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ABSTRACT 

 

Hydrologic changes have affected coastal ecosystem sustainability along the 

Texas coast and throughout the Gulf of Mexico.  Human utilization of coastal 

ecosystems has led to the alteration of tidal hydrology. These ecosystems are highly 

dynamic and are greatly affected by tidal fluctuations and restriction to hydrologic flow.  

The main objective of this study was to understand the hydrologic effects of 

tides, hydrologic alterations, and subsequent restoration on salt marshes along the Texas 

coast.  The selected study site was Magnolia Beach marsh in Matagorda Bay, 

approximately 10.5 kilometers southeast of Port Lavaca, Texas.  The study also had 

three more specific objectives.  

The first objective was to determine the cause of marsh loss observed since 1958.  

This was accomplished by a GIS analysis that identified over 62 hectares of marsh loss 

and a hydrologic analysis that identified a pair of tidal barriers.  These barriers reduced 

the volume of water that could be exchanged between the salt marsh and Matagorda 

Bay.  This intermittent connectivity resulted in the internal waters of the marsh 

becoming hypersaline.  

The second objective was to measure the hydrologic response to tidal 

reconnection with the removal of the two barriers. This was accomplished through the 

creation of a STELLA computer model, a numerical inlet hydrology model, and a meta-

analysis to predict barrier removal success. An analysis of water level and water velocity 
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before and after the barrier removal was used to quantify the success of the hydrologic 

reconnection.   

The final objective was to create a tide prediction model to better estimate wind-

driven tides. The current NOAA model has been effective to give astronomical tide 

movements, but is not capable of predicting wind driven tides. The Enhanced Tide 

Model resulted in a 13.34% average increase in tidal prediction accuracy across all 

NOAA tidal gauges in the Gulf of Mexico and the East coast of Florida.  This tool could 

be used by the public, the shipping industry, and restoration planners to better 

understand tide dynamics in the Gulf of Mexico and abroad. 
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NOMENCLATURE 

 

CTD Conductivity, Temperature, and Depth 

ETM Enhanced Tide Model 

mS Millisiemens  

ppt Parts Per Thousand 

GLO General Land Office 

CEPRA Coastal Erosion Planning and Response Act 

NOAA National Oceanic and Atmospheric Administration  
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RSLR Relative Sea Level Rise 
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TC True Color 
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CHAPTER I  

INTRODUCTION 

 

Land and water interfaces are some of the most valued landscapes globally 

(Costanza et al. 1997).  Water access equates to economic value through increased 

housing prices, shipping, tourism, and outdoor recreation. This value places greater 

pressure on intercostal waterways and landscape types to provide ecosystem services for 

a plethora of uses (Feagin et al. 2015). Increased utilization subsequently results in 

greater related impacts to the landscape. Diking, dredging, wetland draining, and 

construction all alter the hydrology of the landscape and can lead to increased erosion, 

loss of coastal salt marshes, increased sediment transport, and altered tidal behavior 

(Bromberg, Silliman, and Bertness, 2009).  

Humans have altered the coastal environment for centuries and as populations 

increase the utilization of coasts has increased.  With climate change and the fluctuation 

of sea levels, the line between human infrastructure and water has grown thin.  Coastal 

managers face increasing pressure to meet both human and environmental needs while 

planning for an increasingly dynamic environment (Feagin, 2015).  

Land managers need to take a progressive approach to environmental restoration, 

and coastal protection. Effective coastal protection and management will continue to 

become more difficult as climate changes progress. Therefore, the immediate restoration 

of degraded marsh ecosystems through hydrologic restoration is crucial to preserve the 

ecosystem service value for fisheries and storm protection.   
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To support coastal planners and government officials to make coastal 

management decisions, we studied the success of barrier removal as an option for salt 

marsh restoration along the Texas Gulf Coast, and subsequent restoration of tidal 

connections. To further aid in the safe utilization of tidally connected waters, an 

Enhanced Tide Model was created to more effectively estimate wind driven tides. The 

work outlined above will fill a gap in current knowledge and create a framework for 

future restoration and public safety. 



1 *Reprinted with permission from “Hydrological barriers as a cause for salt marsh loss” by Huff and 

Feagin, 2017. Journal of Coastal Research, NO.77, pp. 88-96, Copyright [2017] by Journal of Coastal 

Research. 
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CHAPTER II  

HYDROLOGIC BARRIERS AS A CAUSE FOR SALT MARSH LOSS 

 

Introduction and Literature Review 

Salt marshes are some of the most productive ecosystems in the world (Day et 

al., 1995). However, many of these environments have been hydrologically altered by 

humans and these alterations can affect their sustainability under future conditions, 

including changing drought periods or relative sea level rise (RSLR) (Bouma et al., 

2014; Bromber, Silliman, and Bertness, 2009). This human interference can alter the 

species composition and result in reduced species richness (Kirwan et al., 2010; 

Mathews et al., 2014). As hydrology is modified, the health of the marsh plants, birds 

and fish using the area is also modified (Boesch and Turner, 1984; Broome, Seneca, and 

Woodhours, 1988; Day et al., 1995; Temmerman, De Vries, and Bouma, 2012).  

Hydrological alternation can include drainage for agricultural usage (Portnoy, 

1999; Roman et al., 2002; Tiner, 1984; Warren et al., 2002), the construction of canals 

by oil and gas exploration activities (Boesch and Turner, 1984; Ko and Day, 2004; 

Roman, Niering, and Warren, 1984), and mosquito diking (NOAA, 2010). Hydrological 

alterations can cause chemical changes within the marsh soil and water of the marsh 

ranging from decreased soil salinity levels in drained marsh soil to high salt levels in 

impounded salt marshes (Delgado et al., 2013; Portnoy, 1999). Impoundment and 

hydrological disconnection can contribute to increased subsidence (Turner and Neill,
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 1983), reduce rates of sedimentary accretion and freshwater mixing (Colon-

Rivera et al., 2012), and result in re-distribution of herbaceous species (Sinicrope et al., 

1990).  

Hydrological restoration includes the removal of barriers to tidal flow, and can be 

a productive method to reverse or reduce marsh loss (Firth et al., 2014; Turner and Neill, 

1983). As shown by Warren et al. (2002), the re-introduction of tidal action can 

rehabilitate a former salt marsh in stages, with the vegetation closest to the restored tidal 

edge experiencing greater immediate recovery, although some marshes can still take up 

to 15 years for other functions to fully recover. Still, barrier removal can result in 

recovery over great areas, with only a small amount of cost and effort expended (NOAA, 

2010; Sinicrope et al., 1990). As part of this increased emphasis by NOAA on the cost 

effectiveness of removing barriers as a manner of marsh restoration, we identified a 

large marsh complex that was suffering from hydrological disconnection. This marsh 

complex stretches from Magnolia Beach to Indianola, Texas.  

