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Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500
stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and
their nature. We show that both networks detect qualitative differences especially during (recent) turbulent
market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies
in changing economic environments. A measure for the strength of nonlinear dependencies is derived using
surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the
expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the
2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a
network could potentially be used as some kind of an early warning indicator for abnormal market behavior as
we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean
variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment
exposure. This leads to significant outperformance as compared to a fully invested portfolio.
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I. INTRODUCTION

Investigating phenomena in the financial markets has been
becoming increasingly popular in the physics community.
Econophysicists unfold a new perspective [1] complimentary
to traditional approaches in finance and financial mathematics
through leveraging the powerful tools from statistical physics
such as random matrix theory [2] or agent-based market
models [3].

It is vital for various applications in finance to gain a
comprehensive understanding of how financial assets move
together, e.g., when assessing the risk associated with a
portfolio. To do so, it is common practice to express mutual
dependencies of financial assets in terms of the Pearson
correlation coefficient of their return time series.

Mantegna and Stanley [4] showed the power-law scaling
behavior of the probability distribution of financial indices.
Hsieh [5] pointed out that returns of financial assets are not
autocorrelated while their absolute values strongly are. Further
studies pointed out the intermittent behavior of financial time
series and how they resemble phenomena that we know from
turbulence [6,7]. These results show the nonlinear nature of
financial time series and thus strongly indicate that linear
measures for correlations might not be sufficient to fully
describe the data.

Mantegna [8] first proposed the concept of minimum span-
ning trees (MST) based on linear correlations between stocks
to analyze the hierarchical structure in financial markets.
Further studies have been conducted by, e.g., Bonanno [9] or
Naylor [10], who investigated foreign exchange markets rather
than stock markets. Onnela [11,12] introduced the framework
of a dynamically evolving MST.
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We take this concept as a starting point and move on in
the following direction: Financial time series exhibit nonlin-
earities and we aim to capture these effects when analyzing
correlation networks. Thus, we construct our networks not
only based on linear Pearson correlation but based on mutual
information which is sensitive to both linear and nonlinear
interrelationships. Mutual information has been studied as a
measure for mutual dependencies in financial time series by,
e.g., Dionisio [13], Fedora [14], and Darbellay [15]. However,
a detailed comparison of the properties of linear and nonlinear
correlations in financial time series has not yet been done.

In this paper, we show that substantial information is lost
by using a purely linear measure and propose an alternative
approach by choosing mutual information as a measure that
captures both linear and nonlinear correlations. The use of sur-
rogate data [16] allows us to create time series with the linear
properties conserved but all the nonlinear properties destroyed.
Thus, we can compare network-topological measures based
on the original and on the linearized surrogate time series and
investigate nonlinear dependencies. Furthermore, this enables
us to directly quantify the nonlinear correlations and derive
a quantitative measure for them. While many studies have
investigated financial crises from an econophysical perspective
(e.g., Ref. [17–19]) we will specifically work out the strength
and influence of nonlinear correlations during crises. To gain
useful information about the collective dynamics of the assets
under study, we create networks and apply different measures
such as centrality, normalized tree length and mean occupation
layer [11]. Finally, we apply the methods to portfolio con-
struction: An investment strategy will be presented that takes
into account nonlinear correlations to scale the investment
exposure, which leads to a significant outperformance than
compared to a fully invested portfolio.

The article is organized as follows: Section II introduces
the data and methods used in our study. Section III shows
the analysis of the dependency matrices obtained from both
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Pearson correlation and mutual information. In Sec. IV we
present the main results obtained from studying networks
while we apply our methods to portfolio construction in Sec. V.
Our summary and the conclusions are given in Sec. VI.

II. DATA, SIMILARITY MEASURES, COMPLEX
NETWORKS, AND SURROGATES

A. Data

As in Onnela [11] we consider the U.S. stock market. We
choose a subset of stocks from the S&P500 Index, which
represents the 500 highest capitalized and thus most influential
companies in the U.S. Starting from January 2, 1985, our data
consists of the daily closing prices of all stocks that “survived”
in the index until December 31, 2015, to have a consistent
stock universe during the whole period. This comes to a total
of N = 152 time series with 7816 data points each. As usual,
the stock prices p have been converted to logarithmic returns x,

xi,t = log pi,t − log pi,t−1. (1)

To obtain dynamically evolving results, we divide the data in
a number of overlapping windows and calculate our measure
for each of the windows. Similar to Ref. [11] we select a
fixed-size sliding window of T = 1000 trading days, which is
equivalent to approximately four years of data. The step size
between two consecutive windows is δT = 20 trading days.
This ensures a sufficient amount of data for the calculation
of the mutual information. The time series of our stocks are
then defined as Xi = {xi,1...xi,T }. The data used is publicly
available through Yahoo Finance [20].

