DESIGN OF A PRECISION LOW VOLTAGE RESISTOR MULTIPLYING DIGITAL-TO-ANALOG CONVERTER

A Thesis
by
ADITYA VIGHNESH RAMAKANTH BOMMIREDDIPALLI

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Chair of Committee, Aydin I. Karsilayan
Co-Chair of Committee, Jose Silva-Martinez
Committee Members, Sunil Khatri
Pilwon Hur
Head of Department, Miroslav Begovic

August 2017

Major Subject: Electrical Engineering

Abstract

This work aims to model the effect of the input offset voltage of an operational amplifier on the performance of a high-precision, voltage-mode, resistor-based multiplying digital-to-analog converter (M-DAC). Based on the model, a high precision current buffer is proposed to isolate the resistor ladder from the operational amplifier. A 14-bit M-DAC operating with a $\pm 1 \mathrm{~V}$ reference is designed using the IBM-130nm PDK to illustrate the offset tolerance of the proposed architecture. Post-layout simulations show that the proposed architecture reduces the offset voltage to an offset error in the DAC transfer function. The maximum DNL is maintained at -0.385 LSB for an input offset voltage of up to 60 mV (1024 LSB). The current buffer also introduces an inversion of the output voltage, yielding a non-inverted output. This alleviates the need for an additional high precision op-amp to invert the output voltage.

DEDICATION

To my loving grand-parents,
Late Dr. B.V. Rama Raju
B. Rama Bai

Late T.V. Subba Rao
T. Sesha Kumari

ACKNOWLEDGMENTS

I am grateful to Dr. Aydin I. Karsilayan for giving me an opportunity to pursue this work and also for his immensely valuable guidance leading to its successful completion. I am also thankful to Dr. Jose Silva-Martinez and Dr. Edgar Sanchez-Sinencio for all the valuable discussions we had over the past two years.

A very special gratitude to the engineers at Texas Instruments, Tucson : Abdullah Yilmaz and Jeff Johnson, for inspiring me to take up this work.

To my defense Committee members, Dr. Sunil Khatri and Dr. Pilwon Hur: for taking time off their busy schedules to review and discuss this work.

I am also grateful to my parents and sister: B.V.R. Murthy, B.V. Saroja and B. Shruthi Keerthi for their moral and emotional support in my life.

With a special mention to my friends: Sasank Ganesh and L.V. Sandeep. They have consistently supported my efforts over the past two years with engrossing technical discussions.

And finally, last but by no means least, also to every student, professor, staff member or employee at Texas A\&M University and Texas Instruments with whom I have interacted over the past couple of years.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors Aydin I. Karsilayan, Jose Silva-Martinez and Sunil Khatri of the Department of Electrical and Computer Engineering and Professor Pilwon Hur of the Department of Mechanical Engineering.

The input/output pad ring in the top-level chip layout for Section 3 was designed by Xiaosen Liu of the Department of Electrical and Computer Engineering.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

There are no outside funding contributions to acknowledge related to the research and compilation of this document.

NOMENCLATURE

ADC	Analog-to-Digital Converter
M-DAC	Multiplying Digital-to-Analog Converter
MSB	Most Significant Bit
LSB	Least Significant Bit
DNL	Differential Non-Linearity
INL	Integral Non-Linearity
OP-AMP	Operational Amplifier
VOUT	Output Voltage
IOUT	Output Current (Positive Terminal)
IOUTB	Output Current (Negative Terminal)
REF	Reference Voltage
DVDD	Digital VDD Supply
DVSS	Digital VSS Supply
FS	Full-scale
THD	Total Harmonic Distortion
CMOS	Complementary Metal Oxide Semiconductor
FET	Field Effect Transistor
PVT	Process Voltage and Temperature

TABLE OF CONTENTS

Page

ABSTRACT ii
DEDICATION iii
ACKNOWLEDGMENTS iv
CONTRIBUTORS AND FUNDING SOURCES v
NOMENCLATURE vi
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xi

1. INTRODUCTION 1
2. BACKGROUND 2
2.1 DAC Performance Metrics 2
2.1.1 Resolution (n) 2
2.1.2 Full-scale Code (FS) 3
2.1.3 Zero Code (ZC) 3
2.1.4 Least Significant Bit 3
2.1.5 Static Metrics 3
2.1.6 Dynamic Metrics 5
2.2 Resistor-based DAC Architectures 9
2.2.1 Unary Resistor Ladder 9
2.2.2 Binary Resistor Ladder 10
2.3 Op-amp Specifications 13
2.3.1 Dynamic Limitations 14
2.3.2 Static Limitations 16
3. PROPOSED ARCHITECTURE AND DESIGN 20
3.1 Resistor Ladder 21
3.1.1 Topology 21
3.1.2 Resistor Type 22
3.1.3 Resistor Value 22
3.2 Switches 23
3.2.1 Choice of Switch 23
3.2.2 Switch Sizing 24
3.3 Current Buffer 25
3.4 Transimpedance Amplifier Design 28
4. RESULTS AND DISCUSSION 31
4.1 Static Performance 31
4.2 Dynamic Performance 35
4.3 Noise Performance 39
4.4 Performance Comparison 40
5. FUTURE WORK 42
6. CONCLUSION 43
REFERENCES 44

LIST OF FIGURES

FIGURE
 Page

2.1 Ideal DAC transfer curve [1] 4
2.2 End-point errors [2] 4
2.3 Linearity errors [1] 6
2.4 Step response [2] 7
2.5 AC response 8
2.6 Unary DAC [2] 10
2.7 Binary DAC [2] 10
2.8 R-2R DAC [2] 11
2.9 Voltage output M-DAC 12
2.10 Segmented ladder 12
2.11 Effect of open-loop gain on $V_{O U T}$ 14
2.12 Compensation for parasitic capacitance 15
2.13 Modeling the effect of the offset on $V_{\text {OUT }}$ 17
$2.14 R_{\text {IOUT }}$ vs CODE for a 5-bit R-2R DAC [3] 17
2.15 Effect of offset on $V_{\text {OUT }}$ 17
2.16 Modeling the effect of the offset on $I_{O U T}$ 18
2.17 Effect of offset on $I_{\text {OUT }}$ 19
3.1 Proposed architecture 20
3.2 Multiple segmented ladder 22
3.3 Resistor ladder schematic 24
3.4 Current buffer schematic 26
3.5 Auxiliary amplifiers 27
3.6 Folded cascode amplifier with indirect compensation 29
3.7 Chip top 30
4.1 DAC transfer function 31
4.2 Non-linearity curves 32
4.3 Vout vs CODE without the current buffer 33
4.4 $V_{\text {OUT }}$ vs CODE with the current buffer 34
4.5 Input offset voltage reduced to offset error 34
4.6 Step response 36
4.7 Reference AC response 37
4.8 Reference sine response 38
4.9 Digital sine response 38
4.10 Equivalent output noise performance 39

LIST OF TABLES

TABLE Page
2.1 Resistor ladder comparison [4] 13
3.1 Design specifications for the proposed M-DAC 21
3.2 Resistor comparison 23
3.3 Current buffer design sizes 27
3.4 Op-amp design sizes 28
4.1 Comparison with commercial M-DACs 40

1. INTRODUCTION

High-precision test equipment and medical instruments demand the use of a digitallycontrollable AC signal processing component [5]. With the equipment becoming more portable each day, the need for low voltage designs is ever increasing. Voltage-mode Multiplying-DACs (M-DACs) are ideally suited for such applications. This is because MDACs, unlike other DACs, use a variable reference along with a digitally switched resistor ladder to produce variable output current, which is converted to voltage by a current to voltage (I-V) converter.