Our primary objective was to quantify the amount of marsh loss, and ascertain if 

this loss was related to hydrological barriers. We measured data on land cover changes 

in the marsh complex from 1958 to 2012, and then related these changes to RSLR, 

precipitation, and barrier location. We also identified the magnitude of the barriers to 

present-day hydrology in terms of their effect on changing water levels and salinity. This 

was conducted via analyzing in-situ data to understand past differences. Using this 

approach, we show the potential for removing relatively small barriers as a cost-effective 

solution to counter-act marsh losses across broad areas of land. 
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Methods 

Study Area  

The study area is a complex of coastal salt marshes located on the west shore of 

Matagorda Bay near Indianola and Magnolia Beach, an area south of Port Lavaca, Texas 

(Figure 1). These marshes were historically connected to Matagorda Bay by at least two 

pathways; one natural inlet at the north end of the marsh known as Magnolia Inlet, and a 

second natural connection to the south that leads to Powderhorn Lake through an area 

known as Fish Pass.  

The vegetation within the low (intertidal) marsh is characterized by Spartina 

alterniflora, with Batis maritima and Salicornia virginica dominant at slightly higher 

elevations or at more hydrologically distant portions of the marsh. The low marsh 

transitions to unvegetated salt flat as elevation increases. A small bluff exists in many 

portions of the area, where the salt flat quickly transitions into upland vegetation, 

composed primarily of Tamaulipan scrub with Opuntia sp. and Yucca gloriosa along the 

periphery of the wetlands. Large salt flats are common in the portions of the marsh south 

of Zimmerman Road (Figure 2). 
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Figure 1: Research site location and surrounding water bodies with water connectivity shown with arrows. 
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Figure 2: Research site with locations of blockages indicated with triangles and tidal gauge locations with 

stars. The lined areas indicate the marsh area. 

 

Prior to this study, it was becoming increasingly apparent to residents and coastal 

managers that (while lacking quantitative data) the vegetation had been dying, nekton 

numbers were reduced, and marsh area was declining. The causes of the deterioration 

were not understood, but suspected to be due to hydrological barriers that block tidal 

flow. Three potential barriers were initially identified. The first barrier was a shell and 

mud debris pile spanning the width of Magnolia Inlet. This debris appeared to have 

accumulated to block the majority of the connection from Old Town Lake to Magnolia 

Bay. Another barrier existed at Fish Pass, and appeared to be a shell-hash road that 

stretched across the marsh surface constructed sometime prior to 1958 (Figure 2). This 
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barrier was removed on May 27, 2013. Another potential barrier existed at Zimmerman 

Road, which was a shell-hash road that stretched across the marsh, with construction 

prior to 1958. At Zimmerman Road, culverts were in place through a small gap in the 

road, though they appeared to be partially clogged with sediment.  

Land Cover Analysis  

A series of land cover maps were created ranging over the time period from 1958 

to 2012, and compared for land cover changes (Figure 3). Aerial photos were obtained 

from the Texas Natural Resources Information System (TNRIS) over a range of five 

unique dates, with variable resolutions (1958, 0.5 m, b/w; 1979, 5 m, CIR; 1996, 1 m, 

CIR; 2002, 3.5 m, TC; 2012, 1 m, TC). The span of the images was chosen on the 

resolution and quality of the images to give a representative sequence of landscape 

changes over time. Any images possessing clouds or of greater than 5 m resolution were 

not considered. SPOT satellite panchromatic images (April 1991, April 1992, April 

1993, all at 30 m) were also obtained from TNRIS. 
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Figure 3:  Figures (A, B) denote the time frame used as a comparison of land cover change overtime 

ranging from 1958 to 2012. Courtesy of TNRIS. 

 

Within a GIS (ArcGIS 10.1, ESRI), three different land cover classes (water, low 

marsh, and salt flats) were hand digitized at a consistent view scale of 1:2000. This 

digitization was double-checked by a second researcher who reconciled any differences 

that existed in landscape classifications over the span of years. Next, the total area of 

each land cover type was calculated in m
2
, and converted into a percentage of total 

landscape for comparison. Area calculations were conducted for the total marsh complex 

from the area immediately surrounding Fish Pass to Magnolia Inlet, and still including 

the Zimmerman Road marsh.  

 

96°31' W 

28°32' N 
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An accuracy assessment was subsequently conducted on the digitization effort 

for the 2012 image. A total of 50 points were sampled in the field using a hand-held 

Trimble GPS unit, with each point taken within at least 15 meters of the edge of two 

intersecting land cover boundaries. At each point in the field, the true land cover was 

recorded and then compared to the 2012 classified cover type. The accuracy of the effort 

was 69.93 % for the entirety of the study area. However, most of this error was attributed 

to two sampling locations, Fish Pass (55.88% accuracy), and the south end of the 

Zimmerman Road marsh (44.12% accuracy), where water was misclassified as salt flats, 

and vice-versa. This source of error was due to the fact that large expanses of salt flats 

are often covered with water, depending on the amount of rainfall, tides, runoff, etc., in 

these two portions of the marsh complex. The Magnolia Inlet portion of the complex had 

a total accuracy of 96.67% along with the area at the south end of Old Town Lake just 

north of Zimmerman Road with 83.02% total accuracy. These two areas contained less 

salt flat which was the most stochastic landscape class, and thus resulted in much higher 

accuracies.  

The only way to reduce error in this method was to do the classification by hand. 

An unsupervised or supervised classification was not used due to the error within the 

process itself. The most accurate method we could use was to classify the image by hand 

digitization. This reduced the error of other automated methods, however, the error was 

still high due to the dynamic nature of a salt marsh. Tides allow for salt flats to be 

flooded within hours, and are thus classified as water instead of salt flats. Higher 
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temporal resolution imagery could help alleviate this issue, but currently this imagery 

doesn’t exist. We were limited to NAIP imagery with a temporal resolution of 2 years. 

While this was the most accurate method, additional errors could exist in the use 

of different color imagery, different resolutions, and user interpretation of land cover 

classes.  Utilizing the highest resolution imagery and hand digitization are the only 

methods that could help rectify these errors. 

Hydrologic Analysis  

Monthly average precipitation was obtained from the Port Comfort weather 

station in Port Comfort, Texas (#ID GHCND: USC00417140, 10.87 km away from 

study area) over a date range from 1957 to 2013. Hourly Precipitation data was obtained 

from a Palacios, Texas based land weather station (Station COOP: 416750). This was 

matched to the tidal gauge data time frame (March 26, 2013 to August 29, 2013). 

