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ABSTRACT

This dissertation is concerned with the efficient reconstruction of signals from frame

coefficient erasures at known locations. Three methods of perfect reconstruction from

frame coefficient erasures will be discussed. These reconstructions are more efficient than

older methods in the literature because they only require an L×L matrix inversion, where

L denotes the cardinality of the erased set of indices. This is a significant improvement

over older methods which require an n× n matrix inversion, where n denotes the dimen-

sion of the underlying Hilbert space.

The first of these methods, called Nilpotent Bridging, uses a small subset of the non-

erased coefficients to reconstruct the erased coefficients. This subset is called the bridge

set. To perform the reconstruction an equation, known as the bridge equation, must be

solved. A proof is given that under a very mild assumption there exists a bridge set of

size L for which the bridge equation has a solution. A stronger result is also proven that

shows that for a very large class of frames, no bridge set search is required. We call this

set of frames the set of full skew-spark frames. Using the Baire Category Theorem and

tools from Matrix Theory, the set of full skew-spark frames is shown to be an open, dense

subset of the set of all frames in finite dimensions.

The second method of reconstruction is called Reduced Direct Inversion because it

provides a basis-free, closed-form formula for inverting a particular n × n matrix, which

only requires the inversion of an L×L matrix. By inverting this matrix we obtain another

efficient reconstruction formula.

The final method considered is a continuation of work by Han and Sun. The method

utilizes an Erasure Recovery Matrix, which is a matrix that annihilates the range of the

analysis operator for a frame. Because of this, the erased coefficients can be reconstructed
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using a simple pseudo-inverse technique.

For each method, a discussion of the stability of our algorithms is presented. In par-

ticular, we present numerical experiments to investigate the effects of normally distributed

additive channel noise on our reconstruction. For Reduced Direct Inversion and Erasure

Recovery Matrices, using the Restricted Isometry Property, we construct classes of frames

which are numerically robust to sparse channel noise. For these frames, we provide error

bounds for sparse channel noise.
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1. INTRODUCTION

1.1 Basics of Frame Theory

A frame for a Hilbert space, H, is a countably indexed sequence of vectors, F =

{fj}j∈J ⊂ H, for which there positive exist constants, A and B, so that for all f ∈ H,

A ‖f‖2 ≤
∑
j∈J

| 〈f, fj〉 |2 ≤ B ‖f‖2 . (1.1)

The constant A is called a lower frame bound, and B is called an upper frame bound. The

supremum over all lower frame bounds is called the optimal lower frame bound, and the

infimum over all upper frame bounds is called the optimal upper frame bound. A frame,

F = {fj}j∈J, with optimal frame bounds A0 and B0 is tight if A0 = B0, and Parseval if

A0 = B0 = 1. It is well known that a collection {fj}Nj=1 is a frame for a finite dimensional

Hilbert space, H, if and only if span{fj}Nj=1 = H. A collection {xj}j∈J ⊂ H is called a

Schauder basis forH if for every x ∈ H, there exist unique coefficients {cj}j∈J for which

x =
∑
j∈J

cjxj.

(In finite dimensions, this corresponds to the conventional definition of a basis.) A frame

which is also a Schauder basis is called a Riesz basis. A sequence F = {fj}j∈J is called a

Bessel sequence if we can find a constant C > 0 so that for all f ∈ H,

∑
j∈J

| 〈f, fj〉 |2 ≤ C‖f‖2. (1.2)

Thus every frame is a Bessel sequence, but not every Bessel sequence is a frame.

Remark 1.1. We will frequently use a capital letter to denote a frame whose elements are
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denoted by the corresponding lowercase letter. For example, we will enumerate the frame

F for an n-dimensional (n ≤ ∞) Hilbert spaceH by {fj}j∈J. If n <∞, the index set will

be assumed to be J = {1, 2, · · · , N}. In this case, since {fj}Nj=1 is a spanning set, N ≥ n.

The definition of a frame may seem a bit obscure at a first glance, however, we can

think of the frame inequality (1.1) as a modified version of Parseval’s inequality for or-

thonormal bases. With this in mind, it is reasonable to expect an expansion formula for

vectors which is similar to the expansion of a vector by an orthonormal basis. Further-

more, frames are more flexible than bases because they are allowed to be redundant. Due

to this redundancy, it is possible to reconstruct a signal from a frame expansion when some

of its coefficient data has been erased.

In this section, we will go through some of the basics relevant to frame erasures. For a

more thorough discussion of frame theory, see the books [14], [16], and [26], or the AMS

memoirs [17] and [27]. To see the original paper on frames by Duffin and Schaeffer, see

[19].

1.2 Operators Associated to Frames

There are several operators associated to frames. Among these are the analysis, syn-

thesis, frame, and Gramian operators. Given a frame F = {fj}j∈J for a Hilbert space H

and f ∈ H, we call the sequence (〈f, fj〉)j∈J the sequence of frame coefficients of F . The

analysis operator Θ : H → `2(J) maps f ∈ H to its frame coefficient sequence. That is,

Θf =
∑
j∈J

〈f, fj〉 ej = (〈f, fj〉)j∈J , (1.3)

where ej denotes the jth vector in the canonical orthonormal basis for `2(J). It is clear

from equation (1.1) that if B is an upper frame bound for F , then Θ is a bounded operator
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with ‖Θ‖ ≤
√
B. Notice that for f ∈ H, we have

〈Θf, ek〉 =

〈∑
j∈J

〈f, fj〉 ej, ek

〉
=
∑
j∈J

〈f, fj〉 〈ej, ek〉 = 〈f, fk〉 .

Thus, Θ∗ek = fk. Extending using linearity we define Θ∗ : `2(J)→ H by

Θ∗

(∑
j∈J

cjej

)
=
∑
j∈J

cjfj. (1.4)

This operator is called the synthesis operator for the frame F . By composing the analysis

and synthesis operators, we obtain the frame operator S = Θ∗Θ : H → H. That is,

Sf =
∑
j∈J

〈f, fj〉 fj ∀f ∈ H. (1.5)

To obtain the expansion formula we mentioned earlier, we must invert the frame operator.

In order to invert the frame operator, we require the following theorem, which will also be

useful later on. The series in equation (1.6) below is often called a Neumann series (cf.

Theorem 1.2.2 in [45]). A proof is included here for the sake of completeness.

Theorem 1.2. If T is a bounded invertible operator on a Hilbert space satisfying ‖T‖ < 1,

then I − T is invertible, and

(I − T )−1 =
∞∑
k=0

T k. (1.6)

Moreover, given ε > 0, if ‖T‖ = r < 1, and κ > logr(ε(1− r))− 1, then

∥∥∥∥∥(I − T )−1 −
κ∑
k=0

T k

∥∥∥∥∥ < ε. (1.7)

Proof. Since ‖T‖ < 1 the series
∑∞

k=0 T
k converges absolutely, and thus it converges. We
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have

(I − T )
∞∑
k=0

T k =
∞∑
k=0

T k −
∞∑
k=0

T k+1 =
∞∑
k=0

T k −
∞∑
k=1

T k = I.

Similarly, (
∞∑
k=0

T k

)
(I − T ) = I.

Therefore, (I − T )−1 =
∑∞

k=0 T
k.

For the moreover part, first notice that

∥∥∥∥∥(I − T )−1 −
κ∑
k=0

T k

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

k=κ+1

T k

∥∥∥∥∥ ≤
∞∑

k=κ+1

‖T‖k =
∞∑

k=κ+1

rk =
rκ+1

1− r
.

Thus, to guarantee that (1.7) is satisfied, it suffices to find κ for which

rκ+1

1− r
< ε.

Taking the logarithm of base r to both sides gives

κ+ 1− logr(1− r) > logr(ε).

Solving for κ yields

κ > logr(1− r) + logr(ε)− 1 = logr(ε(1− r))− 1.

The next theorem guarantees that the frame operator is invertible, and provides a frame

expansion formula (cf. Theorems 1.1.5, 5.1.5, and 5.3.4 in [16]). The proofs of these facts

are included here for the sake of completeness.
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Theorem 1.3. Let F = {fj}j∈J be a frame for a Hilbert spaceH with lower frame bound

A and upper frame bound B, and let S be the frame operator for F . Then,

1. S is a positive operator satisfying AI ≤ S ≤ BI .

2. S is invertible.

3. For all f ∈ H,

f =
∑
j∈J

〈f, fj〉S−1fj =
∑
j∈J

〈
f, S−1fj

〉
fj. (1.8)

4. For all f ∈ H,

f =
∑
j∈J

〈
f, S−

1
2fj

〉
S−

1
2fj. (1.9)

Proof. To prove (1), for f, g ∈ H, we have

S∗ = (Θ∗Θ)∗ = Θ∗(Θ∗)∗ = Θ∗Θ = S.

Therefore, S is self-adjoint. To prove that S ≥ AI , we have

〈Sf, f〉 =
∑
j∈J

〈〈f, fj〉 fj, f〉 =
∑
j∈J

〈f, fj〉 〈f, fj〉

=
∑
j∈J

| 〈f, fj〉 |2 ≥ A‖f‖2 = 〈AIf, f〉 ,

where A denotes the lower frame bound. Similarly, S ≤ BI .

To prove (2), since AI ≤ S ≤ BI ,

A

B
I ≤ 1

B
S ≤ I.

Thus,

I − 1

B
S ≤ I − A

B
I =

B − A
B

I.
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So,
∥∥I − 1

B
S
∥∥ ≤ B−A

B
< 1. Hence, by Theorem 1.2, 1

B
S is invertible. Therefore, S is

invertible.

Since S is self-adjoint, so is S−1. Thus, to get the first equality in (3), we have

f = S(S−1f) =
∑
j∈J

〈
S−1f, fj

〉
fj =

∑
j∈J

〈
f, S−1fj

〉
fj.

To prove the second equality, since S−1 is bounded and linear, we have

f = S−1(Sf) = S−1

(∑
j∈J

〈f, fj〉 fj

)
=
∑
j∈J

〈f, fj〉S−1fj.

To prove (4), for all f ∈ H, we have

f = S−
1
2S(S−

1
2f) = S−

1
2

(∑
j∈J

〈
S−

1
2f, fj

〉
fj

)
=
∑
j∈J

〈
f, S−

1
2fj

〉
S−

1
2fj.

As we hinted at earlier, equation (1.8) gives an expansion of the vector (or signal) f

which is similar to an orthonormal basis expansion. The frame {S−1fj}j∈J is commonly

referred to as the canonical or standard dual to F . It is easily checked that the frame

{S− 1
2fj}j∈J is a Parseval frame. The following Corollary (Proposition 1.1.4 in [16]) gives

a more convenient expansion formula for tight frames.

Corollary 1.4. Assume that F is a tight frame with frame bound A. Then the frame

operator is S = AI , and for all f ∈ H,

f =
1

A

∑
j∈J

〈f, fj〉 fj. (1.10)

6



In general, if F is a redundant frame, there exist many frames, G, forH for which

f =
∑
j∈J

〈f, gj〉 fj =
∑
j∈J

〈f, fj〉 gj ∀f ∈ H. (1.11)

Any frame G which satisfies equation (1.11) is called a dual to F , and we will refer to

(F,G) as a dual frame pair. For a given frame F , we will define the dual set of F , denoted

by D(F ), as

D(F ) = {G : (F,G) is a dual frame pair}. (1.12)

The following Proposition will be needed later on. It says that if F is a frame, G is Bessel,

and equation (1.11) is satisfied, then G is also a frame.

Proposition 1.5. Assume F is a frame for a Hilbert space H, and G is a Bessel sequence

satisfying

f =
∑
j∈J

〈f, gj〉 fj ∀f ∈ H. (1.13)

Then G is a frame.

Proof. Assume that B is an upper frame bound for F . Let f ∈ H. Then,

‖f‖2 = |〈f, f〉| =

∣∣∣∣∣
〈∑

j∈J

〈f, gj〉 fj, f

〉∣∣∣∣∣ =

∣∣∣∣∣∑
j∈J

〈f, gj〉 〈f, fj〉

∣∣∣∣∣ (1.14)

≤

(∑
j∈J

| 〈f, gj〉 |2
) 1

2
(∑

j∈J

| 〈f, fj〉 |2
) 1

2

(1.15)

≤
√
B‖f‖

(∑
j∈J

| 〈f, gj〉 |2
) 1

2

. (1.16)

Thus, ∑
j∈J

| 〈f, gj〉 |2 ≥
(

1√
B
‖f‖

)2

=
1

B
‖f‖2. (1.17)
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Since G is a Bessel sequence, it has an upper frame bound, and we have demonstrated that

1
B

is a lower frame bound.

Remark 1.6. We will frequently use the rank one operator notation. For f, g ∈ H, we

denote by f ⊗ g : H → H the operator defined by (f ⊗ g)(x) = 〈x, g〉 f for all x ∈ H.

With this notation, we have

Θ =
∑
j∈J

ej ⊗ fj,

Θ∗ =
∑
j∈J

fj ⊗ ej, and

S =
∑
j∈J

fj ⊗ fj.

The last operator we will introduce in this section is known as the Gramian operator.

The Gramian is the operator G : `2(J)→ `2(J) defined by

G = ΘΘ∗ =
∑
j∈J

〈fk, fj〉 ej ⊗ ek. (1.18)

The matrix representation for the Gramian with respect to the canonical basis for `2(J) is

given by G = (〈fk, fj〉)j,k∈J. In matrix form this operator is commonly referred to as the

Gram matrix. Throughout this dissertation we will be discussing minors of this matrix,

and we will make several references to the following useful Lemma.

Lemma 1.7. Assume that G is the Gram matrix of a frame F . Assume that Λ is a finite

subset of J, and denote by GΛ the minor of G with rows and columns indexed by Λ. Then

the set {fj}j∈Λ is linearly independent if and only if GΛ is invertible.

Proof. Denote the analysis operator for the sequence {fj}j∈Λ by ΘΛ. To prove the for-

wards implication, we will prove the contrapositive. Assume that GΛ is singular. Then, we

8



can find a non-zero complex valued vector X = (xj)j∈Λ for which

0 = GΛX = ΘΛΘ∗ΛX.

Thus,

0 = 〈ΘΛΘ∗ΛX,X〉 = 〈Θ∗ΛX,Θ∗ΛX〉 .

Hence,

0 = Θ∗ΛX =
∑
j∈Λ

xjfj.

Therefore, {fj}j∈Λ is linearly dependent.

We will also prove the converse by contrapositive. Assume that {fj}j∈Λ is linearly

dependent. Then, we can find a non-zero complex valued vector X = (xj)j∈Λ so that

∑
j∈Λ

xjfj = 0.

Thus,

GΛX = ΘΛΘ∗ΛX = ΘΛ

(∑
j∈Λ

xjfj

)
= ΘΛ0 = 0.

Therefore, GΛ is singular.

Given a dual frame pair, (F,G) we will also be interested in minors of the cross-Gram

matrix which we will define by

B = (〈fj, gk〉)j,k∈J . (1.19)

We will denote byB(F,G,Λ,Ω) the minor ofB with rows indexed by Λ ⊂ J, and columns

indexed by Ω ⊂ J. Whenever the dual frame pair is understood, we will abbreviate this

notation to B(Λ,Ω).
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1.3 Frames for Signal and Image Processing

Frames are widely used in the analysis of signals and images due to their redundancy

properties. Let (F,G) denote a dual frame pair for a Hilbert space H. Suppose that Alice

wishes to send a signal f ∈ H to Bob. To do this, Alice first encodes (or analyzes) f

with respect to the analysis frame G to obtain the sequence ΘGf = (〈f, gj〉)j∈J of frame

coefficients. Alice then transmits these coefficients over some channel to Bob. On the

receiving end, Bob decodes (or synthesizes) these coefficients with the synthesis frame, F ,

to obtain the original signal (via equation (1.11)). That is, Bob computes the sum

Θ∗F (〈f, gj〉)j∈J =
∑
j∈J

〈f, gj〉 fj = f.

1.3.1 Frame Erasures

Let (F,G) denote a dual frame pair for a Hilbert spaceH. Frame erasures occur when

some of the frame coefficients are erased during the transmission of a signal. We define

an erasure set, Λ, to be a finite subset of J. The following proposition discusses exactly

when such a reconstruction is possible, and it provides a naive method of reconstruction

from frame erasures.

Proposition 1.8. Let (F,G) denote a dual frame pair for a Hilbert spaceH.

(1) If the set {gj}j∈J\Λ no longer forms a frame for H, then not every vector can be

reconstructed from erasures indexed by Λ. That is, if ΘΛc denotes the analysis oper-

ator for {gj}j∈J\Λ, then ΘΛc is not injective.

(2) If the set {gj}j∈J\Λ still forms a frame forH, then every vector can be reconstructed

from erasures indexed by Λ. That is, ΘΛc is injective.
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For the proof of (1), we will need the following lemma. For a proof of the lemma, see

Theorem 5.4.7 in [16].

Lemma 1.9. Let F = {fj}j∈J be a frame for a Hilbert space, H, with frame operator S,

and let k ∈ J. If 〈fk, S−1fk〉 = 1, then span{fj}j∈J\{k} 6= H. However, if 〈fk, S−1fk〉 6= 1,

then {fj}j∈J\{k} is a frame forH.

proof of Proposition 1.8. To prove (1), assume that {gj}j∈J\Λ is no longer a frame for H.

Then by inductively applying Lemma 1.9, it is easily seen that {gj}j∈J\Λ is an incomplete

set. Thus, we can find a non-zero vector f ∈ H for which 〈f, gj〉 = 0 for all j ∈ Λc. Thus,

its sequence of frame coefficients with respect to {gj}j∈J\Λ is the zero vector. Therefore,

f and 0 can not be differentiated by any reconstruction scheme (that is, ΘΛcf = 0 = ΘΛc0

and ΘΛc is not injective). Hence an exact reconstruction of f is impossible.

To prove (2), assume that {gj}j∈J\Λ still forms a frame. Denote the frame operator for

{gj}j∈J\Λ by S̃. Note that S̃ is invertible by part (2) of Theorem 1.3. Thus, any vector

f ∈ H can be reconstructed from its frame coefficeints indexed by J \ Λ with the formula

f =
∑
j∈J\Λ

〈f, gj〉 S̃−1gj = S̃−1Θ∗ΛcΘΛcf.

Moreover, a left inverse of ΘΛc is given by S̃−1Θ∗Λc .

Since the condition on Λ that {gj}j∈J\Λ remains a frame is essential for reconstruction,

we make the following definition. Given a dual frame pair (F,G) for a Hilbert spaceH, an

erasure set, Λ, is said to satisfy the minimal redundancy condition if {gj}j∈J\Λ still forms a

frame for H. The reconstruction procedure in the proof of (2) above will be referred to as

the FORC method, since we are inverting the frame operator for the remaining coefficients.

In the finite dimensional case, this method produces a perfect reconstruction. However, the

reconstruction is inefficient since it requires the inversion of the n × n matrix S̃, where

11



n denotes the dimension of H. Moreover, in the infinite dimensional case this method

can only be applied in certain special cases since it requires the inversion of an infinite

dimensional operator.

Let (F,G) be a frame for a Hilbert space, H. If the frame coefficients indexed by

Λ ⊂ J are erased, the signal recipient (Bob) receives the vector

fR =
∑
j∈J\Λ

〈f, gj〉 fj. (1.20)

We call fR the partial reconstruction of the vector f . The corresponding operator RΛ :

H → H defined by

RΛf = fR =
∑
j∈J\Λ

〈f, gj〉 fj ∀f ∈ H (1.21)

is called the partial reconstruction operator. Associated to the partial reconstruction op-

erator, we call the operator EΛ : H → H defined by

EΛf = f − fR = f −
∑
j∈J\Λ

〈f, gj〉 fj =
∑
j∈Λ

〈f, gj〉 fj (1.22)

the error operator. Notice that RΛ = I − EΛ, and to reconstruct from frame erasures, we

can simply invert RΛ. To do this, if ‖EΛ‖ < 1, applying Theorem 1.6, we get

R−1
Λ = (I − EΛ)−1 =

∞∑
k=0

Ek
Λ. (1.23)

In practice, we must approximate the infinite Neumann series above with a finite series.

This iterative method is more efficient than the FORC method in some cases, however it

still requires many large matrix multiplications. We will provide better alternatives to this

method in the sections to come.

There has been some research done on types of frames for which ‖EΛ‖ or the spectral
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radius r(EΛ) is small. Thus, these frames will yield a faster reconstruction. In [13],

Casazza and Kovačević proved that uniform tight frames minimize max{‖EΛ‖ : |Λ| = 1}

over the set of all tight frames. In [34], Holmes and Paulsen supplied a proof that among

tight frames, equiangular tight frames minimize the quantity max{‖EΛ‖ : |Λ| = 2}.

In [40] and [41] Leng and Han, and Lopez and Han provided conditions for which the

quantity max{‖EΛ‖ : |Λ| = m} is minimized for the standard dual. In [47], Pehlivan,

Han, and Mohapatra considered the minimization of r(EΛ). For more on frame erasures,

see [7], [8], [20], [24], [31]-[33], [36]-[39], [47], and [50].

1.4 Tight Frames and the Restricted Isometry Property

Tight frames are especially useful for signal processing because, as pointed out in

Corollary 1.4, the frame operator for a tight frame is a constant multiple of the identity

operator. This in turn gives the nice reconstruction given by equation (1.10). In this

section, we will discuss various types of tight frames, and discuss some of their fascinating

numerical properties.

As mentioned earlier, a Parseval frame is a tight frame with a tight frame bound of 1.

