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ABSTRACT

This work aims to model the effect of the input offset voltage of an operational am-

plifier on the performance of a high-precision, voltage-mode, resistor-based multiplying

digital-to-analog converter (M-DAC). Based on the model, a high precision current buffer

is proposed to isolate the resistor ladder from the operational amplifier. A 14-bit M-DAC

operating with a ±1V reference is designed using the IBM-130nm PDK to illustrate the

offset tolerance of the proposed architecture. Post-layout simulations show that the pro-

posed architecture reduces the offset voltage to an offset error in the DAC transfer function.

The maximum DNL is maintained at -0.385 LSB for an input offset voltage of up to 60mV

(1024 LSB). The current buffer also introduces an inversion of the output voltage, yielding

a non-inverted output. This alleviates the need for an additional high precision op-amp to

invert the output voltage.
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NOMENCLATURE

ADC Analog-to-Digital Converter

M-DAC Multiplying Digital-to-Analog Converter

MSB Most Significant Bit

LSB Least Significant Bit

DNL Differential Non-Linearity

INL Integral Non-Linearity

OP-AMP Operational Amplifier

VOUT Output Voltage

IOUT Output Current (Positive Terminal)

IOUTB Output Current (Negative Terminal)

REF Reference Voltage

DVDD Digital VDD Supply

DVSS Digital VSS Supply

FS Full-scale

THD Total Harmonic Distortion

CMOS Complementary Metal Oxide Semiconductor

FET Field Effect Transistor

PVT Process Voltage and Temperature
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1. INTRODUCTION

High-precision test equipment and medical instruments demand the use of a digitally-

controllable AC signal processing component [5]. With the equipment becoming more

portable each day, the need for low voltage designs is ever increasing. Voltage-mode

Multiplying-DACs (M-DACs) are ideally suited for such applications. This is because M-

DACs, unlike other DACs, use a variable reference along with a digitally switched resistor

ladder to produce variable output current, which is converted to voltage by a current to

voltage (I-V) converter.

As with any resistor-based DACs, the M-DAC performance also depends on the match-

ing of the resistors [6]. In addition to this, at low voltages the M-DAC performance, partic-

ularly linearity, becomes heavily dependent on the design of the current-to-voltage (I-V)

converter. This thesis studies the performance dependency of the I-V converter design on

the M-DAC’s performance and also proposes a new block in the M-DAC architecture to

minimize this dependency.

The following chapter describes the various DAC architectures and parameters before

narrowing down the discussion to the voltage-mode M-DAC. Following this, the limita-

tions of using an op-amp based I-V converter for low voltage high precision applications

are discussed. Chapter 3 proposes the introduction of a new block in the M-DAC archi-

tecture to tolerate the static limitations of the op-amp followed by the design of a 14-bit

M-DAC using the proposed architecture. Chapter 4 illustrates the post layout results of the

proposed design. Chapter 5 discusses the possible solutions to the issues associated with

the proposed architecture before concluding in Chapter 6.

1



2. BACKGROUND

A Digital-to-Analog Converter (DAC) converts a multi-bit digital input signal to an

analog output voltage or current. In most cases, this is achieved by using an array of

passive elements, such as resistors or capacitors, to attenuate or amplify a reference volt-

age and use the digital input code to select a particular branch. Active elements such

as op-amps or transconductance amplifiers (OTA) may also be used to convert the output

voltage or current and also achieve high load driving capability. DACs also employ CMOS

switches for the conversion. The switches may be used to either select an output voltage

or steer an output current [7].

Instead of an array of passive devices, transistors acting as a current sources can also

be used for the digital-to-analog conversion [8]. They offer higher speeds of operation

compared to the passive devices at the expense of matching and linearity. In addition to

speed, matching and linearity, various DAC architectures can be compared based on their

settling time and glitch energy.

2.1 DAC Performance Metrics

A DAC performance for a particular reference voltage, resolution and speed is charac-

terized by static and dynamic metrics [9]. Typically a DAC is optimized for a specific set

of metrics depending on the application.

2.1.1 Resolution (n)

It determines how finely the output may change between discrete binary steps. For an

n-input DAC, the number of unique digital codes and output signal values are 2n − 1.
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2.1.2 Full-scale Code (FS)

The maximum digital input code to the DAC is defined as the full-scale (FS) of the

DAC. This typically corresponds to all the input bits being set to "1".

2.1.3 Zero Code (ZC)

The minimum digital input code to the DAC is defined as the zero of the DAC. This

corresponds to all input bits being set to "0". In unipolar DACs the output for zero code is

zero while for bipolar DACs it is the negative of the signal obtained at full-scale.

2.1.4 Least Significant Bit

The Least Significant Bit (LSB) or ∆ is the smallest change in the DAC output. For an

ideal DAC this can be computed as,

LSB(∆) =
Output(FS)−Output(ZC)

2n
(2.1)

2.1.5 Static Metrics

A DAC transfer function can be obtained by plotting the output analog signal versus

input digital code as shown in Figure 2.1. Each of the static performance metrics - offset,

gain, differential nonlinearity and integral nonlinearity errors can be obtained from this

plot as explained in the following sub-section.

2.1.5.1 End-Point Errors

Based on the end-points of a DAC transfer curve the offset and gain error are specified.

The offset error is the deviation from ideal at Zero code. On the other hand, the difference

between the slope of the ideal transfer curve and the obtained transfer curve is measured

as the gain error. The effect of both the errors on the transfer curve is shown in Figure 2.2.