Monthly relative sea level was obtained from the National Oceanic and Atmospheric 

Administration (NOAA) buoy located in Rockport, Texas (#ID 8774770, 77.71 km away 

from study area) over a date range from 1948 to 2012. Moving averages were calculated 

on both data sets within a window of 12 months, and were subsequently graphed 

(Dunton, Hardegree, and Whitledge, 2001). The precipitation and sea level over 

specified date ranges were plotted and linearly regressed against time, in order to 

calculate rates of change (as measured by a linear slope, with the goodness-of-fit 

measured by r
2
). The dates of the classified aerial imagery were used as bounding dates 

for each calculation.  
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Water level and conductivity were measured every hour from March 26, 2013 to 

August 29, 2013, using CTD gauges (CTD-Diver, Schlumberger) placed on opposing 

sides of the three barriers of interest (Figure 2). Gauges were suspended on fishing line, 

within 3/4-inch diameter PVC pipes that were set vertically within the water column. 

The top of each PVC pipe was surveyed using survey-grade GNSS system composed of 

a Trimble R8 receiver, using the Fast Static method (average RMS=0.002 m, average 

horizontal precision=0.008 m, average vertical precision=0.012 m).  

Gauge depth readings were subsequently converted into vertical NAVD88 units 

and graphed. Due to the slight errors in the GNSS height measurements, the data were 

matched for gauges on the opposing sides of barriers, using the high-water mark on May 

29, 2013 at 16:00 as the reference date, for the Fish Pass and Zimmerman Road locations 

only. Finally, the outliers in the conductivity measurements were removed from the 

dataset for the Bay and North Fish Pass sensors. Values below 30 mS were removed 

from the bay values, and everything below 60 mS was removed from the North Fish 

Pass dataset.  Negative data spikes were visible below these values and were filtered out 

using the data limits listed above.  

Results 

The land cover arrangement in the marsh was highly dependent on elevation 

above water level.  Water occupied the lowest areas, with low marsh next ringing the 

water’s edge or areas that experienced periodic tidal inundation.  Salt flats followed as 

one moves up in elevation, with an upland scarp above them (Figure 4). 
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Figure 4: The land cover is influenced highly by elevation.  Water at the lowest areas, followed by low 

marsh, then salt flats and finally a quick transition to upland vegetation.  

 

Low marsh area decreased overall from 1958 to 2012 within the marsh complex 

(Figure 5A; Figure 3). Salt flats also decreased, and water increased. Low marsh and 

water were inversely related, in general. The period from 1958 to 1979 appeared to be an 

aberration to the general trend, with low marsh increasing quite strongly. The same trend 

was found for the areas bounded within each barrier (Figure 5B-D). The Magnolia Inlet 

area experienced the most drastic decrease in salt flat area when compared to the other 

regions within the marsh from the time period of 1958 to 1979.  

  

Water

Low Marsh

Salt Flats

Upland Vegetation
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Figure 5: Land cover changes for 1958, 1979, 1996, 2002, and 2012 listed in square kilometers: total area of the marsh complex (A), and impounded 

areas lying behind the barriers at Fish Pass (B), Zimmerman Road (C), and Magnolia Inlet (minus those areas also behind Fish Pass and Zimmerman 

Road) (D). 
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When visually assessed in our data set, it was apparent that this salt flat in 

Magnolia Inlet had been converted to low marsh. This low marsh area was then 

subsequently lost between 1979 and 1996, converting to open water (Figure 5D).  

A major low marsh loss event in the Zimmerman Road portion of the marsh 

complex visually appears to have occurred between 1991 and 1993, as recorded by the 

SPOT imagery. A linear regression was performed on the rainfall and relative sea level 

rise data from 1958 to 2012. Subsidence was incorporated into the relative sea level 

measurement. Over the entire period from 1957 to 2013, there was a noticeable decrease 

in the precipitation and an increase in relative sea level rise rate (Figure 6; Table 1).  

During this period, the sea level rose an average of 5.342 mm per year (r
2
=0.8397, p-

value = < 0.000) and the rainfall decreased at a rate of 0.832 mm/yr. (r
2
=0.02532, p-

value = 0.1229). After 1996, there was a rapid period of change in sea level rise. During 

the period from 1996 to 2002, the sea level increased on average at 16.74 mm per year. 

During the subsequent period from 2002 to 2012, the sea level rise rate was at its lowest 

(2.77 mm per year), while precipitation greatly decreased during this time frame (-0.832 

mm/year).  
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Figure 6: Monthly precipitation and sea level plotted against percent marsh area.  The blue line denotes a 12-month moving average for precipitation. 

The black line denotes a 12-month moving average for sea level rise.  The black dashed line indicates the percent low marsh within the study area as 

compared to the other landscape classes. 
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Table 1: Sea level rise rate, precipitation change, and precipitation averages over time frames of interest. 

 

 

Precipitation during tidal gauge sensor deployment shows that there was little 

correlation between salinity, response and rainfall. The drop in salinity was due to tidal 

infiltration. Reductions in salinity independent of precipitation, indicate bay water 

exchange can lower the salinity throughout the system (Figure 7).  

Wind direction and velocity play a strong role in controlling the tidal action 

within Matagorda Bay (Figure 8A). Old Town Lake is hydrologically disconnected from 

Matagorda Bay for much of the year, and has an average water level of 38.20 cm with a 

standard deviation of 7.18 cm as compared to 30.61cm and 14.79 cm respectively in the 

open bay (Figure 8B). For weeks at a time (for example June 9, 2013 to June 24, 2013), 

Old Town Lake appears to be evaporating, with no connection to the sea. In contrast, 

Zimmerman Road is not currently limiting tidal exchange as evidenced by the gauges at 

North Zimmerman and South Zimmerman (Figure 8C). Still, the general trends and the 

evaporative time periods match those in Old Town Lake, indicating that these locations 

are suffering from the same barrier as Old Town Lake.  
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Figure 7: Salinity of Old Town Lake (OTL) compared to rainfall events from March 2013 to August 2013. 

The black line indicates the OTL salinity in millisiemens and the blue bar shows rainfall events in mm. 