Thus, from Corollary 1.4 the frame operator is the identity operator, and the reconstruc-

tion formula in equation (1.10) is very similar to an orthonormal basis reconstruction (or

expansion) formula. The next proposition says that the Gramian operator for a Parseval

frame is actually a projection onto the range of the analysis operator.

Proposition 1.10. Assume that F is a Parseval Frame for a Hilbert space H. Then, the

Gramian operator, G for F is the unique orthogonal projection onto the range of the

analysis operator, Θ for F .

Proof. Recall that G = ΘΘ∗, and the frame operator for F is S = Θ∗Θ. By Corollary 1.4,
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S = I , the identity operator onH. To show that G is an orthogonal projection, we have

G2 = ΘΘ∗ΘΘ∗ = ΘSΘ∗ = ΘIΘ∗ = ΘΘ∗ = G

and

G∗ = (ΘΘ∗)∗ = (Θ∗)∗Θ∗ = ΘΘ∗ = G.

It only remains to show that range(Θ) = range(G). Clearly,

range(G) = range(ΘΘ∗) ⊂ range(Θ).

Conversely, if y ∈ range(Θ), then y = Θx for some x ∈ H. Since F is a Parseval frame,

x = Θ∗Θx. Thus

y = Θx = ΘΘ∗Θx = GΘx.

Hence y ∈ range(G). Therefore, range(G) = range(Θ).

A tight frame in which every vector has unit norm is called a finite unit norm tight

frame, which is commonly abbreviated as FUNTF in the frame theory literature. Recently

a lot of work has gone into the study of the numerical properties, and the constructions

of FUNTFs (cf. [4], [24], [44], and [50]). The following is a simple computation for the

frame bound of a FUNTF.

Proposition 1.11. Let F = {fj}Nj=1 be a finite unit norm tight frame for an n-dimensional

Hilbert space,H. Then, the frame bound for F is N
n

.

Proof. Let A be the frame bound for F . Then, by Proposition 1.4, S = AI , and tr(S) =

An. Since 〈fj, fj〉 = ‖fj‖2 = 1 for all j = 1, · · · , N , we have tr(G) = N . Thus,

An = tr(S) = tr(Θ∗Θ) = tr(ΘΘ∗) = tr(G) = N.
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Therefore A = N
n

.

An immediate consequence of Proposition 1.11 is that for a FUNTF F , and any f ∈ H,

f =
n

N

N∑
j=1

〈f, fj〉 fj.

The most important tool we will use to study the stability of our algorithms is the

famous Restricted Isometry Property, commonly abbreviated as RIP. A vector x ∈ Rn is

called s-sparse if x has s or fewer non-zero entries. We say that an m × N matrix M

satisfies the Restricted Isometry Property of order s with constant δs if for all s-sparse

vectors, x ∈ RN , we have

(1− δs)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δs)‖x‖2 (1.24)

(cf. [22]).

It has been well studied that a matrix M = 1√
m

(mj,k) ∈ Rm×N whose entries mj,k are

drawn independently from the standard normal distribution will satisfy the RIP for a fixed

constant δs with high probability, provided m is sufficiently large. The following theorem

is the precise statement of this. A proof of this theorem, and many other fascinating

applications of the RIP can be found in [22]. For more on the RIP, including some of the

original proofs, see [2], [12], [18], [43], and [48].

Theorem 1.12. Assume that for all 1 ≤ j ≤ m and 1 ≤ k ≤ N , each mj,k is selected

independently according to the standard normal distribution, that M = (mj,k), and that

δ, γ ∈ (0, 1). Then, there exists a constant ρ > 0 so that the RIP constant δs for 1√
m
M

satisfies δs ≤ δ with probability 1− γ provided

m ≥ ρ

δ2

(
s ln

(
eN

s

)
+ ln

(
2

γ

))
. (1.25)
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In [5], Bodmann proved that randomly generated frames are almost tight and almost

equiangular. The following is a slightly modified version of Corollary 3.5 in [5].

Theorem 1.13. Assume F is an n×N matrix whose entries are drawn independently from

the standard normal distribution. If

n ≤
12 ln

(
γ
2

)
+ 3δ2N − 4Nδ3

12 ln
(
1 + 4

δ

) (1.26)

then with probability at least 1−γ the columns of 1√
n
F form a frame with lower and upper

frame bounds N
n

1
(1+δ)3 and N

n
(1 + δ)3, respectively. That is, if fj denotes the jth column of

F , then

N

n

1

(1 + δ)3
‖f‖2 ≤

N∑
j=1

∣∣∣∣〈f, 1√
n
fj

〉∣∣∣∣2 ≤ N

n
(1 + δ)3‖f‖2 ∀f ∈ Rn. (1.27)

In our numerical experiments, we will couple these probabilistic results together to

construct tight frames which satisfy the RIP with high probability, called TRIP frames.

1.5 Fourier Analysis and the Shannon-Whittaker Sampling Theorem

The Fourier Series for a function f ∈ L2[−π, π] is the series

Sf (x) =
∑
k∈Z

cke
ikx, (1.28)

where the kth Fourier coefficient, ck, is given by

ck =
1

2π

∫ π

−π
f(θ)e−ikθ dθ. (1.29)
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That is, if fk(x) = eikx, with the usual inner product on L2[−π, π], then

Sf =
1

2π

∑
k∈Z

〈f, fk〉 fk. (1.30)

The following Theorem says that Sf = f in the sense of convergence in L2[−π, π].

Theorem 1.14. The sequence 1√
2π
{eikx}k∈Z is an orthonormal basis for L2[−π, π]. More-

over, if

SNf (x) =
1

2π

N∑
k=−N

〈f, fk〉 fk(x), (1.31)

then SNf converges to f in L2[−π, π].

Furthermore, it is easily verified from Theorem 1.14 that
√

p
2π

{
eipkx

}
k∈Z is an or-

thonormal basis for L2
[
−π
p
, π
p

]
, where p ∈ (0,∞). In particular for p ∈ (0, 1), [−π, π] ⊂[

−π
p
, π
p

]
. Thus, if f ∈ L2[−π, π], we can extend f to

[
−π
p
, π
p

]
, by defining it to be zero

on
[
−π
p
, π
p

]
\ [−π, π]. Hence, for f ∈ L2[−π, π]

2π

p
‖f‖2 =

∑
k∈Z

∣∣〈f, eipk·〉∣∣2 . (1.32)

The following Proposition summarizes these remarks.

Proposition 1.15. The sequence
{
eipkx

}
k∈Z is a tight frame for L2[−π, π] with frame

bound 2π
p

.

The Fourier transform of a function f ∈ L1(R) is the function

(Ff)(ξ) = f̂(ξ) =

∫
R
f(x)e−ixξ dx. (1.33)

If f, f̂ ∈ L1(R), and f is continuous at x, the Fourier Inversion Theorem states that f(x)
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can be recovered from its Fourier transform, f̂ , by the formula

f(x) =
1

2π

∫
R
f̂(ξ)eixξ dξ. (1.34)

The Plancherel Theorem states that for f, g ∈ L1(R) ∩ L2(R),

〈
f̂ , ĝ
〉

= 2π 〈f, g〉 , and ‖f̂‖2 = 2π‖f‖2. (1.35)

Thus, since the Fourier transform F is a bounded operator on the dense subset L1(R) ∩

L2(R) of L2(R), F can be extended to a bounded invertible operator on all of L2(R).

Moreover, 1√
2π
F can be extended to a unitary operator on L2(R).

A function f ∈ L2(R) is called band-limited with band π if spt(f̂) (the support of f̂ )

is contained in the interval [−π, π]. We denote the set of all band-limited functions with

band π as PWπ (the Paley-Weiner space). Notice that for a given f ∈ PWπ and a ∈ R,

the Fourier Inversion Theorem and Plancherel Theorem yield

f(a) =
1

2π

∫
R
f̂(ξ)eixξ dξ =

1

2π
〈Ff, g〉 =

〈
f,F−1g

〉
(1.36)

where g(x) = eiaξχπ, and χπ is the indicator function of the set [−π, π]. Using the Fourier

Inversion Theorem we have

(F−1g)(x) =
1

2π

∫
R
g(ξ)eixξ dξ =

1

2π

∫ π

−π
e−iaξeixξ dξ

=

∫ π

−π
ei(x−a)ξ dx = sinc(π(x− a)), (1.37)

where by convention, we take sinc(x) = sinx
x

for x 6= 0, and sinc(0) = 1. Combining
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equations (1.36) and (1.37) we get

f(a) = 〈f, sinc(π(· − a))〉 . (1.38)

If f ∈ PWπ, then f̂ ∈ L2[−π, π]. Thus, by Proposition 1.15

f̂(ξ) =
p

2π

∑
k∈Z

∫ π

−π
f̂(θ)e−ikpθ dθ eikpξχπ

=
p

2π

∑
k∈Z

∫ π

−π
f̂(θ)eikpθ dθ e−ikpξχπ

= p
∑
k∈Z

[
1

2π

∫
R
f̂(θ)eikpθ dθ

]
e−ikpξχπ

= p
∑
k∈Z

f(kp)e−ikpξχπ.

Taking the inverse Fourier transform of both sides gives

f(x) =
p

2π

∑
k∈Z

f(kp)

∫
R
e−ikpξχπe

ixξ dξ

=
p

2π

∑
k∈Z

f(kp)

∫ π

−π
ei(x−kp)ξ dξ

= p
∑
k∈Z

f(kp)sinc(π(x− kp))

= p
∑
j∈pZ

f(j)sinc(π(x− j)).

This formula is known as the Shannon-Whittaker Sampling Theorem. The Shannon-

Whittaker Sampling Theorem is especially useful for digital signal processing because

it allows us to recover a frequency (or band) limited signal from its sampled values on a

lattice.

Since f(j) = 〈f, sinc(π(· − j))〉 for all j ∈ pZ, the Shannon-Whittaker Sampling
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Theorem says that

f = p
∑
j∈pZ

〈f, sinc(π(· − j))〉 sinc(π(· − j)). (1.39)

for all f ∈ PWπ. Thus, {sinc(π(· − j))}j∈pZ is a frame for PWπ whose standard dual is

the frame {p sinc(π(· − j))}j∈pZ.

For further reading on Fourier analysis, see [21] and [23]. For further reading on

Sampling Theory, see [3] and [52].
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2. NILPOTENT BRIDGING

2.1 The Nilpotent Bridging Algorithm1

If (F,G) is a dual frame pair for a Hilbert space H, and f ∈ H, equation (1.23) says

that we can reconstruct the signal f from erasures indexed by Λ by computing

f = R−1
Λ fR = (I − EΛ)−1fR =

∞∑
k=0

Ek
ΛfR, (2.1)

whenever the norm (or more generally, the spectral radius of EΛ) is less than one. Our

original goal for this project was to reduce the spectral radius of EΛ by supplementing fR

with information from the known (or non-erased) coefficients. In doing so, we discovered

a method of preconditioning for which a new error operator term is nilpotent of index two.

Thus, the sum in equation (2.1) for this new error term terminates after two iterations.

Because of this, we called the new method Nilpotent Bridging.

The idea behind Nilpotent Bridging is to use information from a small collection of

the non-erased coefficients to reconstruct f . That is, for j ∈ Λ, we will replace the erased

frame coefficient 〈f, gj〉 with
〈
f, g′j

〉
, where

g′j =
∑
k∈Ω

cj,kgk (2.2)

for some subset Ω of J \ Λ. Any such set Ω ⊂ J \ Λ is called a bridge set for Λ. The

question now becomes how to choose the cj,k for j ∈ Λ and k ∈ Ω in an appropriate

way. To help us understand the process, we make the following definitions. The operator

1The statement and proof of Theorem 2.3 was reproduced from [37] and [38] With permission of
Springer.
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BΛ : H → H defined by

BΛf =
∑
j∈Λ

〈
f, g′j

〉
fj ∀f ∈ H (2.3)

is called the bridging operator. The bridging supplement, denoted by fB, is the vector

fB = BΛf =
∑
j∈Λ

〈
f, g′j

〉
fj. (2.4)

A new, preconditioned guess for the reconstructed signal f is

fRB = fR + fB = RΛf +BΛf =
∑
j∈J\Λ

〈f, gj〉 fj +
∑
j∈Λ

〈
f, g′j

〉
fj. (2.5)

Thus, the new reconstruction error is given by

f − fRB =
∑
j∈J

〈f, gj〉 fj −
∑
j∈J\Λ

〈f, gj〉 fj −
∑
j∈Λ

〈
f, g′j

〉
fj

=
∑
j∈Λ

〈f, gj〉 fj −
∑
j∈Λ

〈
f, g′j

〉
fj

=
∑
j∈Λ

〈
f, gj − g′j

〉
fj.

So, we will define the reduced error operator ẼΛ : H → H by

ẼΛf =
∑
j∈Λ

〈
f, gj − g′j

〉
fj ∀f ∈ H. (2.6)

Remark 2.1. At this point, the operators BΛ and ẼΛ are technically not well defined since

we haven’t selected a choice of coefficients C = (cj,k)j∈Λ, k∈Ω. This choice will be deter-

mined next.
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Notice that if

fj ⊥ gk − g′k ∀j, k ∈ Λ, (2.7)

we have

Ẽ2
Λf =

∑
j∈Λ

〈
ẼΛf, gj − g′j

〉
fj

=
∑
j∈Λ

〈∑
k∈Λ

〈f, gk − g′k〉 fk, gj − g′j

〉
fj

=
∑
j,k∈Λ

〈
fk, gj − g′j

〉
〈f, gk − g′k〉 fj

=
∑
j,k∈Λ

0 〈f, gk − g′k〉 fj

= 0.

Thus, to make the reduced error operator nilpotent of index two, we will choose the coef-

ficients so that for all pairs j, k ∈ Λ,

0 = 〈fj, gk − g′k〉

=

〈
fj, gk −

∑
`∈Ω

ck,`g`

〉
= 〈fj, gk〉 −

∑
`∈Ω

ck,` 〈fj, g`〉 .

Thus, for all j, k ∈ Λ, the following equation must be satisfied:

〈fj, gk〉 =
∑
`∈Ω

ck,` 〈fj, g`〉 . (2.8)

By enumerating Λ and Ω as Λ = {λj}Lj=1 and Ω = {ωj}Mj=1, the following equation must
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be satisfied for all 1 ≤ j, k ≤ L (note the abuse of indices in the coefficient matrix):

〈
fλj , gλk

〉
=

M∑
`=1

ck,`
〈
fλj , gω`

〉
. (2.9)

By fixing k ∈ {1, 2, · · · , L}, the above equation is equivalent to the matrix equation given

by



〈fλ1 , gλk〉

〈fλ2 , gλk〉
...

〈fλL , gλk〉


=



〈fλ1 , gω1〉 〈fλ1 , gω2〉 · · · 〈fλ1 , gωM 〉

〈fλ2 , gω1〉 〈fλ2 , gω2〉 · · · 〈fλ2 , gωM 〉
...

... . . . ...

〈fλL , gω1〉 〈fλL , gω2〉 · · · 〈fλL , gωM 〉





ck,1

ck,2
...

ck,M


. (2.10)

Combining the matrix equations for all k ∈ {1, · · · ,M} yields the following matrix equa-

tion:



〈fλ1 , gλ1〉 〈fλ1 , gλ2〉 · · · 〈fλ1 , gλL〉

〈fλ2 , gλ1〉 〈fλ2 , gλ2〉 · · · 〈fλ2 , gλL〉
...

... . . . ...

〈fλL , gλ1〉 〈fλL , gλ2〉 · · · 〈fλL , gλL〉


=



〈fλ1 , gω1〉 〈fλ1 , gω2〉 · · · 〈fλ1 , gωM 〉

〈fλ2 , gω1〉 〈fλ2 , gω2〉 · · · 〈fλ2 , gωM 〉
...

... . . . ...

〈fλL , gω1〉 〈fλL , gω2〉 · · · 〈fλL , gωM 〉





c1,1 c2,1 · · · cL,1

c1,2 c2,2 · · · cL,2
...

... . . . ...

c1,M c2,M · · · cL,M


.

(2.11)

By using the notations B(Λ,Ω) = (〈fj, gk〉)j∈Λ,k∈Ω and C = (cj,k)1≤j≤L, 1≤k≤M , equation

(2.11) can be written as

B(Λ,Λ) = B(Λ,Ω)C∗. (2.12)
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We refer to equation (2.12) as the bridge equation, and we will henceforth refer to the

matrix B(Λ,Ω) as the bridge matrix. We say that a bridge set Ω for Λ is a robust bridge

set if the bridge equation has a solution.

The next proposition gives a preliminary reconstruction algorithm based on the above

work. A more efficient version is given by Theorem 2.3, but its proof relies on information

from Proposition 2.2.

Proposition 2.2. Assume that (F,G) is a frame for a Hilbert spaceH, that Λ is an erasure

set which satisfies the minimal redundancy condition with respect to (F,G), and that Ω is

a robust bridge set for Λ. Then, for any f ∈ H,

f = fRB + ẼΛfR = fR + fB + ẼΛfR. (2.13)

Proof. Since RΛ +BΛ + ẼΛ = I , we have

f = RΛf +BΛf + ẼΛf. (2.14)

Applying ẼΛ to both sides of equation (2.14), we get

ẼΛf = ẼΛRΛf + ẼΛBΛf + Ẽ2
Λf = ẼΛRΛf + ẼΛBΛf. (2.15)

Notice that the last equality follows since ẼΛ is nilpotent of index two. Next, we observe
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that ẼΛBΛ = 0 since for all f ∈ H, we have

ẼΛBΛf =
∑
k∈Λ

〈BΛf, gk − g′k〉 fk

=
∑
k∈Λ

〈∑
j∈Λ

〈
f, g′j

〉
fj, gk − g′k

〉
fk

=
∑
j,k∈Λ

〈
f, g′j

〉
〈fj, gk − g′k〉 fk

= 0.

The final equality above follows by equation (2.7). Thus, equation (2.15) reduces to

ẼΛf = ẼΛRΛf = ẼΛfR. (2.16)

Plugging equation (2.16) into equation (2.14) gives

f = RΛf +BΛf + ẼΛfR = fRB + ẼΛfR = fR + fB + ẼΛfR. (2.17)

The next theorem gives a much simpler, more efficient reconstruction algorithm which

we will use for our implementations later on. For the theorem, we will assume αj = 〈f, gj〉

and βj = 〈fR, gj〉.

Theorem 2.3. Let (F,G) be a dual frame pair with erasure set Λ satisfying the minimal

redundancy condition, and Ω be a robust bridge set. Assume C =
(
c

(k)
j

)
j∈Ω, k∈Λ

solves

the matrix equation B(F,G,Λ,Ω)C = B(F,G,Λ,Λ). Then,

(〈f, gj〉)j∈Λ = CT ((αj)j∈Ω − (βj)j∈Ω) + (βj)j∈Λ, (2.18)
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where CT denotes the transpose of C.

Proof. Let {fj, gj}j∈J be a dual frame pair, Λ be an erasure set, and Ω be a corresponding

robust bridge set. For j ∈ Λ and f ∈ H

〈f, gj〉 =
〈
f, g′j

〉
+
〈
f, gj − g′j

〉
=

〈
f, g′j

〉
+
〈
f − fR, gj − g′j

〉
+
〈
fR, gj − g′j

〉
.

Since f − fR ∈ span{fj : j ∈ Λ}, equation (2.7) says that f − fR ⊥ gj − g′j . So,

〈f, gj〉 =
〈
f, g′j

〉
+
〈
fR, gj − g′j

〉
=

〈
f − fR, g′j

〉
+ 〈fR, gj〉

=
∑
k∈Ω

c
(j)
k 〈f − fR, gk〉+ 〈fR, gj〉 .

Therefore, we can recover the erased coefficients with the following equation:

(〈f, gj〉)j∈Λ = CT (〈f − fR, gk〉)k∈Ω + (〈fR, gj〉)j∈Λ.

That is,

(〈f, gj〉)j∈Λ = CT ((αj)j∈Ω − (βj)j∈Ω) + (βj)j∈Λ.

Remark 2.4. Note that the coefficient matrix in Theorem 2.3 is slightly different here than

in equation 2.12. If we use the matrix coefficient matrix, C, from 2.12, then equation 2.18

becomes

(〈f, gj〉)j∈Λ = C((〈f, gj〉)j∈Ω − (〈fR, gj〉)j∈Ω) + (〈fR, gj〉)j∈Λ. (2.19)
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Remark 2.5. Notice that all of the quantities in equation (2.18) are either known, or com-

putable by the signal recipient (Bob), since Bob knows F , G, fR, and (〈f, gk〉)k∈Ω. Thus,

this gives a method of reconstruction from frame erasures at known locations.

Remark 2.6. Notice that if there is error in the partial reconstruction, fR, this error will be

amplified by the matrix C, and this amplification factor can be very severe as we will see

in Section 2.5. However, if we overbridge (meaning we consider a bridge set whose size

is larger than the set of erasures), and solve the bridge equation with the Moore-Penrose

pseudo-inverse, then our reconstruction seems to be quite stable. This is likely because (in

general) when |Ω| > |Λ|, the bridge equation B(Λ,Ω)C∗ = B(Λ,Λ) has many solutions.

If we break this problem up, and let cj and bj denote the jth columns of C∗ and B(Λ,Λ),

respectively, then by using the Moore-Penrose pseudo-inverse, cj will be the solution of

B(Λ,Ω)cj = bj with minimal `2 norm. Thus, in some sense, the matrix C is a minimal

solution of the bridge equation. Therefore, we can expect that any noise introduced to fR

will be amplified less when we overbridge. This phenomenon is discussed in more detail

in Section 2.5.

The following example provides a simple formula for reconstruction from one erasure.