Our time horizon is long enough to investigate a number of
key market events. The data covers Black Monday (October
19, 1987) when stock markets around the world crashed for the
first time after World War II. From 1997 to 2001 the markets
were subject to excessive speculation and overvaluation of
many technology companies which led to the Dot-com bubble.
The bubble burst during 2002 with significant declines taking
place in July and September. Finally, our data includes the
2007-2008 subprime mortgage crises. At that time the market
declined after its all time high in October 2007 and a crash
occurred after the collapse of Lehman Brothers on September
15, 2008. In addition, our considered time span also includes
a number of major global political events. These include the
fall of the Berlin wall on November 9, 1989, which triggered
the collapse of the Soviet Union as well as the 9/11 attacks on
September 11, 2001.

B. Measures for mutual dependencies

1. Pearson correlation coefficient

The standard approach in finance to quantify mutual depen-
dencies between stocks is the Pearson correlation coefficient ρ,

ρXi,Xj
=

∑n
t=1(xi,t − x̄i)(xj,t − x̄j )√∑n

t=1(xi,t − x̄i)2
√∑n

t=1(xj,t − x̄j )2
, (2)

where xi are the stock returns of stock i and x̄i their mean,
respectively. It is bound to the interval [−1,1] and allows us to
directly compare correlations of different asset pairs as it is a

FIG. 1. (a) Return time series, (b) autocorrelation function of
returns (blue, dark gray) and absolute values of returns (red, light
gray), (c) phase map of Lincoln National Corporation (LNC) stock
returns. Phase map: Phases ϕ(l) are scattered against neighboring
phases ϕ(l + 1).

normalized measure. A serious problem with Pearson correla-
tion, however, is that it only captures linear interrelationships.

2. Mutual information

It is well known that financial time series exhibit nonlinear
effects [5]. This is exemplified in Fig. 1. There we show
the time series, autocorrelation function, and phase map of
the Lincoln National Corporation (LNC) stock. Phase maps
are sets of points G = {ϕ(l),ϕ(l + �)}, where ϕ(l) is the lth
mode of the Fourier transform,

ϕ(l) = arg
T −1∑
t=0

xte
−2πitl/T , (3)

and � a mode delay with � = 1 in this example. A random
uncorrelated distribution would lead to a random distribution
of points in the phase map. Here, we observe a significant
stripe pattern. This clearly indicates the presence of nonlinear
effects in our stock returns data [21]. Räth et al. [22] already
showed the presence of such stripe pattern in the data of the
Dow Jones index. As we observed similar effects not only for
the LNC example, but also for the other stocks in our dataset,
we conclude that phase correlations are a generic feature.
Furthermore, the autocorrelation of the returns immediately
drops to zero, which means that the time series does not exhibit
a linear memory. At the same time, the autocorrelation of the
absolute values of the returns does not drop to zero. There is
no linear process that can generate a behavior like this [5].

The consequence is the following: If there are nonlinear
effects present in financial time series, the purely linear Pear-
son correlation coefficient captures only a fraction of mutual
dependencies and thus a significant amount of information
is ignored. Hence, it would be beneficial to use a different
measure that captures all kind of relationships between two
time series.
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An appropriate solution to this problem is the use of
mutual information Ĩ (Xi,Yj ) [23] as a measure for mutual
dependencies,

Ĩ (Xi,Xj ) =
∫ ∫

p(xi,xj ) log

(
p(xi,xj )

p(xi)p(xj )

)
dxidxj , (4)

where p(xi,xj ) is the joint probability density function and
p(xi), p(xj ) the marginal PDFs, respectively. This is because
mutual information is sensitive to both linear and nonlinear
correlations. Alternatively one can express mutual information
through the marginal- and joint entropies of the two variables,

Ĩ (Xi,Xj ) = H (Xi) + H (Xj ) − H (Xi,Xj ). (5)

H (Xi) denotes the entropy of variable Xi and is defined as

H (Xi) = −
∑
xi

p(xi) log[p(xi)], (6)

while the joint entropy H (Xi,Xj ) of variables Xi and Xj reads

H (Xi,Xj ) = −
∑
xi

∑
xj

p(xi,xj ) log[p(xi,xj )]. (7)

We switched here to the discrete formulation using sums
instead of integrals. This has a very important reason: Mutual
Information is not a normalised measure and thus it can take on
values between zero and infinity. For discrete variables one can
normalize mutual information [24] in the interval [0,1], where
0 means that both variables do not share any information and
1 means completely identical probability distributions,

I (Xi,Xj ) = Ĩ (Xi,Xj )√
H (Xi)H (Xj )

. (8)

We use binning methods to estimate the probability density
function to ensure normalizability. Heuristically we find
�√T/4 � to be a good choice for the number of bins which leads
to 16 in our case of window size T = 1000. We are aware that
alternative methods like kernel density or nearest-neighbor-
based estimators [23] would give a better approximation of
the probability distributions. However, this would lead to the
problem of not normalizable mutual information.