Figures (B-D) show the comparison of salinity on opposite sides of the suspected barriers without the 

inclusion of rainfall data. 
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The barrier at Fish Pass presents a moderate hydrological barrier, as evidenced 

by the gauges at North Fish Pass and South Fish Pass (Figure 8D). On May 7, 2013, a 

strong NW wind was observed (likely a cold front) which caused one of the lowest 

recorded water levels within the marsh. The connectivity between South Fish Pass and 

Powerhorn Lake is evident in the degree to which the water levels fluctuate based on 

wind direction. In this case on May 7, 2013 the water was pushed to the south and away 

from the South Fish Pass sensors. The opposite function is occurring in North Fish Pass 

where you can see the gathering of water (55.49 cm in depth) in the same time frame 

that South Fish Pass can be observed to be draining (15.89 cm in depth). This indicates a 

reduced hydrologic exchange and in this case, there was no hydrologic exchange. This 

wind driven water movement can be seen in the same time frame in the Old Town Lake 

data along with the Bay data.  A simple regression model was performed that produced 

an r
2
 of 0.4182 (p-value < 0.0001). However, there is less change regarding the 

Zimmerman Road sensors due to the location (r
2 

= 0.6538) (p-value < 0.0001). There is 

no exit for the water to the south for this location and thus less water movement occurs 

during a cold front event than in the south Fish Pass and Old Town Lake locations.  Fish 

pass indicated a similar level of correlation to that of Zimmerman Road with an r
2
 of 

0.6409 (p-value < 0.0001). 

Precipitation, evaporation, or tidal flow connectivity may each play a role in 

controlling the conductivity (as a proxy for salinity) within Old Town Lake (Figure 7A). 

Over the course of the year, the average conductivity in Old Town Lake (56.98 mS) was 

much greater than that in Matagorda Bay (44.03 mS). Moreover, Old Town Lake 
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exhibited more considerable fluctuations (range of 49.996 mS) compared with 

Matagorda Bay (range of 18.16 mS). Increases in salinity are observed throughout the 

summer months for Old Town Lake, and are obvious on June 18, 2013 in Figure 7. 

Conductivity fluctuations were similar between North Zimmerman and South 

Zimmerman (Figure 7C), with their averages (59.96 mS, 57.06 mS, respectively) similar 

to that in Old Town Lake (56.98 mS). North Fish Pass and South Fish Pass (Figure 7D) 

followed similar temporal patterns in the first portion of the record prior to May 27, 

2013, though at different averages (96.77 mS, 59.89 mS, respectively). In the second 

portion of the record conductivity was 100.40 mS and 72.84 mS for North Fish Pass and 

South Fish Pass respectively. 

Discussion 

Overall, there was a large loss of low marsh from 1958 to 2012. As the low 

marsh retreated, it was generally replaced by water. However, there was an increase in 

overall marsh vegetation between the 1958’s and 1979’s. Yet, this marsh was lost 

between 1979 and the 1996, returning the marsh to a vegetation level comparable to 

1958. However, the marsh loss trend continued from 1979 to the present-day.  

The loss of the low marsh vegetation is likely correlated with the high salinity 

levels within the marsh (Figure 5 & 7). Mostly this low marsh is occupied by Spartina 

alterniflora, which has difficulty persisting when salinity levels are higher than 325 mol 

m-3 NaCl (approximately 37mS) (Adams and Bate, 1995; Naidoo, McKee, and 

Mendelssohn, 1992).  
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Figure 8: Local wind speed and direction, and water level in the open bay adjacent to the marsh (OTL) 

(A).  Water level fluctuations on opposing sides of each suspected barrier (B-D). 
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Our records show salinities above this value most of the time in Old Town Lake and the 

rest of the marsh, but also show salinities reaching up to 120 mS particularly in the 

portions of the marsh with the most loss, such as North Fish Pass. In particular, 

evaporation occurs in the summer during high temperatures, and this worsens the 

conditions for vegetation and nekton. The result is the low marsh is converted to open 

water.  

Many salt flats converted into low marsh between 1958 and 1979 in the 

Magnolia Inlet portion of the study area, resulting in a large increase in low marsh in 

1979. Similar conversion of salt flats along the Central Texas Coast has been attributed 

to subsidence as caused by extensive hydrocarbon extraction activities during the 1950-

1979-time period (White et al., 2006).  

However, between 1979 and 1996 the marsh areas experienced a decrease of 

approximately 10% in total area throughout. This change was a conversion from low 

marsh to open water. This region was experiencing further subsidence, reduced rainfall, 

or a blockage to normal hydrological functions. During this time frame, there was not a 

large increase in relative sea level. While there was a general decrease in rainfall, there 

was not a significant change (-0.832 mm of precipitation a year). This suggests that the 

shell and mud debris pile reached a critical height and began to separate the marsh from 

the bay. This is confirmed by the local knowledge that the debris pile grew extensively 

in the 1990’s. The SPOT image analysis indicates that the change occurred in 1992 and 

was solidified in 1993. This growth in the debris pile formed a dam that reduced the 
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frequency of tides that are capable of over topping the debris pile and infiltrating the 

marsh. Thus, water infiltration only occurs at higher tides. When these tides retreat, the 

volume of water held within the marsh is larger than historic volumes as the water ceases 

to exfiltrate the marsh. This would negatively affect the marsh in two key ways. The first 

being extended periods of low marsh flooding, and the second being hyper salinity 

through water evaporation. The first factor would result in systematic retreat of the low 

marsh as the volume of water increased as the debris pile grew. This process would be 

compounded with increased salinity within the marsh.  

Therefore, the loss of low marsh area and the conversion of this area to open 

water can be directly attributed to the hydrologic barrier. Much of the marsh loss area 

was in secluded portions of the marsh and not directly exposed to wave energy. Thus, 

wave erosion can be eliminated as a driving factor of marsh loss.  

 The data show that the long-term trends of sea-level rise along with precipitation are not 

the driving factors in marsh loss. In addition, the marsh was unable to fully experience 

tidal fluctuations as visible in the tidal record. This indicates a barrier to water flow. This 

conclusion was supported by the salinity data, with water salinity inside the marsh only 

decreasing upon very high tides. With high water levels and hypersaline conditions 

observable for much of the sample period, the hydrologic barrier can be directly 

attributed to the marsh loss. 

Conclusion 

To begin the reversal of the marsh loss process, the past hydrologic processes 

must be restored. It was determined that the structure responsible for the modified 
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hydrology was the shell and mud debris in Magnolia Inlet. Channelization of the shell 

and mud debris pile could improve the tidal action within the marsh and alleviate the 

elevated salinity levels. The connection will also allow for greater volumes of water to 

be exchanged, thus helping to more completely mix the vast volume of water.  The 

improved exchange volume reduces the possibility of hypersalinity and improves 

oxygenation of the water column.  If incomplete mixing occurred between the marsh and 

bay waters, then salinity levels would not equilibrate.  Therefore, further work was 

needed to identify how much of the barrier needed to be removed to restore hydrologic 

equilibrium.  