Example 2.7. Let (F,G) be a dual frame pair for a Hilbert space, H. Assume Λ = {j}

and 〈fj, gk〉 6= 0 for k 6= j. Then Ω = {k} is a robust bridge set for Λ, and

〈f, gj〉 = 〈fR, gj〉+
1

〈fj, gk〉
(〈f, gk〉 − 〈fR, gk〉) . (2.20)

We will now present a version of Theorem 2.3 for Shannon-Whittaker Sampling. Here,

we will denote the Shannon-Whittaker frame on the lattice pZ by Fp = {p sinc(π(x −

j))}j∈J, and its standard dual by Gp = {sinc(π(x − j))}j∈pZ. Since the inner products
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against sinc functions yield pointwise evaluations,

B(Fp, Gp,Λ,Ω) = p (〈sinc(π(· − j)), sinc(π(· − k))〉)j∈Λ, k∈Ω

= p (sinc(π(k − j)))j∈Λ, k∈Ω .

Thus, the Nilpotent Bridging Theorem applied to Shannon-Whittaker Sampling Theory

becomes the following Theorem.

Theorem 2.8. Let (Fp, Gp) be as above. Assume that Λ is an erasure set satisfying the

minimal redundancy condition, and Ω is a robust bridge set for Λ. If C = (cj,k)j∈Λ, k∈Ω

solves the bridging equation, B(Λ,Ω)C∗ = B(Λ,Λ), Then,

(f(tj))j∈Λ = C((f(tj))j∈Ω − (fR(tj))j∈Ω) + (fR(tj))j∈Λ. (2.21)

2.2 Existence of Robust Bridge Sets2

In this section, we will provide proofs for the existence of certain types of bridge sets.

If Λ is an erasure set which satisfies the minimal redundancy condition with respect to

a dual frame pair (F,G), the next theorem guarantees the existence of a robust bridge

set Ω ⊂ J \ Λ satisfying |Ω| ≤ |Λ|. Thus, by using our Nilpotent Bridging algorithm,

inverting the n× n matrix RΛ (n = dimH) simplifies to solving the L×L square system

of equations given by the bridge equation. In Section 2.3, we will prove an even stronger

result which says that for a sufficiently random dual frame pair (F,G), and an erasure set

Λ satisfying |Λ| ≤ min{N − n, n}, any bridge set Ω ⊂ Λc for which |Ω| = |Λ| will be

a robust bridge set for Λ. This stronger result will allow us to cut out a potentially costly

search procedure in the algorithms used to implement Nilpotent Bridging.

2The statement and proofs of Theorems 2.9 and 2.10 were reproduced from [37] and [38] With permis-
sion of Springer.
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Theorem 2.9. Let (F,G) be a dual frame pair for a Hilbert space H, and let Λ be an

erasure set. Then there is a robust bridge set Ω for Λ if and only if Λ satisfies the minimal

redundancy condition forG. In this case we can take |Ω| = dim(F), whereF = span{fj :

j ∈ Λ}.

Proof. Assume that Λ satisfies the minimal redundancy condition. Let F = span{fj : j ∈

Λ}. Let q = dim(F). Let {hj}j∈N be a Schauder basis forF⊥. SinceF⊥ has codimension

q, we can complete this set to a Schauder basis {hj}j∈N ∪ {gjk}
q
k=1, where each jk ∈ Λc.

Let Ω = {jk}qk=1. Then |Ω| = q and Λ ∩ Ω = ∅. For each ` ∈ Λ, write

g` =

q∑
k=1

c
(`)
jk
gjk +

∑
j∈N

b
(`)
j hj.

Let

g′` =

q∑
k=1

c
(`)
jk
gjk .

Then g` − g′` ∈ F⊥. Therefore, by (2.7), the c(`)
jk

solve the bridge equation (2.12) and Ω is

a robust bridge set.

To prove the converse, assume that Ω is a robust bridge set. Assume that f ⊥ span{gj :

j ∈ Λc}. Then,

f =
∑
j∈J

〈f, gj〉 fj =
∑
j∈Λ

〈f, gj〉 fj.

So, f ∈ span{fj : j ∈ Λ}. We have

f =
∑
j∈Λ

〈
f, gj − g′j

〉
fj +

∑
j∈Λ

〈
f, g′j

〉
fj.

However, since f ∈ span{fj : j ∈ Λ}, equation (2.7) says that
〈
f, gj − g′j

〉
= 0 for all

j ∈ Λ. Since g′j ∈ span{gj : j ∈ Λc},
〈
f, g′j

〉
= 0 for all j ∈ Λ. Hence, f = 0. Therefore,

H = span{gj : j ∈ Λc} and Λ satisfies the minimal redundancy condition with respect to
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G.

While running experiments, we wanted to determine the spectral properties of the re-

duced error operator when we considered bridge sets for which |Ω| < |Λ|. In doing so, we

discovered the phenomenon in the next theorem. The theorem says that (generally speak-

ing) the spectrum of the reduced error operator contains |Λ| − |Ω| non-zero eigenvalues.

In the following theorem, we denote the spectrum of an operator T ∈ B(H) by

σ(T ) = {λ ∈ C : λI − T is not invertible}. (2.22)

By |σ(T ) \ {0}| we mean the number of non-zero eigenvalues of T , counting multiplicity.

Theorem 2.10. Let (F,G) be a dual frame pair. Assume Λ satisfies the minimal redun-

dancy condition with respect to G, and |Λ| = L. Then, there is a bridge set Ω of any size

M ≤ L so that |σ(ẼΛ) \ {0}| ≤ L−M .

Proof. By Theorem 2.9, we can find a robust bridge set Ω′ ⊂ Λc satisfying |Ω′| < L. That

is, for each k ∈ Λ we can find

g′k =
∑
j∈Ω′

c
(k)
j gj

so that g′k ⊥ span{fj : j ∈ Λ}. Assume that Ω′ = {ω1, · · · , ω|Ω′|}. Let Ω = {ω1, · · · , ωM}

and

g′′k =
∑
j∈Ω

c
(k)
j gj.

Then,

ẼΛ =
∑
k∈Λ

fk ⊗ (gk − g′′k) =
∑
k∈Λ

fk ⊗ (gk − g′k) +
∑
k∈Λ

fk ⊗ (g′k − g′′k).

Let N = ẼΛ =
∑

k∈Λ fk ⊗ (gk − g′k), and A =
∑

k∈Λ fk ⊗ (g′k − g′′k). Then, it is easily
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verified that N is nilpotent of index 2, and NA = 0. Since range(A∗) ⊂ {g′k − g′′k : k ∈

Λ} ⊂ {gωk : k = M + 1, · · · , |Ω′|}, the rank of A is at most L−M .

Let λ ∈ σ(N + A) \ {0}. Both N and A are finite rank operators, so λ must be an

eigenvalue of N + A. Thus, there exists x ∈ H so that

(N + A)x = λx.

Multiplying by N on the left on both sides yields

0 = λNx.

Since λ 6= 0, we have Nx = 0. Thus, Ax = λx and λ ∈ σ(A). Since A can have at most

L−M distinct eigenvalues, it follows that ẼΛ has at most L−M nonzero eigenvalues.

2.3 Skew-Spark Properties

In Section 2.2, we proved that if an erasure set, Λ, satisfies the minimal redundancy

condition, then we are guaranteed to find a robust bridge set Ω for Λ for which |Ω| ≤ |Λ|.

However, in the implementation of Nilpotent Bridging, we would like to avoid a search

procedure to look for robust bridge sets. To do this we require a stronger property, known

as the skew-spark property. In this section we will show that most frames satisfy this

property. By most, we mean that the set of frames which satisfy this property is open and

dense in the set of all frames. We will also show that any union of two bases cannot satisfy

this property. However, we can define a new skew-spark property, known as the block

skew-spark property which is satisfied for most unions of two bases.
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2.3.1 The Skew-Spark Property for Dual Frame Pairs3

We open this subsection with a lemma that lays out necessary conditions for the bridge

matrix, B(Λ,Ω) to be invertible.

Lemma 2.11. Let (F,G) be a dual frame pair of length N in an n-dimensional Hilbert

space,H. Let Λ be an erasure set, and Ω be a bridge set satisfying |Λ| = |Ω|. A necessary

(but not sufficient) condition for B(F,G,Λ,Ω) to be an invertible matrix is

|Λ| ≤ min

{
n,N − n, N

2

}
(2.23)

Proof. If |Λ| > n, then the rows of the bridge matrixB(F,G,Λ,Ω) will be linearly depen-

dent (sinceH is an n-dimensional space). Thus, B(F,G,Λ,Ω) will fail to be invertible.

Assume that B(Λ,Ω) is invertible, and |Λ| > N − n. Then, since the bridge equation

B(F,G,Λ,Ω)C∗ = B(F,G,Λ,Λ) has a solution (C∗ = B(F,G,Λ,Ω)−1B(F,G,Λ,Λ)),

Theorem 2.9 asserts that Λ satisfies the minimal redundancy condition with respect to G.

Therefore, |Λc| ≥ n. So, N = |Λ|+ |Λc| > N − n+ n = N . This is a contradiction, and

therefore, if B(F,G,Λ,Ω) is invertible, then |Λ| ≤ N − n.

If |Λ| > N
2

, then |Λ| + |Ω| > N . This is a contradiction since Λ and Ω are disjoint

subsets of {1, · · · , N}.

Remark 2.12. It was pointed out by Cameron Farnsworth in a Graduate Student Seminar

talk that |Λ| ≤ min {n,N − n} implies that N
2
≥ min {n,N − n}. This is because

N

2
=
n

2
+
N − n

2
≥ min{n,N − n}

2
+

min{n,N − n}
2

= min{n,N − n}. (2.24)

In light of the above conditions, we make the following definitions. A dual frame pair

3The statements and proofs of Lemma 2.11, Theorem 2.17, Theorem 2.18, and Corollary 2.19 in this
subsection were reconstructed from [37] and [38] With permission of Springer.
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(F,G) is said to satisfy the skew-spark property of order L if for all Λ ⊂ J, and for any

subset Ω ⊂ Λc satisfying |Ω| = |Λ| = L, the bridge matrix, B(Λ,Ω), is invertible. We

say that (F,G) satisfies the full skew-spark property if it satisfies the skew-spark property

of order L = min{N − n, n}. (In infinite dimensions, we say (F,G) satisfies the full

skew-spark property if it satisfies the skew-spark property of order L for every L <∞.)

Remark 2.13. (1) By the definition of erasure set, |Λ| must be finite. This will be im-

portant later on, as we will be using the Baire Category Theorem on an intersection

over the set of all finite subsets of the index set J. This set is countable whenever J

is countable, and Λ is finite.

(2) The definition of the skew-spark property guarantees that Ω is a robust bridge set for

Λ whenever Ω ⊂ Λc and |Ω| = |Λ| ≤ min{n,N − n}. This is because the bridge

equation (B(Λ,Ω)C∗ = B(Λ,Λ)) always has a solution when B(Λ,Ω)−1 exists.

We use the term “spark” in describing our property because the skew-spark property

is similar to the idea of spark for frames. A frame F = {fj}j∈J is said to have spark k if

the size of the smallest linearly dependent subcollection of {fj}Nj=1 is k. We will extend

this definition to infinite frames by saying that an infinite frame for which every finite

subcollection is linearly independent has spark∞. The frame F = {fj}j∈J is said to have

full spark if it has spark n+ 1 (or∞ if F is an infinite frame). It was proven by Lu and Do

in [42] that the set of finite full spark frames is dense in the set of all finite frames. In [1]

Alexeev, Cahill, and Mixon proved a stronger version of this result by using the Zariski

topology. For more on the full spark property, see [9], [10], and [15]. It is easily seen that

if a dual frame pair has skew-spark k, then both frames in the pair must have spark at least

k + 1.

For a fixed frame F , recall that the dual set of F is the set of all dual frames to F , and
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we denote this set by D(F ). That is,

D(F ) = {G : (F,G) is a dual frame pair forH}.

As hinted at in Remark 2.13, we will be using the Baire Category Theorem on the set

D(F ), and as such we will need to define a complete metric on D(F ). A natural norm

which will achieve this is the Bessel bound norm (cf. [28], [29], and [30]). Given a frame,

F = {fj}j∈J, we define the Bessel bound norm of F as

‖F‖B = ‖ΘF‖op. (2.25)

That is, the the Bessel bound norm of F is the operator norm of its analysis operator. It

is easily verified that ‖F‖B is also the square root of the optimal upper frame bound for

F . To prove that the metric induced on D(F ) by the Bessel bound norm is complete, it

suffices to show that D(F ) is a closed subspace of the Banach space (HJ, ‖ · ‖B), where

HJ denotes the set of Bessel sequences equipped with the Bessel bound norm. That is,

(HJ, ‖ · ‖B) = {F = {fj}j∈J : ‖F‖B <∞}. (2.26)

In finite dimensions, when J = {1, 2, · · · , N}, we will use the notation HN in place of

HJ. We include the proof that (HJ, ‖ · ‖B) is a Banach space for the sake of completeness.

Proposition 2.14. (HJ, ‖ · ‖B) is a Banach space.

Proof. We will only provide the proof of completeness here. Assume that {Fk}k∈N is a

Cauchy sequence in (HJ, ‖ · ‖B). Let Θk denote the analysis operator for Fk for all k ∈ N.

Then, {Θk}k∈N is a Cauchy sequence in B(H, `2(J)), the set of bounded linear operators

from H to `2(J). Since B(H, `2(J)) is a Banach space, we can find Θ ∈ B(H, `2(J)) so
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that Θk → Θ in operator norm. Define F ∈ HJ by fj = Θ∗ej for all j ∈ J. It is easily

verified that the analysis operator for F is Θ, and thus F ∈ (HJ, ‖ · ‖B). Since Θk → Θ in

operator norm, Fk → F in (HJ, ‖ · ‖B). Therefore, (HJ, ‖ · ‖B) is complete.

The next proposition shows that the space (D(F ), ‖ · ‖B) is a complete metric space.

Notice that D(F ) is not closed under scalar multiplication, and hence it is not a vector

space.

Proposition 2.15. The space (D(F ), ‖ · ‖B) is a complete metric space.

Proof. It suffices to show that (D(F ), ‖ · ‖B) is a closed subset of (HJ, ‖ · ‖B). To do this,

assume that {Gk}k∈N is a sequence in (D(F ), ‖ · ‖B) converging to G. Since (HJ, ‖ · ‖B)

is a Banach space, G is a Bessel sequence. Let Θ denote the analysis operator for G and

Θk denote the analysis operator for Gk for all k ∈ N. Let ΘF denote the analysis operator

for F . Then,

Θ∗FΘ = lim
k→∞

Θ∗FΘk = lim
k→∞

I = I

where I denotes the identity operator onH. Hence, for all f ∈ H,

f = Θ∗FΘf =
∑
j∈J

〈f, gj〉 fj.

Therefore, by Proposition 1.5, G is a frame, and G ∈ (D(F ), ‖ · ‖B).

The next proposition shows that while (D(F ), ‖ · ‖B) is not a vector space, it is the

next best thing: a convex set.

Proposition 2.16. D(F ) is a convex subset ofHJ.

Proof. Let G0, G1 ∈ D(F ). For any t ∈ [0, 1], define Gt = (1− t)G0 + tG1, let Θt denote
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the analysis operator for Gt, and Θ∗F denote the synthesis operator for F . Then,

Θ∗FΘt = Θ∗F ((1− t)Θ0 + tΘ1) = (1− t)Θ∗FΘ0 + tΘ∗FΘ1 = I. (2.27)

It remains to show that Gt is a frame. To do this, Proposition 1.5 says that we need

only show that Gt is a Bessel sequence, since the computations above show that

f =
∑
j∈J

〈
f, g

(t)
j

〉
fj ∀f ∈ H.

Let B and B′ denote the upper frame bounds for G and G′, respectively. Then,

∑
j∈J

∣∣∣〈f, g(t)
j

〉∣∣∣2 =
∑
j∈J

|
〈
f, (1− t)gj + tg′j

〉
|2

=
∑
j∈J

|(1− t) 〈f, gj〉+ t
〈
f, g′j

〉
|2

≤
∑
j∈J

[
(1− t)| 〈f, gj〉 |+ t|

〈
f, g′j

〉
|
]2

=
∑
j∈J

[
(1− t)2| 〈f, gj〉 |2 + t2|

〈
f, g′j

〉
|2 + 2t(1− t)| 〈f, gj〉

〈
f, g′j

〉
|
]

≤ B(1− t)2‖f‖2 +B′t2‖f‖2

+ 2t(1− t)

(∑
j∈J

| 〈f, gj〉 |2
) 1

2
(∑

j∈J

|
〈
f, g′j

〉
|2
) 1

2

≤ B(1− t)2‖f‖2 +B′t2‖f‖2 + 2t(1− t)
√
BB′‖f‖2

=
(

(1− t)
√
B + t

√
B′
)2

‖f‖2.

Therefore Gt is a Bessel sequence. This completes the proof.

We are now ready to state the main theorem of this subsection. For the theorem, we

say that A is a generic subset of a set B if A is an open and dense subset of B.
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Theorem 2.17. Assume that F has the full spark property. Then, G := {G ∈ D(F ) :

(F,G) has the full skew spark property} is generic in D(F ).

The proof requires a few technical lemmas, but we will give a brief overview of the

results here for the sake of readability. First, for every erasure set Λ satisfying |Λ| ≤

min{n,N − n} (or |Λ| < ∞ for n = ∞) and every bridge set Ω ⊂ J \ Λ satisfying

|Ω| = |Λ|, we define the set

GΛ,Ω = {G ∈ D(F ) : B(F,G,Λ,Ω) is invertible}.

Theorem 2.18 and Corollary 2.19 provide a proof that GΛ,Ω is non-empty for a full spark

frame, F . Within the proof of Theorem 2.17, we use a convex path argument to show that

GΛ,Ω is open and dense in D(F ). The remainder of the proof of Theorem 2.17 simply says

that G is the intersection of the sets GΛ,Ω over all possible bridge and erasure sets. Thus

G is a dense set, by the Baire Category Theorem. The proofs here are presented for finite

dimensions, however, many of the results (with the exception of openness) carry over to

infinite dimensions.

The following theorem shows how an arbitrary set of vectors indexed by Λ can be

extended to a dual frame to a given frame, F , provided that Λ satisfies the minimal redun-

dancy condition with respect to F .

Theorem 2.18. Let Λ be an erasure set for a frame F with the minimal redundancy con-

dition and let {gj}j∈Λ be assigned arbitrarily. Then, {gj}j∈Λ can be extended to a dual

frame {gj}Nj=1 ∈ D(F ).

Proof. We first show that under the same conditions on F , the set {hj}j∈Λ can be extended

to {hj}Nj=1 so that
∑N

j=1 fj ⊗ hj = 0. Let A =
∑

j∈Λ fj ⊗ hj . Let {kj}j∈Λc be a dual to
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the reduced frame {fj}j∈Λc . Then, I =
∑

j∈Λc fj ⊗ kj . So,

A =

(∑
j∈Λc

fj ⊗ kj

)
A =

∑
j∈Λc

fj ⊗ (A∗kj).

For each j ∈ Λc, let hj = −A∗kj . Then,

N∑
j=1

fj ⊗ hj =
∑
j∈Λc

fj ⊗ hj +
∑
j∈Λ

fj ⊗ hj

= −
∑
j∈Λc

fj ⊗ A∗kj + A

= A−

(∑
j∈Λc

fj ⊗ kj

)
A

= A− IA

= 0.

Now, let {g′j}Nj=1 ∈ D(F ). Let hj = gj − g′j for j ∈ Λ. Then, as above, we can extend

{hj}j∈Λ to {hj}Nj=1 so that
∑N

j=1 fj ⊗ hj = 0. For all j, let g̃j = g′j + hj . So,

N∑
j=1

fj ⊗ g̃j =
N∑
j=1

fj ⊗ g′j +
N∑
j=1

fj ⊗ hj = I + 0 = I.

Thus, {g̃j}Nj=1 ∈ D(F ). Furthermore, for j ∈ Λ,

g̃j = g′j + hj = g′j + gj − g′j = gj.

Therefore, {g̃j}Nj=1 is the desired extension of {gj}j∈Λ.

There is no problem in generalizing Theorem 2.18 to infinite dimensions.

The following corollary utilizes Theorem 2.18, and Lemma 1.7 to show that the set

GΛΩ is non-empty. As with the previous theorem, the corollary is fully generalizable to
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infinite dimensions.

Corollary 2.19. Assume that F ∈ HN satisfies the full spark property. Let Λ be an erasure

set satisfying |Λ| ≤ min{n,N − n, N
2
}, and Ω be a bridge set satisfying |Λ| = |Ω| and

Λ ∩ Ω = ∅. Then there exists a dual frame G to F so that B(F,G,Λ,Ω) is invertible.

Proof. Define a bijection ϕ : Ω → Λ. Let {gj}j∈Ω = {fϕ(j)}j∈Ω. By Theorem 2.18, we

can extend {gj}j∈Ω to a dual frame G for F . Then B(F,G,Λ,Ω) is the Gram matrix of a

permutation of the finite sequence {fj : j ∈ Λ}, which is invertible since {fj : j ∈ Λ} is

linearly independent.

We are now ready for the proof of Theorem 2.17. As was mentioned earlier, the proof

consists of three portions. The first portion (the first paragraph) says that G is a finite

intersection of the sets GΛ,Ω. Thus by the Baire Category Theorem, if each of the sets GΛ,Ω

is open and dense in D(F ), then so is G. The second paragraph provides a proof that each

of the GΛ,Ω is open inD(F ). The third paragraph uses what we call a “where there is spark,

there is fire” type argument to give a proof that GΛ,Ω is dense in D(F ).