3



Figure 2.1: Ideal DAC transfer curve [1]

(a) Offset error (b) Gain error (c) Offset and gain error

Figure 2.2: End-point errors [2]

2.1.5.2 Linearity Errors

Since DACs are typically made of an array of resistors, capacitors or current sources,

matching between the elements determines its linearity, i.e., the larger the mismatch, the

larger the nonlinearity. To quantify the linearity of a DAC, the integral nonlinearity (INL)

and differential nonlinearity (DNL) are measured. The INL is the deviation of the actual

transfer curve from a reference line, which can be a best-fit line, the end-point line or the

4



ideal DAC line [7]. If the output analog signal for each code is expressed as Y (i), i =

0...(2n − 1) and each code ideally contributes to ∆ change in the output analog signal,

then the INL can be expressed as,

INL(i) =
Y (i)− Yref (i)

∆
(2.2)

On the other hand, DNL is the maximum deviation of an actual analog output step, be-

tween adjacent input codes, from the ideal step value of ∆. This can be expressed as,

DNL(i) =
Y (i+ 1)− Y (i)−∆

∆
(2.3)

From (2.3) it is apparent that for DNL < -1 the DAC is non-monotonic. Another thing

to note is that, if the INL is estimated using the end-point line then the INL becomes a

running sum of DNL at each code.

INL(k) =
k∑
i=1

DNL(i) (2.4)

Figure 2.3 shows the transfer curve of a nonideal DAC depicting DNL and INL errors.

2.1.6 Dynamic Metrics

In some applications such as audio or communications, the AC or transient perfor-

mance of the DAC is more crucial than the static performance. Such applications demand

that the DAC have fast settling time, low glitch impulse area and low distortion while

having a fast conversion rate and a wide operating frequency range. These performance

metrics are tested using either sine or step functions applied to the digital input or analog

reference input.

5



(a) DNL error (b) INL error

Figure 2.3: Linearity errors [1]

2.1.6.1 Step Response

A step change in the digital code or analog reference signal is used to measure the

DACs settling and glitch impulse area.

Settling time can be defined as the amount of time required for the output to settle

within the specified error band measured with respect to the output when the input data to

the switches changes as shown in Figure 2.4a [2]. The specified error band is defined in

terms of ∆ or LSB of the DAC and is typically defined to be 1 LSB.

During code transitions, the output voltage of the DAC shows initial overshoot and

undershoot behavior before settling to the final value as shown in Figure 2.4b. These

glitches in the output voltage are typically a consequence of the DAC internal switches

being out-of-sync or the switch parasitic capacitance being charged or discharged. The

worst-case glitch is observed when all the switches toggle, which typically occurs during

the mid-scale transition for M-DACs. This code transition is also referred to as a major

carry transition.

In certain applications, these glitches can disrupt system behavior and lead to dynamic

6



(a) Settling time (b) Glitch impulse area

Figure 2.4: Step response [2]

non-linearity [10]. The magnitude of the glitch is quantified as an area under the impulse

as shown in Figure 2.4b, which represents the amount of energy during the glitching.

2.1.6.2 AC Response

A stream of digital codes representing a single or multi-tone sine wave is applied at

the input to the DAC to measure its total harmonic distortion (THD), signal-to-noise ra-

tio (SNR), signal to noise and distortion ratio (SNDR) and spurious-free dynamic range

(SFDR) [2]. However, for M-DACs, which are capable of having a time-varying analog

reference signal, these metrics are also measured with respect to the reference.

Relevant specifications for the M-DAC include the reference multiplying bandwidth,

Analog/Digital total harmonic distortion (THD) and the multiplying feedthrough error.

The reference multiplying bandwidth is defined as the reference input frequency at

which the gain of the DAC is -3dB when the DAC code is set to full-scale [11]. It is

strongly dependent on the parasitic capacitance of the switches and the GBW of the I-V

converter used in the M-DAC. Figure 2.5a shows the AC response of an M-DAC from

Texas Instruments DAC8802 for different input codes. The response at full-scale is used

to define the multiplying bandwidth, which is about 10MHz from the plot.
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The analog THD is the mathematical representation of the harmonic content in the

output multiplied waveform signal [11] when a sinusoidal reference is applied. If Vi rep-

resents the ith harmonic then the THD is,

THD(dB) = 20 log10

(√∑∞
i=2 V

2
i

V1

)
(2.5)

The digital THD is the mathematical representation of the harmonic content in the

output multiplied waveform signal [11] when a stream of digital code representing a sinu-

soidal wave is applied.

The multiplying feedthrough error is the error due to the parasitic capacitive feedthrough

from the reference input to the DAC output, when the digital input to the DAC is zero code

[11]. At high frequencies, when the capacitance impedance falls, the feedthrough increases

as shown in Figure 2.5b.

(a) Reference multiplying bandwidth [12] (b) Multiplying feedthrough [11]

Figure 2.5: AC response

Based on the discussed metrics various DAC topologies can be compared.
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2.2 Resistor-based DAC Architectures

Among the various elements that can be used to create a DAC, the current source based

implementation offers the highest conversion speed with the least untrimmed accuracy.

Capacitors offer the best matching, but leakage causes a loss in accuracy within a few

milliseconds [2]. Resistors offer moderate matching and their precision is not lost due to

leakage. When coupled with CMOS switches, which can conduct bi-directional current,

the resistor-based architecture can also be employed with a bipolar time-varying reference.