C. Network construction

As first proposed in Mantegna [8] the concept of graphs
and more specifically minimum spanning trees is very useful to
summarize the vast amount of information stored in correlation
matrices. We choose the MST as the main type of network to
analyze due to its simplicity. Here the concept is to connect
N nodes (assets) by N − 1 edges under the constraint that
distances are minimal and hence dependencies maximal. We
construct MSTs by using Prim’s algorithm [25]. The advantage
of the MST in comparison to other types of networks is that
we do not need to choose any parameters. Instead, it emerges
automatically and thus ensures comparability. Using the two
different measures from Sec. II B, we aim to investigate the
dynamical evolution [11] of graphs that capture only the linear
or both the linear and nonlinear correlations. The results are
then compared and we analyze during which market periods
we observe differences between the measures.

Before we are able to construct networks we need to convert
the correlation and mutual information matrices to distance
matrices in each time step t by using an appropriate metric.
For mutual information this is straightforward by applying

d
MI,t
Xi ,Xj

= 1 − I t (Xi,Xj ) (9)

to the normalized mutual information.
As Pearson’s correlation coefficient can also take on

negative values, we have to transform it to a nonnegative
distance measure. For this we use the transformation

d
corr,t
Xi ,Xj

=
√

2(1 − ρt
Xi,Xj

), (10)

as discussed in Onnela [11], which fulfills all requirements
for a distance metric. When comparing Eqs. (9) and (10)
we observe that both distance metrics behave differently if
time series are linearly anticorrelated, i.e., when their Pearson
correlation coefficient is negative. However, in our case all
stock time series are positively correlated in terms of Pearson
correlation, which is typically the case in stock markets.
If there were negatively correlated time series, one could
avoid this problem by, e.g., taking the absolute value of the
Pearson correlation when calculating the distance. We can
now construct MSTs TTT t in each time step t based on the two
dependency measures.

In addition, we also construct so-called threshold networks
where we only keep connections between nodes with a distance
less than a certain threshold. Heuristically we find a threshold
of 20% to be an appropriate value, i.e., connecting assets with
the smallest 20% of distances and thus highest correlations.

D. Surrogates

When using mutual information as a measure for mutual de-
pendencies we capture both linear and nonlinear correlations.
To analyze the effects that are due to nonlinear dependencies
we need to separate linear and nonlinear contributions.

Surrogate data allow us to exactly achieve this separation by
destroying nonlinear effects of the time series while keeping all
linear properties [16]. In this study we use so-called Fourier
transform (FT) surrogates where we Fourier transform the
time series and thus separate all linear properties into the
amplitudes while the nonlinear properties are stored in the
phases. By adding uniformly distributed random numbers to
the Fourier phases we destroy all nonlinear properties while the
linear ones stay untouched. An inverse Fourier transformation
gives us then the final surrogate data,

x∗
k (t) = F−1{X̃(f )} = F−1{X(f )eiφk (f )}. (11)

Equation (11) defines the kth surrogate realization. We create
K = 20 realizations and average over the measures calculated
for each realization to get a more stable result. F−1 denotes
the inverse Fourier transform operator and eiφk (f ) the kth set
of uniformly distributed random phases that is added to the
Fourier transform X(f ) of the original time series X. Prichard
and Theiler [26] showed that it is also possible to conserve
the Pearson correlations by adding the same set of random
numbers onto the phases of all time series. This is because
the Fourier transformed Pearson correlation depends only
on the phase differences between time series, which is then
unaffected.
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FIG. 2. Left: Mean (a) and variance (c) of the coefficients of the Pearson correlation-based distance matrix calculated in each time step.
Right: Mean (b) and variance (d) based on the mutual information of the original series (blue) and the average distance matrix of all surrogate
realizations (red). Plus/minus one sigma error ranges (gray) are drawn for the surrogate realizations; however, errors are so small that one can
barely seen them.

We would like to point out that we do not do a rank-ordered
remapping of the data onto a Gaussian distribution at the
beginning of the procedure. Thus, we test for static and
dynamic nonlinearities at the same time. Converting prices
to logarithmic returns could potentially induce static nonlin-
earities. We convinced ourselves that the results presented later
would not change much after performing the above mentioned
remapping. Thus, we conclude that the results are mainly
driven by dynamic nonlinearities.

III. ANALYSIS OF DEPENDENCY MATRICES

A. Distance matrix coefficients

Before constructing networks we first examine the dynam-
ical evolution of the distribution of the distance matrix coef-
ficients based on Pearson correlation and mutual information.
In case of the surrogates we average over all k realizations,

Mm
Surro = 〈

Mm
{
dMI∗

k

}〉
k
, (12)

where Mm is the mth moment of the distribution of the
coefficients from the distance matrix dMI∗

k obtained from the
kth surrogate realization.