Proof of Theorem 2.17. Let Γ = {Λ ⊂ {1, · · · , N} : |Λ| ≤ min{N
2
, N − n, n}}. For

a given Λ ∈ Γ, let ΦΛ = {Ω ⊂ {1, · · · , N} : |Ω| = |Λ|,Ω ∩ Λ = ∅}. Then, G =⋂
Λ∈Γ

⋂
Ω∈ΦΛ

GΛ,Ω, where GΛ,Ω = {G ∈ D(F ) : det(B(F,G,Λ,Ω)) 6= 0}. Since we

are intersecting over all possible erasure sets and all corresponding bridge sets, the above

intersection is finite. So by the Baire category theorem, if we show that each GΛ,Ω is open

and dense, then G will also be open and dense.

Fix an erasure set Λ, and a corresponding bridge set Ω. It is easily verified that the

maps G α7−→ B(F,G,Λ,Ω) and B(F,G,Λ,Ω) 7→ det(B(F,G,Λ,Ω)) are continuous. So,

GΛ,Ω = (det ◦α)−1(C \ {0}) is an open set.

To show density of GΛ,Ω, let ε > 0, and assume thatG0 ∈ D(F )\GΛ,Ω. Since F satisfies

the full spark property, Λ satisfies the minimal redundancy condition with respect to F .
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Thus, by Corollary 5.5, there is a G1 ∈ D(F ) so that det(B(F,G1,Λ,Ω)) 6= 0 . Let Gt =

(1 − t)G0 + tG1. By proposition 2.16, Gt ∈ D(F ). Furthermore, det(B(F,Gt,Λ,Ω)) is

a polynomial in t satisfying det(B(F,Gt,Λ,Ω))(0) = 0 and det(B(F,Gt,Λ,Ω))(1) 6= 0.

Thus, det(B(F,Gt,Λ,Ω)) has only finitely many zeros. So, we can find 0 < t0 <
ε

‖G1−G0‖

so that Gt0 ∈ GΛ,Ω. Furthermore,

‖Gt0 −G0‖ = ‖(1− t0)G0 + t0G1 −G0‖ = ‖t0(G1 −G0)‖ ≤ |t0| ‖G1 −G0‖ < ε.

Hence, GΛ,Ω is dense in D(F ).

Therefore, by the Baire-Category theorem, G is generic in D(F ).

Theorem 2.17 can be interpreted as a guarantee that a randomly generated finite dual

frame pair will satisfy the full skew-spark property. This is because the set of frames which

are not full spark is closed and nowhere dense, and the set of duals to a full spark frame for

which the pair does not satisfy the full skew-spark property is closed and nowhere dense.

Theorem 2.17 is partially generalizable for countably infinitely indexed frames in a

separable Hilbert space. However, since the intersection in the proof is no longer finite,

we are no longer guaranteed openness. Thus, we get the following theorem for infinite

dimensions.

Theorem 2.20. Assume that F is a countably indexed frame for a separable Hilbert space,

H, which satisfies the full spark property. Then,

G := {G ∈ D(F ) : (F,G) satisfies the full skew spark property}

is dense in D(F ).
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2.3.2 The Skew-Spark Property for Parseval Frames4

In the previous subsection we proved that most dual frame pairs satisfy the full skew-

spark property. In this subsection we will modify these results to show that most finite

Parseval frames satisfy the full skew-spark property. To do so, let PFN(H) denote the

set of length N frames for an n-dimensional Hilbert space, H. In this subsection, we

will require that dim(H) = n < ∞. The following Theorem is the main result of this

subsection.

Theorem 2.21. The set

P = {F ∈ PFN(H) : F has full skew-spark}

is generic in PFN(H).

To prove this theorem, we require two lemmas. The first lemma, Lemma 2.22, is akin

to Corollary 2.19, though the proof is quite different. The lemma shows that the set

P(Λ,Ω) = {F ∈ PFN(H) : B(F, F,Λ,Ω)−1 exists}

is non-empty.

Lemma 2.22. There exists a Parseval frame F such that B(F, F,Λ,Ω) is 1
2
IL (the L× L

identity matrix), where L = |Λ| = |Ω| ≤ min
{
n,N − n, N

2

}
and Ω ∩ Λ = ∅.

Proof. Enumerate Λ = {λj}Lj=1, and Ω = {ωj}Lj=1. Let {ej}Lj=1 be an orthonormal set in

H. For each 1 ≤ j ≤ L, set fλj = fωj = 1√
2
ej . Let F = span{fj : j ∈ Λ ∪ Ω}. Then,

dim(F⊥) = n − L ≤ N − 2L since n ≤ N − L. So, since |{1, 2, · · · , L} \ (Λ ∪ Ω)| =

4The statements and proofs of Theorem 2.21, Lemma 2.22, and Lemma 2.23 in this subsection were
reproduced from [37] With permission of Springer.
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N − 2L, one can find a Parseval frame {fj : j ∈ (Λ∪Ω)c} for F⊥. Then, F = {fj}Nj=1 is

a frame forH for which B(F, F,Λ,Ω) = 1
2
IL.

Lemma 2.23 is a “where there is spark, there is fire” type argument which shows that

P(Λ,Ω) is a dense set in PFN(H). This lemma is the analogue of paragraph 3 of Theorem

2.17. However, the proof is much more difficult because the paths between Parseval frames

are more complicated. Along these paths, the determinant gives rise to rational functions

as opposed to polynomials in the case of dual frame pairs. However, non-zero rational

functions will suffice since they only have finitely many zeros and finitely many points

where they are undefined.

Lemma 2.23. Let F be a Parseval frame for an n-dimensional Hilbert spaceH. Let Λ be

an erasure set with |Λ| ≤ min
{
n,N − n, N

2

}
and Ω be a bridge set for Λ with Λ∩Ω = ∅

and |Λ| = |Ω|. Then, given ε > 0, there exists a Parseval frame F̃ with ‖F − F̃‖ < ε so

that B(F̃ , F̃ ,Λ,Ω) is invertible.

Proof. Enumerate Λ = {λj}Lj=1, and Ω = {ωj}Lj=1. Assume without loss of generality

that B(F, F,Λ,Ω) is singular. By Lemma 2.22, there is a Parseval frame F1 = {f (1)
j }Nj=1

such that B(F1, F1,Λ,Ω) is invertible. Let F = F0 = {f (0)
j }Nj=1. For 0 < t < 1, define

Ft = {f (t)
j }Nj=1, where f (t)

j = (1 − t)f (0)
j + tf

(1)
j . Then, for each t ∈ [0, 1], Ft is a set of

vectors inH, but they need not spanH, and hence aren’t necessarily a frame forH. Let St

be the frame operator (or Bessel operator in the case that Ft is not a frame) for Ft. Then,

St =
N∑
j=1

f
(t)
j ⊗ f

(t)
j .

If {ej}nj=1 is the standard orthonormal basis forH, the matrix coordinate functionsmj,k(t) =

〈Stek, ej〉 of the matrix M(t) of St with respect to {ej}nj=1 are quadratic functions of t.

Thus, detM(t) is a polynomial function of t. Hence, the formal inverse matrix valued
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function, which we denote by Q(t), that is given by the adjoint formula (or Cramer’s

rule) for the inverse of an invertible matrix has the form Q(t) = (qjk(t))
n
j,k=1, where the

coordinate functions qjk(t) are rational functions of t.

At points where St is invertible, let Pt be the Parseval frame Pt = S
− 1

2
t Ft, where

S
− 1

2
t = (S−1

t )
1
2 is the positive square root of S−1

t . Then, P0 = F0. We have

B(Pt, Pt,Λ,Ω) =
(〈
S
− 1

2
t f

(t)
λj
, S
− 1

2
t f (t)

ωk

〉)L
j,k=1

=
(〈
S−1
t f

(t)
λj
, f (t)
ωk

〉)L
j,k=1

.

If [f
(t)
λj

]E denotes the coordinate vector of f (t)
λj

with respect to E = {ej}nj=1, and we define

[f
(t)
ωk ]E similarly, then for points t ∈ [0, 1] for which St is invertible,

〈
S−1
t f

(t)
λj
, f (t)
ωk

〉
=
〈
Q(t)[f

(t)
λj

]E, [f
(t)
ωk

]E

〉
.

Since Q(t) is an n × n matrix valued function with rational coordinate functions, and

[f
(t)
λj

]E and [f
(t)
ωk ]E are matrix valued vectors with polynomial coordinate functions, this

yields a formal rational matrix valued function on [0, 1] with rational coordinate functions,

bj,k(t) :=
〈
Q(t)[f

(t)
λj

]E, [f
(t)
ωk

]E

〉
.

Let b(t) := (bj,k(t))
L
j,k=1. Let δ(t) := det(b(t)) denote the formal determinant. At points

t where St is invertible we have δ(t) = det(B(Pt, Pt,Λ,Ω)). By hypothesis, F0 and F1

are Parseval frames, so S0 = S1 = In (the n × n identity matrix). Thus P0 = F0 = F

and P1 = F1. By hypothesis B(F, F,Λ,Ω) is singular, so δ(0) = 0. By construction,

B(F1, F1,Λ,Ω) is invertible, and so δ(1) 6= 0. A nonconstant rational function can have

at most finitely many points where it is undefined, and at most finitely many zeros. So,

there is an α > 0 so that δ(t) is defined and nonzero. Since S0 is invertible and the map

t 7→ St is continuous at t = 0, the map t 7→ S
− 1

2
t is continuous at t = 0. Thus, the map

44



t 7→ Pt is continuous at t = 0. So, there exists α1 ∈ (0, α) so that ‖F − Pt‖ < ε wherever

t ∈ [0, α1]. Choose t̃ ∈ (0, α1) and let F̃ = Pt̃. Then, ‖F − F̃‖ < ε and δ(t̃) 6= 0, so

B(F̃ , F̃ ,Λ,Ω) is invertible as required.

We are now ready for the proof of Theorem 2.21. What remains of the proof is very

similar to paragraphs 1 and 2 in the proof of Theorem 2.17. Thus, all that we need to show

is that each of the sets P(Λ,Ω) is open and that P is a finite intersection of these sets.

Proof of Theorem 2.21. Let Γ =
{

Λ ⊂ {1, 2, · · · , N} : |Λ| ≤ min
{
n,N − n, N

2

}}
, and

given Λ ∈ Γ, define ΦΛ = {Ω : Ω is a bridge set for Λ}. Then,

P = ∩Ω∈ΦΛ
∩Λ∈Γ P(Λ,Ω).

By Lemma 2.23, each P(Λ,Ω) is dense in PFN(H).

Define δ(Λ,Ω) : P(Λ,Ω) → C by

δ(Λ,Ω)(F ) = det(B(F, F,Λ,Ω)).

Then since δ(Λ,Ω) is continuous,

P(Λ,Ω) = δ−1
(Λ,Ω)(C \ {0}).

Thus, each P(Λ,Ω) is open.

Therefore, by the Baire Category theorem, P is open and dense in PFN(H).

As with dual frame pairs, Theorem 2.21 should be viewed as a guarantee that any

randomly selected finite Parseval frame will satisfy the full skew-spark property. This is

again because the set of finite Parseval frames which do not satisfy the full skew-spark

property is closed and nowhere dense.
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2.3.3 The Block Skew-Spark Property5

In this subsection, we will fix H to be an n-dimensional Hilbert space. Let E =

1√
2
{ej}2n

j=1 where {ej}nj=1 and {ej}2n
j=n+1 denote bases for a H, with dual bases {ẽj}nj=1

and {ẽj}2n
j=n+1, respectively. By defining Ẽ = 1√

2
{ẽj}2n

j=1, the pair (Ẽ, E) is a special type

of dual frame pair which we will frequently refer to as a union of two bases.

The following remark explains why special conditions must be placed on the bridge

set for a given erasure set for a union of two bases.

Remark 2.24. Assume that Λ = Λ1 tΛ2 for Λ1 ⊂ {1, · · · , n} and Λ2 ⊂ {n+ 1, · · · , 2n}.

Assume that Ω is a bridge set for Λ (so Ω ⊂ Λc) satisfying |Λ| = |Ω|. Decompose Ω as

Ω = Ω1 tΩ2 where Ω1 ⊂ {1, · · · , n} and Ω2 ⊂ {n+ 1, · · · , 2n}. Then the bridge matrix

has the following block form:

B(Ẽ, E,Λ,Ω) =

 B(Ẽ, E,Λ1,Ω1) B(Ẽ, E,Λ1,Ω2)

B(Ẽ, E,Λ2,Ω1) B(Ẽ, E,Λ2,Ω2)

 . (2.28)

Since {ẽj}nj=1 is the dual basis to {ej}nj=1, we have 〈ẽj, ek〉 = δj,k. But Λ1 ∩ Ω1 = ∅, and

thus B(E, Ẽ,Λ1,Ω1) = 0. Similarly, B(Ẽ, E,Λ2,Ω2) = 0. Therefore, the bridge matrix

takes the following block off-diagonal form:

B(Ẽ, E,Λ,Ω) =

 0 B(Ẽ, E,Λ1,Ω2)

B(Ẽ, E,Λ2,Ω1) 0

 . (2.29)

The above matrix is invertible if and only ifB(Ẽ, E,Λ1,Ω2) andB(Ẽ, E,Λ2,Ω1) are both

invertible. This can only happen when |Λ1| = |Ω2| and |Λ2| = |Ω1|.

In light of the previous remark, we make the following definitions to appropriately

5The material in this subsection is reprinted from [39], with permission from Elsevier.
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restrict the class of bridge sets to a given erasure set.

Definition 2.25. Given an erasure set Λ, we will decompose Λ as the disjoint union Λ =

Λ1 t Λ2 where Λ1 ⊂ {1, · · · , n} and Λ2 ⊂ {n+ 1, · · · , 2n}.

1. We call Ω ⊂ Λc a block bridge set for Λ if when we decompose Ω as the disjoint

union Ω = Ω1 t Ω2 where Ω1 ⊂ {1, · · · , n} and Ω2 ⊂ {n + 1, · · · , 2n}, we have

|Λ1| = |Ω2|, and |Λ2| = |Ω1|.

2. We say that the dual frame pair (Ẽ, E) as described above satisfies the block skew-

spark property if for any erasure set satisfying |Λ| ≤ n, and any block bridge set, Ω

for Λ, the matrix B(Ẽ, E,Λ,Ω) is invertible.

To begin our investigation of unions of two bases we start with a conceptual example

in R2 which motivates the theory involved. Using the standard orthonormal basis, E =

{e1, e2}, we can obtain any other orthonormal basis for R2 by rotating E with the rotation

matrix

Rθ =


cos θ − sin θ

sin θ cos θ

 .

Thus, we can write any union of two orthonormal bases as a rotation of the following

sequence.

Eθ =
1√
2

e1 =

 1

0

 , e2 =

 0

1

 , Rθe1 =

 cos θ

sin θ

 , Rθe2 =

 − sin θ

cos θ


 .

(2.30)

Example 2.26. If θ is not a multiple of π
2
, Eθ satisfies the block skew-spark property.

Proof. We must first show that the inner products 〈e1, Rθe1〉, 〈e1, Rθe2〉, 〈e2, Rθe1〉, and

〈e2, Rθe1〉 are non-zero (note that 〈ej, Rθek〉 = 〈Rθek, ej〉). For this, we require cos θ 6= 0,
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and sin θ 6= 0. So, θ can not be a multiple of π
2
. Next, we must show that

B(Eθ, Eθ, {1, 2}, {3, 4}), B(Eθ, Eθ, {1, 3}, {2, 4}), and B(Eθ, Eθ, {1, 4}, {2, 3}) are all

invertible (note that B(Eθ, Eθ, {i, j}, {k, l}) = B(Eθ, Eθ, {k, l}, {i, j})T ). However, it is

easily verified that these are all invertible if θ is not a multiple of π
2
.

Example 2.26 motivates the use of the group of unitaries to study the unions of two

orthonormal bases. More generally, we will use this group to study the union of an or-

thonormal basis and a Riesz basis. Let U denote the set of unitary operators in B(H). It

is known that U is a path connected, closed subset of B(H) (here B(H) denotes the set

of bounded operators on H with the operator norm topology). Thus, U with the induced

operator norm topology forms a complete metric space.

Remark 2.27. Fix an orthonormal basis, {ej}nj=1 forH. Any basis forH can be written as

{Tej}nj=1 for some invertible operator T ∈ B(H). Furthermore, using the polar decompo-

sition, we have T = UA for some unitary operator, U and some strictly positive operator,

A. (In fact, we can take A = |T |.)

For a fixed unitary operator, U , a fixed positive operator, A, and a fixed orthonormal

basis, E = {ej}nj=1 for H, we define the frame E(U,A) = 1√
2
{ej}2n

j=1, where ej+n = UAej

for 1 ≤ j ≤ n. Notice that the dual basis to {UAej}nj=1 is given by {UA−1ej}. Thus,

the frame Ẽ(U,A) = 1√
2
{ẽj}2n

j=1 where ẽj = ej , and ẽj+n = UA−1ej for 1 ≤ j ≤ n

is a dual to E(U,A). We are interested in studying the set of unitaries for which the dual

frame pair (Ẽ(U,A), E(U,A)) satisfies the block skew-spark property. The following theorem

demonstrates that this class of unitaries is very large.

Theorem 2.28. For a fixed positive operator, A ∈ B(H), and a fixed orthonormal basis,

E = {ej}nj=1 forH, the set

UA = {U ∈ U : (Ẽ(U,A), E(U,A)) has the block skew-spark property}
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is an open, dense subset of U.

To prove this theorem, we will need the following lemmas. As with dual frame pairs

and Parseval frames, the proof template will be the same, though the methods are some-

what more complex. For a fixed erasure set, Λ, and block bridge set Ω for Λ, we define

U(A,Λ,Ω) = {U ∈ U : B(Ẽ(U,A), E(U,A),Λ,Ω)−1 exists}.

Lemma 2.29 is our proof that U(A,Λ,Ω) is non-empty. In Lemma 2.31 we show that U(A,Λ,Ω)

is open and dense in U. Lastly, to prove Theorem 2.28, we invoke the Baire Category

Theorem to show that UA is open and dense in U.

Lemma 2.29. Fix Λ and Ω where |Λ| ≤ n, and Ω is a block bridge set for Λ. For any

strictly positive operator A and any fixed orthonormal basis E = {ej}nj=1 for H, there

exists U ∈ U for whichB(Ẽ(U,A), E(U,A),Λ,Ω) is invertible. That is, U(A,Λ,Ω) is non-empty.

Proof. By Remark 2.24, it suffices to show that there exists a U ∈ U so that

B(Ẽ(U,A), E(U,A),Λ1,Ω2) and B(Ẽ(U,A), E(U,A),Λ2,Ω1) are both invertible. We will first

show that there exists U0 ∈ U so that B(Ẽ(U,A), E(U,A),Λ1,Ω2) is invertible. To do this,

assume that Λ1 = {λj : 1 ≤ j ≤ L}, and Ω2 = {ωj + n : 1 ≤ j ≤ L}. Then, for any

U ∈ U, we have

B(Ẽ(U,A), E(U,A),Λ1,Ω2) =
1

2
(〈ẽj, ek〉)j∈Λ1, k∈Ω2

=
1

2

(〈
eλj , UAeωk

〉)L
j,k=1

=
1

2

(〈
U−1eλj , Aeωk

〉)L
j,k=1

.
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Now, define U0 to be any unitary mapping for which U0eωj = eλj for 1 ≤ j ≤ L. Then,

B(Ẽ(U0,A), E(U0,A),Λ1,Ω2) =
1

2

(〈
U−1

0 eλj , Aeωk
〉)L

j,k=1

=
1

2

(〈
eωj , Aeωk

〉)L
j,k=1

.

To show this matrix is invertible, assume c = (ck)
L
k=1 ∈ kerB(Ẽ(U0,A), E(U0,A),Λ1,Ω2).

Then, for all 1 ≤ j ≤ L,

L∑
k=1

ck
〈
eωj , Aeωk

〉
=

〈
eωj , A

(
L∑
k=1

ckeωk

)〉
= 0.

Let x =
∑L

k=1 ckeωk . Then,

〈x,Ax〉 =
L∑
j=1

cj

〈
eωj , A

(
L∑
k=1

ckeωk

)〉
= 0.

Since A is positive, this implies that x = 0. So, since {eωk}Lk=1 is linearly independent,

c = 0. Therefore,

kerB(Ẽ(U0,A), E(U0,A),Λ1,Ω2) = {0}, and B(Ẽ(U0,A), E(U0,A),Λ1,Ω2) is invertible. By a

similar argument, we can find U1 ∈ U so that B(Ẽ(U1,A), E(U1,A),Λ2,Ω1) is invertible.

If either B(Ẽ(U1,A), E(U1,A),Λ1,Ω2) or B(Ẽ(U0,A), E(U0,A),Λ2,Ω1) is invertible, the

proof is complete. Otherwise, assume that U0 = eiD0 , and U1 = eiD1 for self-adjoint

operators D0 and D1 and define γ : [0, 1] → U to be the unitary path from U0 to U1

defined by

γ(t) = ei(1−t)D0eitD1 .

For j = 1, 2, define the mappings δj : [0, 1]→ C by

δ1(t) = det
(
B(Ẽ(γ(t),A), E(γ(t),A),Λ1,Ω2)

)
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and

δ2(t) = det
(
B(Ẽ(γ(t),A), E(γ(t),A),Λ2,Ω1)

)
.

To finish the proof it suffices to find a t value for which δj(t) 6= 0 for j = 1, 2.