2 *Reprinted with permission from “Restoring Tidal Equilibrium: Removing a Hydrologic Barrier and 

Lowering Salinity at the Magnolia Inlet, Texas” by Huff and Feagin, 2017. Journal of Coastal Research, 

NO.77, pp. 97-103, Copyright [2017] by Journal of Coastal Research. 
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CHAPTER III  

RESTORING TIDAL EQUILIBRIUM: REMOVING A HYDROLOGIC BARRIER 

AND LOWERING SALINITY AT THE MAGNOLIA INLET, TEXAS 

 

Introduction and Literature Review 

Coastal salt marshes are dependent on periodic tidal inundation to restore salinity 

levels, allow for nutrient exchange, and permit aquatic species passage. When a 

hydrologic barrier blocks tidal flow, and impounds a body of water in a particularly hot 

or dry region, the salinity levels can increase as evaporation removes water (Delgado et 

al., 2013). If these conditions occur for extended periods of time, vegetation dies in these 

hypersaline waters (Portnoy, 1999). Nekton such as fish and shrimp become unable to 

leave or enter the system and populations suffer (Boesch and Turner, 1984).  

The exchange of water is needed to flush out hypersaline water from within the 

wetland (Day et al., 1995). Salinity levels increase until lower salinity water can enter 

the system, whether from rainfall, runoff, or relatively less-saline estuarine bay water. If 

the disconnection continues for enough time, the salinity can reach toxic levels, causing 

fish kills and vegetation death.  

Tidal marshes dominated by species such as Smooth cordgrass Spartina 

alterniflora reside in a compressed vertical arrangement, and this spatial context creates 

vulnerability to changes in relative water level. Altered water levels cause vegetative 



 

26 

retreat by modifying existing niches (Roman et al., 1984).  Moreover, tidal marshes are 

highly influenced by the cyclical tidal inflow and retreat that drives the exchange of 

nutrients (Burkett and Kusler, 2000; Portnoy, 1999). A frequent supply of nutrients is 

needed for the vegetative communities along with the different aquatic species 

developing in the hatchery.  

Hydrologic blockage was the catalyst for marsh and nekton loss at a complex of 

marshes between Magnolia Beach and Indianola, Texas (Figure 9). In this area, the tidal 

marsh is co-dominated by Spartina alterniflora, Batis maritima, and Salicornia virginica 

and though these species can tolerate relatively high salinity levels, the salinity in this 

marsh spiked as high as 120 mS (~90 ppt). Details on the salinities and the history of 

marsh loss at this location can be found in Huff and Feagin (2017). 

The most feasible solution to restoring the marsh was the removal of the tidal 

barrier by mechanical means. As any removal was inherently destructive with the large 

construction machinery involved, a way to reduce the overall footprint of the excavation, 

while maximizing the environmental benefits was sought. 

The overall objective in this study was to quantify and predictively model the 

channel cross section needed to hydrologically reconnect a marsh complex by both 

reestablishing tidal and salinity equilibrium with Matagorda Bay, Texas, and then verify 

the models using empirical data gathered after the barrier was removed.  
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Figure 9: The study area with the three water bodies denoted in the polygons. Magnolia Inlet water body 

with the solid outline, Zimmerman Road water body with long dashes, and the northern extent of Fish Pass 

water body with the dotted line. The exploded view shows the location of the channel width transect (red 

line) and the core sampling points (red dots). 
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Specific objectives were to: 

1. Calculate the cross-sectional area of the channel that would be required to 

restore exchange of the maximum tidal prism.  

2. Identify the length of time necessary to equilibrate salinity once the 

hydrological flow was restored. 

3. Quantify the volume of debris that would need to be removed to restore the 

flow. 

4. Verify model values with in-situ data collected before and after barrier 

removal. 

Methods 

To accomplish the objectives, the study was split into four different sections.  

The first focused on the ideal cross section to allow for proper hydrologic exchange, the 

second on understanding the salinity exchange, the third on the barrier itself, and the 

fourth on confirmation of the modeled values 

 The main conceptual model is a hydrologic model that incorporates a numerical 

and meta-analysis that determines the cross section that is necessary to restore tidal 

equilibrium between Matagorda Bay and Magnolia Beach Marsh (Figure 10).  The 

second model answers, assuming that complete connectivity was established, how long 

will it take for the salinity to equalize between the marsh and the bay.  The third portion 

of the model is to look at the relationship between channel width and the water area 

within the marsh. 



 

29 

Numerical Model for the Ideal Cross-Section of Removal 

To calculate the cross-sectional area of the channel that would be required to 

restore hydrological flow, a numerical model was developed, populated with empirical 

data from the study site (spring tide range, and water surface area), and then modeled to 

produce an ideal cross section. The numerical model was composed of two basic 

equations. A well-known relationship exists between the ideal cross-section of an inlet 

and the tidal prism of an internal body of water: 

 

 

Figure10: Conceptual Hydrologic Model.  This graphic outlines the use and flow of the different portions 

of the model and the tools used to complete each step.  
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   A=aPm    Eq. 1 

 

Where A is the inlet cross-section in m
2
, a is empirically-derived co-efficient, P 

is the tidal prism in m
3
, and m is an empirically-derived power function. The maximum 

tidal prism P can be calculated by multiplying the surface area of a body of water, by the 

maximum spring tidal range. Values for a and m vary somewhat in the literature, 

depending on author and study location (Jarrett, 1976; Byrne et al., 1980; Powell, 2006, 

and Stive & Rakhorst 2008); much variation is due to the basin and inlet size, 

geography, and geomorphic context. An average of a (5.21 * 10 
-3

) and m (0.784) values 

were gathered from the literature.  The maximum value for a was found to be 9.902 * 10 

-3
 and a minimum value of 6.954 * 10 

-6
.  The range for m was less with maximum value 

of 1.14 and a minimum of 0.61 (Bryne, Gammisch and Thomas, 1980).  The mean 

discharge rate, Q, can also be included in this equation over T, the length of the semi-

diurnal tidal cycle of 44,700 sec: 

 

   A=a[T/2]m(Q)m  Eq. 2 

 

The numerical model was then parameterized with P based on water level data 

that was collected using a Conductivity-Temperature-Depth (CTD) gauge from 

3/26/2013 to 1/17/ 2014 in the adjacent West Matagorda Bay (Huff and Feagin, 2017). 

The numerical model was iterated with variable P over the entire record. The maximum 
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spring tidal range was approximately 0.3 m; therefore, it is assumed this range will be 

fully realized within the internal body of water once the cross-section was excavated to a 

depth below the minimum water level that was recorded.   

The water surface area was parameterized using a GIS dataset, derived from a 

visual classification of the water coverage in aerial imagery dating from 1958-2012 

(Huff and Feagin, 2017). The surface area included all Old Town Lake and all connected 

waters down to the Fish Pass area (Figure 9). A 0.3 m water depth was assumed, based 

on both LIDAR elevation imagery and surveys taken using a Total Station. The 

Zimmerman Road surface area was excluded, as mentioned in Huff and Feagin (2017), 

but connectivity was uncertain due to a secondary barrier. The final surface area value 

multiplied by the maximum spring tidal range was assumed to be close to the available 

water volume for the maximum prism.  