Figure 2 shows the dynamically evolving mean and variance
of the distance matrices based on Pearson correlation and
mutual information. As we expect, the resulting moments
based on the Pearson correlation of the original and surrogate
time series are exactly identical per construction. For mutual
information, however, we note that the results of the surrogates
are more similar to the Pearson correlation-based results. The
mean mutual information-based distance of both the original
time series and the surrogate series evolves very similarly until
the 2008 financial crisis. However, starting from November
2008 the mean based on the original time series becomes
lower than the surrogate-based average. Since less distance
means higher average mutual information we conclude that
nonlinear effects lead to stronger dependencies among the time
series triggered by the 2008 financial crisis. The strength of
nonlinear correlations further grows throughout the European

debt crisis until reaching its peak in the middle of 2012. This
result is a little surprising as it disagrees with the expectation
that interdependencies reduce mainly to linear correlations
during crises. It is interesting to notice that the variance of
the distance matrix coefficients (lower row of Fig. 2) behaves
slightly different. Nonlinear effects are increasing the variance
starting from the onset of the Dot-com bubble in 1998 and
amplify throughout the whole remaining period. Taking into
account both moments of the distance matrices we can already
see that nonlinear effects are clearly present even at a very
general level of analysis.

B. Deriving nonlinear dependencies

To explicitly express the significance of nonlinear correla-
tions we derive a significance measure χsig by first calculating
the mutual information matrix of all surrogate realizations.
We then take the average over all surrogate realizations and
subtract it from the mutual information matrix of the original
time series

χsig(Xi,Xj ) = I (Xi,Xj ) − 〈I (X∗
i,k,X

∗
j,k)〉k

σI ∗
. (13)

Finally, we normalize it by the standard deviation of the
surrogate realizations σI ∗ . Figure 3 shows the time evolution
of the column averages of the significance matrix, which
represent the significance of the mean nonlinear interaction
of one stock with all others,

χsig(Xi) = 〈χsig(Xi,Xj )〉j . (14)

It clearly shows that the 2008 crisis triggers strong nonlinear
effects, which we do not see during the early ’90s recession
or other turbulent market phases like the Dot-com crisis.
The period of uncertainty starting in the end of 2009 caused
by the European sovereign debt crisis further amplifies the
significance of nonlinear interactions and only slowly declines
towards the present. The highest significance values are
achieved by Lincoln National Corporation (insurance and
investments) and Citigroup (financial services) in May 2009
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FIG. 3. Average significance coefficient χsig(Xi) of each asset—
Thick red line: Global average over all individual assets.

shortly after stock prices bottomed in the course of the financial
crisis.

By taking the absolute value of the difference between
mutual information of the original data and the average of the
surrogate realizations and dividing it by the original mutual
information we define a measure for the strength of overall
nonlinear correlations

ζnlc(Xi,Xj ) = |I (Xi,Xj ) − 〈I (X∗
i,k,X

∗
j,k)〉k|

I (Xi,Xj )
, (15)

which we will later use in the portfolio optimization section. It
tells us which amount of the overall mutual information is due
to nonlinear mutual dependencies. However, it is not entirely
clear what the meaning of “negative nonlinearities” would
be, i.e., when the average mutual information of all surrogate
realizations takes a higher value than the original one. This
would correspond to saying that after destroying nonlinear
effects, both time series share more information than before.
We see in Fig. 3 that there are certain periods in time where
the mutual dependencies of original and surrogate time series
are almost identical and hence only linear correlations play a
role. The lower half of Fig. 4 shows the significance matrix at a
rather calm market period in November 1998. In contrast, the
upper half shows significantly higher significance values in the
aftermath of the 2008 financial crisis in May 2009. Darker red
stripes indicate particularly strong nonlinear correlations of
one asset with all others as, e.g., Lincoln National Corporation
(LNC), Citigroup (C), and General Electric (GE).

IV. NETWORK-BASED ANALYSIS

1. Normalized tree length

As the next step, MSTs have been constructed from the
Pearson correlation and mutual information-based distance
matrices using Prim’s algorithm [25]. First of all, we take
a look at the normalized tree length [11] in Fig. 5, which is
defined as

L(t) = 1

N − 1

∑
dt

Xi ,Xj
∈ TTT t

dt
Xi ,Xj

, (16)

FIG. 4. Significance matrices χχχ sig: Lower half, Calm market
environment in November 1998; Upper half, Turbulent market
environment in May 2009 after the crash triggered by the Lehman
collapse on September 15, 2008. Labels denote stock indices.

where t denotes the time step in which the MST has been
constructed. We notice that the qualitative behavior is very
similar to the mean of the distance matrix elements. However,
in the case of mutual information, there is a gap emerging
between original time series and surrogate-based trees already
in the middle of 1998. This is when the Dot-com bubble slowly
started growing. This happens earlier than compared to the
average of all distance elements in Fig. 2.