The components of B(Ẽ(γ(t),A), E(γ(t),A),Λ1,Ω2) are of the form

〈
eλj , γ(t)Aeωk

〉
=
〈
e−i(1−t)D0eλj , e

itD1Aeωk
〉

Since D0 is self-adjoint, we can find an orthonormal basis of eigenvectors for D0, {wj :

1 ≤ j ≤ n}, with corresponding eigenvalues {µj : 1 ≤ j ≤ n}. Similarly, we can find an

orthonormal basis, {vj : 1 ≤ j ≤ n} of eigenvectors for D1 with corresponding eigenval-

ues {νj : 1 ≤ j ≤ n}. Now, we can write the components of B(Ẽ(γ(t),A), E(γ(t),A),Λ1,Ω2)

as linear combinations of the following:

〈
e−i(1−t)D0wj, e

itD1Aeωk
〉

=
〈
diag(e−i(1−t)µ1 , · · · , e−i(1−t)µn)wj, e

itD1Aeωk
〉

= e−i(1−t)µj
〈
wj, e

itD1Aeωk
〉
.

These can then be written as linear combinations of the form

e−i(1−t)µj
〈
v`, e

itD1Aeωk
〉

= e−i(1−t)µj
〈
e−itD1v`, Aeωk

〉
= e−i(1−t)µj

〈
diag(e−itν1 , · · · , e−itνn)v`, Aeωk

〉
= e−i(1−t)µje−itν` 〈v`, Aeωk〉

Thus, the components are analytic functions of t. Hence, δ1 is an analytic function of

t. Similarly, δ2 is an analytic function of t. Furthermore, δ1(1) = δ2(0) = 0, and

δ1(0), δ2(1) 6= 0. Thus, there are only finitely many zeros of δ1 and δ2 in the interval

[0, 1]. So there exists t0 so that δ1(t0), δ2(t0) 6= 0. Thus, B(Ẽ(γ(t0),A), E(γ(t0),A),Λ,Ω) is
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invertible, and this completes the proof.

Remark 2.30. The choice of U0 in the proof was motivated by operator theory. With this

choice of U0, the matrix B(Ẽ(U0,A), E(U0,A),Λ1,Ω2) is the transpose of the matrix for A

with respect to the orthonormal basis {ej}nj=1 compressed to the subspace span{ej : j ∈

Ω2}. Thus, since A is positive it follows that B(Ẽ(U0,A), E(U0,A),Λ1,Ω2) is invertible.

Lemma 2.31. Fix a positive operator, A ∈ B(H) and an orthonormal basis, E = {ej}nj=1

forH. Let Λ be an erasure set satisfying |Λ| ≤ n, and Ω be a block bridge set for Λ. Then

the set U(A,Λ,Ω) is open and dense in U.

Proof. Assume U0 ∈ U \ U(A,Λ,Ω). By Lemma 2.29, we can find some U1 ∈ U(A,Λ,Ω).

Since U0 and U1 are unitary operators, we can find self-adjoint operators D0 and D1 so

that U0 = eiD0 and U1 = eiD1 . Then, the mapping γ : [0, 1] → U defined by γ(t) =

ei(1−t)D0eitD1 is a continuous path of unitaries from U0 to U1. Define δ : [0, 1] → C by

δ(t) = det(B(Ẽ(γ(t),A), E(γ(t),A),Λ,Ω)). Then δ is not a constant mapping since δ(0) = 0

and δ(1) 6= 0.

Next, since D0 and D1 are self-adjoint, we can find an orthonormal bases of eigenvec-

tors, {vj}nj=1 and {wj}nj=1 for H with corresponding eigenvalues {µj}nj=1 and {νj}nj=1 for

D0 and D1, respectively. The non-zero components of B(Ẽ(γ(t),A), E(γ(t),A),Λ,Ω) are of

the form

〈ej, γ(t)Aek〉 or
〈
γ(t)A−1ej, ek

〉
.

Without loss of generality, we only consider the second case, which can be written as a
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linear combination of terms of the form

〈
γ(t)A−1ej, vk

〉
=

〈
ei(1−t)D0eitD1A−1ej, vk

〉
=

〈
eitD1A−1ej, e

−i(1−t)D0vk
〉

=
〈
eitD1A−1ej, diag(e−i(1−t)µ1 · · · , e−i(1−t)µn)vk

〉
=

〈
eitD1A−1ej, e

−i(1−t)µkvk
〉

= ei(1−t)µk
〈
eitD1A−1ej, vk

〉
.

Similarly, each term of the form
〈
eitD1Aej, vk

〉
can be written as a linear combination of

terms of the form

〈
eitD1A−1ej, w`

〉
=

〈
A−1ej, e

−itD1w`
〉

=
〈
A−1ej, diag(e−itν1 · · · , e−itνn)w`

〉
=

〈
A−1ej, e

−itν`w`
〉

= eitν`
〈
A−1ej, w`

〉
.

The function ei(1−t)µkeitν` 〈Aej, w`〉 is analytic as a function of t. Thus, δ is a linear com-

bination of products of analytic functions. Hence δ is analytic, and cannot have an ac-

cumulation point of zeros in [0, 1]. So, given ε > 0, we can find a t0 ∈ [0, 1] so that

‖γ(0)− γ(t0)‖ < ε, and γ(t0) ∈ U(A,Λ,Ω). Therefore, U(A,Λ,Ω) is dense in U.

To show that U(A,Λ,Ω) is open, let δΛ,Ω : U→ C denote the continuous mapping defined

by

δΛ,Ω(U) = det(B(Ẽ(U,A), E(U,A),Λ,Ω)).

Then,

U(A,Λ,Ω) = δ−1
Λ,Ω(C \ {0}),
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so it is open.

Proof of Theorem 2.28. Let Γ = {Λ ⊂ {1, 2, · · · , N} : |Λ| ≤ n}, and for each Λ ∈ Γ,

define ΦΛ = {Ω : Ω is a block bridge set for Λ}. Then

UA = ∩Λ∈Γ ∩Ω∈ΦΛ
U(Λ,Ω). (2.31)

Therefore, by the Baire category theorem, UA is open and dense in U since it is the inter-

section of finitely many open, dense sets in U.

We thank the referee of [39] for suggesting the inclusion of the following result. As-

sume E = {ej}nj=1 is an orthonormal basis for a Hilbert space, H, and T ∈ B(H) is an

invertible operator. Let ET = 1√
2
{ej}2n

j=1, where ej+n = Tej for all 1 ≤ j ≤ n. It is easily

seen that {(T−1)∗ej}nj=1 is the dual basis to {Tej}nj=1. Thus, ẼT = 1√
2
{ẽj}2n

j=1, where

ẽj = ej , and ẽj+n = (T−1)∗ej is a dual frame to ET . The result gives a characteriza-

tion of operators T for which the dual frame pair (ẼT , ET ) satisfies the block skew-spark

property.

Proposition 2.32. Assume T ∈ B(H) is an invertible operator and E = {ej}nj=1 is an

orthonormal basis for H. Then, the dual frame pair (ẼT , ET ) described above satisfies

the block skew-spark property if and only if every square minor of the matrices for T and

T−1 with respect to the orthonormal basis E is invertible.

Proof. First observe that

T =
n∑

j,k=1

〈Tek, ej〉 ej ⊗ ek. (2.32)

Hence the matrix representation for T with respect to E is

T = (〈Tek, ej〉)nj,k=1 . (2.33)
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Recall from Remark 2.24 that (ẼT , ET ) satisfies the block skew-spark property if and only

if B(ẼT , ET ,Λ1,Ω2) and B(ẼT , ET ,Λ2,Ω1) are invertible for all Λ1,Ω1 ⊂ {1, · · · , n}

and Λ2,Ω2 ⊂ {n+ 1, · · · , 2n} satisfying |Λ1| = |Ω2| and |Λ2| = |Ω1|. Since

B(ẼT , ET ,Λ1,Ω2) =
1

2
(〈ej, T ek〉)j∈Λ1, k∈Ω2−n =

1

2

(
〈Tek, ej〉

)
j∈Λ1, k∈Ω2−n

,

B(ẼT , ET ,Λ1,Ω2) is invertible if and only if (〈Tek, ej〉)j∈Λ1, k∈Ω2−n is invertible. From

equation (2.33), this is the minor of T with respect to the basis E with rows indexed

by Λ1 and columns indexed by Ω2 − n. By considering all Λ1 ⊂ {1, · · · , n} and all

Ω2 ⊂ {n + 1, · · · , 2n}, we see that each matrix B(ẼT , ET ,Λ1,Ω2) is invertible if and

only if every square minor of the matrix T with respect to E is invertible. Next,

B(ẼT , ET ,Λ2,Ω1) =
1

2

(〈
(T−1)∗ej, ek

〉)
j∈Λ2−n, k∈Ω1

=
1

2

(〈
ej, T

−1ek
〉)

j∈Λ2−n, k∈Ω1

=
1

2

(
〈T−1ek, ej〉

)
j∈Λ2−n, k∈Ω1

.

Therefore, by a similar argument, every bridge matrix of the form B(ẼT , ET ,Λ2,Ω1) is

invertible if and only if every minor of T−1 with respect to E is invertible.

Theorem 2.28 gives an operator theoretic density result for a union of an orthonormal

basis and a Riesz basis. The next result builds on that result to give a Bessel bound norm

proof that the set of all unions of two orthonormal bases which satisfy the block skew-

spark property is open and dense in the set of all unions of two orthonormal bases. Let

OO =

{
1√
2
{ej}2n

j=1 : {ej}nj=1 and {ej}2n
j=n+1 are orthonormal bases

}
.

With the Bessel bound norm, OO is a closed subset of H2n (sequences containing 2n

vectors fromH). Thus, with the Bessel bound norm, OO is a complete metric space.
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Let OOs denote the set of all unions of two orthonormal bases with the block skew-

spark property. For the remaining proofs, we will denote the analysis operator of the

sequence {Tej}nj=1 by ΘTE . It is easy to see that ΘTE = ΘET
∗ for any operator T ∈

B(H).

Theorem 2.33. The set OOs is open and dense in OO.

Proof. We will first show thatOOs is dense inOO. Let ε > 0 and assume E = {ej}2n
j=1 ∈

OO \ OOs. We know that ej+n = Uej for some U ∈ U, and for 1 ≤ j ≤ n. By

Theorem 2.28, and the continuity of the adjoint mapping, we can find Uε ∈ UI so that

‖U∗ − U∗ε ‖ < ε. Let Eε = {e(ε)
j }2n

j=1 where e(ε)
j = ej for 1 ≤ j ≤ n and e(ε)

j = Uεej for

n+ 1 ≤ j ≤ 2n. Then,

‖E − Eε‖B = ‖ΘE −ΘEε‖op

= ‖ΘUE −ΘUεE
‖op

= ‖ΘEU
∗ −ΘEU

∗
ε ‖op

≤ ‖ΘE‖op‖U∗ − U∗ε ‖op

< ε.

Since Uε ∈ UI , Eε ∈ OOs, and we have shown density.

To show that OOs is open in OO, it suffices to show that OOs(Λ,Ω) = {E ∈ OO :

B(E,E,Λ,Ω) is invertible} is open for all pairs (Λ,Ω) for which |Λ| ≤ n and Ω is a block

bridge set for Λ. This is because OOs is the intersection over all such pairs (Λ,Ω) of the

sets OOs(Λ,Ω). To see that each OOs(Λ,Ω) is open, we have OOs(Λ,Ω) = δ−1
Λ,Ω(C \

{0}), where δΛ,Ω is the continuous function defined by δΛ,Ω(E) = det(B(E,E,Λ,Ω)).
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Two orthonormal bases {ej}nj=1 and {gj}nj=1 are called mutually unbiased if

| 〈ej, gk〉 | =
1√
n

for all j, k ∈ {1, · · · , n} (cf. [6] and [35]). The next example shows that the union of two

unbiased orthonormal bases can fail to satisfy the block skew-spark property. Thus, this

property can fail to exist even in a highly structured example. We thank the referee of [39]

for asking us to consider this example.

Example 2.34. Observe that

E =





1

0

0

0


,



0

1

0

0


,



0

0

1

0


,



0

0

0

1




and

G =


1

2



1

1

1

1


,
1

2



1

1

−1

−1


,
1

2



1

−1

−1

1


,
1

2



1

−1

1

−1




are two mutually unbiased orthonormal bases. If we bridge the first two elements of the

first orthonormal basis with the second two elements of the second basis, we get the bridge

matrix

B(E ∪G,E ∪G, {1, 2}, {7, 8}) =

 〈e1, g3〉 〈e1, g4〉

〈e2, g3〉 〈e2, g4〉

 =
1

2

 1 1

−1 −1

 ,

which is not invertible. Therefore, E ∪G does not satisfy the block skew-spark property.

57



We will next prove the corresponding result for a union of an orthonormal basis and a

Riesz basis. Denote by OB the set of all sequences in H2n which consist of a union of an

orthonormal basis and a Riesz basis. That is,

OB =

{
1√
2
{fj}2n

j=1 : {fj}nj=1 is an orthonormal basis and {fj}2n
j=n+1 is a basis forH

}
.

Denote by OBs the subset of OB consisting of all unions of an orthonormal basis and a

Riesz basis that satisfy the block skew-spark property.

Lemma 2.35. OBs is open and dense in OB.

Proof. We will first prove density. Let ε > 0, and assume that {fj}2n
j=1 ∈ OB \ OBs.

Then, fj+n = UAfj for some unitary U and some positive operator A. By Theorem 2.28

and the continuity of the adjoint mapping, we can find some W ∈ U for which the frame

{gj}2n
j=1 satisfies the block skew-spark property, and ‖U∗ −W ∗‖ < ε

‖A‖op , where gj = fj

and gj+n = WAgj = WAfj for 1 ≤ j ≤ n. We then have

‖{fj}2n
j=1 − {gj}2n

j=1‖B = ‖ΘF −ΘG‖op

= ‖ΘUAF −ΘWAF‖op

= ‖ΘFAU
∗ −ΘFAW

∗‖op

≤ ‖ΘF‖op‖A‖op‖U∗ −W ∗‖op

< ‖A‖op
ε

‖A‖op
= ε.

Therefore, OBs is dense in OB.

Let OBs(Λ,Ω) denote the set of unions of an orthonormal basis and a Riesz basis,

F = {fj}2n
j=1 for which B(F̃ , F,Λ,Ω) is invertible. Define the continuous mapping δ :
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OB → C by

δΛ,Ω

(
{fj}2n

j=1

)
= det

(
B(F̃ , F,Λ,Ω)

)
.

Then, OBs(Λ,Ω) = δ−1
Λ,Ω(C \ {0}), and thus, OBs(Λ,Ω) is open. Since OBs is the

intersection over all Λ satisfying |Λ| ≤ n and all block bridge sets, Ω for Λ of the sets

OBs(Λ,Ω), it follows that OBs is open.

We say that two dual frame pairs, (F1, G1) = {f 1
j , g

1
j}Nj=1 and (F2, G2) = {f 2

j , g
2
j}Nj=1

are isomorphic if there exists a bounded, invertible operator T so that for all 1 ≤ j ≤ N ,

we have Tf 1
j = f 2

j , and (T ∗)−1g1
j = g2

j . With this definition, we can make the following

easy observation.

Proposition 2.36. Assume that (F1, G1) and (F2, G2) are isomorphic. Then for all Λ,Ω ⊂

{1, · · · , N}, B(F1, G1,Λ,Ω) = B(F2, G2,Λ,Ω). In particular, (F1, G1) satisfies the full

skew-spark property if and only if (F2, G2) satisfies the full skew-spark property, and

(F1, G1) satisfies the block skew-spark property if and only if (F2, G2) satisfies the block

skew-spark property.

We will next combine Lemma 2.35 and Proposition 2.36 to prove that the set of unions

of two Riesz bases which satisfy the block skew-spark property is open and dense in the

set of all unions of two Riesz bases. We define BB to be the set of all unions of two Riesz

bases inH. That is,

BB =
{
{fj}2n

j=1 : {fj}nj=1 and {fj}2n
j=n+1 are bases forH

}
.

We define BBs to be the set of all unions of two Riesz bases which satisfy the block skew

spark property.

Theorem 2.37. BBs is open and dense in BB.
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Proof. The proof of openness is similar to the case for a union of an orthonormal basis and

a Riesz basis, so we omit it here. To prove density, assume ε > 0, and F = {fj}2n
j=1 ∈ BB\

BBs. Fix an orthonormal basis, {ej}nj=1 forH. Then, for 1 ≤ j ≤ n, we have fj = U1A1ej

and fj+n = U2A2ej for some unitary operators U1 and U2, and some positive operators A1

and A2. By definingG = {gj}2n
j=1 by gj = ej and gj+n = (U1A1)−1U2A2ej for 1 ≤ j ≤ n,

(G̃, G) is isomorphic to (F̃ , F ) (under the mapping U1A1), and G ∈ OB \ OBs. Thus,

by Lemma 2.35, we can find H = {hj}2n
j=1 ∈ OBs with ‖G − H‖B < ε

‖A1‖op . Then

U1A1H = {U1A1hj}2n
j=1 ∈ BBs, and

‖F − U1A1H‖B = ‖ΘF −ΘU1A1H‖op

= ‖ΘU1A1G −ΘU1A1H‖op

= ‖ΘGA1U
∗
1 −ΘHA1U

∗
1‖op

≤ ‖ΘG −ΘH‖op‖A1‖op‖U∗1‖op

<
ε

‖A1‖op
‖A1‖op

= ε.

Therefore, BBs is dense in BB.

The remainder of this subsection is the extension of these results to the infinite dimen-

sional case. As with dual frame pairs, we will retain our density results, but when we use

the Baire Category Theorem on countably infinite intersections, we may lose openness.

Let H be a separable infinite dimensional Hilbert space, and F = {fj}j∈J1 and G =

{gj}j∈J2 (J1∩J2 = ∅) be Riesz bases forH with dual bases {f̃j}j∈J1 and {g̃j}j∈J2 , respec-

tively. As before, we decompose any subset Γ ⊂ J1 t J2 as Γ = Γ1 t Γ2 where Γ1 ⊂ J1

and Γ2 ⊂ J2.

Definition 2.38. 1. We call Ω a block bridge set for a finite erasure set Λ if Ω ⊂ J1 t
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J2 \ Λ, |Ω1| = |Λ2| and |Ω2| = |Λ1|.

2. We say that the union F ∪G satisfies the block skew-spark property if for any finite

erasure set Λ with |Λ| <∞ and for any block bridge set Ω for Λ, the bridge matrix,

B(F̃ ∪ G̃, F ∪G,Λ,Ω) is invertible.

Remark 2.39. Definition 2.38 is equivalent to Definition 2.25 for finite dimensions, modulo

minor bookkeeping considerations.

Fortunately, many of the results generalize nicely for infinite frames. The next theorem

displays these results. For the theorem, we need the following definitions: For a fixed

orthonormal basis {ej}j∈J1 , a fixed unitary operator U , a fixed positive operator A, and a

fixed bijection α : J1 → J2, we define E(U,A,α) = 1√
2
{ej}j∈J1tJ2 , where eα(j) = UAej for

j ∈ J1. We also define Ẽ(U,A,α) = 1√
2
{ẽj}j∈J1tJ2 where ẽj = ej and ẽα(j) = UA−1ej for

j ∈ J1. Lastly, for the density results in (4), (5), and (6) below, we will equip OO, OB,

and BB with the Bessel bound norm.

Theorem 2.40. Let H be a separable Hilbert space. Let A be a fixed positive operator

in B(H), E = {ej}j∈J1 be a fixed orthonormal basis for H, and α : J1 → J2 be a fixed

bijection. Assume that Λ is a finite erasure set, and Ω is a block bridge set for Λ. With the

terminology above:

1. There exists U ∈ U for which B(Ẽ(U,A), E(U,A),Λ,Ω) is invertible.

2. The set U(A,Λ,Ω) = {U ∈ U : B(Ẽ(U,A,α), E(U,A,α),Λ,Ω) is invertible} is open and

dense in U.

3. The set

UA = {U ∈ U : (Ẽ(U,A,α), E(U,A,α)) has the block skew-spark property}
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is a dense subset of U.

4. The set OOs is dense in OO.

5. OBs is dense in OB.

6. BBs is dense in BB.

Proof. The proof of (1) and (2) directly follow from Lemmas 2.29, and 2.31, respectively.

For the proof of (3), we refer to the proof of Theorem 2.28. For the proof, in the infinite

dimensional case the intersection in equation (2.31) will now be an intersection over the

countably infinite index sets

Γ = {Λ : |Λ| <∞} and ΦΛ = {Ω : Ω is a block bridge set for Λ}.

Therefore, the Baire Category Theorem implies that UA is dense in U. (However, an

intersection of countably many open sets is not necessarily open.)

Notice that in the density proofs for Theorem 2.33, Lemma 2.35, and Theorem 2.37, we

only used the density result from Theorem 2.28 whose analog is item (3) above. Therefore,

(4), (5), and (6) follow from (3).

2.3.4 Open Questions for Shannon-Whittaker Sampling Theory6

Many interesting open questions on skew-spark properties involve Shannon-Whittaker

sampling theory. We denote by PWπ the set of band-limited functions with band [−π, π].

That is,

PWπ =
{
f ∈ L2(R) : sptf̂ ⊂ [−π, π]

}
,

6The material in this subsection is reprinted from [39], with permission from Elsevier.
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where f̂ denotes the Fourier transform of f using the convention

f̂(ξ) =

∫
R
f(x)e−ixξ dx.