As with any resistor-based DACs, the M-DAC performance also depends on the matching of the resistors [6]. In addition to this, at low voltages the M-DAC performance, particularly linearity, becomes heavily dependent on the design of the current-to-voltage (I-V) converter. This thesis studies the performance dependency of the I-V converter design on the M-DAC's performance and also proposes a new block in the M-DAC architecture to minimize this dependency.

The following chapter describes the various DAC architectures and parameters before narrowing down the discussion to the voltage-mode M-DAC. Following this, the limitations of using an op-amp based I-V converter for low voltage high precision applications are discussed. Chapter 3 proposes the introduction of a new block in the M-DAC architecture to tolerate the static limitations of the op-amp followed by the design of a 14-bit M-DAC using the proposed architecture. Chapter 4 illustrates the post layout results of the proposed design. Chapter 5 discusses the possible solutions to the issues associated with the proposed architecture before concluding in Chapter 6.

2. BACKGROUND

A Digital-to-Analog Converter (DAC) converts a multi-bit digital input signal to an analog output voltage or current. In most cases, this is achieved by using an array of passive elements, such as resistors or capacitors, to attenuate or amplify a reference voltage and use the digital input code to select a particular branch. Active elements such as op-amps or transconductance amplifiers (OTA) may also be used to convert the output voltage or current and also achieve high load driving capability. DACs also employ CMOS switches for the conversion. The switches may be used to either select an output voltage or steer an output current [7].

Instead of an array of passive devices, transistors acting as a current sources can also be used for the digital-to-analog conversion [8]. They offer higher speeds of operation compared to the passive devices at the expense of matching and linearity. In addition to speed, matching and linearity, various DAC architectures can be compared based on their settling time and glitch energy.

2.1 DAC Performance Metrics

A DAC performance for a particular reference voltage, resolution and speed is characterized by static and dynamic metrics [9]. Typically a DAC is optimized for a specific set of metrics depending on the application.

2.1.1 Resolution (n)

It determines how finely the output may change between discrete binary steps. For an n-input DAC, the number of unique digital codes and output signal values are $2^{n}-1$.

2.1.2 Full-scale Code (FS)

The maximum digital input code to the DAC is defined as the full-scale (FS) of the DAC. This typically corresponds to all the input bits being set to " 1 ".

2.1.3 Zero Code (ZC)

The minimum digital input code to the DAC is defined as the zero of the DAC. This corresponds to all input bits being set to " 0 ". In unipolar DACs the output for zero code is zero while for bipolar DACs it is the negative of the signal obtained at full-scale.

2.1.4 Least Significant Bit

The Least Significant Bit (LSB) or Δ is the smallest change in the DAC output. For an ideal DAC this can be computed as,

$$
\begin{equation*}
L S B(\Delta)=\frac{\operatorname{Output}(F S)-\operatorname{Output}(Z C)}{2^{n}} \tag{2.1}
\end{equation*}
$$

2.1.5 Static Metrics

A DAC transfer function can be obtained by plotting the output analog signal versus input digital code as shown in Figure 2.1. Each of the static performance metrics - offset, gain, differential nonlinearity and integral nonlinearity errors can be obtained from this plot as explained in the following sub-section.

2.1.5.1 End-Point Errors

Based on the end-points of a DAC transfer curve the offset and gain error are specified. The offset error is the deviation from ideal at Zero code. On the other hand, the difference between the slope of the ideal transfer curve and the obtained transfer curve is measured as the gain error. The effect of both the errors on the transfer curve is shown in Figure 2.2.

Figure 2.1: Ideal DAC transfer curve [1]

Figure 2.2: End-point errors [2]

2.1.5.2 Linearity Errors

Since DACs are typically made of an array of resistors, capacitors or current sources, matching between the elements determines its linearity, i.e., the larger the mismatch, the larger the nonlinearity. To quantify the linearity of a DAC, the integral nonlinearity (INL) and differential nonlinearity ($D N L$) are measured. The INL is the deviation of the actual transfer curve from a reference line, which can be a best-fit line, the end-point line or the
ideal DAC line [7]. If the output analog signal for each code is expressed as $Y(i), i=$ $0 \ldots\left(2^{n}-1\right)$ and each code ideally contributes to Δ change in the output analog signal, then the INL can be expressed as,

$$
\begin{equation*}
I N L(i)=\frac{Y(i)-Y_{r e f}(i)}{\Delta} \tag{2.2}
\end{equation*}
$$

On the other hand, DNL is the maximum deviation of an actual analog output step, between adjacent input codes, from the ideal step value of Δ. This can be expressed as,

$$
\begin{equation*}
D N L(i)=\frac{Y(i+1)-Y(i)-\Delta}{\Delta} \tag{2.3}
\end{equation*}
$$

From (2.3) it is apparent that for $\mathrm{DNL}<-1$ the DAC is non-monotonic. Another thing to note is that, if the INL is estimated using the end-point line then the INL becomes a running sum of DNL at each code.

$$
\begin{equation*}
I N L(k)=\sum_{i=1}^{k} D N L(i) \tag{2.4}
\end{equation*}
$$

Figure 2.3 shows the transfer curve of a nonideal DAC depicting DNL and INL errors.

2.1.6 Dynamic Metrics

In some applications such as audio or communications, the AC or transient performance of the DAC is more crucial than the static performance. Such applications demand that the DAC have fast settling time, low glitch impulse area and low distortion while having a fast conversion rate and a wide operating frequency range. These performance metrics are tested using either sine or step functions applied to the digital input or analog reference input.

Figure 2.3: Linearity errors [1]

2.1.6.1 Step Response

A step change in the digital code or analog reference signal is used to measure the DACs settling and glitch impulse area.

Settling time can be defined as the amount of time required for the output to settle within the specified error band measured with respect to the output when the input data to the switches changes as shown in Figure 2.4a [2]. The specified error band is defined in terms of Δ or LSB of the DAC and is typically defined to be 1 LSB.

During code transitions, the output voltage of the DAC shows initial overshoot and undershoot behavior before settling to the final value as shown in Figure 2.4b. These glitches in the output voltage are typically a consequence of the DAC internal switches being out-of-sync or the switch parasitic capacitance being charged or discharged. The worst-case glitch is observed when all the switches toggle, which typically occurs during the mid-scale transition for M-DACs. This code transition is also referred to as a major carry transition.

In certain applications, these glitches can disrupt system behavior and lead to dynamic

Figure 2.4: Step response [2]
non-linearity [10]. The magnitude of the glitch is quantified as an area under the impulse as shown in Figure 2.4b, which represents the amount of energy during the glitching.

2.1.6.2 AC Response

A stream of digital codes representing a single or multi-tone sine wave is applied at the input to the DAC to measure its total harmonic distortion (THD), signal-to-noise ratio (SNR), signal to noise and distortion ratio (SNDR) and spurious-free dynamic range (SFDR) [2]. However, for M-DACs, which are capable of having a time-varying analog reference signal, these metrics are also measured with respect to the reference.