Since the design of a precision DAC having a time-varying reference is the focus of this

thesis, the scope of this discussion is limited to different resistor-based architectures.

An array of switched resistors that create the DAC is sometimes referred to as a resistor

ladder. Based on the design of the ladder, the resistor architectures can be further classified

into - unary, binary and segmented architectures.

2.2.1 Unary Resistor Ladder

If all the resistors in the ladder are equally weighted, then the ladder is called a unary

DAC ladder. A series connection of multiple unit resistors forms a String DAC [7], and

each tap of the string generates a different voltage as shown in Figure 2.6a. If "Terminal

B" is connected to ground, then the architecture is termed as a Kelvin Divider, otherwise

it is called a digital potentiometer. Connecting multiple unit resistors in parallel yields a

current output DAC as shown in Figure 2.6b.

The resistor ladder is simple, inherently monotonic and has a low glitch impulse area

when switching. However, to generate an n-bit DAC, 2n-1 unit resistors are required

yielding an exponentially growing area requirement as the resolution increases.
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(a) Voltage output unary DAC (b) Current output unary DAC

Figure 2.6: Unary DAC [2]

2.2.2 Binary Resistor Ladder

If the resistors along the ladder are scaled by a factor of two then the ladder is called a

binary DAC. Figure 2.7 shows the voltage mode and current mode variations of the DAC.

Since only one resistor is associated with each bit, these DACs are more efficient than

the unary DACs at higher resolutions. However, these DACs are not inherently monotonic

and maintaining good matching across the different values of resistors is difficult.

(a) Voltage output binary DAC (b) Current output binary DAC

Figure 2.7: Binary DAC [2]

The matching in the binary ladder can be improved by using an R-2R ladder as shown

10



in Figure 2.8. This requires matching between only two values of resistors and offers

similar area advantages as the original binary DAC. However, this ladder also does not

guarantee monotonicity.

Another issue with the voltage mode R-2R DAC is that the impedance looking into the

reference terminal (RREF ) is code-dependent. As a consequence, for all the applications

using R-2R voltage mode DAC the reference is buffered. For high precision application,

the buffer specification must be commensurate with the required precision. On the other

hand, the current-mode DAC offers a code-independent impedance R and hence, alleviates

the need for a buffer. In addition to this, if the switches of a current-mode DAC are capable

of carrying current in either direction (such as CMOS devices), the reference voltage may

have either polarity. A DAC using such a structure is referred to as a multiplying DAC.

A major drawback in the current mode DAC is that the switches are typically large to

minimize their Ron and hence can introduce large glitches when switching.

(a) Voltage output R-2R DAC (b) Current output R-2R DAC

Figure 2.8: R-2R DAC [2]

An active current to voltage (I-V) conversion stage can be employed to create a voltage

from the current output. Figure 2.9 shows an operational amplifier used as an I-V converter

to create a voltage-mode M-DAC.
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Figure 2.9: Voltage output M-DAC

2.2.2.1 Segmented Ladder

To achieve higher resolutions, multiple DAC ladders can be combined to create a seg-

mented ladder. One ladder handles the MSBs while the other handles the LSBs. Figure

2.10 shows an example of a current mode segmented DAC where the first 3 bits are unary

or thermometer DAC while the last four bits are R-2R.

Figure 2.10: Segmented ladder

Consider an n-bit DAC having m-bits as unary elements and n-m bits as binary. If the
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spread of the resistor mismatch across the PVT range of the technology is represented by

σε then to achieve n-bits of resolution, the above ladders can be compared as shown in

Table 2.1. It can be concluded that the all the resistor ladders have the same INL however,

the segmented ladder is able to achieve a higher DNL compared to a binary DAC, for

lesser area compared to a unary DAC.

Table 2.1: Resistor ladder comparison [4]

Area σINL (LSB) σDNL (LSB) Glitch Impulse Area
Unary 2n − 1 2(n/2−1)σε σε Low
Binary n 2(n/2−1)σε 2n/2σε High
Segmented 2m − 1 + (n−m) 2(n/2−1)σε 2(n−m+1)/2σε Medium

To process AC signals with high precision, a voltage mode multiplying DAC with a

segmented ladder would, therefore, be an optimum choice. However, the performance

of the M-DAC also depends on the I-V converter. In most precision applications, a high

gain operational amplifier is connected in an inverting configuration to act as an I-V con-

verter as shown in Figure 2.9. The amplifier topology is also commonly referred as trans-

impedance amplifier or TIA. Certain parameters of the TIA design and performance can

have a significant impact on the M-DAC performance as explained in the next section.

2.3 Op-amp Specifications

The selection or design of the op-amp to be connected as a TIA at the output of a

current-mode DAC is of paramount importance when designing a voltage-mode M-DAC.

Both the static and dynamic limitations of a non-ideal op-amp can be detrimental to the

overall DAC performance. This heavily constraints the design of the TIA. A key point to

note here is that since the TIA is an inverting amplifier, it is going to invert the DAC output
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transfer function. To obtain a non-inverting output, another equally constrained inverting

amplifier must be designed.

2.3.1 Dynamic Limitations

The effect of the open-loop response of the amplifier can limit the overall DAC preci-

sion. The open-loop gain (Aol), in particular, can cause nonlinearity, gain and offset errors.

