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Topological guiding of elastic waves 
in phononic metamaterials based 
on 2D pentamode structures
Yuning Guo   1, Thomas Dekorsy1,2 & Mike Hettich1

A topological state with protected propagation of elastic waves is achieved by appropriately 
engineering a phononic metamaterial based on 2D pentamode structures in silicon. Gapless edge 
states in the designed structure, which are characterized by pseudospin-dependent transport, provide 
backscattering-immune propagation of the elastic wave along bend paths. The role of the states 
responsible for forward and backward transfer can be interchanged by design.

Topological insulators are observed in electronic systems and are based on the coexistence of counter-propagating 
spin-polarized edge states1. This observation has inspired a search for analogous protected edge states in 
non-electron based systems. The topological properties of classical waves with non-reciprocity in bosonic systems 
based on photonics2–4, acoustics5–9, and mechanics10–13 have made a flourishing development in recent years. In 
addition, magnetization twisting skyrmions, which also have non-trivial topological properties, have received 
considerable attention14,15. In general, the development of topological materials is based on the concept of the 
Dirac point and the analogy of the quantum spin Hall effect associated with the theoretical analysis of the Berry 
phase.

As edge states of topological insulators possess the ability to propagate along a specific direction without 
backscattering, energy can be confined or guided on the surface or along the interface/boundary of these materi-
als. The key feature of the topological electronic model was transferred to the field of photonics in photonic crys-
tals first in 20054, which spurred numerous subsequent theoretical and experimental investigations in bosonic 
systems. A topological photonic insulator was realized in a composite lattice structure by a zone folding mecha-
nism2,16. Recently topological properties are not only studied in photonics, but also in phononics. The edge modes 
in phononic systems are important in many aspects including vibration control and acoustic imaging17–19. By 
using a perturbation method, the double Dirac cone with the occurrence of accidental degeneracy was obtained 
in core-shell-structure phononic crystals20. A convenient way to obtain acoustic topological states was adopted by 
dynamically modulating the parameters of inclusions5,21. The topological nontrivial phase was realized by break-
ing time-reversal through designing an on-site rotating modulation scheme in a Floquet topological insulator6, 
setting rotating fluids into the “meta-atom”7,22 or breaking inversion symmetry through utilizing chiral interlayer 
coupling23. A study confirmed that symmetry-protected 3D topological bandgaps supporting disorder-immune 
surface states can be obtained in bosonic systems24,25. Elastic waves including Lamb waves also exhibit properties 
related to topological states. With the Coriolis forces present in gyroscopes, chiral edge modes of elastic waves 
were obtained in a hexagonal lattice12. Topologically protected elastic waves were realized in both static and 
time-dependent regimes by designing a spin-degenerate metacrystal in a dual-scale phononic crystal slab13. In 
addition, the topological phase of sound and light based on cavity optomechanics was demonstrated, which 
gives rise to the possibility to produce a flexible optomechanical concept rather than purely geometry-based 
approaches8. Given a large number of recent works on topological phononics, we expect to see the appearance of 
many works leading the way to new applications regarding phonon guiding from the sonic to the thermal range. 
To obtain topologically protected edge states, the symmetries of spatial inversion and time-reversal have to be 
broken, then nonzero Berry curvatures and nonzero Chern numbers can be achieved, respectively. By designing 
structures with a domain wall supporting chiral or helical edge states, the topologically protected transport will 
emerge at the boundary according to the bulk-boundary correspondence principle26.

Metamaterials are engineered structures that realize devices with extraordinary responses to light, sound, 
and heat flow27–30. Phononic metamaterials in solid state systems, which can be termed as elastic metamaterials 
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are used to break or buckle in order to dissipate mechanical shock energy. This work can lead to active mechan-
ical metamaterials, integrating energy sources, feedback loops etc31,32. Pentamode materials, a specific type of 
mechanical metamaterials, only supports longitudinal polarized elastic waves, since the effective shear modulus 
is very small relative to the bulk modulus. The materials were proposed years ago and have been realized in the 
mechanical and acoustic field33–35. Mechanical cloaking based on pentamode metamaterials can protect sensi-
tive objects mechanically or even hide them36. In this paper, we propose a 2D phononic metamaterial, a kind of 
phononic graphene, based on a 2D pentamode structure in order to realize topologically protected edge states. 
In particular, the presented approach requires, contrary to most related recent works, no external fields, i.e., it 
is completely based on passive components. Similar concepts utilize either Lamb modes13 or complex bilayer 
geometries37 while we demonstrate that protected edge transport is possible for in–plane propagation in a single 
layer structure of silicon. This is a considerable advantage in the attempt to fabricate structures aiming for nano-
technological applications in the high-frequency range and thus is an important step towards the realization of 
actual devices.