For the space PWπ, we have the following identity:

f(z) = 〈f, sinc(π(· − z))〉 . (2.34)

For p ∈ (0, 1] let gp,j(t) = sinc(π(t − pj)). Then, {gp,j}j∈Z is a tight frame with a dual

frame with the standard dual {g̃p,j}j∈Z where g̃p,j(t) = psinc(π(t − pj)). The Shannon-

Whittaker Sampling Theorem, states that for f ∈ PWπ,

f =
∑
j∈Z

〈f, gp,j〉 g̃p,j = p
∑
j∈Z

f(pj)sinc(π(· − pj)).

Proposition 2.41. For any rational number p ∈ (0, 1) the dual frame pair

({gp,j}j∈Z, {g̃p,j}j∈Z)

does not satisfy the full skew-spark property. (However, it remains open whether it satisfies

the block skew-spark property: see questions 2.43 and 2.44, below.)

Proof. Assume p is a rational number in the interval (0, 1). Then, p = n
m

for positive
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integers n and m with n < m. We have,

B({gp,j}j∈Z, {g̃p,j}j∈Z, {0}, {mp}) = p 〈sinc(π(·)), sinc(π(· −mp))〉

= psinc(πmp)

= psinc(πn)

= 0.

Therefore, ({gp,j}j∈Z, {g̃p,j}j∈Z) does not satisfy the full skew-spark property.

The case where p ∈ (0, 1) is irrational is an open question, given below. We believe

that for all irrational values of p ∈ (0, 1), Shannon-Whittaker sampling on pZ satisfies the

full skew-spark property.

Question 2.42. For which irrational values of p ∈ (0, 1) does the dual frame pair

({gp,j}j∈Z, {g̃p,j}j∈Z) satisfy the full skew-spark property?

Notice that when p = 1
2
, the sets {g 1

2
,j : j is even} and {g 1

2
,j : j is odd} are complete,

orthogonal sets of functions. Thus, Shannon-Whittaker sampling at the half-integers cor-

responds to a union of two bases, and we have the following natural question.

Question 2.43. Let J1 denote the set of even integers and J2 denote the set of odd integers.

Does the union 1√
2
{g 1

2
,j}j∈J1 t 1√

2
{g 1

2
,j}j∈J2 satisfy the block skew-spark property?

We believe the answer to Question 2.43 is yes. Notice that in the above notation, the

basis {g1,j}j∈Z corresponds to Shannon-Whittaker sampling at the integers, and the basis

{g1,j}j∈q+Z corresponds to Shannon-Whittaker sampling at the points q + Z = {q + j :

j ∈ Z}. So the following is a more general question.

Question 2.44. For which values of q ∈ (0, 1) does the union 1√
2
{g1,j}j∈Z∪ 1√

2
{g1,j}j∈q+Z

satisfy the block skew-spark property?
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Again, we believe the answer to this question is yes, and we have a proof that all bridge

matrices of size two or less are invertible. We also have the following partial result which

states that for a dense set of q-values in [0, 1], we can bridge any finite subset Λ of Z by

the corresponding shift q + Λ. More generally, we have the following proposition.

Proposition 2.45. Assume that we can write the finite erasure set Λ as the disjoint union

Λ = Λ1 t (q + Λ2) where Λ1,Λ2 ⊂ Z and Λ1 ∩ Λ2 = ∅. Then, for a dense set of q-values

in [0, 1], the block bridge set defined by Ω = Ω1 tΩ2, where Ω2 = q + Λ1 and Ω1 = Λ2 is

a robust bridge set for Λ with respect to the union 1√
2
{g1,j}j∈Z ∪ 1√

2
{g1,j}j∈q+Z .

Proof. Assume that Λ1 and Λ2 are finite sets of integers satisfying Λ1 ∩ Λ2 = ∅. Given

q ∈ [0, 1], define Λ(q) as the disjoint union Λ(q) = Λ
(q)
1 tΛ

(q)
2 and Ω(q) as the disjoint union

Ω(q) = Ω
(q)
1 t Ω

(q)
2 , where Λ

(q)
1 = Λ1, Λ

(q)
2 = q + Λ2, Ω

(q)
1 = Λ2 and Ω

(q)
2 = q + Λ1. Let

UΛ(q) denote the set of all q-values for which Ω(q) is a robust bridge set for Λ(q). To prove

the proposition, by the Baire category theorem, it suffices to show that UΛ(q) is an open

dense set, since Λ1 and Λ2 were chosen arbitrarily. Furthermore, it suffices to show that

U c
Λ(q) is a finite set. To do this, first notice that using equation (2.34), we have

B(Λ
(q)
1 ,Ω

(q)
2 ) = B(Λ1, q + Λ1)

=
1

2
(〈sinc(π(· − j)), sinc(π(· − (k + q)))〉)j,k∈Λ1

=
1

2
(sinc(π(q + k − j)))j,k∈Λ1

.

It is easily seen that if q = 0, then, B(Λ
(q)
1 ,Ω

(q)
2 ) is a scalar multiple of the identity matrix.

Furthermore, notice that the components ofB(Λ
(q)
1 ,Ω

(q)
2 ) are analytic functions in q. Thus,

it is easily seen that the mapping α : [0, 1] → C defined by α(q) = det(B(Λ
(q)
1 ,Ω

(q)
2 )) is

a nonzero analytic function of q (since α(0) 6= 0). Hence, the set of q-values in [0, 1] for

which B(Λ
(q)
1 ,Ω

(q)
2 )−1 does not exist is finite. Similarly, the set of q-values in [0, 1] for
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which B(Λ
(q)
2 ,Ω

(q)
1 )−1 does not exist is finite. Since B(Λ(q),Ω(q)) is invertible if and only

if B(Λ
(q)
1 ,Ω

(q)
2 ) and B(Λ

(q)
2 ,Ω

(q)
1 ) are invertible, UΛ(q) is finite. By the remarks above, this

completes the proof.

Lastly, we would like to know which sampling schemes have a method to choose

bridge sets so that the bridge matrix is invertible. If there is such a method, we say that the

sampling scheme has a modified skew-spark property.

Question 2.46. Which sampling schemes satisfy a modified skew-spark property?

2.4 Implementation of Nilpotent Bridging

We will next take a look at a sample Matlab implementation of the reconstruction

method set forth in Theorem 2.3. We will first present the code, and afterwards present a

line by line description of the program.

1 n = 2000 ;

2 N = 3000 ;

3 L = [ 1 : 1 0 0 ] ;

4 W = [ 2 0 0 1 : 2 1 0 0 ] ;

5

6 F = ( 1 / s q r t ( n ) ) ∗randn ( n ,N) ;

7 S = F ∗ F ’ ;

8 G = S \ F ;

9

10 f = rand ( n , 1 ) ;

11 f = f . / norm ( f , 2 ) ;

12

13 FC = G’ ∗ f ;
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14

15 FC ( L ) = z e r o s ( s i z e ( L ’ ) ) ;

16

17 f_R = F ∗ FC ;

18

19 FRCL = G ( : , L ) ’ ∗ f_R ;

20 FRCB = G ( : ,W) ’ ∗ f_R ;

21

22 C = ( F ( : , L ) ’∗G ( : ,W) ) \ ( F ( : , L ) ’∗G ( : , L ) ) ;

23

24 FC ( L ) = C’ ∗ ( FC (W) − FRCB) + FRCL ;

25

26 g = f_R + F ( : , L ) ∗ FC ( L ) ;

27

28 norm ( f−g , 2 )

In lines 1-4 we define the sample parameters for an experiment. The variables n and

N signify that we are using a frame of length N for Rn. The variables L and W denote

the erasure and bridge sets, respectively. In line 6, we generate an n×N matrix F , whose

entries are drawn independently from the standard normal distribution. The columns of F

will be our frame vectors. In other words, F is the synthesis matrix for our frame. Notice

that with the normalization constant of 1√
n

, the expectation of S = FF ∗ is N
n
I . That is, F

is expected to be a nearly tight frame with frame bound N
n

. The matrix S in line 7 is the

frame operator for F . In line 8, we compute a matrix, G, whose columns are the standard

dual frame to F . In lines 10 and 11, we generate a random, unit norm vector which we

will reconstruct from frame coefficient erasures indexed by L (the erasure set). In line 13,
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we compute the frame coefficients (denoted by FC) of f with respect to G, and in line 15,

we delete the coefficients in FC indexed by L. The goal of this program is to reconstruct

f from this reduced data set.

The rest of the program (lines 17-28) is the implementation of Theorem 2.3. In line

17, we compute the partial reconstruction, f_R of f by synthesizing FC with respect to

F . In lines 19, 20, and 22, we compute the necessary information for equation (2.18).

That is, in lines 19 and 20 we compute (〈fR, gj〉)j∈Λ and (〈fR, gj〉)j∈Ω, and in line 22 we

compute the matrix C by solving the bridge equation. In line 24, we perfectly reconstruct

(up to machine error) our missing coefficients by using equation (2.18) from Theorem 2.3.

In line 26, we synthesize our reconstructed coefficients with {fj}j∈Λ and add them to fR

to obtain a vector g. Lastly, in line 28, we compute ‖f − g‖ to determine the error in our

reconstruction. As mentioned earlier, the error term, ‖f − g‖, is just the machine error in

our reconstruction. Later on, we will examine the effects of noise on our reconstruction.

If we desire to use a tight frame which satisfies the RIP with high probability, instead of

a normally distributed random frame and its corresponding dual, we can use the following

construction. The frames generated using this procedure are called TRIP frames. We will

give some analysis of these frames in Section 3.3.

Construction Algorithm 2.47.

1. Let H denote an n×N matrix with rank n.

2. Compute the qr-decomposition of H∗. That is, H∗ = QR where Q is an N × n

matrix with orthonormal columns and R is an n× n upper triangular matrix.

3. Let F =
√

N
n
Q∗.

4. Let G = n
N
F .
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If the entries of the matrix H in the construction are drawn independently according to

the standard normal distribution, we call F a standard normally distributed TRIP frame.

In this case, F will be a tight frame which satisfies the RIP with approximately the same

RIP constant as 1√
n
H . Due to this, these frames will demonstrate a very high degree of

robustness to sparse, and even normally distributed random channel noise. We call these

frames TRIP frames because they are tight, and satisfy the RIP with high probability.

To use a standard normally distributed TRIP frame in place of a dual frame pair, we

can use the following block of code in place of lines 6-8 above.

1 F = randn (N, n ) ;

2 [ F , ~ ] = qr ( F , 0 ) ;

3 F = s q r t (N/ n ) ∗ F ’ ;

4 G = ( n /N) ∗ F ;

In line 1 above, we generate an N × n matrix F , whose entries are drawn indepen-

dently from the standard normal distribution. In line 2, we compute the qr-factorization of

F and store the Q matrix in F . That is, (essentially) we run the Gram-Schmidt orthonor-

malization procedure on the columns of F , and store the result back in F . In line 3, we

replace F with
√

N
n
F , and since F is tight with frame bound N

n
, its standard dual is given

by G = n
N
F (line 4).

If we desire to overbridge and use the Moore-Penrose pseudo-inverse, we should en-

hance the size of the bridge set (being sure that the new bridge set is still disjoint from the

erasure set), as well as replace line 22 of our original code with the following line of code.

1 C = pinv ( F ( : , L ) ’∗G ( : ,W) ) ∗ ( F ( : , L ) ’∗G ( : , L ) ) ;

2.5 Overbridging and Noise Mitigation

As was mentioned in Remark 2.6, if the partial reconstruction, fR is subject to noise,

then the reconstruction from erasures can be quite poor. However, we can expect less error
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amplification when we overbridge. In this section we run numerical experiments to gain a

qualitative understanding of overbridging, and its noise mitigating effects.

In the first experiment, we generated tight frames of length N = 1000 for R250 ac-

cording to the construction of standard normally distributed TRIP frames (Construction

Algorithm 2.47), and we varied our erasure set sizes from 10 to 250 in increments of

10. For each erasure set, we ran 50 trials, each trial with a newly generated frame. In

each trial we generated a unit norm standard normally distributed random vector (or sig-

nal) f ∈ R250. We then introduced a 5% standard normally distributed noise term to the

non-erased frame coefficients. We call this type of noise term additive channel noise. If

ε = (εj)
N
j=1 represents the additive noise term, then noisy partial reconstruction is

f̃R =
∑
j∈Λc

(〈f, gj〉+ εj) fj, (2.35)

and the reconstructed signal is

f̃ = f̃R +
∑
j∈Λ

djfj, (2.36)

where C solves the bridge equation and

(dj)j∈Λ = C∗
(

(〈f, gk〉+ εk)k∈Ω − (〈f̃R, gk〉)k∈Ω

)
+ (〈f̃R, gj〉)j∈Λ. (2.37)

Notice that this is precisely the reconstruction from erasures where we use the corrupted

information to bridge the erased information (see the similarities between equation (2.18)

and equation (2.37)). For each trial, the norm of the error in the noisy partial reconstruc-

tion, and the norm in the error of our reconstructed signal were recorded. The results are

summarized in Figure 2.1.
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Figure 2.1: Noise amplification using Nilpotent Bridging.

Based on Figure 2.1, it is very clear that without overbridging this method is not robust

to additive channel noise. However, if we enlarge our bridge set by 25%, and solve the

bridge equation using a pseudo-inverse, we get Figure 2.2, which shows that this method

much more robust to additive channel noise.

71



Figure 2.2: Noise amplification using 25% overbridging.

Figure 2.3 is the same experiment repeated for double bridging (i.e. |Ω| = 2Λ), again

utilizing a pseudo-inverse. In the figure, we see a further reduction in error amplification.
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Figure 2.3: Noise amplification using double bridging.
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Figure 2.4 is another good display of this behavior. To perform the experiment, we

first compress a 256× 256 pixel image (in this case, Lena) by deleting all but 15% of the

most significant fast Fourier coefficients. For each column, we generated a new standard

normally distributed TRIP frame pair (F,G) of length N = 2n, and used a new 5% noise

term. In the first row, we display the true image corrupted only by the 5% noise term,

in the second row, we display the noisy partial reconstruction, f̃R, in the third row we

display the noisy reconstruction where |Ω| = |Λ|, and in the fourth row we display the

noisy reconstruction from 25% overbridging. We displayed the results for 1%, 2%, 3%,

4%, and 5% erasures. In the images we see very clearly that 25% overbridging drastically

improves the reconstruction, and it actually gives a very nice reconstruction of the original

image which is close to the erased image subject only to noise (i.e. the first and fourth

rows look quite similar). On the other hand, Nilpotent Bridging with |Λ| = |Ω| tends to

significantly amplify the noise term.
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2.6 Stability Considerations for Shannon-Whittaker Sampling Theory

Throughout this section, we will denote the Shannon-Whittaker frame on the lattice

pZ by Fp = {p sinc(π(x− j))}j∈J, and its standard dual by Gp = {sinc(π(x− j))}j∈pZ.

As with Nilpotent Bridging for finite frames, in the case of Shannon-Whittaker Sam-

pling Theory, if the coefficient matrix, C, has a large norm, then we can expect our recon-

struction to be unstable. Furthermore, unlike with finite dimensions, we can only compute

a finite term approximation of fR, since fR is represented by an infinite series. Thus, our

signal comes with a built in noise term. In playing around with the algorithm in Matlab,

we discovered that the use of a close bridge set will likely ensure that the bridge matrix,

B(Λ,Ω), is well conditioned. By a close bridge set, we mean that if Λ = {λj}Lj=1, then we

choose a bridge set Ω = {ωj}Lj=1 in order to minimize
∑L

j=1 |λj − ωj|. Close bridge sets

typically yield well conditioned bridge matrices because they produce diagonally domi-

nant bridge matrices. In Figure 2.5, we consider Shannon-Whittaker Sampling on the half

integers, and we take Λ = {1, 2, 3, · · · , 100}, and Ω = 1
2

+ Λ. For this close bridge setup,

we get ‖C‖ = 3.3162. Because of this stability, we can see in the graph that the recon-

struction overlaps quite nicely with the original signal (f(t) = sinc(πt)). Note that for the

experiment, we are using the non-erased half integer samples on the interval [−5000, 5000]

to obtain our finite approximation of fR.
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Figure 2.5: Error amplification of spaced erasures for Shannon-Whittaker Sampling on

1
2
Z.

Figure 2.5 exhibits the good behavior of close bridge sets for erasures that are spaced

out. However, if we erase only 16 consecutive samples (Λ = {1, 3
2
, 2, · · · , 8, 17

2
} and

Ω = {−3,−5
2
, · · · , 0, 1

2
, 9, 19

2
, · · · , 12, 25

2
}) we get ‖C‖ = 1.3921 × 106, and as we can

see in the Figure 2.6, our error in the computation of fR blows up on the erasure set.

Again, we are using the non-erased samples of f(t) = sinc(πt) between t = −5, 000 and

t = 5, 000 to approximate fR.
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Figure 2.6: Error amplification of consecutive erasures for Shannon-Whittaker Sampling

on 1
2
Z.
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3. REDUCED DIRECT INVERSION

3.1 The Reduced Direct Inversion Algorithm1

While studying Nilpotent Bridging, we discovered a second efficient method of invert-

ing the partial reconstruction operator, RΛ. The following proposition for one erasure led

us to believe that something more general was true.

Proposition 3.1. Assume that (F,G) is a dual frame pair for an n-dimensional (n ≤ ∞)

Hilbert space, H, and Λ = {k} is an erasure set such that 〈fk, gk〉 6= 1. Then, RΛ is

invertible, and

R−1
Λ = In +

1

1− 〈fk, gk〉
fk ⊗ gk (3.1)

where In denotes the n-dimensional identity operator.

Proof. Notice that

RΛ

(
In +

1

1− 〈fk, gk〉
fk ⊗ gk

)
= (In − fk ⊗ gk)

(
In +

1

1− 〈fk, gk〉
fk ⊗ gk

)
= In +

(
1

1− 〈fk, gk〉
− 1

)
fk ⊗ gk

− 1

1− 〈fk, gk〉
(fk ⊗ gk)2

= In +
〈fk, gk〉

1− 〈fk, gk〉
fk ⊗ gk −

〈fk, gk〉
1− 〈fk, gk〉

fk ⊗ gk

= In.

Similarly, (
In +

1

1− 〈fk, gk〉
fk ⊗ gk

)
RΛ = In.

1The first paragraph of the proof of Theorem 3.3 was reproduced from [37] and [38] With permission of
Springer.
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After computing formulas for RΛ for |Λ| = 1 and |Λ| = 2, we decided to try to

determine a formula for any erasure set size. The next day, we computed the derivation

which is the majority of the proof of Theorem 3.3. The theorem gives a closed-form,

basis-free formula for RΛ. For the the proof, and throughout the remainder of this section,

we will use the notations laid out in the following remark.

Remark 3.2. Throughout this section, for finite frames, F will denote both the synthesis

operator for the frame, and the frame itself. That is, if F = {fj}Nj=1 is a complex (or real

valued) frame,

F =


↑ ↑ ↑

f1 f2 · · · fN

↓ ↓ ↓


(the matrix whose columns are the frame vectors, fj). Similarly, FΛ will denote both

FΛ = {fj}j∈Λ and the synthesis operator for the sequence {fj}j∈Λ. For a dual frame

pair, we will define MΛ = G∗ΛFΛ = (〈fk, gj〉)j,k∈Λ. Additionally, Id will denote the

d-dimensional identity operator. Throughout, we will also use n ≤ ∞ to denote the

dimension of the Hilbert space H, and L to denote the cardinality of the erasure set (i.e.

|Λ| = L).

Theorem 3.3. Assume that (F,G) is a dual frame pair for a Hilbert space, H, and Λ is

an erasure set. Then RΛ is invertible if and only if (IL −MΛ) is invertible. Furthermore,

if C = (cj,k)j,k∈Λ = (IL −MΛ)−1, then

R−1
Λ = In +

∑
j,k∈Λ

cj,kfj ⊗ gk. (3.2)

For the proof, we require the following lemma, which we will isolate because we

will refer to the Lemma on several occasions. Recall that the spectrum of an operator
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T ∈ B(H) is the set

σ(T ) = {λ : (λIn − T ) is not invertible}.

Lemma 3.4. Assume that (F,G) is a dual frame pair for a Hilbert space, H, and Λ is an

erasure set. Then σ(EΛ) \ {0} = σ(MΛ) \ {0}.

Proof. We can easily see that MΛ = G∗ΛFΛ, and EΛ = FΛG
∗
Λ. Assume that f ∈ H is an

eigenvector for EΛ with eigenvalue λ 6= 0. Then,

FΛG
∗
Λf = EΛf = λf.

Thus, applying G∗Λ to both sides gives

G∗ΛFΛG
∗
Λf = λ(G∗Λf).

Thus, λ ∈ σ(MΛ)\{0} provided thatG∗Λf 6= 0. If we assume for the sake of contradiction

that G∗Λf = 0, then

λf = EΛf = FΛG
∗
Λf = 0.

So, either λ = 0, or f = 0. Either of these contradict that f is an eigenvector for EΛ with

non-zero eigenvalue λ. Thus, G∗Λf 6= 0, and so λ ∈ σ(MΛ) \ {0}. Thus, σ(EΛ) \ {0} ⊂

σ(MΛ) \ {0}. A similar argument shows that σ(MΛ) \ {0} ⊂ σ(EΛ) \ {0}

Proof of Theorem 3.3. Assume without loss of generality that Λ = {1, · · · , L}, and that

(IL −MΛ) is invertible. Assume that the inverse of RΛ has the form

T = In +
L∑

j,k=1

cjkfj ⊗ gk. (3.3)
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for some cjk ∈ C. Then,

In = TRΛ

=

(
In +

L∑
j=1

L∑
k=1

cjkfj ⊗ gk

)(
In −

L∑
j=1

fj ⊗ gj

)

= In +
L∑
j=1

L∑
k=1

cjkfj ⊗ gk −
L∑
j=1

fj ⊗ gj −
L∑
j=1

L∑
k=1

L∑
`=1

cjk(fj ⊗ gk)(f` ⊗ g`)

= In +
L∑
j=1

L∑
k=1

cjkfj ⊗ gk −
L∑
j=1

fj ⊗ gj −
L∑
j=1

L∑
`=1

L∑
k=1

cjk 〈f`, gk〉 (fj ⊗ g`)

= In +
L∑
j=1

L∑
k=1

cjkfj ⊗ gk −
L∑
j=1

fj ⊗ gj −
L∑
`=1

L∑
j=1

L∑
k=1

cj` 〈fk, g`〉 (fj ⊗ gk).