Relevant specifications for the M-DAC include the reference multiplying bandwidth, Analog/Digital total harmonic distortion (THD) and the multiplying feedthrough error.

The reference multiplying bandwidth is defined as the reference input frequency at which the gain of the DAC is -3 dB when the DAC code is set to full-scale [11]. It is strongly dependent on the parasitic capacitance of the switches and the GBW of the I-V converter used in the M-DAC. Figure 2.5a shows the AC response of an M-DAC from Texas Instruments DAC8802 for different input codes. The response at full-scale is used to define the multiplying bandwidth, which is about 10 MHz from the plot.

The analog THD is the mathematical representation of the harmonic content in the output multiplied waveform signal [11] when a sinusoidal reference is applied. If V_{i} represents the $i^{t h}$ harmonic then the THD is,

$$
\begin{equation*}
T H D(d B)=20 \log _{10}\left(\frac{\sqrt{\sum_{i=2}^{\infty} V_{i}^{2}}}{V_{1}}\right) \tag{2.5}
\end{equation*}
$$

The digital THD is the mathematical representation of the harmonic content in the output multiplied waveform signal [11] when a stream of digital code representing a sinusoidal wave is applied.

The multiplying feedthrough error is the error due to the parasitic capacitive feedthrough from the reference input to the DAC output, when the digital input to the DAC is zero code [11]. At high frequencies, when the capacitance impedance falls, the feedthrough increases as shown in Figure 2.5b.

Figure 2.5: AC response

Based on the discussed metrics various DAC topologies can be compared.

2.2 Resistor-based DAC Architectures

Among the various elements that can be used to create a DAC, the current source based implementation offers the highest conversion speed with the least untrimmed accuracy. Capacitors offer the best matching, but leakage causes a loss in accuracy within a few milliseconds [2]. Resistors offer moderate matching and their precision is not lost due to leakage. When coupled with CMOS switches, which can conduct bi-directional current, the resistor-based architecture can also be employed with a bipolar time-varying reference. Since the design of a precision DAC having a time-varying reference is the focus of this thesis, the scope of this discussion is limited to different resistor-based architectures.

An array of switched resistors that create the DAC is sometimes referred to as a resistor ladder. Based on the design of the ladder, the resistor architectures can be further classified into - unary, binary and segmented architectures.

2.2.1 Unary Resistor Ladder

If all the resistors in the ladder are equally weighted, then the ladder is called a unary DAC ladder. A series connection of multiple unit resistors forms a String DAC [7], and each tap of the string generates a different voltage as shown in Figure 2.6a. If "Terminal $B^{\prime \prime}$ is connected to ground, then the architecture is termed as a Kelvin Divider, otherwise it is called a digital potentiometer. Connecting multiple unit resistors in parallel yields a current output DAC as shown in Figure 2.6b.

The resistor ladder is simple, inherently monotonic and has a low glitch impulse area when switching. However, to generate an n-bit DAC, $2^{n}-1$ unit resistors are required yielding an exponentially growing area requirement as the resolution increases.

Figure 2.6: Unary DAC [2]

2.2.2 Binary Resistor Ladder

If the resistors along the ladder are scaled by a factor of two then the ladder is called a binary DAC. Figure 2.7 shows the voltage mode and current mode variations of the DAC.

Since only one resistor is associated with each bit, these DACs are more efficient than the unary DACs at higher resolutions. However, these DACs are not inherently monotonic and maintaining good matching across the different values of resistors is difficult.

Figure 2.7: Binary DAC [2]

The matching in the binary ladder can be improved by using an R-2R ladder as shown
in Figure 2.8. This requires matching between only two values of resistors and offers similar area advantages as the original binary DAC. However, this ladder also does not guarantee monotonicity.

Another issue with the voltage mode R-2R DAC is that the impedance looking into the reference terminal $\left(R_{R E F}\right)$ is code-dependent. As a consequence, for all the applications using R-2R voltage mode DAC the reference is buffered. For high precision application, the buffer specification must be commensurate with the required precision. On the other hand, the current-mode DAC offers a code-independent impedance R and hence, alleviates the need for a buffer. In addition to this, if the switches of a current-mode DAC are capable of carrying current in either direction (such as CMOS devices), the reference voltage may have either polarity. A DAC using such a structure is referred to as a multiplying DAC. A major drawback in the current mode DAC is that the switches are typically large to minimize their $R_{o n}$ and hence can introduce large glitches when switching.

Figure 2.8: R-2R DAC [2]

An active current to voltage (I-V) conversion stage can be employed to create a voltage from the current output. Figure 2.9 shows an operational amplifier used as an I-V converter to create a voltage-mode $M-D A C$.

Figure 2.9: Voltage output M-DAC

2.2.2.1 Segmented Ladder

To achieve higher resolutions, multiple DAC ladders can be combined to create a segmented ladder. One ladder handles the MSBs while the other handles the LSBs. Figure 2.10 shows an example of a current mode segmented DAC where the first 3 bits are unary or thermometer DAC while the last four bits are $\mathrm{R}-2 \mathrm{R}$.

Figure 2.10: Segmented ladder

Consider an n-bit DAC having m-bits as unary elements and n-m bits as binary. If the
spread of the resistor mismatch across the PVT range of the technology is represented by σ_{ϵ} then to achieve n-bits of resolution, the above ladders can be compared as shown in Table 2.1. It can be concluded that the all the resistor ladders have the same INL however, the segmented ladder is able to achieve a higher DNL compared to a binary DAC, for lesser area compared to a unary DAC.

Table 2.1: Resistor ladder comparison [4]

	Area	$\sigma_{I N L}(\mathbf{L S B})$	$\sigma_{D N L}(\mathbf{L S B})$	Glitch Impulse Area
Unary	$2^{n}-1$	$2^{(n / 2-1)} \sigma_{\epsilon}$	σ_{ϵ}	Low
Binary	n	$2^{(n / 2-1)} \sigma_{\epsilon}$	$2^{n / 2} \sigma_{\epsilon}$	High
Segmented	$2^{m}-1+(n-m)$	$2^{(n / 2-1)} \sigma_{\epsilon}$	$2^{(n-m+1) / 2} \sigma_{\epsilon}$	Medium

To process AC signals with high precision, a voltage mode multiplying DAC with a segmented ladder would, therefore, be an optimum choice. However, the performance of the M-DAC also depends on the I-V converter. In most precision applications, a high gain operational amplifier is connected in an inverting configuration to act as an I-V converter as shown in Figure 2.9. The amplifier topology is also commonly referred as transimpedance amplifier or TIA. Certain parameters of the TIA design and performance can have a significant impact on the M-DAC performance as explained in the next section.

2.3 Op-amp Specifications

The selection or design of the op-amp to be connected as a TIA at the output of a current-mode DAC is of paramount importance when designing a voltage-mode M-DAC. Both the static and dynamic limitations of a non-ideal op-amp can be detrimental to the overall DAC performance. This heavily constraints the design of the TIA. A key point to note here is that since the TIA is an inverting amplifier, it is going to invert the DAC output
transfer function. To obtain a non-inverting output, another equally constrained inverting amplifier must be designed.