Results
Firstly we introduce the structural parameters of the proposed phononic metamaterial. Figure 1(a) shows the 
schematic of a unit cell of the 2D pentamode structure with the arrangement of a honeycomb lattice. The radius 
of a joint circle = ∗r m r0, where m is a scaling factor, and r0 = 1 mm is defined as the basic value of radius. The 
lattice constant is given by a = 12 mm. We choose silicon as material system with a Young’s modulus E = 167 GPa, 
a Poisson’s ratio σ = 0.27 and a density ρ = 2330 kg/m3. The modelling software Comsol, based on the finite ele-
ment method, is employed to study the phononic properties including band structures and transmissions of the 
designed phononic nanostructures in the paper, while we adopted a finite difference scheme using a skewed 
9-point stencil implemented in Matlab to calculate the Berry curvatures. Periodic boundary conditions are set to 
the four outer boundaries of the unit cell for the band structure calculation. The band structure is calculated by 
solving the eigenfrequency equation and sweeping the wavevector in the irreducible Brillouin zone of the honey-
comb lattice in the reciprocal space. This pentamode material is a kind of elastic metamaterial, however, we like 
to focus on the novel propagation characteristics of the elastic wave in the pentamode structure, hence we adopt 
the name of phononic metamaterial here.

We use the geometrical parameter of the joint circle in order to explore different band structures. The band 
structures of 2D pentamode structures and the accidental degeneracy point are illustrated in Fig. 1(b). A four-fold 
accidental degeneracy point with linear dispersions appears at the Γ point of the structure with m = 1.52. The 
degeneracy point at 0.360 MHz is a Dirac point with double Dirac cones. The physical origin of a Dirac point at 
the Brillouin boundary is the consequences of the lattice symmetry, while that of a Dirac point at zone center is 
the appearance of accidental degeneracy38,39. The breaking of time-reversal symmetry can be achieved by sepa-
rating the Dirac point into two opposite states in the separated bands. With decreasing the parameter of the joint 
circle m from 2.00 to 1.00, the bandgap closes and reopens experiencing a phase transition, i.e., an inversion of 
band modes take place, which means the trivial bandgap has been transformed into a nontrivial bandgap due to 

Figure 1.  (a) The geometry of a unit cell of the 2D pentamode structure with the honeycomb array; (b) band 
structures of the 2D pentamode structure with different radii of joint circle with m = 2.00, 1.52, and 1.00, 
respectively (c) the vibrational modes of separated degeneracy points marked in (b).
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the breaking of time-reversal symmetry. The corresponding calculation of the Berry curvature is shown in sup-
plementary, which demonstrates that the structure with m = 1.0 is a topological structure. The Chern number for 
the four bands of interest is shown in the topological structure. Therefore, the bandgaps that belong to different 
topological phases can be transferred by appropriately tuning the system’s parameters.

It is demonstrated by the band structures that by modulation of the parameter the designed structures 
undergo a phase transition in reciprocal space. The analysis of vibrational modes confirms these results in an 
intuitive way. Figure 1(c) shows the displacement fields of separated degenerated points, which are used to iden-
tify the vibrational modes of different structures. The four-fold accidental degeneracy point is separated into two 
double-fold degeneracy points in both topological and ordinary structures, thus, each double-fold degeneracy 
point at the Γ point exhibits two vibrational modes at the same frequencies. We can observe from Fig. 1(c) that 
the vibrational modes of the degeneracy modes A with the frequency of 0.339 MHz in the upper bands of the 
ordinary structure are the same as the degeneracy modes D with the frequency of 0.377 MHz in the lower bands 
of the topological structure, i.e., the modes of separated degeneracy points in the upper bands of the ordinary 
structure with the trivial bandgap are coincident with that in the lower bands of the topological structure with 
the nontrivial bandgap. The degeneracy modes B at 0.481 MHz in the lower bands of the ordinary structure and 
the degeneracy modes C in the upper bands of the topological structure demonstrate the same conclusion and 
confirm the appearance of a phase transition from zero Chern Number to non-zero Chern Number in the two 
structures.

Since topologically protected gapless edge states can be formed at the domain wall formed from two phononic 
structures with dissimilar phases, i.e., the topological structure and the ordinary structure, topologically pro-
tected waveguides can be constructed for diverse applications6,8.