2. Mean occupation layer

Another interesting property of the networks we attend to
from Ref. [11] is the dynamic mean occupation layer,

l(t,vc) = 1

N

N∑
i=1

L
(
vt

i

)
, (17)

FIG. 5. Top: Normalized Tree Length of Pearson correlation-
based MST. Bottom: Same for mutual information of original data
(blue) and surrogates (red).
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FIG. 6. (a) Dynamic mean occupation layer of Pearson correlation-based MST. (b) Mutual Information of surrogate series (red) vs. Pearson
correlation-based result (blue). (c) Same for mutual information of original series (blue) and surrogates (red) with plus/minus one sigma error
range in gray. Vertical lines indicate the bursting of the Dot-com bubble in March 2000 and the acceleration of the crash after the Lehman
Brothers collapse on September 15, 2008.

where L(vt
i ) denotes the level of node vi at time step t . The

level L(vt
i ) measures the distance of node vi from the central

vertex in terms of absolute numbers of edges. Thus, the mean
occupation layer reflects the average distance of nodes from the
center of the network. The center is dynamically determined
in each time step based on degree centrality, which we explain
in the following section. We can interpret the mean occupation
layer as a measure for the diversification potential within
the set of our stocks. As shown in Fig. 6, the result based
on the linear measure (a) indicates that the mean distance
from the center of the network increases during financial
bubbles. It peaks in June 2008 and thus shortly before the
crash occurred as well as during the Dot-com bubble in 2001.
Figure 6(b) demonstrates that the results based on Pearson
correlation and mutual information of the linearized surrogate
time series evolve very similarly. However, the lower plot
(c) where we compare the mutual information-based result
between the original and surrogate time series exhibits the
following interesting features. During the Dot-com bubble
and its subsequent crash the surrogate data yields a higher
mean occupation layer as compared to the results based on
the original time series. This means that linear correlations
lead to stronger diversification and thus we could state that
linear correlations are dominating the topology of the network
during the Dot-com crash. In contrast, the behavior during
the 2008 financial crisis is different. The original time series
mean occupation layer drops below the surrogate layer in
the beginning of 2008. However, the sharp decline in stock
prices after the Lehman collapse in September 2007 triggered
a substantial increase in the original time series layer. It further
grows during the aftermath of the crisis and peaks in the
middle of 2010. Here it reaches a level of around 11.5, which
is almost twice as high as the level of the surrogate-based
layer and thus indicates that the nonlinear tree diversifies
significantly stronger. This shows that the 2008 financial crisis
and the Dot-com crash have a different character, as we did not
observe similar effects during the latter. Further support for this
observation is provided by Fig. 3, where we see that nonlinear

correlations are weak during the Dot-com period but strongly
grow starting in early 2008—before the crash occurred. We
observe similar effects later on in Sec. V where we apply a
portfolio optimization strategy, which is based on nonlinear
correlations.

3. Centrality

We use the concept of degree centrality to determine how
central and thus important a stock is in our networks. Degree
centrality,

dci(t) = 1

N

N∑
j=1

D(dt
Xi,Xj

), (18)

of stock i simply counts the number of connections to other
stocks where D(dt

Xi ,Xj
) = 1 if dt

Xi ,Xj
> 0, which mean that

stocks Xi and Xj are connected and 0 else. In Fig. 7 we can
see a dynamical overview of the most central stocks in our

FIG. 7. Assets with the highest degree centrality. Top: Pearson
correlation-based; bottom: original mutual information (blue) and
surrogate mutual information-based (red).

062315-6



LINEAR AND NONLINEAR MARKET CORRELATIONS: . . . PHYSICAL REVIEW E 96, 062315 (2017)

FIG. 8. Degree centrality of JPM based on Pearson correlation
(a) and mutual information (b) (blue, original data; red, surrogate
data) vs. network avg. (red, dashed). The vertical lines indicate the
peak of the stock prices on October 15, 2007 after which they began
falling as well as the acceleration of the crash after Lehman Brothers
collapsed on September 15, 2008.

networks. In general, the dominating assets in terms of degree
centrality are very similar in both correlation and mutual
information-based networks. However, the results based on
mutual information show more fluctuations especially from
1994 to 1997 and from 2005 until 2012. Until 2000, General
Electric (GE) was by far the most central element. This
could be driven by GE’s important role in the U.S. economy
being a broadly diversified company and one of the largest
employers. Furthermore, GE’s large market capitalization was
further increasing until the second half of 2000 (source:
Bloomberg). However, in the course of the Dot-com bubble
and its subsequent crash from 2000 until 2002 GE’s market
capitalization rapidly dropped and at the same time its
importance in the network in terms of degree centrality.
Instead, PPG Industries—a chemicals and specialty materials
supplier—emerged as the most central node in both correlation
and mutual information-based networks lasting until late 2006.
From then on J.P. Morgan (JPM) emerged as the most central
node in all networks, which is particularly interesting in the
course of the 2008 financial crisis. JPM’s centrality grew
excessively and peaked in late 2006 as shown in Fig. 8—long
before the subprime bubble started bursting in October 2007. In
the course of the stock market crash the centrality then rapidly
declined toward the global network average in early 2009. In
the following analysis we will focus on the time between 1998
and 2010 since the most interesting phenomena occur here. To
gain additional insights about the role of JPM we also construct
a threshold network where we simply connect the pairs of
nodes with the highest 20% of dependency coefficients. There
we observe similar effects in the clustering coefficient of JPM
during the same periods. The clustering coefficient,

ci(t) = 1

dci(t)(dci(t) − 1)

∑
jk

(w̃ij w̃jkw̃ik)1/3, (19)