To compare the numerical model with true historical trends in the channel width, 

the observed channel throat width was regressed against the observed surface area of the 

impounded water basin, over the period from 1958 to 2012. This analysis was conducted 

using the imagery described above, whereby the width of the channel was measured at 

each time period by digitizing a transect in the GIS, at 1:1000 scale, at a location 128 m 

north of its connection with Old Town Lake (shown by small red line drawn in the 

channel in upper right inset portion of Figure 9). The channel was straight at this 

location, and approximately halfway between Old Town Lake and the debris pile. The 

measured lengths were then compared with the surface area for each period, and tested 

for strength of statistical correlation using standard linear regression. 
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Using the numerical model and regression analysis, the following scenario was 

subsequently modeled: a hydrologically idealized inlet cross-section based on a 

theoretical equilibrium with the maximum spring tide possible in this internal body of 

water.  

Predicted Salinity after Removal 

To identify the length of time necessary for salinity to equilibrate between the 

impounded water basin and the open bay, a STELLA model (v10, ISEE Systems) was 

developed.  This parallel model used water level data collected in Old Town Lake and 

Matagorda Bay to parameterize one half of the model.  Conductivity measurements from 

the CTD gauges were used to parameterize the second half of the model (in kg of salt).  

A volumetric ratio of kg of salt to water was created to get the value for parts per 

thousand. The difference in water level between Old Town Lake and the Bay acted as 

the driver for flow direction. If a higher water level existed in the Bay then it would flow 

into the marsh and vice versa.  Salinity was treated as an independent factor.  All water 

flowing from the Bay into Old Town Lake was at 30 ppt and the water flowing out of 

Old Town Lake was parameterized to be 45 ppt but was allowed to fluctuate depending 

on water inflow from the Bay.  

 The model assumed that the barrier was removed to a depth of 0.5 m, enabling 

the full 0.3 m tidal prism to exchange independent of the results from the 

aforementioned numerical model (water volume exchanges are independent of cross-

section area if the depth axis is sufficient, though related through the water velocity).  
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Similar to the numerical model, the STELLA model was parameterized using the CTD-

collected water level data from a gauge in adjacent West Matagorda Bay, baylevel, and 

the water level in the basin, basinlevel, increased with tidal inflow and decreased with 

tidal outflow at hourly time steps, t, based on the difference between the basin water 

level and the bay water level at a given point in time, where differ(t)=baylevel(t) – 

basinlevel(t).  

Water was moved into or out of the impounded marsh when differ(t) was positive 

or negative respectively. Baylevel(t) acted as the driving variable; when water was 

higher in baylevel(t) than basinlevel(t), water moved into the marsh. The variable 

differ(t) was then converted to volume per hour, P(t) by multiplying by the impounded 

basin’s surface area, where P(t)= differ(t)*basinarea. The STELLA model was thus 

iterated with variable volume per hour P(t), and assumed no barrier restricting flow. 

P(t) determined the salinity values in the impounded basin. The quantity of salt 

exchanged in kg, salt, was derived from P(t) multiplied by the salinity of the exchanged 

water moving from the source basin to the sink basin, where salt=P(t)*salinity. The 

model assumed that water could not enter and exit the basin at the same time. Though 

more complex versions of the model included rainfall and evaporation components, they 

were excluded from the simulations as these phenomena introduced stochasticity and 

variation based on seasonal weather. Rather, the goal was to identify the average period 

of time required for the impounded basin salinity to equal the bay salinity, independent 

of the weather phenomena that would be experienced during barrier removal.  
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The model was initialized with bay salinities of 30 ppt and impounded basin 

salinities of 45 ppt. These values represented the mode of the observed CTD data for 

each location. The model was run 100 times. For every run, basinlevel started at the 

impounded basin’s average water level according to the CTD data (0.46 m NAVD88). 

However, baylevel for each run was chosen to begin at a random start time in the CTD 

data record, and then follow the hourly CTD recorded water levels. This created unique 

infiltration and exfiltration rates for each run, as driven by the tides in the open bay, and 

was used to simulate the range of possible tidal cycle water levels that could exist for the 

exact date that the debris plug would be removed. For each iteration, the model was 

allowed to run for 1000 hours (though it was not computationally costly and ran 

quickly).  Each iteration was manually started which took the majority of time and 

effort.  

Barrier Dimension Measurement 

A 3D model of the barrier was created using survey grade GPS measurements of 

the barrier.  ArcMap 10.1 was used to interpolate the points using IDW.  The ‘Excavated 

Channel’ was then subtracted from the surface model and the difference was used to 

estimate the volume removed. 

Pre- and Post-Removal Verification of the Models 

To verify both the tidal prism model and the STELLA salinity model, data was 

collected before and after barrier removal. Water velocity and flow direction, at multiple 

water depths, was measured for 10 days before and after the barrier removal (5/30/2015 

to 6/9/2015 for pre-removal sampling and 7/30/2015 to 8/10/2015 for post-removal 
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sampling). Samples were collected at a frequency of 1 sample every 30 minutes. Each 

sample was taken at 1 Hz over a duration of 60 seconds and the average of those values 

was recorded.  A bin width of 1 cm was used for the entire water column starting 7 cm 

from the Aquadopp head and ending at the water’s surface. This was done using a 

Nortek Aquadopp acoustic doppler profiler placed at the bottom of the channel on the 

impounded side of the barrier, yielding water velocities in m/sec for every cm of water 

depth excluding a 7cm blanking distance from the sensor head. The Aquadopp was 

physically strapped to a PVC pipe frame that had legs that were sunk to a depth of 30cm 

into the channel floor.  The sensor was placed at the deepest point in the center of the 

channel with the sensor oriented in line with the channel direction. To guarantee that the 

surface of the water could be seen with an upward looking acoustic sensor, a CTD tidal 

gauge was paired with the profiler.  This coupled placement allowed for post-hoc 

clipping of the Aquadopp values to each time-specific water level. 

Results 

Recorded sensor data was used to verify the modeled components.  Each model 

was treated as separate from the others, and outputs from one model were not used to 

parameterize the next model. This was done to reduce compounded error, and allow for 

independent model products.  This further allowed for testing of independent model 

agreement. 

Numerical Model for the Ideal Cross-Section of Removal 

The idealized cross-section is in theoretical equilibrium with its tidal prism (as 

defined by the empirical coefficients in Eq. 1 and 2, sourced from the various literature 
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sources mentioned), and thus the required cross-section increased from 1958 to 2012 

(Figure 11). During this time period, the size of the maximum spring tidal prism 

increased from 194,015 m
3
 to 282,603 m

3
, because of the conversion of marsh to open 

water. The cross-sectional channel area increased regardless of the exact value used for a 

and m, as varied by citation. The resulting cross section produced a range from 12 to 25 

m
2
.  