2.3.1 Dynamic Limitations

The effect of the open-loop response of the amplifier can limit the overall DAC precision. The open-loop gain $\left(A_{o l}\right)$, in particular, can cause nonlinearity, gain and offset errors. This effect is more prominent for codes near full scale, as shown in Figure 2.11, due to the higher output current. Therefore, $A_{o l}$ must be in commensurate with the resolution (n) of the ladder. The relation is established as [7],

$$
\begin{equation*}
A_{o l} \geq 20 \log _{10}\left(2^{n}\right)=6.02 n \tag{2.6}
\end{equation*}
$$

(a) VOUT vs CODE with high gain

(b) $V_{O U T}$ vs CODE with low gain

Figure 2.11: Effect of open-loop gain on $V_{O U T}$

Since the M-DAC would use the amplifier in a closed loop configuration, the stability and unity-gain bandwidth $\left(f_{t}\right)$ of the system will impact the overall settling time and multiplying bandwidth. Sometimes when a stable TIA is connected to the resistor ladder, instability may ensue. This is because of the switch parasitic capacitance at the current
output terminal which can degrade the phase margin of the system. To achieve a phase margin of 45°, a compensation capacitor is usually placed across the feedback resistor, as modeled in Figure 2.12 [11], calculated as

$$
\begin{equation*}
C_{f}=\frac{1+\sqrt{1+8 \pi R_{F B} C_{p a r} f_{t}}}{4 \pi R_{F B} f_{t}} \approx \sqrt{\frac{2 C_{p a r}}{\pi R_{F B} f_{t}}} \tag{2.7}
\end{equation*}
$$

Figure 2.12: Compensation for parasitic capacitance

The M-DAC uses the virtual ground of the amplifier to precisely steer current into the feedback resistor. The accuracy of the virtual ground is given by the closed-loop input impedance of the op-amp which in turn is a function of the loop gain of the amplifier [13].

The slew rate (SR) of the amplifier can limit the maximum input voltage reference swing of the M-DAC at full-scale, given by

$$
\begin{equation*}
V_{R E F}<\frac{S R}{\pi f_{t}} \tag{2.8}
\end{equation*}
$$

A higher voltage reference swing will be severely distorted.

2.3.2 Static Limitations

The input bias current of an amplifier can reduce the amount of current flowing through the feedback resistor leading to gain errors. CMOS and FET amplifiers are therefore preferred as TIAs for the M-DAC because they have very low input bias currents ($\leq 1 \mathrm{pA}$).

The input offset voltage is defined in [14] as the voltage that must be applied between the two input terminals of the op-amp to obtain zero volts at the output. This difference is caused because of the inherent mismatch of the input transistors and components during fabrication. In CMOS amplifiers the input offset voltage is primarily due to the differences in the threshold voltages of the input transistors of the differential pair which is caused due to the variation of the width, length, thickness and doping levels of the channels in the transistors [15].

The effect of the offset on the DAC's performance can be modeled as shown in Figure 2.13 , where $R_{\text {IOUT }}$ represents the impedance measured when looking into the $I_{\text {OUT }}$ terminal. Using this model, and considering the amplifier to be ideal, $V_{O U T}$ can be given as

$$
\begin{equation*}
V_{O U T}=V_{R E F}\left(\frac{-R_{F B}}{R_{D A C}}\right)+V_{O S}\left(1+\frac{R_{F B}}{R_{I O U T}}\right) \tag{2.9}
\end{equation*}
$$

where, the $R_{D A C}$ is the code-dependent resistor that controls the output current. For an n-bit DAC it is given by

$$
\begin{equation*}
R_{D A C}=R\left(\frac{2^{n}}{C O D E}\right) \tag{2.10}
\end{equation*}
$$

For R-2R resistor ladders the code dependence of $R_{\text {IOUT }}$ is highly non-linear [3], as shown in Figure 2.14. This leads to non-linearity in $V_{O U T}$, depicted in Figure 2.15. On the other hand, for unary ladders the $R_{I O U T}$ is equal to $R_{D A C}$ and hence, is more tolerant to offset.

Figure 2.13: Modeling the effect of the offset on $V_{O U T}$

Figure 2.14: $R_{\text {IOUT }}$ vs CODE for a 5-bit R-2R DAC [3]

Figure 2.15: Effect of offset on $V_{\text {OUT }}$

Another way of modeling the effect of the offset is shown in Figure 2.16. Here, the offset is modeled at the inverting terminal. During the code transition, the current switching from the This causes different currents through the $I_{O U T}$ and $I_{O U T B}$ terminals given by

$$
\begin{align*}
I_{\text {IOUTB }} & =\frac{V_{\text {REF }}}{R_{\text {DAC_IOUTB }}} \tag{2.11}\\
I_{\text {IOUT }} & =\frac{V_{\text {REF }}-V_{O S}}{R_{\text {DAC_IOUT }}} \tag{2.12}
\end{align*}
$$

where the $R_{\text {DAC_IOUTB }}$ and $R_{\text {DAC_IOUT }}$ represent the code-dependent resistance between the reference (REF) and the output current terminals (IOUT and IOUTB). For an n-bit DAC, they can be given as

$$
\begin{equation*}
R_{D A C _I O U T}=\frac{1}{R_{\text {DAC_IOUTB }}}=R\left(\frac{2^{n}}{C O D E}\right) \tag{2.13}
\end{equation*}
$$

The difference between the current causes non-linearity errors as shown in Figure 2.17

Figure 2.16: Modeling the effect of the offset on $I_{\text {OUT }}$

Figure 2.17: Effect of offset on $I_{O U T}$

Linearity can be preserved only if the offset voltage is less than 1 LSB . For low voltage high precision DACs, this value can be in the order of $10 \mu \mathrm{~V}$. Unfortunately, the offset voltage of an untrimmed CMOS amplifier can be in the range of $\pm 5 \mathrm{mV}$ to $\pm 50 \mathrm{mV}$ [16] which can only be reduced and not eliminated. Cancellation techniques [17] such as trimming $(<1 \mathrm{mV})$, auto-zeroing $(<500 \mu \mathrm{~V})$ or chopping $(<1 \mu \mathrm{~V})$ may be used to reduce the offset. In addition to these popular techniques, negative impedances [18] and feedback loops [19] have also been proposed to cancel offset. These techniques are often expensive or complex for high-performance applications. So, instead of canceling or reducing the offset, this work attempts to tolerate the offset voltage. This eases the design or choice of the op-amp especially at low supply voltages.

3. PROPOSED ARCHITECTURE AND DESIGN

This work proposes the use of a current buffer between the resistive ladder and transimpedance amplifier (TIA) as shown in Figure 3.1. The current buffer will be able to isolate the code-dependent output impedance $\left(R_{I O U T}\right)$ from the TIA making the DAC insensitive to the amplifier's input offset voltage. Furthermore, if the current buffer offers an output impedance much larger than the feedback resistor $\left(R_{F B}\right)$ then the offset voltage would experience no gain and appear at the output as a fixed offset error.