This effect is more prominent for codes near full scale, as shown in Figure 2.11, due to the

higher output current. Therefore, Aol must be in commensurate with the resolution (n) of

the ladder. The relation is established as [7],

Aol ≥ 20 log10(2
n) = 6.02n (2.6)

(a) VOUT vs CODE with high gain (b) VOUT vs CODE with low gain

Figure 2.11: Effect of open-loop gain on VOUT

Since the M-DAC would use the amplifier in a closed loop configuration, the stabil-

ity and unity-gain bandwidth (ft) of the system will impact the overall settling time and

multiplying bandwidth. Sometimes when a stable TIA is connected to the resistor ladder,

instability may ensue. This is because of the switch parasitic capacitance at the current
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output terminal which can degrade the phase margin of the system. To achieve a phase

margin of 45◦, a compensation capacitor is usually placed across the feedback resistor, as

modeled in Figure 2.12 [11], calculated as

Cf =
1 +

√
1 + 8πRFBCparft

4πRFBft
≈

√
2Cpar
πRFBft

(2.7)

Figure 2.12: Compensation for parasitic capacitance

The M-DAC uses the virtual ground of the amplifier to precisely steer current into the

feedback resistor. The accuracy of the virtual ground is given by the closed-loop input

impedance of the op-amp which in turn is a function of the loop gain of the amplifier [13].

The slew rate (SR) of the amplifier can limit the maximum input voltage reference

swing of the M-DAC at full-scale, given by

VREF <
SR

πft
(2.8)

A higher voltage reference swing will be severely distorted.
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2.3.2 Static Limitations

The input bias current of an amplifier can reduce the amount of current flowing through

the feedback resistor leading to gain errors. CMOS and FET amplifiers are therefore

preferred as TIAs for the M-DAC because they have very low input bias currents (≤1pA).

The input offset voltage is defined in [14] as the voltage that must be applied between

the two input terminals of the op-amp to obtain zero volts at the output. This difference is

caused because of the inherent mismatch of the input transistors and components during

fabrication. In CMOS amplifiers the input offset voltage is primarily due to the differences

in the threshold voltages of the input transistors of the differential pair which is caused

due to the variation of the width, length, thickness and doping levels of the channels in the

transistors [15].

The effect of the offset on the DAC’s performance can be modeled as shown in Fig-

ure 2.13, where RIOUT represents the impedance measured when looking into the IOUT

terminal. Using this model, and considering the amplifier to be ideal, VOUT can be given

as

VOUT = VREF

(−RFB

RDAC

)
+ VOS

(
1 +

RFB

RIOUT

)
(2.9)

where, the RDAC is the code-dependent resistor that controls the output current. For an

n-bit DAC it is given by

RDAC = R
( 2n

CODE

)
(2.10)

For R-2R resistor ladders the code dependence of RIOUT is highly non-linear [3], as

shown in Figure 2.14. This leads to non-linearity in VOUT , depicted in Figure 2.15. On the

other hand, for unary ladders the RIOUT is equal to RDAC and hence, is more tolerant to

offset.
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2R
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MSB LSB
IOUT

IOUTB

RFB

VOUT

VOS

RIOUT

VREF

Figure 2.13: Modeling the effect of the offset on VOUT

Figure 2.14: RIOUT vs CODE for a 5-bit R-2R DAC [3]

(a) VOUT vs CODE without offset (b) VOUT vs CODE with 25mV offset

Figure 2.15: Effect of offset on VOUT
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Another way of modeling the effect of the offset is shown in Figure 2.16. Here, the

offset is modeled at the inverting terminal. During the code transition, the current switch-

ing from the This causes different currents through the IOUT and IOUTB terminals given

by

IIOUTB =
VREF

RDAC_IOUTB
(2.11)

IIOUT =
VREF − VOS
RDAC_IOUT

(2.12)

where the RDAC_IOUTB and RDAC_IOUT represent the code-dependent resistance between

the reference (REF) and the output current terminals (IOUT and IOUTB). For an n-bit

DAC, they can be given as

RDAC_IOUT =
1

RDAC_IOUTB
= R

( 2n

CODE

)
(2.13)

The difference between the current causes non-linearity errors as shown in Figure 2.17

2R

R

2R

R

2R

R

2R 2R

MSB LSB
IOUT

IOUTB

RFB

VOUT

VOS

VREF

Figure 2.16: Modeling the effect of the offset on IOUT
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(a) IOUT vs CODE without offset (b) IOUT vs CODE with 25mV offset

Figure 2.17: Effect of offset on IOUT

Linearity can be preserved only if the offset voltage is less than 1 LSB. For low voltage

high precision DACs, this value can be in the order of 10µV. Unfortunately, the offset volt-

age of an untrimmed CMOS amplifier can be in the range of±5mV to±50mV [16] which

can only be reduced and not eliminated. Cancellation techniques [17] such as trimming

(<1mV), auto-zeroing (<500µV) or chopping (<1µV) may be used to reduce the offset. In

addition to these popular techniques, negative impedances [18] and feedback loops [19]

have also been proposed to cancel offset. These techniques are often expensive or com-

plex for high-performance applications. So, instead of canceling or reducing the offset,

this work attempts to tolerate the offset voltage. This eases the design or choice of the

op-amp especially at low supply voltages.
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3. PROPOSED ARCHITECTURE AND DESIGN

This work proposes the use of a current buffer between the resistive ladder and trans-

impedance amplifier (TIA) as shown in Figure 3.1. The current buffer will be able to

isolate the code-dependent output impedance (RIOUT ) from the TIA making the DAC

insensitive to the amplifier’s input offset voltage. Furthermore, if the current buffer offers

an output impedance much larger than the feedback resistor (RFB) then the offset voltage

would experience no gain and appear at the output as a fixed offset error.