In the last sum, we switched indices k and `. Thus,

L∑
j=1

fj ⊗ gj =
L∑
j=1

L∑
k=1

cjkfj ⊗ gk −
L∑
`=1

L∑
j=1

L∑
k=1

cj` 〈fk, g`〉 (fj ⊗ gk).

By simply setting the coefficients of the fj ⊗ gk to δj,k, we obtain the following system of

equations:

cjk −
L∑
`=1

cj` 〈fk, g`〉 = δjk. (3.4)

For a fixed value of j, we have the system

(δjk)
T
k=1,··· ,L =



1− 〈f1, g1〉 − 〈f1, g2〉 · · · − 〈f1, gL〉

− 〈f2, g1〉 1− 〈f2, g2〉 · · · − 〈f2, gL〉
...

... . . . ...

−〈fL, g1〉 − 〈fL, g2〉 · · · 1− 〈fL, gL〉


(cjk)

T
k=1,··· ,L
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Let C = (cjk)j,k. Combining the equations for all j gives

IL = (IL −MT
Λ )CT

So, C(I − MΛ) = I , and thus, C = (I − MΛ)−1. From here it is easily verified that

R−1
Λ = T . This establishes both the backwards implication, and the “furthermore” part.

To prove the forwards implication, assume that RΛ is invertible. Then, since RΛ =

In − EΛ, 1 6∈ σ(EΛ). Thus, by Lemma 3.4, 1 6∈ σ(MΛ), and so 0 6∈ σ(IL −MΛ). That is,

IL−MΛ is injective. Therefore, since IL−MΛ is a finite dimensional matrix, IL−MΛ is

invertible.

The next corollary provides an easily implemented algorithm for Reduced Direct In-

version. Furthermore, this algorithm will be well suited for Matlab because it uses matrix

multiplications as opposed to for loops.

Corollary 3.5. Assume that (F,G) is a dual frame pair for a finite dimensional Hilbert

space,H, and Λ is an erasure set. If C = (cj,k)j,k∈Λ = (IL −MΛ)−1, then for all f ∈ H

f = fR + FΛCG
∗
ΛfR. (3.5)

Remark 3.6. As with Nilpotent Bridging, we are also interested in noise mitigation for

Reduced Direct Inversion, and we have dedicated two sections (one theoretical and one

experimental) to this topic. As with bridging, errors in the partial reconstruction, fR can

be amplified by the matrixC = (I−MΛ)−1. However, the TRIP frames from Construction

Algorithm 2.47 will be highly robust to noise.

Remark 3.7. Recall from equation (1.23) that we can invert RΛ (provided ‖EΛ‖ < 1) by
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employing a Neumann series:

R−1
Λ = (In − EΛ)−1 =

∞∑
k=0

Ek
Λ. (3.6)

Likewise, a Neumann series can be run to invert RΛ by using reduced direct inversion

provided ‖MΛ‖ < 1. From equation (3.5), we have

f = fR + FΛ(IL −MΛ)−1G∗ΛfR (3.7)

= fR + FΛ

(
∞∑
k=0

Mk
Λ

)
G∗ΛfR (3.8)

= fR + FΛ

(
∞∑
k=0

Mk
Λ(G∗ΛfR)

)
. (3.9)

Furthermore, EΛ and MΛ have the same spectrum, and thus both methods require the

same number of iterations. Thus, since the original method (equation (3.6)) requires larger

matrix multiplications, it is now obsolete whenever L < n. Moreover, inverting RΛ for

a tight frame is the same as the FORC method described in the Introduction. Thus, the

FORC method is also obsolete provided we are using tight frames and L < n.

Remark 3.8. After giving a talk on this method, Dr. Foucart commented that the intuition

for this method was actually quite simple, and we will give a brief exposition on this next

(see the short expository article [49]).
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Formally, we can write

R−1
Λ = (In − FΛG

∗
Λ)−1

∼
∞∑
k=0

(FΛG
∗
Λ)k

= In + FΛ

∞∑
k=1

(G∗ΛFΛ)k−1G∗Λ

= In + FΛ

∞∑
k=0

(G∗ΛFΛ)kG∗Λ

∼ In + FΛ(I −G∗ΛFΛ)−1G∗Λ.

This is precisely equation (3.5) in Corollary 3.5.

3.2 Implementation

In this section, we will give an implementation of our algorithm, and a brief explana-

tion of the code.

1 n = 2000 ;

2 N = 3000 ;

3 L = [ 1 : 1 0 0 ] ;

4

5 F = ( 1 / s q r t ( n ) ) ∗ randn ( n ,N) ;

6 S = F ∗ F ’ ;

7 G = S \ F ;

8

9 f = rand ( n , 1 ) ;

10 f = f . / norm ( f , 2 ) ;

11

12 FC = G’ ∗ f ;
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13 FC ( L ) = z e r o s ( s i z e ( L ’ ) ) ;

14

15 f_R = F ∗ FC ;

16

17 M = G ( : , L ) ’ ∗ F ( : , L ) ;

18 C = ( eye ( l e n g t h ( L ) ) − M) \ eye ( l e n g t h ( L ) ) ;

19

20 g = f_R + F ( : , L ) ∗ (C ∗ (G ( : , L ) ’ ∗ f_R ) ) ;

21

22 norm ( f−g , 2 )

Lines 1-16 and 21-22 perform the same tasks as the Nilpotent Bridging algorithm, so

for more details, see the exposition in Section 2.4. In line 17 we compute MΛ, in line

18 we compute C = (IL −MΛ)−1, and in line 20 we compute the reconstruction g as in

equation (3.5). Lastly, in line 22, we compute the error in our reconstruction. Since we

have no noise term above, this error is only machine error.

As with bridging, we can replace lines 5-7 with the following code which will create a

standard normally distributed TRIP frame.

1 F = randn (N, n ) ;

2 [ F , ~ ] = qr ( F , 0 ) ;

3 F = F ’ ;

4 G = F ;

As was mentioned in Remark 3.7 we can use Neumann iterations to invert I −MΛ.

However, we can employ a couple of numerical shortcuts to speed up the process. We will
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denote by fκ the reconstruction of f after performing κ Neumann iterations. That is,

fκ = fR + FΛ

(
κ∑
k=0

Mk
ΛG
∗
ΛfR

)
. (3.10)

We next rewrite this as

fκ = fR + FΛ

(
κ∑
k=0

Mk
Λh0

)
, (3.11)

where h0 = G∗ΛfR. Letting

hn =

(
n∑
k=0

Mk
Λh0

)
(3.12)

we see that

hn = h0 +MΛhn−1. (3.13)

Thus, combining equations (3.11), (3.12), and (3.13) we have

fκ = fR + FΛhκ. (3.14)

Using this setup gives us a more efficient computation of fκ than directly applying equation

(3.10) because it is much quicker to multiply a matrix and a vector than to multiply two

matrices. An implementation of Reduced Direct Inversion with Neumann iterations can

be done by replacing lines 18-20 with the following code.

1 t o l e r a n c e = 10^(−10)

2 Mnorm = norm (M) ;

3 NumIter = round ( l o g ( t o l e r a n c e ∗(1−Mnorm ) ) / l o g ( Mnorm ) ) ;

4

5 h_0 = G ( : , L ) ’∗ f_R ;

6 h_k = z e r o s ( s i z e ( L ’ ) ) ;

7 f o r ( j = 1 : 1 : NumIter )
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8 h_k = h_0 + M ∗ h_k ;

9 end

10

11 g = f_R + F ( : , L ) ∗ h_k ;

In the first line we specify a tolerance level for the inverse of IL −MΛ. In line 2 we

compute the norm of MΛ in order to determine the number of iterations required to reach

our tolerance in line 3 (see Theorem 1.2 in the Introduction). In line 5 we compute h0, and

in lines 6-9 we compute hκ using the recursion formula in equation (3.13). In line 11, we

compute fκ using equation (3.14).

3.3 An Analysis of TRIP Frames

In this section, we will give probabilistic estimates for the RIP constants for standard

normally generated TRIP frames. These estimates will be of great use in Section 3.4,

where we will provide bounds for the amplification of error in our reconstruction. The

first lemma just verifies that the TRIP frame construction actually produces a tight frame.

Lemma 3.9. Let H , Q, R, F , and G be as in the construction of a TRIP frame (see

Construction Algorithm 2.47). Then, F is a tight frame with frame bound N
n

, and G is its

standard dual.

Proof. Let S denote the frame operator for F . Then S = FF ∗ = N
n
Q∗Q = N

n
I since the

columns of Q form an orthonormal set. Thus, for f ∈ H,

N

n
‖f‖2 =

N

n
〈f, f〉 = 〈Sf, f〉 =

〈
N∑
j=1

〈f, fj〉 fj, f

〉
=

N∑
j=1

|〈f, fj〉|2 . (3.15)

Therefore, F is a tight frame with frame bound N
n

.

The point of the next lemma is to show that if 1√
n
H satisfies the RIP with a good
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constant, and 1√
n
H is close to being a FUNTF, then, F will also satisfy the RIP with

a good bound. Thus, if we were to apply Theorems 1.12 and 1.13, then, with a high

probability if the entries of H are drawn from the standard normal distribution, F will

satisfy the RIP with a good constant.

Lemma 3.10. Assume 0 < α ≤ β <∞, and H is an n×N matrix for which

α‖x‖2 ≤
∥∥∥∥ 1√

n
Hx

∥∥∥∥2

≤ β‖x‖2 (3.16)

for all s-sparse vectors x ∈ RN . Assume Q, R, and F are as in Construction Algorithm

2.47, and H has lower and upper frame bounds A and B, respectively. Then for all s-

sparse vectors x ∈ RN ,

N

n

α

B
‖x‖2 ≤ ‖Fx‖2 ≤ N

n

β

A
‖x‖2. (3.17)

Proof. Since Q∗Q = I , and H∗ = QR, Q∗H∗ = R. From Proposition 1.10 QQ∗ is

the projection onto the range of Q. Since
√

n
N
F = Q∗, and

√
n
N
F is Parseval, Q is an

isometry. Since H∗ = QR, range(H∗) ⊂ range(Q). So, QQ∗H∗ = H∗. Thus, for any

f ∈ H,

‖Rf‖2 = ‖Q∗H∗f‖2 = ‖QQ∗H∗f‖2 = ‖H∗f‖2. (3.18)

Thus, A‖f‖2 ≤ ‖Rf‖2 ≤ B‖f‖2. So,

1

B
≤ ‖R−1‖2 ≤ 1

A
. (3.19)

Combining this with equation (3.16) gives

‖Fx‖2 =
N

n
‖Q∗x‖2 =

N

n
‖(R−1)∗Hx‖2 ≥ N

n

1

B
‖Hx‖2 ≥ N

n

α

B
‖x‖2.
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Similarly,

‖Fx‖2 ≤ N

n

β

A
‖x‖2.

Remark 3.11. If H is close to a FUNTF, then A ≈ N
n

, and B ≈ N
n

. Thus, equation (3.17)

becomes

α‖x‖2 . ‖Fx‖2 . β‖x‖2.

The next theorem quantifies the statements that we made prior to Lemma 3.10. That

is, if the entries of H are drawn independently from the standard normal distribution, then

the tight frame, F , produced by our TRIP frame construction procedure is likely to satisfy

the RIP.

Theorem 3.12. Assume that H is an n×N matrix with entries drawn independently from

the standard normal distribution. Let F be as in Construction Algorithm 2.47, and ρ be

the constant as in Theorem 1.12. If

ρ

δ2

(
s ln

(
eN

s

)
+ ln

(
2

γ

))
≤ n ≤

12 ln
(
γ
2

)
+ (3η2 − 4η3)N

12 ln
(

1 + 4
η

) , (3.20)

then with probability at least 1− 2γ, for all s-sparse vectors x ∈ Rn,

1

(1 + η)3
(1− δ)‖x‖2 ≤ ‖Fx‖2 ≤ (1 + η)3(1 + δ). (3.21)

3.4 Numerical Considerations

In this section, we will give some estimates for the number of Neumann iterations

required to obtain a certain error tolerance, as well as error bounds for sparse noise. In

particular, since standard normally distributed TRIP frames are easily constructed and
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well behaved, we will pay special attention to the stability of our algorithms for this class

of frames.

The first lemma provides upper and lower bounds on the norm ofMΛ when F is a tight

frame satisfying a condition similar to the RIP.

Lemma 3.13. Assume that F is a tight frame with frame bound A, and G is the standard

dual to F (i.e. G = 1
A
F ). Suppose that for all s-sparse vectors, x ∈ RN ,

α‖x‖2 ≤ ‖Fx‖2 ≤ β‖x‖2. (3.22)

If |Λ| = L ≤ s, then
α

A
IL ≤MΛ ≤

β

A
IL. (3.23)

In particular, for all y ∈ RL,

α

A
‖y‖ ≤ ‖MΛy‖ ≤

β

A
‖y‖. (3.24)

Proof. For y ∈ RL,

〈MΛy, y〉 = 〈G∗ΛFΛy, y〉 =
1

A
〈F ∗ΛFΛy, y〉 =

1

A
〈FΛy, FΛy〉 =

1

A
‖FΛy‖2. (3.25)

Thus,
α

A
IL ≤MΛ ≤

β

A
IL.

The “in particular” part follows from the operator inequality.

The following corollary will give us the number of iterations we need in order to ensure

that ‖f − fκ‖ meets a prescribed error bound, where fκ is as in equation (3.10).
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Corollary 3.14. Assume that F is a tight frame with frame boundA, andG is the standard

dual to F (i.e. G = 1
A
F ). Suppose that for all s-sparse vectors, x ∈ RN ,

α‖x‖2 ≤ ‖Fx‖2 ≤ β‖x‖2. (3.26)

Assume |Λ| = L ≤ s and β < A. Given γ > 0, if κ > log β
A

(
γ
(
A
β
− 1
))
− 1, then

‖f − fκ‖ ≤ γ‖fR‖. (3.27)

Proof. By Lemma 3.13 ‖MΛ‖ ≤ β
A

. From Theorem 1.2, for κ > log β
A

(
γA
β

(
1− β

A

))
− 1,

‖(IL −MΛ)−1 −
κ∑
k=0

Mk
Λ‖ ≤

γA

β
.

So, for κ > log β
A

(
γ
(
A
β
− 1
))
− 1, we have

‖f − fκ‖ =

∥∥∥∥∥FΛ(I −MΛ)−1G∗ΛfR − FΛ

(
κ∑
k=0

Mk
Λ

)
G∗ΛfR

∥∥∥∥∥
≤ ‖FΛ‖

∥∥∥∥∥(I −MΛ)−1 −
κ∑
k=0

Mk
Λ

∥∥∥∥∥ ‖GΛ‖‖fR‖

≤
√
β
γA

β

√
β

A
‖fR‖

= γ‖fR‖.

Remark 3.15. By Corollary 3.14, the number of Neumann iterations required is

O

(
ln
(
1− 1

A

)
ln
(

1
A

) )
.

92



However, for the TRIP frames, or a FUNTF,A = N
n

, which is often referred to as the frame

excess. Thus, the larger the frame excess, the quicker our Neumann series converges.

In the next lemma, we are interested in the amplification associated to additive channel

noise. Before we are ready for the lemma, we will need to lay out some conventions.

Since we are discussing channel noise, we are concerned with noise introduced to the

non-erased frame coefficient sequence (〈f, gj〉)j∈Λc . For this model, we will consider an

additive sparse noise term ε = (εj)j∈Λc . Thus, the error in the partial reconstruction, fR,

is FΛcε. Since R−1
Λ is linear, the corresponding error in the reconstruction of f is the error

term

ferr = R−1
Λ FΛcε. (3.28)

The next lemma gives an upper bound on ‖ferr‖ for a tight frame, F , which also satisfies

an RIP-style bound.

Lemma 3.16. Assume F is a tight frame with frame bound A and there exist constants

0 < α ≤ β < A for which

α‖x‖2 ≤ ‖Fx‖2 ≤ β‖x‖2 (3.29)

for all s sparse vectors, x ∈ CN . If ε is an s-sparse error term and |Λ| ≤ s, then

‖ferr‖ ≤ A
√
β

A−β ‖ε‖.

Proof. Since ε is s-sparse, and F satisfies equation (3.29), we have

‖FΛcε‖ ≤
√
β‖ε‖. (3.30)

Next, since MΛ ≤ β
A

,

IL −MΛ ≥
(

1− β

A

)
IL =

A− β
A

IL.
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Since 0 < β < A, (IL −MΛ)−1 exists, and

(IL −MΛ)−1 ≤ A

A− β
. (3.31)

Thus, combining equations (3.28), (3.30), and (3.31) gives

‖ferr‖ = ‖R−1
Λ FΛcε‖

= ‖(In + FΛ(IL −MΛ)−1G∗Λ)FΛcε‖

=

∥∥∥∥FΛcε+
1

A
FΛ(IL −MΛ)−1F ∗ΛFΛcε

∥∥∥∥
≤ ‖FΛcε‖+

1

A
‖FΛ(IL −MΛ)−1F ∗Λ‖‖FΛcε‖

≤
√
β‖ε‖+

√
β

A
‖FΛ‖‖(IL −MΛ)−1‖‖F ∗Λ‖‖ε‖

≤
√
β‖ε‖+

√
β

A
β

A

A− β
‖ε‖

=
√
β

(
1 +

β

A− β

)
‖ε‖

=
A
√
β

A− β
‖ε‖.

By combining Lemma 3.16 with Theorem 3.12, we get the following result for stan-

dard normally generated TRIP frames.

Theorem 3.17. Assume that (F,G) is a standard normally generated TRIP frame, s < N ,

γ, δ ∈ (0, 1), η > 0, and

ρ

δ2

(
s ln

(
eN

s

)
+ ln

(
2

γ

))
≤ n ≤

12 ln
(
γ
2

)
+ (3η2 − 4η3)N

12 ln
(

1 + 4
η

) ,

where ρ is the constant from Theorem 1.12. If ε is an s-sparse error term and |Λ| ≤ s,
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then with probability at least 1− 2γ,

‖ferr‖ ≤
N
√

(1 + η)3(1 + δ)

N − n(1 + η)3(1 + δ)
‖ε‖

3.5 Noise Mitigation

The first experiment is the Reduced Direct Inversion equivalent of the the first exper-

iment that we ran for Nilpotent Bridging. As with that experiment, the goal is to dis-

play how well Reduced Direct Inversion performs subject to normally distributed additive

noise (not necessarily sparse). As with Nilpotent Bridging, we used standard normally

distributed TRIP frames of length 1000 in R250, and varied the erasure set sizes between

10 and 250 in multiples of 10. For each erasure set size, we ran 50 trials, each with a

new standard normally distributed TRIP frame. In each trial we added a new 5% Gaussian

random noise term (not necessarily sparse) to the non-erased frame coefficients. In Figure

3.1, we plotted the errors in the noisy partial reconstruction f̃R (see equation (2.36)), and

the noisy reconstruction,

f̃ = f̃R + FΛ(I −MΛ)−1G∗Λf̃R = f + ferr. (3.32)

In every instance, Reduced Direct Inversion outperforms the noisy partial reconstruction.

We also see that there is very little error amplification, even for |Λ| = 250. This is some-

what shocking as our theoretical guarantees only give error bounds for values of n on the

order of

O
(
|Λ| ln

(
N

|Λ|

))
.
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Figure 3.1: Noise amplification using Reduced Direct Inversion.

Figure 3.2 is meant to be a pictorial representation of the previous experiment and is

similar to our Lena experiment for Nilpotent Bridging. As before, we first compressed the

256 × 256 pixel image Lena by 15%, and computed a Gaussian random TRIP frame of

length N = 2n. As in the previous experiment, we added a 5% noise term to the non-

erased coefficients. Our erasure set sizes for this experiment varied from 1% to 5% of the

length of the frame, N . We plotted the image with only noise corruption in the first row,

the erased image with noise (f̃R) in the second row, and the reconstructed image (f̃ ) in the

third row. As with 25% overbridging, we see a noticeable improvement in the third row

over the second row, and the first and third rows are very comparable.
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3.6 Applications to Shannon-Whittaker Sampling Theory

Reduced Direct Inversion can also be applied to Shannon-Whittaker Sampling Theory

to reconstruct from sampling erasures. As with Nilpotent Bridging, the error in the finite

term approximation of the partial reconstruction, fR, can be highly amplified if ‖(I −

MΛ)−1‖ = ‖C‖ is too large. Again, the reconstruction is highly unstable when we erase

consecutive samples, and the reconstruction is very stable when the erased data points are

sufficiently scattered. For example, the first graph, Figure 3.3, shows the reconstruction of

f(x) = sinc(πx) from erasures indexed by Λ = {1, 2, · · · , 100}, for Shannon-Whittaker

Sampling on the half integers. We see that the reconstruction aligns very nicely with the

original signal. For this example, Matlab computes ‖C‖ to be 2.0000.