Figure 3.1: Proposed architecture

To illustrate the proposed architecture, a 14-bit M-DAC is designed to meet the following specifications:

Table 3.1: Design specifications for the proposed M-DAC

Parameter	Value
Resolution	14 -bits
Reference Voltage	$\pm 1 \mathrm{~V}$
DNL	$<0.5 \mathrm{LSB}$
Multiplying Bandwidth	10 MHz
Resistor Ladder Noise	$20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Major carry glitch energy	$<1 \mathrm{nVs}$
Process Node	IBM-130nm

3.1 Resistor Ladder

3.1.1 Topology

Considering the area, precision and linearity the segmented ladder is chosen. To optimize the area, the ladder employs multiple levels of segmentation similar to the ladder shown in Figure 3.2. Each segment is budgeted based on the maximum offset expected from the differential input of the current buffer. As explained next, the current buffer is designed to have a maximum untrimmed offset of 3 mV considering mismatches. Since the R-2R would be most affected by this offset ($V_{O S}$), its resolution (n) is determined to be 8 -bits by

$$
\begin{equation*}
n=\text { floor }\left(\log _{2}\left(\frac{V_{R E F}}{V_{O S}}\right)\right) \tag{3.1}
\end{equation*}
$$

A trade-off between the accuracy and area leads the choice of the resolution for the MSB and MID segments of the ladder. In this design, 2 bits are budgeted for the MID segment while the remaining 4-bits are implemented in the MSB segment.

Figure 3.2: Multiple segmented ladder

3.1.2 Resistor Type

The IBM-130nm PDK allows the fabrication of poly, n-well, diffusion and thin-film resistors. Table 3.2 shows the comparison of the different implementations of a $1 \mathrm{k} \Omega$ resistor in IBM-130. From the comparison, it is clear that the thin-film resistors offer very good matching and low parasitic capacitance, both of which are essential for high performance. In fact, as explained in [2] thin-film resistors such as $\mathrm{Si-Cr}$ are heavily used in the industry to design high-performance resistor ladders. Their sheet resistance can be as high as $1 \mathrm{k} \Omega$ /square [20] however, the sheet resistance of the thin-films resistors offered in IBM-130 is less than $100 \Omega /$ square. This would entail a massive chip area making them unsuitable for this design. Moreover, the fabrication of thin-film resistors would require an additional mask layer which is not available for academic use. Diffusion and n-well resistors offer higher sheet resistances but are accompanied by large parasitics that can degrade the bandwidth of the circuit. So, this design uses poly resistors despite their poor matching. The area and technology trade-offs therefore constraint the choice of the resistor.

3.1.3 Resistor Value

Considering the resistor ladder noise specification, the value of the resistance ladder at full-scale is chosen to be $10 \mathrm{k} \Omega$. To achieve good matching via a common centroid layout, each resistance in the ladder is implemented by a series/parallel combination of

Table 3.2: Resistor comparison

	Matching σ	Area	Parasitic Capacitance
Poly	0.7%	$56 \mu \mathrm{~m}^{2}$	$\approx 20 \mathrm{fF}$
N-well	0.3%	$160 \mu \mathrm{~m}^{2}$	$\approx 200 \mathrm{fF}$
Diffusion	0.1%	$160 \mu \mathrm{~m}^{2}$	$\approx 1300 \mathrm{fF}$
Thin-film	0.04%	$1600 \mu \mathrm{~m}^{2}$	$<20 \mathrm{fF}$

a unit resistance bar of $160 \mathrm{k} \Omega$. The area of the unit resistance bar is chosen based on the matching requirements of the ladder. To achieve the matching requirement for the DNL accuracy from the poly resistors the size of the unit resistance bar was chosen to be $220 \mu \mathrm{~m} \times 0.5 \mu \mathrm{~m}$ after running multiple mismatch/monte-carlo simulations.

3.2 Switches

The ladder employs two switches forming a single-pole double-throw (SPDT) connection between the ladder and the IOUT/IOUTB output. The choice and design of the switch is crucial for reliability and linearity.

3.2.1 Choice of Switch

The SPDT switch can be implemented by using an NMOS or PMOS, or even a complementary switch. In the resistor ladder, the switch must have a very low $R_{o n}$ and should connect the resistors to a low impedance node or virtual ground so, an NMOS switch is typically used. To achieve very low $R_{o n}$, low V_{t} or zero V_{t} transistors can be used, however it must be noted that these transistors suffer from large process variations. Instead, low-voltage or digital switches can be used, because the drop across the switch is expected to be in the order of millivolts. However, the maximum tolerable voltage of the $V_{b d}$ must be taken into account before opting for low-voltage switches. For an SOI process, this is not a problem, since the bulk can be shorted to the source to ensure reliable operation. However, for IBM-130, which is a bulk-CMOS process, the low voltage (1.2V) transistors
can tolerate upto 1.5 V of $V_{b d}$ and since this design employs a -1.6 V VSS reliability issues may occur. To avoid this high voltage (3.3V) NMOS switches are used.

3.2.2 Switch Sizing

If all the CMOS switches are sized equally, then their $R_{\text {on }}$ must be very small compared to the resistors to keep the non-linearity errors low. This would entail large size switches which are accompanied with parasitic capacitances. To alleviate this problem, the switches can be binary weighted similar to the resistors. This would mean that the switches near the MSB would be large and can lead to large-glitch impulses during transitions. This design employs a good compromise between these two choices by employing a fixed switch size for each resistor segment but scaling the switches between the segments. The switch size for the LSB section was fixed to be at $1 \mu \mathrm{~m} / 0.4 \mu \mathrm{~m}$, which yields an $R_{o n}$ of $3 \mathrm{k} \Omega$ which is less than 1% of the unit resistor used in the LSB section. The switches in the MID section were scaled by $2 \times$ while the switches in the MSB were scaled by $8 \times$. Each of the switches were fingered in the layout to reduce the parasitic capacitance and hence any associated glitch impulse energy.

The final resistor ladder schematic is shown in Figure 3.3.

Figure 3.3: Resistor ladder schematic

3.3 Current Buffer

An ideal current buffer must offer zero input impedance and infinite output impedance. For this design to maintain linearity, the input impedance must be less than 0.1Ω and the output impedance must be greater than the unit resistance ($10 \mathrm{k} \Omega$).

The proposed current buffer topology is shown in Figure 3.4. Transistors M_{1} to M_{3} form a common gate amplifier whose input impedance is given by $1 / g_{m 1}$. Amplifier A_{1} is used to boost the g_{m} of the transistor and reduce the input impedance. In order to achieve a low input impedance using g_{m} boosting, the gain of the A_{1} must be very high ($\approx 80 \mathrm{~dB}$). So, this topology employs a second shunt-shunt feedback in $M_{4}-M_{5}-M_{2}$. Transistor M_{4} along with M_{5} act as level shifters while providing a small signal gain of 1 . The current flowing into $\mathrm{IN}+$ produces a voltage at $\mathrm{IN}+$ propotional to the impedance at that node. When the current increases, the corresponding voltage also increases, which causes an increase of the voltage at the drain of M_{1}. This increase is reflected at the gate of M_{2} via M_{4} making M_{2} sink more current and hence reduce the voltage swing at IN+. The use of this dual feedback allows achieving input impedance in the order of 0.1Ω as given by [21],

$$
\begin{equation*}
R_{i n} \approx \frac{1 / g_{m 1}}{A_{v 1} \cdot g_{m 2} \cdot r_{d s 3}} \tag{3.2}
\end{equation*}
$$

To improve the output impedance, auxiliary amplifiers A_{2} and A_{3} are used to maintain equal voltages at the drains of M_{6} and M_{3}. This increases the output impedance of the mirror and allows for precise mirroring of the current to the output. The transistor-level implementation of the amplifiers A_{1} and A_{2} / A_{3} is shown in Figure 3.5. In amplifier A_{1}, the output pole is designed to be the dominant pole. In amplifier A_{2} / A_{3} however, the dominant pole is set to be at the output of the first stage. The second stage amplifier would offer a low impedance at output, pushing that pole to a high frequency.