RFB

...

D0 D1 D2 Dn

VREF

Resistor Ladder Current Buffer I-V Converter

IOUTB

IOUT

IOUTB 

IOUT 

VOUT

Figure 3.1: Proposed architecture
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To illustrate the proposed architecture, a 14-bit M-DAC is designed to meet the fol-

lowing specifications:

Table 3.1: Design specifications for the proposed M-DAC

Parameter Value
Resolution 14-bits
Reference Voltage ±1V
DNL <0.5 LSB
Multiplying Bandwidth 10MHz
Resistor Ladder Noise 20nV/

√
Hz

Major carry glitch energy <1nVs
Process Node IBM-130nm

3.1 Resistor Ladder

3.1.1 Topology

Considering the area, precision and linearity the segmented ladder is chosen. To op-

timize the area, the ladder employs multiple levels of segmentation similar to the ladder

shown in Figure 3.2. Each segment is budgeted based on the maximum offset expected

from the differential input of the current buffer. As explained next, the current buffer is

designed to have a maximum untrimmed offset of 3mV considering mismatches. Since

the R-2R would be most affected by this offset (VOS), its resolution (n) is determined to

be 8-bits by

n = floor
(

log2

(VREF
VOS

))
(3.1)

A trade-off between the accuracy and area leads the choice of the resolution for the MSB

and MID segments of the ladder. In this design, 2 bits are budgeted for the MID segment

while the remaining 4-bits are implemented in the MSB segment.
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Figure 3.2: Multiple segmented ladder

3.1.2 Resistor Type

The IBM-130nm PDK allows the fabrication of poly, n-well, diffusion and thin-film

resistors. Table 3.2 shows the comparison of the different implementations of a 1kΩ re-

sistor in IBM-130. From the comparison, it is clear that the thin-film resistors offer very

good matching and low parasitic capacitance, both of which are essential for high perfor-

mance. In fact, as explained in [2] thin-film resistors such as Si-Cr are heavily used in

the industry to design high-performance resistor ladders. Their sheet resistance can be as

high as 1kΩ/square [20] however, the sheet resistance of the thin-films resistors offered in

IBM-130 is less than 100Ω/square. This would entail a massive chip area making them

unsuitable for this design. Moreover, the fabrication of thin-film resistors would require an

additional mask layer which is not available for academic use. Diffusion and n-well resis-

tors offer higher sheet resistances but are accompanied by large parasitics that can degrade

the bandwidth of the circuit. So, this design uses poly resistors despite their poor matching.

The area and technology trade-offs therefore constraint the choice of the resistor.

3.1.3 Resistor Value

Considering the resistor ladder noise specification, the value of the resistance ladder

at full-scale is chosen to be 10kΩ. To achieve good matching via a common centroid

layout, each resistance in the ladder is implemented by a series/parallel combination of
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Table 3.2: Resistor comparison

Matching σ Area Parasitic Capacitance
Poly 0.7% 56µm2 ≈20fF
N-well 0.3% 160µm2 ≈200fF
Diffusion 0.1% 160µm2 ≈1300fF
Thin-film 0.04% 1600µm2 <20fF

a unit resistance bar of 160kΩ. The area of the unit resistance bar is chosen based on

the matching requirements of the ladder. To achieve the matching requirement for the

DNL accuracy from the poly resistors the size of the unit resistance bar was chosen to be

220µm×0.5µm after running multiple mismatch/monte-carlo simulations.

3.2 Switches

The ladder employs two switches forming a single-pole double-throw (SPDT) connec-

tion between the ladder and the IOUT/IOUTB output. The choice and design of the switch

is crucial for reliability and linearity.

3.2.1 Choice of Switch

The SPDT switch can be implemented by using an NMOS or PMOS, or even a com-

plementary switch. In the resistor ladder, the switch must have a very low Ron and should

connect the resistors to a low impedance node or virtual ground so, an NMOS switch is

typically used. To achieve very low Ron, low Vt or zero Vt transistors can be used, how-

ever it must be noted that these transistors suffer from large process variations. Instead,

low-voltage or digital switches can be used, because the drop across the switch is expected

to be in the order of millivolts. However, the maximum tolerable voltage of the Vbd must

be taken into account before opting for low-voltage switches. For an SOI process, this

is not a problem, since the bulk can be shorted to the source to ensure reliable operation.

However, for IBM-130, which is a bulk-CMOS process, the low voltage (1.2V) transistors
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can tolerate upto 1.5V of Vbd and since this design employs a -1.6V VSS reliability issues

may occur. To avoid this high voltage (3.3V) NMOS switches are used.

3.2.2 Switch Sizing

If all the CMOS switches are sized equally, then theirRon must be very small compared

to the resistors to keep the non-linearity errors low. This would entail large size switches

which are accompanied with parasitic capacitances. To alleviate this problem, the switches

can be binary weighted similar to the resistors. This would mean that the switches near the

MSB would be large and can lead to large-glitch impulses during transitions. This design

employs a good compromise between these two choices by employing a fixed switch size

for each resistor segment but scaling the switches between the segments. The switch size

for the LSB section was fixed to be at 1µm/0.4µm, which yields an Ron of 3kΩ which is

less than 1% of the unit resistor used in the LSB section. The switches in the MID section

were scaled by 2×while the switches in the MSB were scaled by 8×. Each of the switches

were fingered in the layout to reduce the parasitic capacitance and hence any associated

glitch impulse energy.

