methods" M. Wetzel et al. (DLR) 26.10.2017

Modelling Smart Grids 2017, Prague

29

Decomposition by region I

Linking by region: electricity transports, fuel transports, global constraints (CO₂)

Temporal dimension of transport decisions leads to the largest number of linking variables

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

power flow limitation 4 partial problems including 4 regions hourly power flows between regionblocks 26.10.2017 30

Decomposition by region II

4 partial problems

including 4 regions

16 partial problems

including 1 region

low increase in linking variables and constraints due to **sparsely connected regions**

Target: Find **maximum number** of regionblocks of **similar size** which are **sparely linked** to other regionblocks

Frieder Borggrefe (DLR) Modelling Smart Grids 2017, Prague

Decomposition by time

1 out of 24 storage constraints linking

3 out of 8 storage constraints linking

Every storage constraint linking

Target: Find good trade-off between number of time blocks and number of linking constraints

M. Wetzel et al. (DLR)

Getting Energy System Models ready for HPC

Evaluation of Annotations

All previously shown annotation plots describe exactly the **same ESM problem** → **Systematic evaluation** of promising annotations required

Current state of extended PIPS-IPM for BEAM-ME test problems:

- sequentially 10 times slower than CPLEX 12.7.1.0 (latest version) barrier.
- can solve problems with few (< 1000) linking constraints and variables faster than CPLEX (multi-threaded) when enough CPU-cores can be used (on several compute nodes).
- biggest problem solved so far has > 10 million variables and constraints

Current challenges:

• LPs with many (>10000) linking constraints and variables hard to solve due to factorization of large dense matrix in solving process

26.10.2017

- How to cut the model to allow for efficient application of solvers?
- How can PIPS-IPM use salient features of the problem?
- Identify options for "model tuning" that work?
- algorithmic and implementation improvements, e.g. (parallel, structurepreserving) preprocessing, scaling, adaptation of interior-point algorithm
- handle dense (symmetric indefinite) matrix more efficiently:
 - try GPUs (e.g., MAGMA, cuSolver) for problems with not too many (< 10000) linking constraints and variables
 - try distributed linear algebra (e.g., Elemental, DPLASMA) for bigger problems

26.10.2017

EAM-N

- How to cut the model to allow for efficient application of solvers?
- How can PIPS-IPM use salient features of the problem?
- Identify options for "model tuning" that work?
- algorithmic and implementation improvements, e.g. (parallel, structurepreserving) preprocessing, scaling, adaptation of interior-point algorithm
- handle dense (symmetric indefinite) matrix more efficiently:
 - try GPUs (e.g., MAGMA, cuSolver) for problems with not too many (< 10000) linking constraints and variables
 - try distributed linear algebra (e.g., Elemental, DPLASMA) for bigger problems

Benchmark: PIPS-IPM and PIPS must beat SIMPLEX in the first place

Frieder Borggrefe (DLR)

Modelling Smart Grids 2017, Prague

36

26.10.2017

Outlook: What can we do with more efficient models?

- Model new markets and market design
- Increase sparcial and temporal resolution
- Answer **new questions**
 - Improved market analysis
 - Regional potential of specific technologies
- Address **uncertainty** with **stochastic models**
 - Exploring solution space
 - Identifying tipping points between subsities
- Modelling sectors and sector integration