Since the current buffer is connected to the resistor ladder, it is important that the offset

Figure 3.4: Current buffer schematic
between the differential input terminals of the current buffer must be minimum. To ensure this, the input transistors of the current buffer were sized to offer no more than 3 mV of offset considering mismatches. This offset margin dictates the design of the resistor ladder's LSB segment. In addition to this, the current buffer should be able to sink 100uA of current from the ladder. So to maintain a linear operation, the current sources in the buffer are designed to source about 200uA of current. The final design sizes are listed in Table 3.3.

Figure 3.5: Auxiliary amplifiers

Table 3.3: Current buffer design sizes

Amplifier A_{1}		Amplifier A_{2} / A_{3}		Current buffer	
Transistor	W/L ($\mu \mathrm{m}$)	Transistor	W/L ($\mu \mathrm{m}$)	Transistor	W/L ($\mu \mathbf{m}$)
M_{1}	160/0.8	M_{1}	20/0.8	M_{1}	10/0.8
M_{2}	12/0.8	M_{2}	5/0.8	M_{2}	5/0.8
M_{3}	12/0.8	M_{3}	12/0.8	M_{3}	300/0.8
M_{4}	12/0.8	M_{4}	12/0.8	M_{4}	1/0.8
M_{5}	40/0.8	M_{5}	12/0.8	M_{5}	2/0.8
M_{6}	40/0.8	M_{6}	10/0.8	M_{6}	300/0.8
M_{7}	40/0.8	M_{7}	10/0.8	M_{7}	100/0.8
${ }^{7}$		M_{7}	$10 / 0$	M_{8}	5/0.8

The symmetric layout of the current buffer is crucial in minimizing offset. A fully symmetric place-and-route is performed and care is taken to implement common centroid techniques. Since the buffer should be capable of sinking and sourcing relatively large currents, the metals in the layout are larger than minimum width to reduce parasitic resis-
tances. Care is also taken to keep the metal between the resistor ladder and the current buffer as thick as possible to minimize resistance while keeping the parasitic capacitance low.

3.4 Transimpedance Amplifier Design

Based on the resolution, multiplying bandwidth and voltage reference swing, the opamp used in the TIA is expected to have a DC Gain of 84 dB with a gain-bandwidth product of 20 MHz and a slew rate of at least $32 \mathrm{~V} / \mathrm{us}$. The TIA is expected to have an output voltage swing of $\pm 1 \mathrm{~V}$ as well. As shown in Figure 3.6, a folded cascode topology with a class AB output stage [22][23] with indirect compensation is designed to satisfy the specs while using minimum power. The op-amp design is optimized for a closed loop gain of -1 . When connected to the resistor ladder, the op-amp observes a parasitic capacitance ($C_{p a r}$) of nearly 2 pF . This parasitic capacitance can degrade the phase margin of the circuit. So, a compensation capacitor $\left(C_{f}\right)$, as shown in Figure 2.12, is connected to maintain atleast 45° of phase margin. The value of the capacitor is computed to be 3 pF using Equation (2.7).

Choosing a 300fF miller capacitance $\left(C_{M}\right)$, the final transistor designs are listed in Table 3.4

Table 3.4: Op-amp design sizes

Transistor	$\mathbf{W} / \mathbf{L}(\mu \mathbf{m})$
M_{1}	$20 / 0.8$
M_{2}	$20 / 0.8$
M_{3}	$190 / 0.8$
M_{4}	$76 / 0.8$
M_{5}	$19 / 0.8$
M_{6}	$2.5 / 0.8$
M_{7}	$5 / 0.8$
M_{8}	$5 / 0.8$
M_{9}	$304 / 0.8$
$M_{1} 0$	$20 / 0.8$

Typical M-DAC architectures demand a fully symmetric amplifier layout to minimize the offset. However, in this design since the M-DAC is tolerant to offset, the layout of the op-amp is not very stringent. In order to prove this point, the op-amp was placed and routed as shown in the schematic with no consideration for offset. This yielded an offset of about 2.5 mV .

Figure 3.6: Folded cascode amplifier with indirect compensation

At the top-level schematic, the feedback resistor is not connected to the op-amp as shown in Figure 3.7a. This allows connecting external op-amps for testing the offset tolerance. Figure 3.7b shows the layout with the total area being $1470 \mu \mathrm{~m} \times 1470 \mu \mathrm{~m}$, where the resistor ladder occupies $1036 \mu \mathrm{~m} \times 182 \mu \mathrm{~m}$, while the active circuit occupy $324 \mu \mathrm{~m} \times 140 \mu \mathrm{~m}$.

(a) Schematic

(b) Layout

Figure 3.7: Chip top

4. RESULTS AND DISCUSSION

This section presents the results of the M-DAC design. All the results are post-layout simulations post-layout, unless specified.

The M-DAC is designed to achieve a resolution of 14-bits and with a DC voltage reference of 1 V , it has an LSB of $61 \mu \mathrm{~V}$.

4.1 Static Performance

Figure 4.1 shows the DC transfer function of the M-DAC. Notice that the transfer function increases with code, unlike a typical M-DAC that shows inverting output. This is due to the additional inversion of the current mirror in the current buffer. The offset error is measured to be 42 LSB or 2.5 mV , and the gain error is 0.001 LSB . The offset error is due to the intentional input offset voltage created in the layout of the folded cascode op-amp.

Figure 4.1: DAC transfer function

Figure 4.2 shows the DNL and INL curve across all the DAC codes for the typical
corner. The worst corner DNL is found to be -0.385 LSB while the INL is 1.8 LSB . The conical shape of the DNL curve in Figure 4.2a is because at around mid-scale the current flowing into the two terminals of the current buffer are nearly equal and hence experience equal voltages at the input of the current buffer. At zero code (or full-scale), the IOUTB(IOUT) is much smaller than IOUT(IOUTB) causing the two terminals to experience slightly different voltages leading to non-linearity. The layout parasitic resistances shift the minimum DNL point from mid-scale.

(a) DNL curve

(b) INL curve

Figure 4.2: Non-linearity curves

To demonstrate the effect of offset on linearity, an ideal op-amp with variable input offset voltage was used in simulation. Figure 4.3 show the effect of 25 mV offset on the linearity of the DAC at mid-scale without the current buffer. Figure 4.4 shows the improved linearity in the presence of the buffer, and Figure 4.5 shows that the offset voltage of the op-amp is reduced to an offset error of the overall DAC with minimal impact on the gain error or linearity.