To confirm the existence of topologically protected edge states, band structure and vibrational mode analysis 
of a supercell comprising 24 × 1 unit cells is performed numerically. The supercell is a ribbon of 24 unit cells 
along the x direction, which consists of 12 unit cells of the topological structure and 12 unit cells of the ordinary 
structure in a row. Periodic boundary conditions are applied to the top and bottom edges along y directions 
and free boundary conditions are set on all other edges. Figure 2 shows the band structure of a supercell of the 
stacked structure and vibrational modes of the edge states with specific wavevectors. The two gapless edge modes, 
which connect the bulk wave modes, can be observed from the band structure in Fig. 2(a). The local band struc-
ture of interest is shown as an inset. Figure 2(b) demonstrates two vibrational modes of the centre region of the 
stacked structure at 0.345 MHz with the wavevector k =  ± 0.04, which shows opposite directions of velocity in 
the domain wall, i.e., when one is defined as the forward transfer with a positive group velocity, the other one will 
be the backward transfer with a negative velocity. The corresponding velocity fields of the domain wall, which 
possess helical characteristics, are unambiguously demonstrated in Fig. 2(c). The two edge branches support 
modes bound on the interface with opposite velocity directions, i.e., angular momentum, for the counterprop-
agating waves, which can be treated as a pseudo spin-up state and a pseudo spin-down state analogous to the 
quantum spin Hall effect in electronic systems. Since the edge bands are located in the gap of bulk waves, the edge 
modes cannot be scattered into the bulk of the structure theoretically. The helical pseudospin states ensure the 
absence of backscattering, which will be demonstrated in the analysis of the displacement fields. The vibrational 
modes of the helical edge states show that the elastic waves are mostly localized in the domain wall and exhibit 
the respective forward or backward velocity, which is in accordance with the band structure. Besides, some other 
vibrational modes are checked based on Fig. 2(a). The edge modes inside the area limited by the dashed lines at 
k =  ± 0.12 demonstrate that the vibrational mode and energy concentrate in the domain wall. While the modes 
located exactly at the wavevector k =  ± 0.12 show the hybridization of vibrations of the domain wall and parts 

Figure 2.  (a) The band structure of a supercell consisting of the topological structures stacked with the ordinary 
structures with helical edge modes, the forward transfer and backward transfer of edge states are marked as red 
and blue respectively; (b) the vibrational modes of the centre region of the stacked structure at k =  ± 0.04 (the 
marked dots in the inset) with a frequency of 0.345 MHz, and (c) the corresponding velocity fields at the domain 
walls. The red arrows represent the amplitudes and the directions of the position dependent velocities.
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of the topological structure or the ordinary structure. When the wavevector is outside of the marked region, the 
edge modes transform into bulk modes which excite bulk vibrations only. In the following we will investigate 
different edge geometries and the respective wave propagation behavior.

Figure 3 shows a zigzag domain wall which functions as a curved waveguide in a phononic structure consisting of 
topological structures stacked with ordinary structures with a frequency of 0.35 MHz. Port 1 and Port 2 indicate dif-
ferent locations of the input. The bend can severely inhibit the wave propagation in ordinary waveguides. However, 
we can observe that the elastic wave can propagate along the bends, which demonstrates a high-quality transmission 
in this phononic metamaterial. The robust propagation of elastic waves along the domain wall is ensured by the 
helical edge modes. The backscattering is largely suppressed in the domain walls due to the topological protection 
and thus the elastic wave can propagate even around sharp bends in the designed structure. Besides, the simulation 
results show that no matter if port 1 or port 2 is taken as the incident port, the robust propagation along the domain 
wall can be obtained. This is a point which will be analyzed in more detail below. Therefore, topologically protected 
states which are backscatter-immune along zigzag paths can be realized for elastic waves in this type of phononic 
metamaterial. A prerequisite for actual applications is a deeper understanding of the propagation characteristics and 
their geometry dependent behaviour. We will discuss this in more detail in the following.

Discussion
Based on the analysis of the results displayed in Fig. 2, we know that the edge states exhibit forward transfer and 
backward transfer, which can be treated as pseudo spin-up and pseudo spin-down states, respectively. In order to 
select a particular pseudospin state from the gapless edge modes, different phononic structures are constructed 
to study pseudospin-dependent transport.

