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ABSTRACT

Very High Spatial Resolution (VHSR) large-scale SAR
image databases are still an unresolved issue in the Remote
Sensing field. In this work, we propose such a dataset and
use it to explore patch-based classification in urban and peri-
urban areas, considering 7 distinct semantic classes. In this
context, we investigate the accuracy of large CNN classifica-
tion models and pre-trained networks for SAR imaging sys-
tems. Furthermore, we propose a Generative Adversarial Net-
work (GAN) for SAR image generation and test, whether the
synthetic data can actually improve classification accuracy.

Index Terms— Big Data, SAR classification, GANs,
Generative Adversarial Networks, Deep Learning

1. INTRODUCTION

Classification of very high resolution (VHR) SAR image data
remains a hard and time-consuming task. Major difficulties
include the scarcity of available data, and the challenge of se-
mantically interpreting the SAR backscatter signal. Linked to
those difficulties, there are no large-scale, SAR-derived image
databases for Remote Sensing image analysis and knowledge
discovery. Furthermore, while optical image classification
has seen a breakthrough with the advent of Deep Learning
methods that require Big Data, SAR-based systems have so
far not experienced the same progress, likely because of not
enough data with associated training labels is available.

In this work we try to tackle the lack of training data, by
introducing a large-scale SAR image database. Precisely, our
dataset contains more than 60′000 image instances and re-
spective labels, chosen from 7 distinct semantic classes. Us-
ing this data, we perform a set of experiments to understand
the impact of dataset size on classification accuracy. In this
context, we also investigate the possibility to further expand
the dataset with synthetic SAR images generated with the
help ofGenerative Adversarial Networks (GANs). These are
powerful generative models that have been shown to produce

*Authors have contributed equally in this work

high-quality synthetic images in other fields, thereby reduc-
ing (or even compeltely avoiding) the annotation effort. Our
main contributions in this work can be summarized as follow:

• We construct the first state-of-the-art CNN model pre-
trained on large-scale SAR data.

• We investigate the possibility of transfer-learning from
other pre-trained models based on optical images, and
their impact on SAR image classification.

• We investigate the possibility of training also with arti-
ficial SAR data generated with a GAN.

2. RELATED WORK

In the field of SAR image analysis, the use of deep-learning
methods, such as CNNs, is still in its infancy, mainly due to
the limited availability of VHR data with asociated ground
truth labels. We note that, in a detailed literature review,
we did not find any work that relies on a large scale SAR-
database to unlock the potential of deep neural networks.
Moreover, there are no pre-trained networks for SAR images,
which would facilitate the classification of SAR datasets for
which there aren’t enough training labels to learn a deep
network from scratch.

Published work at the intersection of SAR imaging and
deep learning are mainly focussed on Target Classification.
Some representative works employ sparsely connected layers
[1], limited training data [2] and domain-specific data aug-
mentation methods [3]. In the field of GANs for SAR data,
some interesting results have been shown by [4], where au-
thors constructed a generative deep model. The outcome of
their experiments however remain unconclusive, due to the
scarcity of training data, and particular characteristics of the
underlying targets (military imagery). Another implementa-
tion of GANs in the field of Remote Sensing is the one of
[5], who investigate the Wasserstein GAN for poverty map-
ping with sparse labels, using a semi-supervised approach.
They however do not use SAR imagery. Yet another work
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on optical remote sensing imagery and artificial data genera-
tion is the one of [6]. Thery propose an additional objective
function over the standard GAN architecture to improve the
output. While the approach is interesting, it ultimately does
not produce visually realistic images of the target classes. A
promising work is [7], which demonstrates the generation of
synthetic SAR images on the basis of optical images. The
high-quality samples generated in that work show the poten-
tial of GAN methods for SAR image synthesis, and motivate
us to further investigate that topic.