Figure 3.3: Error amplification of spaced erasures for Shannon-Whittaker Sampling on

1
2
Z.
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In stark contrast, Figure 3.4 shows the reconstruction from 12 consecutive erasures

Λ = {1, 3
2
, · · · , 6, 13

2
}. As with Nilpotent Bridging, we are using the non-erased sampled

values between x = −5, 000 and x = 5, 000 to approximate fR. For this experiment, Mat-

lab computes ‖C‖ to be 5.6234×107, and we can see a large blowup of the reconstruction

on the erasure set.

Figure 3.4: Error amplification of consecutive erasures for Shannon-Whittaker Sampling

on 1
2
Z.

Since the matrix C = (IL − MΛ) is self-adjoint in the case of Shannon-Whittaker

Sampling Theory, we are able to obtain some bounds on its norm by using techniques

from scattered data interpolation (cf. [25], [46], and [51]).

Proposition 3.18. Let (Gp, Fp) be the dual frame generated by Shannon-Whittaker Sam-
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pling on the lattice pZ. Then
rp

2π
≤ ‖MΛ‖ ≤

Rp

2π
, (3.33)

where r and R are the lower and upper Riesz bounds for the sequence {eij·}j∈Λ in the

space L2 [−π, π].

Proof. First, notice that

MΛ = (〈fk, gj〉)j,k∈Λ

= (〈p sinc(π(· − k)), sinc(π(· − j))〉)j,k∈Λ

= p(sinc(π(j − k)))j,k∈Λ.

Since sinc(πx) exhibits even symmetry, MΛ is self-adjoint, and thus ‖MΛ‖ is bounded

below by its smallest eigenvalue (min‖x‖=1 〈MΛx, x〉), and above by its largest eigenvalue

(max‖x‖=1 〈MΛx, x〉). Let φ(x) = sinc(πx). To compute these eigenvalues, we have

〈MΛx, x〉 =

〈(
p
∑
k∈Λ

xksinc(π(j − k))

)
j∈Λ

, x

〉
= p

∑
j,k∈Λ

xjxkφ(π(j − k))

=
p

2π

∑
j,k∈Λ

xjxk

∫
R
φ̂(ξ)ei(j−k)ξ dξ

=
p

2π

∫
R

(∑
j,k∈Λ

xjxkφ̂(ξ)ei(j−k)ξ

)
dξ

=
p

2π

∫
R
φ̂(ξ)

∣∣∣∣∣∑
j∈Λ

xje
ijξ

∣∣∣∣∣
2

dξ.

If we let χπ(x) be the characteristic function of the interval [−π, π], it is easily verified
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that χ̂π(ξ) = 2πsinc(πξ). Thus, φ(x) = 1
2π
χ̂π(x). Hence

φ̂(ξ) =
1

2π
ˆ̂χπ(ξ) = χπ(−ξ) = χπ(ξ).

So,

〈MΛx, x〉 =
p

2π

∫ π

−π

∣∣∣∣∣∑
j∈Λ

xje
ijξ

∣∣∣∣∣
2

dξ =
p

2π

∥∥∥∥∥∑
j∈Λ

xje
ij·

∥∥∥∥∥
2

L2[−π,π]

. (3.34)

Therefore,
p

2π
r ≤ ‖MΛ‖ ≤

p

2π
R, (3.35)

where r andR are the L2[−π, π] lower and upper Riesz bounds for {eijx}j∈Λ, respectively.

Corollary 3.19. Let (Gp, Fp) be the dual frame generated by Shannon-Whittaker Sampling

on the lattice pZ. Then

‖C‖ = ‖(I −MΛ)−1‖ ≤ 2π

2π −Rp
, (3.36)

where R is the upper Riesz bound for the sequence {eijx}j∈Λ in L2 [−π, π].
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4. ERASURE RECOVERY MATRICES

4.1 The Erasure Recovery Matrix Reconstruction Algorithm

This section represents ongoing joint work with Deguang Han, David Larson, and

Wenchang Sun. Erasure recovery matrices were introduced by Han and Sun in [33]. Fur-

ther work, particularly relating to the reconstruction from frame coefficient erasures at

unknown locations can be found in the articles [31], [32], and [33]. However, in this

section, we will only be concerned with frame erasures at known locations.

Throughout this section, we will denote Cn (or Rn) byH. Let F = {fj}Nj=1 be a frame

for H and k be a positive integer. An m-erasure recovery matrix is a k × N matrix M

whose columns have spark m + 1, and which satisfies Mc = 0 for any vector c ∈ Θ(H),

where Θ denotes the analysis operator for the frame F . That is,

M (〈f, ϕj〉)Nj=1 = 0 ∀f ∈ H.

The next proposition lists some of the useful equivalent definitions for erasure recovery

matrices.

Proposition 4.1. Let F be a frame for H and Θ be its analysis operator. Suppose that

m ≥ 1 is an integer. The following are equivalent for a k ×N matrix, M .

(1) M is an m-erasure recovery matrix.

(2) The columns of M have spark m+ 1 and ker(M) ⊇ Θ(Hn).

(3) ker(M) ⊇ Θ(Hn) and for every set Λ ⊂ {1, 2, · · · , N} satisfying |Λ| ≤ m,

(M∗
ΛMΛ)−1 exists, where MΛ denotes the minor of M formed by the columns in-

dexed by Λ.

102



Proof. The proof of (1) ⇔ (2) is quite obvious. The proof of (1) ⇔ (3) follows by

applying Lemma 1.7.

Remark 4.2. Assume that M is an m-erasure matrix for a frame F for H. Assume that

f ∈ H, and c = (cj)
N
j=1, where cj = 〈f, fj〉. Then, by definition, we have

Mc = 0.

Hence, if we let MΛ denote the matrix with columns indexed by Λ, and cΛ denote the

vector (cj)j∈Λ for any Λ ⊂ {1, · · · , N}, we have

MΛcΛ +MΛccΛc = 0.

Rearranging the equation gives

MΛcΛ = −MΛccΛc . (4.1)

If the goal is to reconstruct the vector c from erasures indexed by erasures at Λ, our goal is

to solve equation (4.1) for cΛ. By using part (3) of Proposition 4.1 we will be able to use a

Moore-Penrose pseudo-inverse method to solve for cΛ. Multiplying both sides of equation

(4.1) by M∗
Λ gives

M∗
ΛMΛcΛ = −M∗

ΛMΛccΛc . (4.2)

Now, simply inverting we can reconstruct cΛ as

cΛ = −(M∗
ΛMΛ)−1M∗

ΛMΛccΛc , (4.3)

whenever |Λ| ≤ m.
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A previous method which was used was to chop off all but |Λ| rows of the matrices

MΛ and MΛc in equation (4.1). In doing so, we could use a matrix inversion to solve the

system of equations. However, the method of equation (4.3) turned out to be much more

stable.

Remark 4.3. The matrix MΛ in this section is not to be confused with the matrix MΛ used

for Reduced Direct Inversion, as they are not the same.

4.2 Erasure Recovery Matrix Construction Procedure

The following construction procedure will produce a pair (M,F ) where M is an m-

erasure recovery matrix for the Parseval frame F . Moreover, our reconstruction algorithm

using this pair will be quite stable. A discussion of this stability will be provided in Sec-

tions 4.3 and 4.5.

Construction Algorithm 4.4.

1. Generate an m × N matrix, H, whose entries are drawn independently from the

standard normal distribution, and where N ≥ n+m.

2. Let M = 1√
m
H .

3. Create an N × n random matrix T , and let A be the N × (n + m) whose first m

columns are the columns are the rows of M and columns m+ 1 through m+ n are

the columns of the matrix T .

4. Compute the qr-factorization of A. That is, factor A as A = QR where Q is a

matrix with orthonormal columns, and R is upper triangular.

5. Let F be the minor of Q∗ consisting of rows m+ 1 through m+ n.
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Proposition 4.5. Let M and F be as constructed above. If the columns of M have spark

m+1, andA has rank n+m, then F is a Parseval frame, andM is anm-erasure recovery

matrix for F .

Proof. By construction, since A has full rank the rows of F are orthonormal vectors, and

are orthogonal to the rows of M . Since FF ∗ = I , F is a Parseval frame. Since MF ∗ = 0,

and the columns of M have spark m+ 1, M is an erasure recovery matrix for F .

4.3 Numerical Considerations

Let M be an encoding frame protected m-erasure recovery matrix for a frame G for

H, and let F be a dual to G. Assume Λ is an erasure set satisfying |Λ| = L. For f ∈ H,

let cj = 〈f, gj〉 and c = (cj)
N
j=1. From equation (4.3), we have:

cΛ = −(M∗
ΛMΛ)−1M∗

ΛMΛccΛc . (4.4)

In this section, we would like to know what happens to our reconstruction when the frame

coefficients indexed by Λc are subject to noise. Since our reconstruction operator ∆ :

CN−L → CL defined by

∆c = −(M∗
ΛMΛ)−1M∗

ΛMΛcc ∀c ∈ CN−L (4.5)

is linear, if we introduce a noise term ε = (εj)j∈Λc to the good coefficients, the correspond-

ing error in the reconstructed coefficients is given by

∆ε = −(M∗
ΛMΛ)−1M∗

ΛMΛcε. (4.6)

Thus, if ‖ε‖ or ‖∆‖ is large, the reconstructed signal will be highly inaccurate. However,

we will see that this is not the case for this situation when we use Construction Algorithm
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4.4. The next lemma shows that if M satisfies a modified Restricted Isometry Property

and ε is sparse, then the error in the coefficients is only slightly amplified.

Remark 4.6. This sparse noise model was motivated by [11]. In that paper, a similar model

for erasure reconstruction was given. Their method uses a linear program to reconstruct

from erasures at unknown locations. If ε = (εj)
N
j=1, is a sparse noise term, then, M(c +

ε) = Mε. Since c + ε and M are known, to determine the noise term, they consider the

minimization problem:

argmin‖ε‖0 subject to Mε = M(c+ ε), (4.7)

where ‖ε‖0 denotes the number of non-zero entries of ε. However, this combinatorial prob-

lem is quite slow, so they solve the following much faster convex optimization problem

instead:

argmin‖ε‖1 subject to Mε = M(c+ ε). (4.8)

Lemma 4.7. Assume thatG is a frame forH andM is a k×N m-erasure recovery matrix

for G. Assume that for all s-sparse vectors x ∈ CN ,

α‖x‖2 ≤ ‖Mx‖2 ≤ β‖x‖2.

If ε = (εj)j∈Λc is an s-sparse noise term, |Λ| = L ≤ s, and ∆ is the reconstruction

operator as defined in equation (4.5), then,

‖∆ε‖ ≤ β

α
‖ε‖. (4.9)
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Proof. From equation (4.6), we have

‖∆ε‖ ≤ ‖(M∗
ΛMΛ)−1‖‖MΛ‖‖M c

Λε‖. (4.10)

Since |Λ| ≤ s, whenever ‖x‖ = 1, we get

〈M∗
ΛMΛx, x〉 = ‖MΛx‖2 ≥ α.

Thus, if σ(M∗
ΛMΛ) denotes the spectrum of M∗

ΛMΛ,

minσ(M∗
ΛMΛ) ≥ α.

Therefore

‖(M∗
ΛMΛ)−1‖ =

1

minσ(M∗
ΛMΛ)

≤ 1

α
. (4.11)

Again, since |Λ| ≤ s,

‖MΛ‖ ≤
√
β. (4.12)

Since ε is s-sparse,

‖MΛcε‖ ≤
√
β‖ε‖. (4.13)

Combining equations (4.10), (4.11), (4.12), and (4.13) gives the result.

The previous lemma gave a bound on the error of the frame coefficients. Next we will

build on this error estimate for the reconstruction of a signal f ∈ H. Recall that if (F,G)

is a dual frame pair, then

f =
N∑
j=1

〈f, gj〉 fj =
N∑
j=1

cjfj ∀f ∈ H, (4.14)
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where cj = 〈f, gj〉 for all j ∈ {1, · · · , N}. If the coefficients indexed by an erasure set Λ

are erased, and the coefficients indexed by Λc are subject to an additive noise term, given

by ε, then the corresponding error in the reconstruction of the erased coefficients is ∆ε.

Thus the reconstructed signal, after synthesizing with {fj}Nj=1 is

f̃ =
∑
j∈Λ

(cj + (∆ε)j)fj +
∑
j∈Λc

(cj + εj)fj = f +
∑
j∈Λ

(∆ε)jfj +
∑
j∈Λc

εjfj. (4.15)

The following lemma gives a bound on the reconstruction error, ‖f − f̃‖.

Lemma 4.8. Assume that F is a Parseval dual to the frame G, and that M is a k × N

m-erasure recovery matrix for {gj}Nj=1. Assume there exist constants 0 < α ≤ β ≤ ∞ so

that for all s-sparse vectors x ∈ CN ,

α‖x‖2 ≤ ‖Mx‖2 ≤ β‖x‖2,

Suppose |Λ| = L ≤ s, ε is an s-sparse noise term, and let f and f̃ be defined as in

equation (4.15). Then,

‖f − f̃‖ ≤
(

1 +
β

α

)
‖ε‖. (4.16)

Proof. From equation (4.15),

‖f − f̃‖ =

∥∥∥∥∥∑
j∈Λ

(∆ε)jfj +
∑
j∈Λc

εjfj

∥∥∥∥∥ = ‖FΛ∆ε+ FΛcε‖ ≤ ‖FΛ∆ε‖+ ‖FΛcε‖

≤ ‖∆ε‖+ ‖ε‖ ≤
(
β

α
+ 1

)
‖ε‖

where FΛ (resp. FΛc) is the minor of the synthesis matrix for F with columns indexed by

Λ (resp. Λc).

With Lemma 4.8 in mind, it should be fairly clear why Construction Algorithm 4.4
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works well. In that algorithm, sinceM is a standard normally distributed random matrix, it

will likely satisfy the RIP, as needed in the Corollary. The next theorem combines Lemma

4.8 with the RIP for standard normally distributed random matrices (Theorem 1.12) to

show that for m on the order of s ln
(
N
s

)
, the amplification of sparse additive noise will be

small.

Theorem 4.9. Assume that F and M are constructed as in Construction Algorithm 4.4.

Fix δ, γ ∈ (0, 1), and assume that ρ is the constant as in Theorem 1.12. If

m ≥ ρ

δ2

(
s ln

(
eN

s

)
+ ln

(
2

γ

))
, (4.17)

then with probability at least 1− γ, for any s-sparse vector x ∈ RN ,

(1− δ)‖x‖2 ≤ ‖Mx‖2 ≤ (1 + δ)‖x‖2.

Moreover, with f , f̃ , and ε defined as in Lemma 4.8, with probability greater than 1− γ,

‖f − f̃‖ ≤ 2

1− δ
‖ε‖. (4.18)

Remark 4.10. So far we have discussed the stability of Reduced Direct Inversion and the

method of reconstruction using Erasure Recovery Matrices. For a discussion of the stabil-

ity of the FORC method, see [20]. In that article, they discuss classes of frames, called

Numerically Erasure-Robust Frames (or NERFs), which are able to stably reconstruct from

frame erasures by using the FORC method.

4.4 Implementation

In this section, we provide an implementation for reconstruction from frame erasures

by using the method of Erasure Recovery Matrices. A line by line description of the
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program is given below.

1 m = 250 ;

2 n = 250 ;

3 N = 1000 ;

4 L = [ 1 : 1 0 ] ;

5

6 M = 1 / s q r t (m) ∗ rand (m,N) ;

7 A = [M’ , randn (N, n ) ] ;

8 [A, ~ ] = qr (A, 0 ) ;

9 F = A ( : ,m+1:m+n ) ’ ;

10

11 f = randn ( n , 1 ) ;

12 f = f . / norm ( f ) ;

13

14 FC = F ’ ∗ f ;

15 FC ( L ) = z e r o s ( s i z e ( L ’ ) ) ;

16

17 f_R = F ∗ FC ;

18

19 LC = s e t d i f f ( 1 : N, L ) ;

20 FC ( L ) = −(M( : , L ) ’∗M( : , L ) ) \ (M( : , L ) ’∗ (M( : , LC) ∗FC (LC) ) ) ;

21

22 g = f_R + F ( : , L ) ∗ FC ( L ) ;

23

24 norm ( f−g )
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In lines 1-4, we define the parameters for our experiment. The variable m is the height

of the erasure recovery matrix, N is the length of our frame, L is the erasure set, and n is

the dimension of the Euclidean space we are working in. In lines 6-9 we implement Con-

struction Algorithm 4.4. In lines 11 and 12, we generate a standard normally distributed

unit vector f which will serve as our test vector for the experiment. In line 14, we compute

the frame coefficients of f . In line 15, we erase the coefficients indexed by the erasure set.

In line 17, we compute fR. In line 19, we compute Λc. In line 20, we implement equation

(4.3) to recover the lost information. In line 22, we synthesize these computed coefficients

with the frame vectors indexed by Λ to obtain our reconstruction, g. In the last line, we

compute the norm of the error in the reconstruction. Since this method theoretically gives

a perfect reconstruction, the error is just the machine error in the computation.

4.5 Noise Mitigation

In this section, as with Nilpotent Bridging and Reduced Direct Inversion, we are in-

terested in studying the amplification of standard normally distributed additive noise for

the method of reconstruction using Erasure Recovery Matrices. In the first experiment, we

used Construction Algorithm 4.4 to create an erasure recovery matrix of size 250 × 1000

for a Parseval frame of length 1000 for R250. In this experiment, we added a 5% standard

normally distributed additive noise term (not necessarily sparse) to the frame coefficients

indexed by Λc. We varied the erasure set sizes between 10 and 250 in multiples of 10,

and for each erasure set size we performed 50 trials. For each trial, new frames, erasure

recovery matrices, and additive noise terms were used. In Figure 4.1, we plotted the errors

in the noisy partial reconstruction, f̃R (see equation (2.35)), and the noisy reconstruction,

f̃ (see equation 4.15). In the plot, the errors corresponding to |Λ| = 250 were omitted

to avoid distortion in the graph. When |Λ| = 250, the median noisy reconstruction error

was 0.52, with the maximum error at 12.97. Besides |Λ| = 250, in every instance plot-
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ted, we see that the noisy reconstruction outperforms the noisy partial reconstruction, but

the noisy reconstruction continues to worsen as we get closer to |Λ| = 250. However,

this is to be expected by our noise mitigation results since m should be on the order of

O
(
|Λ| ln

(
N
|Λ|

))
in order to achieve a good reconstruction.

Figure 4.1: Noise amplification using Erasure Recovery Matrices.

Figure 4.2 displays a set of images which are a more visual representation of the pre-

vious experiment. As with our Nilpotent Bridging and Reduced Direct Inversion exper-

iments with Lena, we first compress Lena (a 256 × 256 pixel image) by 15%. We then

fixed N = 2n + m for m = 2000. We computed an erasure recovery matrix and a Par-

seval frame as in Construction Algorithm 4.4. For this experiment, we used a 5% noise
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term, and varied our erasure sets between 1% and 5% of N . The first row of images shows

what the image looks like when the good coefficients are corrupted only by our noise term.

The second row shows f̃R, the noisy partial reconstruction of Lena. The third row shows

f̃ , the noisy reconstruction of Lena. In the image, we see that the noisy reconstruction

outperforms the noisy partial reconstruction, and the noisy image is comparable to our

reconstruction.
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Figure 4.2: Noise amplification for Erasure Recovery Matrices using Lena.



5. CONCLUSIONS

In this dissertation, three efficient methods of reconstruction from frame erasures were

considered. These methods are more efficient than older methods in the literature because

they only require an L×L matrix inversion to reconstruct from L erasures, whereas older

methods require an n × n matrix inversion, where n denotes the dimension of the under-

lying Hilbert space.

In Section 2, the Nilpotent Bridging algorithm was presented. This method involved

the use of a small collection of the non-erased frame coefficients, known as the bridge set,

to reconstruct the erased frame coefficients. Using the Baire Category Theorem and tools

from Matrix Theory, we were able to show that under certain mild conditions, any bridge

set of size L will work to implement the Nilpotent Bridging algorithm for an open and

dense collection of frames in the set of all frames in finite dimensions. We also showed

this for an open and dense collection of unions of two bases (resp. orthonormal bases)

in the set of all unions of two bases (resp. orthonormal bases) in finite dimensions. An

implementation of Nilpotent Bridging in Matlab was provided, along with experiments to

investigate the stability of Nilpotent Bridging. It was discovered that larger bridge sets

can be considered to mitigate the effects of channel noise. Further work must be done to

provide a quantitative analysis of this phenomenon. Additionally, in Section 2.3.4, several

open questions pertaining to Shannon-Whittaker Sampling Theory were posed.

In Section 3, we discussed the Reduced Direct Inversion algorithm. This method pro-

vided a simple shortcut for inverting the partial reconstruction operator, RΛ. A Matlab

implementation for this algorithm was also provided for this method. Using the Restricted

Isometry Property, we were able to provide some error bounds for the amplification of

channel noise with this reconstruction technique, though there is still some room for im-
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provement in this area. The chapter ends with a discussion on the connections between

the stability of Reduced Direct Inversion for Shannon-Whittaker Sampling Theory, and

Scattered Data Approximation. Further study on good Riesz bounds for finite sequences

of exponentials could provide error bounds for the algorithm for Shannon-Whittaker Sam-

pling Theory.

In Section 4, a method of reconstruction using Erasure Recovery Matrices was dis-

cussed. For this algorithm, another Matlab implementation was provided. A construction

of Erasure Recovery Matrices and frames for which this method works nicely was pre-

sented. An explanation of the channel noise mitigating effects of these frames using the

Restricted Isometry Property was provided. Again, there is possibly some room for im-

provement here. Finally, numerical experiments were presented to further display the noise

mitigating effects of the frames from the construction.
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