Figure 4 shows the displacement fields with a frequency of 0.35 MHz of four different phononic structures 
which consist of the topological structure and the ordinary structure with an upward bend or a downward bend. 
We find an interesting behaviour comparing Fig. 4(a) with (c) which exhibit an upward and a downward bend 
respectively. While (a) with the upward bend demonstrates robust transmission, the transmission of the latter 
with the downward bend is forbidden. Based on Fig. 4(a,b), we observe that even with the same paths for the 
domain wall and the same input ports, when the location of the topological structure and ordinary structure 
exchange, the transmission characteristics will change from propagation allowed to forbidden or to the oppo-
site as the direction of velocity changes. The displacement contours of Fig. 4(c,d) demonstrate the effect of the 
exchange of propagation directions more distinctly. These results prove that the transmission in a specific system, 
determined by the pseudospin states, is influenced by the configuration of the stacked structures. By comparing 
Fig. 4(a–c), where the input ports are exchanged, respectively, we found that the characteristic keeps unchanged, 
i.e., the elastic waves are propagating for (a) & (c) or are forbidden for (b) & (c), which demonstrates that the 
transmission of elastic waves in our structures is symmetric. Intrinsic absorption can be a limiting factor for the 
propagation of elastic waves. However, based on the former experimental studies in silicon40–43, we can confirm 
that the absorption length here is much larger than the size of the structure. Thus, the absorption is not expected 
to be strong enough to prevent the observation of topological modes in the proposed structures.

Figure 5 shows the displacement contours at 0.35 MHz with different input ports in the model described in 
Fig. 4(a). The robust propagation along the domain wall can be obtained with both incident ports and the two 
displacement fields demonstrate the mirror symmetry. The topological edge states obey the symmetry selection 
rule13,44,45 with helical characteristics, which shows the right-handed and left-handed effects on the two sides of 

Figure 3.  The displacement field of robust propagation of the elastic wave with a frequency of 0.35 MHz along 
the domain walls in the designed phononic metamaterial consisting of topological structures stacked with 
ordinary structures. Port 1 and Port 2 indicate different locations of the input.
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the mirror plane for the same energy. Generally, at a specific frequency in the range of helical edge states, the elas-
tic wave can propagate either forward or backward in a structure. Thus, the pseudospin state is known in a specific 
structure when the location of the excitation source is chosen.

The schematic diagrams of wave propagation in the different phononic structures are demonstrated in Fig. 6 
as a summary. The exchange of excitation ports (e.g., diagrams (1,1) and (2,1)), or the positions of topological and 
ordinary structures(e.g., diagrams (1,1) and (1,3)), can cause the reversion of the forward and backward transport 
of the elastic wave, which can be used to control the phonon transport along a specific path in phononic meta-
materials. This selected phonon transport could be used to represent information, like the bits in conventional 
computing, providing a new way to design phononic logic gates.

In conclusion, by appropriately engineering of a pentamode structure, we have successfully constructed pho-
nonic structures in silicon with protected propagation of elastic waves which are immune to backscattering. The 
designed structures are characterized by pseudospin-dependent edge phonon transport. This approach yields a 

Figure 4.  The displacement fields of different phononic structures with a frequency of 0.35 MHz: (a) the 
topological structure coating the ordinary structure with an upward bend; (b) the ordinary structure coating the 
topological structure with an upward bend; (c) the topological structure coating the ordinary structure with a 
downward bend; (d) the ordinary structure coating the topological structure with a downward bend; (e) and (f) 
are the corresponding displacement contours of (c) and (d), respectively. The arrows in red and blue represent 
the forward and backward transport, respectively. The red stars indicate the location of the input.
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phononic metamaterial exhibiting helical edge states. It provides a specific lattice network topology where the 
phonon transport directions can be dynamically selected and controlled by changing configurations of structures. 
We want to emphasize that the one layer of patterning of our designed structures, the scalability of our results, 
and the mature fabrication processes available for silicon based systems render this an important possibility to 
fabricate tailored structures in different frequency regimes in particular higher frequencies reaching the GHz 
regime. Another key point of our work is the structure-dependent transport of elastic waves with topological 
protection. This propagation behaviour provides a further insight into the propagation possibilities. Besides the 
2D pentamode structure investigated in this paper, it is expected other 2D or 3D novel structures will also exhibit 
similar topological features, which are waiting to be explored. Phononic helical edge states provide an intriguing 
way to fulfill the need of nonreciprocal elastic wave devices, open the door for nonlinear effects and active phon-
onic metamaterials, and benefit the exploration of new forms of topological orders.

Data availability statement.  The datasets generated and analysed during the current study are available 
from the corresponding author on reasonable request.
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