The final resistor ladder schematic is shown in Figure 3.3.

RMSB<14:0>
160k   

RMID<2:0>
640k 

R2<7>
1280k  

R1<7>
640k  

R2<0>
1280k  

R1<0>
640k  

MSB<14:0>

RMSB<14:0>
160k   

R2<7>
1280k  

R1<7>
640k  

R2<0>
1280k  

R1<0>
640k  

R1<0>
640k  

MSB<14:0>

8X

VSS MID<2:0>

MID<2:0>

4X

VSS LSB<7>

LSB<7>

1X

VSS LSB<0>

LSB<0>

1X

VSS VDD

IOUTB

IOUT

VREF

Figure 3.3: Resistor ladder schematic
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3.3 Current Buffer

An ideal current buffer must offer zero input impedance and infinite output impedance.

For this design to maintain linearity, the input impedance must be less than 0.1Ω and the

output impedance must be greater than the unit resistance (10kΩ).

The proposed current buffer topology is shown in Figure 3.4. Transistors M1 to M3

form a common gate amplifier whose input impedance is given by 1/gm1. Amplifier A1 is

used to boost the gm of the transistor and reduce the input impedance. In order to achieve

a low input impedance using gm boosting, the gain of the A1 must be very high (≈ 80dB).

So, this topology employs a second shunt-shunt feedback in M4-M5-M2. Transistor M4

along with M5 act as level shifters while providing a small signal gain of 1. The current

flowing into IN+ produces a voltage at IN+ propotional to the impedance at that node.

When the current increases, the corresponding voltage also increases, which causes an

increase of the voltage at the drain of M1. This increase is reflected at the gate of M2 via

M4 making M2 sink more current and hence reduce the voltage swing at IN+. The use of

this dual feedback allows achieving input impedance in the order of 0.1Ω as given by [21],

Rin ≈
1/gm1

Av1.gm2.rds3
(3.2)

To improve the output impedance, auxiliary amplifiers A2 and A3 are used to maintain

equal voltages at the drains of M6 and M3. This increases the output impedance of the

mirror and allows for precise mirroring of the current to the output. The transistor-level

implementation of the amplifiers A1 and A2/A3 is shown in Figure 3.5. In amplifier A1,

the output pole is designed to be the dominant pole. In amplifier A2/A3 however, the

dominant pole is set to be at the output of the first stage. The second stage amplifier would

offer a low impedance at output, pushing that pole to a high frequency.

Since the current buffer is connected to the resistor ladder, it is important that the offset
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Figure 3.4: Current buffer schematic

between the differential input terminals of the current buffer must be minimum. To ensure

this, the input transistors of the current buffer were sized to offer no more than 3mV

of offset considering mismatches. This offset margin dictates the design of the resistor

ladder’s LSB segment. In addition to this, the current buffer should be able to sink 100uA

of current from the ladder. So to maintain a linear operation, the current sources in the

buffer are designed to source about 200uA of current. The final design sizes are listed in

Table 3.3.
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(b) Amplifier A2/A3 schematic

Figure 3.5: Auxiliary amplifiers

Table 3.3: Current buffer design sizes

Amplifier A1

Transistor W/L (µm)
M1 160/0.8
M2 12/0.8
M3 12/0.8
M4 12/0.8
M5 40/0.8
M6 40/0.8
M7 40/0.8

Amplifier A2/A3

Transistor W/L (µm)
M1 20/0.8
M2 5/0.8
M3 12/0.8
M4 12/0.8
M5 12/0.8
M6 10/0.8
M7 10/0.8

Current buffer

Transistor W/L (µm)
M1 10/0.8
M2 5/0.8
M3 300/0.8
M4 1/0.8
M5 2/0.8
M6 300/0.8
M7 100/0.8
M8 5/0.8

The symmetric layout of the current buffer is crucial in minimizing offset. A fully

symmetric place-and-route is performed and care is taken to implement common centroid

techniques. Since the buffer should be capable of sinking and sourcing relatively large

currents, the metals in the layout are larger than minimum width to reduce parasitic resis-
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tances. Care is also taken to keep the metal between the resistor ladder and the current

buffer as thick as possible to minimize resistance while keeping the parasitic capacitance

low.

3.4 Transimpedance Amplifier Design

Based on the resolution, multiplying bandwidth and voltage reference swing, the op-

amp used in the TIA is expected to have a DC Gain of 84dB with a gain-bandwidth product

of 20MHz and a slew rate of at least 32V/us. The TIA is expected to have an output voltage

swing of ±1V as well. As shown in Figure 3.6, a folded cascode topology with a class

AB output stage [22][23] with indirect compensation is designed to satisfy the specs while

using minimum power. The op-amp design is optimized for a closed loop gain of -1.

When connected to the resistor ladder, the op-amp observes a parasitic capacitance (Cpar)

of nearly 2pF. This parasitic capacitance can degrade the phase margin of the circuit. So, a

compensation capacitor (Cf ), as shown in Figure 2.12, is connected to maintain atleast 45◦

of phase margin. The value of the capacitor is computed to be 3pF using Equation (2.7).