FIG. 9. Clustering coefficient of JPM (blue) vs. network avg. (red,
dashed) for Pearson correlation (a), original mutual information (b),
and surrogate mutual information (c).

describes the transitivity of JPM where w̃ij = wij/max(w)
denotes normalized edge weight of node i and j [27]. A high
clustering coefficient means that neighbors of JPM are highly
connected while a low clustering coefficient means that they
tend to not have connections. As shown in Fig. 9, the clustering
coefficient of JPM starts moving away from the global network
average in 2005 and declines until mid 2007. Together with
the centrality increasing during the same time period we
can interpret this the following way: During the growth of
the subprime bubble, JPM as America’s largest financial
institution takes on an increasingly important role in the
network. At the same time the clustering coefficient decreases
and indicates that there are fewer connections between JPM’s
neighbors making JPM the “driving force” in the network.
More interestingly, all this happens long before the crash
occurs with strong deviations from the average network state
emerging very early. This could mean that JPM acts as kind of
an early warning system, which is signaling through centrality
and clustering measures that the financial markets in the U.S.
show abnormal behavior. Furthermore, we found that the same
effects occurred during the Dot-com bubble and its subsequent
crash around 2001/2002 and somewhat weaker during the
early ’90s recession (results not shown).

When comparing the Pearson correlation-based measures
to the mutual information-based measures we observe that in
the latter case the effects are qualitatively stronger articulated.
In Fig. 8(b) we present the mutual information-based results
for the degree centrality. Compared to the measures based
on the original time series, the quantitative strength of the
degree centrality is significantly lower for the surrogate
data. Moreover, both centrality measures begin their most
significant drop in October 2007, which is exactly when
the stock markets started moving downwards after peaking.
However, centrality measures of the networks constructed
from the mutual information based on the original time series
are rapidly falling after their peak in October 2006 and thus
around one year before the stock market crisis started. When
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TABLE I. In each time step we calculate the above measures based on Pearson correlation as well as mutual information of the original and
surrogate time series. Here we show the Pearson correlation coefficients of the resulting set of values based on linear Pearson correlation with:
(1) The results based on the mutual information of the original data denoted by I (original). (2) The results based on the mutual information
of the surrogate data denoted by 〈I (surrogate)〉 where we averaged over the results of all surrogate realizations. σ (I (surrogate)) is their
standard deviation, respectively.

Measure base Measure M I (original) 〈I (surrogate)〉 σ (I (surrogate))

Distance Matrix Mean 0.958 0.992 4.50 × 10−5

Distance Matrix Variance 0.839 0.845 5.29 × 10−4

Distance Matrix Skewness 0.925 0.947 1.04 × 10−3

Distance Matrix Kurtosis 0.886 0.891 2.34 × 10−3

Minimum Spanning T ree Normalized tree length 0.977 0.992 7.78 × 10−5

Minimum Spanning T ree Betweenness centrality 0.767 0.908 0.017
Minimum Spanning T ree Mean occupation layer 0.594 0.830 0.033

comparing the results of the original time series to the surrogate
results we observe that there is a sharp decline from the
centrality peak in October 2006 until October 2007, which
is only happening in the measures for the original series.
This indicates that JPM’s centrality is influenced by strong
nonlinear effect during this period. From October 2007 until
September 2008 centrality grows again—this corresponds to
the period where stocks started to fall after their all time
high in October 2007. When stock prices drop even faster in
September 2008 after the investment bank Lehman Brothers
went bankrupt, JPM’s centrality suddenly decreases as well.
We would like to mention that we observed similar behavior
for Goldman Sachs and Lehman Brothers in a different set of
data (results not shown).

Table I summarizes different network and distance matrix
measures and shows how similar both the Pearson correlation
and the mutual information-based results are in terms of
the Pearson correlation coefficient of their resulting sets of
values. Values close to unity signify a close similarity of the
Pearson correlation and mutual information-based results. We
observe that the surrogate mutual information and Pearson
correlation-based results have a higher similarity than the
original data mutual information and Pearson correlation-
based results. Thus, there are nonlinear correlations present
and surrogate data is a good method for comparison
when using mutual information as a measure for mutual
dependencies.

Unlike during the periods of financial crises mentioned
above, we do not observe effects during major political events
such as the fall of the Berlin wall in November 1989 or the 9/11
attacks in September 2001. Neither the mean occupation layer
nor the normalized tree length indicates significant changes in
market correlation structure.

V. PORTFOLIO OPTIMIZATION

A. Markowitz portfolio construction

To make use of our concepts we apply them to the problem
of portfolio construction. A standard approach in finance is the
mean-variance optimization developed by Harry Markowitz in
1952 [28], where the variance of a portfolio is minimized given
a certain target return or risk aversion factor. The expected

return μP of the portfolio P then is

μP = E[P (w)] =
∑

i

wiE[Xi], (20)

where wi is the weight and E[Xi] denotes the expected return
of asset i. The expected return of each asset is assumed to
be its median during the historical time window T = 1000
after excluding outliers by applying an interquartile range-
based filter. This is not a very good approximation because
the autocorrelation function of the returns quickly falls toward
zero and hence past returns do not tell much about the future.
For the sake of simplicity, however, we decided to use this
standard approach. The variance of our portfolio is then given
by

σ 2
P (w) =

∑
i

∑
j

wiwjσXi
σXj

ρXi,Xj
, (21)

where σXi
is the standard deviation of the returns of asset i

and ρXi,Xj
the Pearson correlation coefficient of assets i and j .