Figure 4.3: $V_{\text {OUT }}$ vs CODE without the current buffer

Schematic-level monte-carlo mismatch simulations are also performed on the design to find the yield. Here, the yield is defined as the number of mismatch conditions for which the DNL would be under the targeted $\pm 0.5 \mathrm{LSB}$. The simulations reveal that the yield is about 30% meaning that for every 100 designs chosen at random 30 designs would achieve a DNL <0.5 LSB. This can be improved by using better matching thin-film resistors instead of the poly.

Figure 4.4: $V_{\text {OUT }}$ vs CODE with the current buffer

Figure 4.5: Input offset voltage reduced to offset error

4.2 Dynamic Performance

Figure 4.6 shows the response of the M-DAC to a step of the reference voltage and Code. The output voltage settles to within 1 LSB of the final value in 1μ s for a step in reference, and 589 ns when the code changes from 0 to FS. For an LSB change at the mid-scale, the glitch impulse energy is computed to be 0.6 nVs as shown in Figure 4.6c.

Figure 4.7 shows the AC response of the M -DAC with respect to the reference signal. Figure 4.7 a shows the multiplying bandwidth to be 8.6 MHz while Figure 4.7 b shows the multiplying feedthrough to be -130 dB at 100 kHz .

Figure 4.8 shows the response of the M-DAC to a sinusoidal reference at full-scale. The reference has an amplitude of 100 mV with a frequency of 10 kHz .

The analog THD is measured to be 80 dB with the DAC being driven by a $10 \mathrm{kHz} 1 V_{p p}$ sine wave reference at mid-scale.

The digital THD of the DAC was measured by converting a 10 kHz sine wave into $14-$ bit code using a $1-\mathrm{MHz}$ ADC. Figure 4.9 shows the transient waveform at the input of the ADC and the output of the DAC. The digital THD was measured to be 90 dB .

(a) $V_{\text {out }}$ settling for a 1 V step in reference voltage

(b) $V_{\text {out }}$ settling for a code step from 0 to FS

(c) Major-carry glitch

Figure 4.6: Step response

Figure 4.7: Reference AC response

Figure 4.8: Reference sine response

Figure 4.9: Digital sine response

4.3 Noise Performance

The noise performance of the M-DAC is measured at the output of a commercially available operational amplifier OP177. Figure 4.10 shows the equivalent output noise spectral density with and without the current buffer. The additional active components in the current buffer contribute to the difference in the output noise with the output NMOS transistors M2 and M8 being the dominant sources. The flicker noise near DC can be as high as $140 \mu \mathrm{~V} / \sqrt{H z}$ which can degrade the ENOB of the converter by at-least 1 LSB.

Figure 4.10: Equivalent output noise performance

4.4 Performance Comparison

Table 4.1 shows the comparison of the proposed DAC design against commercial M-DACs [12][24][25]. Since most M-DAC research in the academia is concentrated in capacitor-based DAC designs, commercial M-DACs are used as a comparison metric.

Table 4.1: Comparison with commercial M-DACs

	This Work	$[\mathbf{1 2]}$	$[24]$	$[25]$
Resolution	14 -bits	14 -bits	14 -bits	14 -bits
Reference Voltage	$\pm \mathbf{1 V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$	$\pm 10 \mathrm{~V}$
DNL	-0.385 LSB	$\pm 1 \mathrm{LSB}$	$\pm 0.5 \mathrm{LSB}$	$\pm 1 \mathrm{LSB}$
INL	1.8 LSB	$\pm 1 \mathrm{LSB}$	± 1 LSB	$\pm 1 \mathrm{LSB}$
Offset Tolerance	$\mathbf{1 0 2 4} \mathbf{~ L S B}$	$<64 \mathrm{LSB}$	$<64 \mathrm{LSB}$	$<25 \mathrm{LSB}$
Multiplying Bandwidth	8.65 MHz	10 MHz	12 MHz	-
Multiplying Feedthrough	$\mathbf{- 1 3 0 d B}$	-70 dB	-72 dB	-86 dB
Resistor Ladder Spot Noise	$13 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$12 \mathrm{nV} / \sqrt{\mathrm{Hz}}$	$25 \mathrm{nV} / \sqrt{H z}$	$11 \mathrm{nV} / \sqrt{H z}$
Output Spot Noise at 1 kHz	$6 \mu \mathrm{~V} / \sqrt{\mathrm{Hz}}$	$3 \mu \mathrm{~V} / \sqrt{H z}$	$3 \mu V / \sqrt{H z}$	$3 \mu V / \sqrt{H z}$
Glitch Impulse Area	$\mathbf{0 . 6 n V s}$	5 nVs	2 nVs	2 nVs
$V_{\text {out }}$ Settling	$1 \mu \mathrm{~s}$	$0.5 \mu \mathrm{~s}$	100 ns	$2 \mu \mathrm{~s}$
Analog THD	-81 dB	-105 dB	-83 dB	-108 dB
DVDD/DVSS	$1.6 \mathrm{~V} /-1.6 \mathrm{~V}$	$5 \mathrm{~V} / 0 \mathrm{~V}$	$5 \mathrm{~V} / 0 \mathrm{~V}$	$5 \mathrm{~V} / 0 \mathrm{~V}$

It can be seen that the proposed design operates at a reference voltage much lower than that of the commercial M-DACs. The technology used for the current design will not be able to support such high voltages. On the other hand, the commercial M-DACs are typically restricted to a minimum of 2.5 V DC reference owing to the linearity problems that may arise with lower references. Despite the different reference voltages, the proposed design is capable of showing minimal linearity degradation with high offset voltages due to the current buffer.

The commercial M-DACs are known to use large technology sizes in the order of
$0.6 \mu \mathrm{~m}$ or higher, while the proposed design uses a $0.13 \mu \mathrm{~m}$ technology. The reduced size and segmented ladder design offer lower parasitics and hence the proposed M-DAC shows smaller multiplying feedthrough and glitch impulse area.

Owing to the different definition used for the $V_{\text {out }}$ settling time, the values in Table 4.1 are widely different. [12] measures 14 -bit settling time for a code change from 0 to mid-scale while [24] measures settling time to within $\pm 1 \mathrm{mV}$ of FS for a code change from 0 to FS. On the other hand, [25] measures 16-bit settling for a 0 to 5 V step in the response. The settling time for this design is measured for both the reference step and code change from 0 to FS. The larger of the two is reported in the table. The test setup for the Analog THD also varies from one DAC to the other. This design employs a 100 mV pp sine input at 10 kHz with the DAC set to mid-scale.

5. FUTURE WORK

The introduction of the current buffer in the M-DAC architecture adds considerable noise to the output current. As shown in the previous section, for low frequency or DC applications the flicker noise of the MOS devices in the current buffer is capable of reducing the effective resolution of the DAC. A future design should be capable of minimizing this noise. Possible solutions include the use of larger devices, fully symmetric differential circuits or even switched biasing [26]. Besides noise, the current buffer consumes power in the order of 2.5 mW . The large power consumption is because of the bias current required for maintaining the linearity of the current buffer. A future design should be able to reduce the power consumed and yet maintain the required linearity. A possible solution includes the use of a precision class- AB current mirrors [27] or even current conveyors [28].