Choosing a 300fF miller capacitance (CM ), the final transistor designs are listed in

Table 3.4

Table 3.4: Op-amp design sizes

Transistor W/L (µm)
M1 20/0.8
M2 20/0.8
M3 190/0.8
M4 76/0.8
M5 19/0.8
M6 2.5/0.8
M7 5/0.8
M8 5/0.8
M9 304/0.8
M10 20/0.8
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Typical M-DAC architectures demand a fully symmetric amplifier layout to minimize

the offset. However, in this design since the M-DAC is tolerant to offset, the layout of

the op-amp is not very stringent. In order to prove this point, the op-amp was placed and

routed as shown in the schematic with no consideration for offset. This yielded an offset

of about 2.5mV.

CM

M1 M1'

M2'M2

M2

M2' M7

M8 M8'

M7'
M10

M9

M6'
M6

M5

M4 M4'

M3'
M3'M3

M3

M5

IN+
OUT

IN-

Vbias1

Vbias2

Vbias3
Vbias4

Vncas

Vpcas

VDD

VSS

Figure 3.6: Folded cascode amplifier with indirect compensation

At the top-level schematic, the feedback resistor is not connected to the op-amp as

shown in Figure 3.7a. This allows connecting external op-amps for testing the offset toler-

ance. Figure 3.7b shows the layout with the total area being 1470µm×1470µm, where the

resistor ladder occupies 1036µm×182µm, while the active circuit occupy 324µm×140µm.
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Figure 3.7: Chip top
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4. RESULTS AND DISCUSSION

This section presents the results of the M-DAC design. All the results are post-layout

simulations post-layout, unless specified.

The M-DAC is designed to achieve a resolution of 14-bits and with a DC voltage

reference of 1V, it has an LSB of 61µV.

4.1 Static Performance

Figure 4.1 shows the DC transfer function of the M-DAC. Notice that the transfer

function increases with code, unlike a typical M-DAC that shows inverting output. This is

due to the additional inversion of the current mirror in the current buffer. The offset error is

measured to be 42 LSB or 2.5mV, and the gain error is 0.001 LSB. The offset error is due

to the intentional input offset voltage created in the layout of the folded cascode op-amp.

Figure 4.1: DAC transfer function

Figure 4.2 shows the DNL and INL curve across all the DAC codes for the typical
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corner. The worst corner DNL is found to be -0.385 LSB while the INL is 1.8 LSB. The

conical shape of the DNL curve in Figure 4.2a is because at around mid-scale the current

flowing into the two terminals of the current buffer are nearly equal and hence experi-

ence equal voltages at the input of the current buffer. At zero code (or full-scale), the

IOUTB(IOUT) is much smaller than IOUT(IOUTB) causing the two terminals to experi-

ence slightly different voltages leading to non-linearity. The layout parasitic resistances

shift the minimum DNL point from mid-scale.

(a) DNL curve

(b) INL curve

Figure 4.2: Non-linearity curves
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To demonstrate the effect of offset on linearity, an ideal op-amp with variable input

offset voltage was used in simulation. Figure 4.3 show the effect of 25mV offset on the

linearity of the DAC at mid-scale without the current buffer. Figure 4.4 shows the im-

proved linearity in the presence of the buffer, and Figure 4.5 shows that the offset voltage

of the op-amp is reduced to an offset error of the overall DAC with minimal impact on the

gain error or linearity.

Figure 4.3: VOUT vs CODE without the current buffer

Schematic-level monte-carlo mismatch simulations are also performed on the design

to find the yield. Here, the yield is defined as the number of mismatch conditions for which

the DNL would be under the targeted ±0.5 LSB. The simulations reveal that the yield is

about 30% meaning that for every 100 designs chosen at random 30 designs would achieve

a DNL <0.5 LSB. This can be improved by using better matching thin-film resistors in-

stead of the poly.
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Figure 4.4: VOUT vs CODE with the current buffer

Figure 4.5: Input offset voltage reduced to offset error
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4.2 Dynamic Performance

Figure 4.6 shows the response of the M-DAC to a step of the reference voltage and

Code. The output voltage settles to within 1 LSB of the final value in 1µs for a step in

reference, and 589ns when the code changes from 0 to FS. For an LSB change at the

mid-scale, the glitch impulse energy is computed to be 0.6nVs as shown in Figure 4.6c.

Figure 4.7 shows the AC response of the M-DAC with respect to the reference signal.

Figure 4.7a shows the multiplying bandwidth to be 8.6MHz while Figure 4.7b shows the

multiplying feedthrough to be -130dB at 100kHz.

Figure 4.8 shows the response of the M-DAC to a sinusoidal reference at full-scale.

The reference has an amplitude of 100mV with a frequency of 10kHz.

The analog THD is measured to be 80dB with the DAC being driven by a 10kHz 1Vpp

sine wave reference at mid-scale.

The digital THD of the DAC was measured by converting a 10kHz sine wave into 14-

bit code using a 1-MHz ADC. Figure 4.9 shows the transient waveform at the input of the

ADC and the output of the DAC. The digital THD was measured to be 90dB.
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(a) Vout settling for a 1V step in reference voltage

(b) Vout settling for a code step from 0 to FS

(c) Major-carry glitch

Figure 4.6: Step response
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(a) Multiplying bandwidth

(b) Multiplying feedthrough

Figure 4.7: Reference AC response
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Figure 4.8: Reference sine response

Figure 4.9: Digital sine response
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4.3 Noise Performance

The noise performance of the M-DAC is measured at the output of a commercially

available operational amplifier OP177. Figure 4.10 shows the equivalent output noise

spectral density with and without the current buffer. The additional active components in

the current buffer contribute to the difference in the output noise with the output NMOS

transistors M2 and M8 being the dominant sources. The flicker noise near DC can be as

high as 140µV/
√
Hz which can degrade the ENOB of the converter by at-least 1 LSB.