3. THE DATASET

Our dataset was obtained via a novel classification scheme
especially designed for high-resolution SAR imagery of
(mainly)q built-up areas. The dataset contain image patches
from 288 TerraSAR-X image scenes (41 scenes acquired in
Africa, 6 from Antarctica, 59 from Asia, 80 from Europe, 40
from the Middle East, 54 from North and South America and
8 from ocean surfaces), with a total of over 60′000 individual
patches. All TerraSAR-X data are obtained via the X-band
instrument, using the high-resolution Spotlight mode. The in-
cident angles throughout the scenes varies between 20 and 50
degrees. The resolution of the images scenes is set to 2.9m,
with a pixel spacing of 1.25m. The chosen polarization for
the dataset is horizontal (HH) for all products. Furthermore,
for conveniennce we convert all intensity data to 8-bit integer
precision. For more information on the dataset, refer to [8].

4. EXPERIMENTS

In our experiments, we first set a baseline for deep learning
based SAR classification, and go on to investigate if we can
improve over that baseline with additional, synthetic data gen-
erated with a GAN.

4.1. The CNN SAR classifier

To establish a baseline for the use of CNNs with SAR data,
we employ a state-of-the-art network architecture for opti-
cal images, namely the standard Residual Network with 50
hidden layers (ResNet-50) [9]. To adapt the network to our
class nomenclature, we remove the fully connected layers at
the top and replace them with three fully connected layers of
size 256, 256 and 7, respectively, which we train from scratch.
The resulting model achieves an overall accuracy of 93.2%.
We find this result very encouraging: in spite of the radically
different imaging process and image statistics, modern, deep
CNNs appear to be suitable for supervised SAR image clas-
sification and yield high classification accuracy, when trained
on an appropriate, large training set.

A further, interesting observation is that conventional pre-
training (i.e., initialization with the weights learned from op-
tical images) has little effect on the classification result. This

is not unexpected – while the pre-training with very large
databases (millions of images) does ususally help when work-
ing with optical images, the local image statistics of RGB and
SAR data are probably too different to transfer even low-level
image properties. To support that hypothesis, we have we
trained the same ResNet-50 twice, once with random initial-
ization and once with weights pre-trained on ImageNet. The
classification results for SAR were practical the same in both
cases. I.e., the pre-trained weights do not hurt the learning,
but they also do not help compared to random initialisation.

4.2. Image Generation with BEGAN Models

Given the good performance of the deep network, and the still
comparatively small training database (in computer vision,
models are routinely pre-trained with more than 106 train-
ing images), we investigate if artificial data generation with a
GAN can further improve our classifier. For close-range ap-
plications, it has already been shown that classifier training
can benefit from GAN image synthesis, e.g., for sign recog-
nition [10]. However, our task however is more challenging,
due to the extreme variability of the SAR data in our database,
and the large dimension of the output images we need to gen-
erate (160× 160 pixels).

4.2.1. BEGAN Model for SAR

Despite the rather recent invention of GANs, there is already
a plethora of variants such as DC-GANs, cGANs, WGANs,
DRAGANs and BEGANs. We base our investigation on the
newly proposed BEGAN model [11], which was shown to
generate images of remarkable quality, and to handle larger
image sizes than most other variants.
Compared to the standard GAN model, the BEGAN design
has a number of attractive characteristics. First, it uses auto-
encoders as discriminator, thus matching the corresponding
autoencoder distributions (rather than the rawe data distribu-
tions), with a Wasserstein distance loss. Furthermore, BE-
GAN employs an equilibrium term to balance the effect of the
Discriminator with respect to the Generator, so as to avoid an
“early win” of one stage over the other.

BEGAN was initially proposed for generating human
faces. Even though this is already a challenging problem,
synthesising SAR images proved to be a lot harder. Through
empirical experimentation, we found that the capacity of
the original model is not sufficient to capture the complex-
ity of our database. We therefore added more layers both
to the Generator and the Discriminator. In each of the
two stages, we add two additional convolution layers (with
respective eLU non-linearities), before the respective pool-
ing/upsampling layers. Furthermore, we have replaced the
final, linear layers of both stages with non-linear ones, using
the ReLU non-linearity. 1
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Finally, and perhaps most significantly, we have changed the
loss function of the discriminator.The original loss function is
simply the mean of the per-pixel L1 distance. In our model,
we replace it by a combination of a per-pixel distance and
a histogram distance, to explicitly match the global intensity
distributions of the images. The new loss is given by :

Lgenerated = Lhist + ω · Lspatial

Lhist =
1

Nbins
·
∑

(hist(X)− hist(Xrecon))
2

Lspatial =
1

Npix
·
∑

(X −Xrecon)
2 ,

where hist returns the histogram of an image over a fixed
number Nbins of bins (set to 64), and Npix is the number of
pixels in the generated image. The hyperparameter ω defines
a weighting between the two parts of the loss. For our exper-
iments we empirically set it to ω = 0.001.