The expression σXi
σXj

ρXi,Xj
is also called covariance σXi,Xj

,
while we denote the covariance matrix of all assets as �. The
optimal portfolio described by the weight vector w given some
target return μP is then obtained by minimizing

wT � w (22)

subject to

μP = RT w (23)

and ∑
i

wi = 1, (24)

where RT is the vector of the expected returns of the assets.
Now we are left with one more decision: Which target
return should we select for our portfolio optimization? To
ensure a consistent strategy we construct Markowitz optimized
portfolios for all possible target returns and then choose the
one where the fraction of portfolio return and volatility μP

σ 2
P (w)

is the largest—the so called maximum Sharpe ratio portfolio.
We do not allow short selling in this example, which means
that asset weights wi have to be positive.
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TABLE II. Conversion of portfolio scoring measures s1(t), s2(t), s3(t) to scores s∗
1 (t), s∗

2 (t), s∗
3 (t).

0 � s1(t) < 0.1 0.1 � s1(t) < 0.15 0.15 � s1(t) < 0.2 0.2 � s1(t) < 0.25 0.25 � s1(t)
s∗

1 (t) 100 75 50 25 0
0 � s1(t) < 1

2 s2(t) 1
2 s2(t) � s1(t) < 3

4 s2(t) 3
4 s2(t) � s1(t) < 21

20 s2(t) 21
20 s2(t) � s1(t) < 23

20 s2(t) 23
20 s2(t) � s1(t)

s∗
2 (t) 100 75 50 25 0

s3(t) � −0.02 −0.02 � s3(t) < 0 0 � s3(t) < 0.02 0.02 � s3(t) < 0.05 0.05 � s3(t) < 0
s∗

3 (t) 25 10 0 −10 −100

B. Nonlinear correlations (NLC) scaled strategy

Having understood that there are significant nonlinear
correlations present in stock market returns, naturally the
question arises how we can make practical use of this
knowledge. When it comes to portfolio optimization it is
common standard to describe mutual interrelationships of as-
sets through their Pearson correlation coefficients. As outlined
above, a significant fraction of the information about mutual
dependencies of stocks can be of nonlinear nature and hence
is not captured by the linear Pearson coefficient. In times
when nonlinear correlations are low, the linear correlation
matrix captures most of the information and hence is a good
estimator for interdependencies. When nonlinear correlations
are high, however, a significant amount of information is
missing and thus making it a bad estimator. The idea is now
to perform a classical Markowitz optimization and choose the
maximum Sharpe ratio portfolio as our benchmark portfolio.
The alternative strategy takes the same relative allocation but
allows for an additional asset: Cash. We allow cash weights
from −100% to 100%. A weight of −100% means we allow
borrowing money to increase the investment exposure. For
example, imagine we invest $1000 in our benchmark portfolio.
A cash weight of −100% in the alternative strategy then means
that we borrow another $1000 to increase the investment
exposure to $2000. In contrast, 100% cash weight in the
alternative strategy means that we only hold cash and do not
invest into other assets, i.e., have an investment exposure of
$0. The cash weight is determined by a nonlinearity score snlc,
which includes the following measures:
1. Absolute strength of nonlinear correlations:

s1(t) = 〈ζnlc(Xi,Xj ,t)〉i,j f or i 	= j. (25)

2. Nonlinear correlations versus a 24-time-steps rolling win-
dow mean, which corresponds to around two years:

s2(t) = 1

24

t∑
t∗=t−24

s1(t∗). (26)

3. Change of nonlinear correlations versus a three-time-step
rolling window, corresponding to one quarter:

s3(t) = s1(t)

s1(t − 3)
− 1. (27)

The idea here is to not only use the strength of nonlinear
correlations in the current time step but also reflect how
they compare to a rolling midterm average. In addition, we
incorporate how the strength of nonlinear correlations changed
within the last three months. The reason is that we want to
capture the beginning of turbulent market periods as well as to

achieve a market re-entry after turbulent periods are over and
markets recover.