Figure 4.10: Equivalent output noise performance
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4.4 Performance Comparison

Table 4.1 shows the comparison of the proposed DAC design against commercial

M-DACs [12][24][25]. Since most M-DAC research in the academia is concentrated in

capacitor-based DAC designs, commercial M-DACs are used as a comparison metric.

Table 4.1: Comparison with commercial M-DACs

This Work [12] [24] [25]
Resolution 14-bits 14-bits 14-bits 14-bits
Reference Voltage ±1V ±10V ±10V ±10V
DNL -0.385 LSB ±1 LSB ±0.5 LSB ±1 LSB
INL 1.8 LSB ±1 LSB ±1 LSB ±1 LSB
Offset Tolerance 1024 LSB <64 LSB <64 LSB <25 LSB
Multiplying Bandwidth 8.65MHz 10MHz 12MHz -
Multiplying Feedthrough -130dB -70dB -72dB -86dB
Resistor Ladder Spot Noise 13nV/

√
Hz 12nV/

√
Hz 25nV/

√
Hz 11nV/

√
Hz

Output Spot Noise at 1kHz 6µV/
√
Hz 3µV/

√
Hz 3µV/

√
Hz 3µV/

√
Hz

Glitch Impulse Area 0.6nVs 5nVs 2nVs 2nVs
Vout Settling 1µs 0.5µs 100ns 2µs
Analog THD -81dB -105dB -83dB -108dB
DVDD/DVSS 1.6V/-1.6V 5V/0V 5V/0V 5V/0V

It can be seen that the proposed design operates at a reference voltage much lower

than that of the commercial M-DACs. The technology used for the current design will not

be able to support such high voltages. On the other hand, the commercial M-DACs are

typically restricted to a minimum of 2.5V DC reference owing to the linearity problems

that may arise with lower references. Despite the different reference voltages, the proposed

design is capable of showing minimal linearity degradation with high offset voltages due

to the current buffer.

The commercial M-DACs are known to use large technology sizes in the order of
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0.6µm or higher, while the proposed design uses a 0.13µm technology. The reduced size

and segmented ladder design offer lower parasitics and hence the proposed M-DAC shows

smaller multiplying feedthrough and glitch impulse area.

Owing to the different definition used for the Vout settling time, the values in Table

4.1 are widely different. [12] measures 14-bit settling time for a code change from 0 to

mid-scale while [24] measures settling time to within±1mV of FS for a code change from

0 to FS. On the other hand, [25] measures 16-bit settling for a 0 to 5V step in the response.

The settling time for this design is measured for both the reference step and code change

from 0 to FS. The larger of the two is reported in the table. The test setup for the Analog

THD also varies from one DAC to the other. This design employs a 100mVpp sine input

at 10kHz with the DAC set to mid-scale.
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5. FUTURE WORK

The introduction of the current buffer in the M-DAC architecture adds considerable

noise to the output current. As shown in the previous section, for low frequency or DC ap-

plications the flicker noise of the MOS devices in the current buffer is capable of reducing

the effective resolution of the DAC. A future design should be capable of minimizing this

noise. Possible solutions include the use of larger devices, fully symmetric differential cir-

cuits or even switched biasing [26]. Besides noise, the current buffer consumes power in

the order of 2.5mW. The large power consumption is because of the bias current required

for maintaining the linearity of the current buffer. A future design should be able to reduce

the power consumed and yet maintain the required linearity. A possible solution includes

the use of a precision class-AB current mirrors [27] or even current conveyors [28].

In addition to tolerating the offset of the TIA, the proposed architecture also relaxes the

requirement for a high open-loop gain op-amp in the TIA. In the traditional architecture,

the open-loop gain of the op-amp ensured a low closed loop input impedance for main-

taining linearity. In the proposed architecture however, the current buffer is tasked with

maintaining a low input impedance. So, future designs of the voltage mode DAC can use

low power moderate gain op-amps for the TIA. However, it must also be noted that while

using a low gain amplifier may not impact the linearity, it does lead to a gain error.

Calibration schemes as in [29] can also be used in future design to correct the offset

and gain errors.
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6. CONCLUSION

This work presents the effect of the input offset voltage of a transimpedance amplifier

(TIA) on the linearity (DNL) of a voltage-mode M-DAC. It then proposes an introduction

of a current buffer between the M-DAC resistor ladder and the TIA to minimize the non-

linearity. A 14-bit M-DAC was designed with the proposed architecture. Post-layout

simulation results show that the effect of the offset voltage is reduced to an offset error

in the DAC’s transfer function while maintaining a maximum DNL of -0.385 LSB. The

current buffer is also able to provide an inversion to the signal alleviating the need for

an additional high precision inverting amplifier. The THD of the DAC was found to be

commensurate with the resolution, while the use of the 130nm process node and segmented

ladder structure yielded a multiplying feedthrough error of -130dB and glitch impulse area

of 0.6nVs, which is superior than the commercial DACs. The flicker noise of the MOS

devices in the current buffer dominated the noise performance of the proposed architecture;

reducing the effective resolution of the DAC to 13-bits at DC or low frequency. Possible

solutions to reduce the flicker noise and power consumption were also briefly discussed.
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