In addition to tolerating the offset of the TIA, the proposed architecture also relaxes the requirement for a high open-loop gain op-amp in the TIA. In the traditional architecture, the open-loop gain of the op-amp ensured a low closed loop input impedance for maintaining linearity. In the proposed architecture however, the current buffer is tasked with maintaining a low input impedance. So, future designs of the voltage mode DAC can use low power moderate gain op-amps for the TIA. However, it must also be noted that while using a low gain amplifier may not impact the linearity, it does lead to a gain error.

Calibration schemes as in [29] can also be used in future design to correct the offset and gain errors.

6. CONCLUSION

This work presents the effect of the input offset voltage of a transimpedance amplifier (TIA) on the linearity (DNL) of a voltage-mode M-DAC. It then proposes an introduction of a current buffer between the M-DAC resistor ladder and the TIA to minimize the nonlinearity. A 14-bit M-DAC was designed with the proposed architecture. Post-layout simulation results show that the effect of the offset voltage is reduced to an offset error in the DAC's transfer function while maintaining a maximum DNL of -0.385 LSB . The current buffer is also able to provide an inversion to the signal alleviating the need for an additional high precision inverting amplifier. The THD of the DAC was found to be commensurate with the resolution, while the use of the 130 nm process node and segmented ladder structure yielded a multiplying feedthrough error of -130 dB and glitch impulse area of 0.6 nVs , which is superior than the commercial DACs. The flicker noise of the MOS devices in the current buffer dominated the noise performance of the proposed architecture; reducing the effective resolution of the DAC to 13-bits at DC or low frequency. Possible solutions to reduce the flicker noise and power consumption were also briefly discussed.

REFERENCES

[1] Texas Instruments Inc., Understanding Data Converters, 1995. URL: http: / /www. ti.com/lit/an/slaa013/slaa013.pdf [Accessed February 3, 2016].
[2] W. A. Kester, The Data Conversion Handbook. Newnes, 2005.
[3] N. K. Eugenio Mejia, Kevin Duke, $\pm 10 V$ 4-Quadrant Multiplying DAC, 2013. URL: http://www.ti.com/tool/tipd137 [Accessed August 24, 2016].
[4] H. Khorramabadi, EE247 Lecture 14: Data converters - DAC Design, 2010. Lecture Notes, URL: https://inst.eecs.berkeley.edu/~ee247/fa10/files07/ lectures/L14_2_f10.pdf [Accessed August 24, 2016].
[5] Texas Instruments Inc., TI HealthTech Fitness Guide (Rev. A), 2013. URL: http: //www.ti.com/lit/sg/slyb207a/slyb207a.pdf [Accessed March 3, 2017].
[6] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design. Oxford Univ. Press, 2002.
[7] F. Maloberti, Data Converters. Springer Science \& Business Media, 2007.
[8] I. Myderrizi and A. Zeki, "Current-Steering Digital-to-Analog Converters: Functional Specifications, Design Basics, and Behavioral Modeling," IEEE Antennas and Propagation Magazine, vol. 52, no. 4, pp. 197-208, 2010.
[9] P. Carbone, S. Kiaei, and F. Xu, Design, Modeling and Testing of Data Converters. Springer, 2014.
[10] B. Baker, DAC BASICS, Part 4: The Pesky DAC Output Glitch-Impulse, 2015. URL: http://www.planetanalog.com/author.asp?section_id= $3062 \& d o c _i d=563930$ [Accessed September 3, 2017].
[11] L. Riordan, "New High-Resolution Multiplying DACs Excel at Handling AC Signals," Analog Dialogue, vol. 44, no. 3, pp. 5-7, 2010.
[12] Texas Instruments Inc., Dual, Serial Input 14-Bit Multiplying Digital-to-Analog Converter, 2 2007. URL: http://www.ti.com/lit/ds/symlink/dac8802. pdf [Accessed March 3, 2017].
[13] S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits. McGraw-Hill Higher Education, 2014.
[14] R. Palmer, DC Parameters: Input Offset Voltage ($V_{I O}$), 2001. URL: http://www. ti.com/lit/an/sloa059/sloa059.pdf [Accessed September 4, 2017].
[15] P. R. Gray, P. J. Hurst, R. G. Meyer, and S. H. Lewis, Analysis and Design of Analog Integrated Circuits. John Wiley \& Sons, 2008.
[16] Analog Devices Inc., Op Amp Input Offset Voltage, 2009. URL: http://www. analog.com/media/en/training-seminars/tutorials/MT-037.pdf
[Accessed September 4, 2017].
[17] R. Wu, J. H. Huijsing, and K. A. Makinwa, "Dynamic Offset Cancellation Techniques for Operational Amplifiers," in Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, pp. 21-49, Springer, 2013.
[18] D. H. Mahrof, E. A. Klumperink, Z. Ru, M. S. O. Alink, and B. Nauta, "Cancellation of OpAmp Virtual Ground Imperfections by a Negative Conductance Applied to Improve RF Receiver Linearity," IEEE Journal of Solid-State Circuits, vol. 49, no. 5, pp. 1112-1124, 2014.
[19] B. Mrković, I. Broz, and D. Ribić, "Efficient and Reusable Offset Cancellation Method Implemented in CMOS Design," in MIPRO 2009 32nd International Convention, 2009.
[20] P. Maghsoudnia, "SiCr thin film resistors having improved temperature coefficients of resistance and sheet resistance," Jan. 9 2001. US Patent 6,171,922.
[21] L. Safari and S. J. Azhari, "A Novel Low Input Impedance Low Power Fully Differential Current Buffer with $\pm 0.65 \mathrm{~V}$ Supply Voltage and high bandwidth of 520 MHz ," WSEAS Transactions on Circuits and Systems, 2015.
[22] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, vol. 1. John Wiley \& Sons, 2008.
[23] I. Knausz, Rail to Rail Folded Cascode Opamp Employing Class AB Output Stage, 2004. URL: http://www.knausz.com/files/opamp_final_paper2.pdf [Accessed October 15, 2016].
[24] Analog Devices Inc., 8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface, 12 2015. URL: http://www.analog.com/media/en/ technical-documentation/data-sheets/AD5450_5451_5452_5453.pdf [Accessed March 3, 2017].
[25] Linear Technology Corp., 12-/14-/16-Bit SoftSpan DACs with Programmable Output Range, 2001. URL: http://cds.linear.com/docs/en/datasheet/ 1588992fa.pdf [Accessed March 3, 2017].
[26] E. A. M. Klumperink, S. L. J. Gierkink, A. P. van der Wel, and B. Nauta, "Reducing MOSFET 1/f Noise and Power Consumption by Switched Biasing," IEEE Journal of Solid-State Circuits, vol. 35, pp. 994-1001, July 2000.
[27] S. Kawahito and Y. Tadokoro, "CMOS Class-AB Current Mirrors for Precision Current-Mode Analog-Signal-Processing Elements," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 843-845, Dec 1996.
[28] K. Smith and A. Sedra, "The current conveyor - A new circuit building block," Proceedings of the IEEE, vol. 56, no. 8, pp. 1368-1369, 1968.
[29] W. Jiang and V. D. Agrawal, "Built-in Self-Calibration of On-chip DAC and ADC," in 2008 IEEE International Test Conference, pp. 1-10, Oct 2008.