Results from the empirical GIS analysis of aerial photography from 1958 to 2012 

corroborated this numerical relationship in concept (Figure 12a-b); the observed channel 

width increased (from 10 m to 21 m, a 210% increase) at approximately the same rate as 

the observed water surface area in the marsh complex (from 647,018 m
2
 to 942,011 m

2
, 

a 145% increase). The channel width was linearly and positively related to water surface 

area (y=2.8564x-7.0582, r
2
=0.775936).  

A minimal impact cross section was selected at approximately 13.5m
2
, where all 

the shell and mud debris were removed from the ‘Excavated Channel’ so that the inlet 

was within the range of an ideal equilibrium with its tidal prism (orange dot in Figure 

11). The modeled water velocity ranged, in the inlet during a maximum spring tide 

event, between 0.51 and 1.11 m/sec when using the variations of Eq. 1 by citation for an 

ideal cross-sectional area. The ‘Excavated Channel’ fell within this range at 0.94 m/sec 

(Figure 13). For the large majority of the tidal cycle, the predicted velocity was much 

lower for the ‘Excavated Channel’, however, with the 50th percentile at 0.38 m/sec 

(Figure 14). 



 

37 

 

Figure 11: The ‘Excavated Channel’ scenario fits within the bounds of theoretical equilibrium for the Magnolia Inlet. Theoretical cross-sections assume 

varying water volume from 1958-2012 for the wetlands area (depicted by lines); the two options (orange circles) assume 2012 water volume only.  
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Figure 12: Channel throat width and water surface area change, over time (a), and plotted against each 

other (b). 
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Figure 13: Predicted water velocity at maximum spring tide for the ‘Excavated Channel’ scenario versus 

an inlet at theoretical equilibrium with the prism. 

 

 

 

Stive & 
Rakhorst 

2008

Rivers

Jarrett 

1976

Byrne et al. 

1980

Powell 

2006

Excavated 

Channel

0

0.25

0.5

0.75

1

1.25

w
at

er
 v

el
o

c
it
y
 a

t 
m

ax
 s

p
ri

n
g

ti
d

e
(m

/s
)

equilibrium cross-sectional areas

(for variations of Eq. 1 and 2)

13.5 m2

cross-section

range of the
of modeled 

equilibrium
scenario



 

40 

 

Figure 14: Percent of the time that water velocity will exceed a given value, after excavating the 

‘Excavated Channel’ cut option. 

 

The acoustic profiler data showed an average water velocity of 0.029 m/sec 

before removal and 0.13 m/sec after (Figure 13).  After barrier removal, the maximum 

tidal cycle change was 3.45 cm (wl-change) in 8 hours (time-change). This fluctuation 

equated to an average velocity in the inlet channel of 0.112 m/sec. The numerical model 

estimated a tidal fluctuation of 5 cm in 12 hours, resulting in an approximately 0.15 

m/sec water velocity.  A ratio was created to directly compare the values.  Centimeter 

values were converted to m and all hour values were converted to seconds ((wl-

change*0.01)/(time-change*120)/wt-velocity).  The ratio resulted in change in water 

level in m/s over water velocity in m/s.  The Aquadopp measurements produced 0.032 

with the numerical model producing a value of 0.030. Thus, the model generally 

reflected the conditions seen within the marsh after removal of the hydrologic barrier.  
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Figure 15: Water velocity comparison of entire water column before and after barrier removal. The 

collection time was at separate dates but for 10 days each time (5/30/2015 to 6/9/2015 for pre-removal 

sampling and 7/30/2015 to 8/10/2015 for post-removal sampling). 

 

The water level pre-removal (Figure 13a), was considerably higher versus post-

removal (Figure 13b). This was due to the influence of the hydrologic barrier on tide 

fluctuations. During the first time frame only the highest tides could influence the 

measured water level. When the tides retreated into the open bay, the water level within 

the marsh was only able to decrease to the level of the top of the barrier. Consequently, 

only the very highest portion of the tidal cycle was observable in the data. However, in 

the post removal data, the barrier no longer influences the water level and the entire tidal 
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cycle was observed in the marsh. This situation, in conjunction with the relatively low 

water levels during the summer, produced the difference in water level that can be seen 

in Figure 14, though both the velocities and the pattern of up and down tidal cycling 

indicates greater connection to Matagorda Bay.  A linear regression analysis was 

performed on the water level data, splitting it into two different groups.  The first group 

was pre-barrier removal, and the second was after barrier removal.  This analysis was 

performed for North Old Town Lake (NOTL) against Matagorda Bay, and for South 

Zimmerman Road and North Zimmerman Road. It was found that before the removal 

NOTL and the bay had an r
2
 of 0.9179 and after removal the value rose to r

2
 = 0.9816. 

For the Zimmerman Road comparison the r
2
 values barely change (r

2
 = 0.9998 pre-

removal, and r
2
 = 0.9972 post removal).  All p values for the 4 regressions were (p-value 

< 0.0001). 

Predicted Salinity after Removal 

The STELLA-modeled impounded basin reached 30 ppt (46.9 mS) (same as the 

open bay, a decrease of 15 ppt (23.4 mS) from the initialized value, Figure 15) within an 

average of 10.30 days ± 1.75 days (247.3 hours ± 42 hours). Across 100 runs of the 

model, the maximum time frame was 12.83 days (307.9 hours) and the minimum was 6 

days (144 hours). 
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Figure 16: Water levels listed in centimeters for the north end of Old Town Lake (red) and the Matagorda 

Bay (blue). 

 

 

Post-removal, field-verified time for salinity to reach equilibrium was 

approximately 2.96 days. The salinity difference between the marsh and the bay at the 

time of removal was only 2.45 ppt. The rate of change of 0.83 ppt/day was under the 

predicted rate ranging from 1.17 ppt/day to 2.50 ppt/day in the STELLA salinity model 

(Figure 15).  

Debris Quantities  

GPS based survey work produced a three-dimensional model of the debris pile (Figure 

16). Based on a 0.5 m excavation depth and the three-dimensional model of the debris 

pile, the total volume of the debris for removal (composed of mud and oyster shell) was 
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estimated at 779.37 m
3
. This equated to approximately 100 small dump truck loads of 

material and 3 days of excavation work).  