4.2.2. BEGAN Image Generation

Image generation with GANs still remains somewhat a brittle
and somewhat challenging task. We thus investigate three for
our SAR image generation problem. They are:

• In the hard scenario, the network is asked to directly
generate large SAR patches of size 160 × 160 pixels.
This scenario would be optimal, in the sense that it out-
puts patches at the correct size for our database; but it
also the most complex prediction task.

• In the intermediate scenario, the network generates
SAR patches at 2× larger GSD, with dimension 80×80
pixels, which are then compared to downsampled real
images. The reduced resolution lowers the complexity
of the task, while the patch size in scene coordinates,
and thus the spatial context, remains the same. But
the resulting images must be upsampled to the original
dimensions, and thus lack high-frequency detail.

• In the simple scenario, images are also generated at
80 × 80 pixels, but this time the original GSD is re-
tained. Instead, the patch size in scene coordinates is
halved, respectively the real SAR patches are cropped.
The resulting images must again be upampled, to match
the patch size used for classification. Using smaller
and more local patches presumably further reduces the
complexity of the prediction, the price to pay is a mis-
match in GSD between synthetic and real training im-
ages, and the loss of 3/4 of the context area.

So far, we were unsuccessful in our attempts to train the hard
scenario. We leave it to future work to determine whether
this can be remedied, or whether a higher-capacity model is
needed. For the intermediate scenario, the generator appeared
to converge better, but its outputs were still unsatisfactory and
did not visually resemble the original data. For the time being,
this failure leaves us with the simple scenario. That setting did

converge to a reasonable solution that outputs realistically-
lookinf synthetic images, see examples in Figure 1 and real
SAR data in Figure 2. However, one can also clearly see that
the smaller patches capture less of the context.

4.3. Classification Augmentation Through GANs

In spite of the limited success to synthesize full-size patches,
we continued the experiment. The “simple”patches were up-
sampled to 160×160 pixels and added to the training data for
the classification network. As a first test, we generated 5100
synthetic instances of the Settlement class, which is the most
frequent class in the dataset (25’000 real traning patches), and
also the one with the strongest intra-class variation.

Somewhat surprisingly, retraining the ResNet-50 classifier
with the augmented dataset did not influence the classifier
either way. We get the same classification accuracy of 93.2%.
Seemingly, the synthetic examples were neither capable of
adding any additional information that would have improved
the classifier, nor were they unrealistic enough to negatively
impact the classifier. Obviously, in the absence of a satisfac-
tory explanation such an outcome appears unlikely. Future
work will have to determine the cause, and hopefully address
the current short-comings of the generator, so as to further
improve the classifier network.

5. CONCLUSIONS

We have introduced a new, large-scale database of SAR
patches with asociated semantic class labels. To our knowl-
edge, this is the first SAR dataset large enough to train modern
deep neural networks, and we have demonstrated that capa-
bility by learning a ResNet-50 convolutional network that
achieves an excellent 93.2% hit rate over 7 different scene
categories. We have further adapted the generative BEGAN
network model to SAR data, and have experimented with
synthetically generated images to obtain an even larger tran-
ing set. Unfortunately, we are still struggling with technical
problems in the image synthesis, and the first experiments
with additional, synthetic training data have not yet led to
conclusive results. Nevertheless, our paper clearly shows
that, as soon as enough data is available, deep convolutional
networks work extremely well also for SAR images. More
detailed tests and comparisons still need to be run, but we be-
lieve that our results set a new standard for patch-wise SAR
classification. We also posit that our failure to exploit syn-
thetic images is due to relatively minor technical difficulties
that can be addressed, and we are still convinced that GANs
have the potential to support the the generation of truly big
training databases.



Figure 1. Generated data of size 80× 80 pixel by cropping scenario - upsampled to 160× 160 pixel

Figure 2. Original TerraSAR-X data of original size - 160× 160 pixel
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