The above measures are converted to scores as shown in
Table II using a nonlinear mapping. The absolute strength of
nonlinear correlations s1(t) translates to the most defensive
score s∗

1 (t) = 0 if s1(t) � 0.25. This means that on average
25% or more of the mutual information of the assets is
of nonlinear nature. Likewise, if the strength of nonlinear
correlations s1(t) exceeds its two-year moving average s2(t)
by 0.15 or more, the score s∗

2 (t) takes on its most defensive
value s∗

2 (t) = 0. We built the scoring model such that a strong
increase in s3(t) has a larger impact (−100) on the score s∗

3 (t)
than a strong decrease (+25). This is because firmly growing
nonlinear correlations might be a sign for turbulent market
periods and in this case we would like to have high cash
weights. All three measures are equally weighted and bounded
between 0 and 100:

s̃nlc(t) = 1
3 [s∗

1 (t) + s∗
2 (t) + s∗

3 (t)], (28)

snlc(t) = max{min{s̃nlc(t),100},0}. (29)

The cash weight of portfolio is then determined by

wcash(t) = 1

100
[100 − 2snlc(t)]. (30)

Hence, if nonlinear correlations are stronger, the linear correla-
tion matrix captures less information about dependencies and
thus the strategy leads to a more defensive allocation (higher
cash exposure) and vice versa. The strategy likewise worked

FIG. 10. Backtest results: Portfolio value (starting at 1 at t =
0) for fixed allocation (red, dashed), fully invested max sharp ratio
portfolio (red), and NLC-scaled portfolio (blue).
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FIG. 11. Upper plot: Portfolio weights—S&P 500 Index (red),
Merrill Lynch U.S. Corporate Index (dark blue), and Merrill Lynch
U.S. Treasury Index (blue). Lower plot: Cash weights based on NLC
strategy.

for different parameter choices, but we decided to focus on
the simple equally weighted method presented above. We use
a 500-day sliding window for the calculation of ζnlc(Xi,Xj ,t)
and the covariance matrix for the Markowitz optimization to
better capture changing market environments.

To test our strategy we selected a simple setup of three
indices plus cash: Merrill Lynch U.S. Corporate Index LOC
(U.S. Corporate Bond Index), Merrill Lynch U.S. Treasury
Index USD unhedged (U.S. Government Bond Index), S&P
500 Index (U.S. Equity Index) and BBA LIBOR USD 1 Month
(USD Cash Rate). The reason for not taking the large subset
of stocks from the S&P 500 Index we used in the first part
of the study is that we achieve a more stable allocation over
time in this simple example, which is easier to interpret. When
taking a large portfolio universe, the allocations would tend to
change a lot in each time step. Besides that, we would like to
have less risky assets than stocks in our portfolio universe such
as U.S. Government Bonds to see if our strategy achieves the
right allocations during different market periods. We choose
the indices above because they reflect a large amount of the
U.S. credit, government bonds, and stock market.

We then ran a backtest from 1988 until 2016 performing a
Markowitz optimization and portfolio rebalancing every 20
time steps. Figure 10 shows the development of the fully
invested zero cash portfolio (red), a strategic asset allocation
with constant 25% Corporate Bonds, 25% Government Bonds,
and 50% Equities (SAA—red, dashed) and finally our strategy
with dynamic cash weights (blue). In Fig. 11 we see that our
strategy leads to 100% cash weight from September 2008 until
February 2009 and thus achieved a safe allocation just before

the crash commenced. We notice that the strategy outperforms
the zero cash strategy by 62% and the fixed allocation even by
161%. However, we have to account for the higher investment
exposure of 120% on average corresponding to minus 20%
cash leverage. For this we ran another backtest where we set a
constant cash weight of minus 20%. It turns out that our NLC
strategy still outperforms by around 18%. Thus, we conclude
that this outperformance is not driven by higher risk due to a
higher investment exposure but the dynamics of the nonlinear
correlations signal itself.

VI. SUMMARY AND CONCLUSION

In this study we analyzed nonlinear correlations in multi-
dimensional financial time series by using mutual information
as a measure for both linear and nonlinear dependencies and
the method of surrogate data. In the first step we compared the
moments of distance matrix coefficients obtained from mutual
information to the results based on Pearson correlation. We
found that especially during turbulent market periods, e.g.,
the 2008 crisis both results show qualitative differences and
hence indicate significant nonlinear correlations. This stands
in contrast to the expectation that during crises, dependencies
reduce mainly to linear correlations. Then we constructed
minimum spanning trees and equivalently found differences
in the network topology between the linear and nonlinear
measure. It turned out that the average distance from the
center of the network is significantly lower during periods of
crises when considering nonlinear correlations. Furthermore,
the center of the network in terms of degree centrality itself
is more stable and less fluctuating in the linear case. We
showed that the centrality of J.P. Morgan grew extensively
long before the subprime mortgage bubble crashed in 2008.
To investigate if such kind of measures could potentially act as
an early warning indicator we will analyze the dynamics of the
average centrality of industrial sectors in further studies. It is
very interesting to understand that there are different types of
financial crises in terms of nonlinear effects. The results of our
study indicate that during the 2008 crisis nonlinear effects were
significantly stronger than in preceding crises. Furthermore,
we found that major political events seem to have no significant
mid- and long-term impact on market correlation structure in
contrast to financial crises. Finally, after understanding that
there are significant nonlinear correlations present in stock
returns we developed a practical application in the field of
portfolio optimization. We showed that scaling the investment
exposure based on the strength of nonlinear correlations leads
to significant outperformance as compared to a fully invested
portfolio. More direct applications of this knowledge will be
explored in further studies.
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