 

 

Figure 17: Length of time until salinity equilibrates between the marsh basin and the open bay, as derived 

by the STELLA salinity model performed 100 times. 
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Figure 18: Three-dimensional model of the debris pile. Viewed from the south of the debris plug looking 

to the north along the stream channel. Blue color locations generally coincide with water, reds with the 

debris pile. 
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Discussion 

Based on the modeling, a cross-sectional area of 13.5 m
2
 was determined to be 

the ideal goal for the excavation of the debris plug in the channel at Matagorda Inlet. The 

excavation was started on June 21, 2015 and completed on June 23, 2015.  The water 

flow velocities were within acceptable ranges such that scouring did not become a major 

problem (Jarret, 1976). Conversely, it was predicted that the velocities would remain 

high enough during maximum spring tidal flows (approximately 0.8 m/sec average) to 

promote sediment transport and reduce the probability that the channel will revert to a 

blocked state. Sediment transport speeds occur around 0.6 m/sec for fine sand particles 

(a major constituent of the debris with a mean of 63 microns in diameter (4 Φ)) (Jarret, 

1976).  Extensive sediment transport models were not conducted as the inlet is 

periodically dredged closer to the inlets connection with the bay.  The main concern was 

removing the shell debris as this was too large to be eroded or suspended under normal 

tidal flow.  

The numerical model was confirmed with the acoustic profiler data to show that 

realized velocities were near the predicted velocities (0.9 m/s). This supports the 

conclusion that the velocities will be sufficient to mitigate the chances of sedimentation 

occurring and blocking the channel in the future (Powell et al., 2006). With spring tidal 

velocities being sufficient to keep the channel open, the hydrologic equalization between 

the marsh and the bay will likely remain in a state of dynamic equilibrium.  

The STELLA model results also showed that the long-term outcome of the 

hydrologic restoration is good. Even though the model predicted a longer time frame to 
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reach salinity equilibrium, a shorter time frame (as seen in the data) to equalization is 

desirable. The model predicted a salinity difference of 15 ppt at the time of reconnection, 

whereas the difference was only 2.45 ppt during the time of reconnection. Therefore, a 

significantly shorter time for equalization can be expected as salinities fluctuate in 

Matagorda Bay or in the marsh. With the estimated and verified rates of change, the data 

shows that the model predictions were indicative of healthy marsh conditions.  

With the abiotic conditions of water flow and salinity in equilibrium, the biotic 

community now can recover. Fluctuating tidal conditions are now suitable for the spatial 

expansion of marsh grasses to colonize previously continuously flooded areas. This 

allows for the growth of nursery habitat and increases escape cover for developing 

nekton (Adams and Bate, 1995). With the increase in number of small “bait” fish, an 

increase in the number of larger “sport” fish is expected. Anecdotally, this has been the 

case thus far, and based on communications with the fishing industry in the local 

community the western Matagorda Bay area has been stimulated. 

Conclusion 

The prognosis for this marsh complex is good. With the barrier removed, the 

tides are once again the driving factor in regulating water salinity. The channel cross 

section is in equilibrium with the historical evidence, allowing for a stable channel. With 

a stable hydrologic connection, the vegetative communities are now able to colonize 

previously inhospitable areas, and allow nekton consistent access across the marsh and 

the bay. 
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CHAPTER IV  

IMPROVING TIDAL PREDICTIONS WITH INTEGRATION OF WIND DATA IN 

THE GULF OF MEXICO                                                                                    

Introduction and Literature Review 

Historically, tide estimation was built on knowledge of lunar and solar cycles to 

give the timing and cycling of the tides. These models combine the gravitational pull 

placed on the earth by the moon, sun, and the centrifugal forces (NOAA, 1998; 

Matsumoto, Takanezawa, and Ooe, 2000).  Tides have been measured and recorded 

since the early 1800 in the United States, and today tide measurements and predictions 

are crucial for navigating coastal waterways (NOAA, 2016).  The National Oceanic and 

Atmospheric Administration (NOAA) provides a user-friendly and internet-accessible 

product that incorporates empirical data with astronomical cycles to make tide 

predictions. However, empirical tuning of the NOAA model takes approximately 18.6 

years, which is the length of the astronomical cycle influencing tides (NOAA, 2013).  

These predictions are accurate at capturing the major physical forces that influence tides 

(Mukai et al., 2001).  Predictions can be made years in advance as astronomical tide 

factors are highly regular (NASA, ND; NOAA, 2013).  However, several additional 

factors, such as Ekman transport, wind direction, wind speed, storms, system location 

(bay or open water), bay inlet dimensions and subsurface bathymetry, are known to 

affect the observed water level and these factors generally are not included in NOAA 

tide models (NOAA, 2008; NASA, ND; Cheng and Smith, 1998).  In shallow water and 
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micro-tidal coastlines, these factors have great influence on the overall tide level 

(NOAA, 2008).   

In a micro-tidal basin such as the Gulf of Mexico, it is not unusual to see the 

observed water levels exceed or fall below the NOAA estimates by a factor of two 

greater than the maximum astronomical effect (Lefevre, Le Provost, and Lyard, 2000; 

Zavala-Hidalgo, Morey, and O’Brien, 2003).  A swing between an accurate prediction 

and an inaccurate prediction of this magnitude can happen in only a few hours, and in 

some cases, have left ships stranded in shallow water until favorable tides occurred for 

their extrication (Coast Guard News, 2015; NOAA, 2001; NOAA, 2016).  Failing to 

correctly estimate both high tide (unexpected inundation events) and low tide conditions 

(unexpected problems with draft passage) can be equally detrimental. Moreover, as 

relative sea level rise continues, the margin between a safe water level and flooding 

becomes narrower (NOAA, 2001), and the importance of an accurate prediction 

becomes greater.  In summary, the difference between the NOAA predicted and 

observable water level poses a great problem for the utilization, recreation, and 

navigation of shallow basins.    

Traditionally, numerical models have been created to address these problems 

(Zavala-Hidalgo, Morey, and O’Brien, 2003) but they are often limited to local 

application. Alternately, coarse scale tidal models can focus on oceanic circulation 

(Padman et al., 2002), however these models lose their effectiveness closer to shore 

(Matsurmoto, Takanezawa and Ooe, 2000). There is a lack of universal method to 
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address the ‘wind-tide’ problem in bays and shallow water coasts, where much 

navigation is conducted.  

To improve NOAA tide level predictions in this manner, we incorporated wind 

effects on water level into an Enhanced Tide Model (ETM).  This model adjusts the 

NOAA water level predictions, using wind data sets acquired from the US National 

Weather Service (NWS). 

Methods 

The ETM was broken into two separate modeling procedures. The first being the 

base model, which formed the framework for the second half of the model, the 

predictive model. The base model takes historical tide data, along with historical wind 

speed and wind direction, analyses it, and creates a matrix. The Predictive Model then 

uses this matrix in combination with future predicted wind speed and direction data to 

create the tidal predictions. These predictions are then graphed and linked to a map.   

Base Model 

The base model follows an empirical approach based on trends in historical data 

sets, namely NOAA wind speed, NOAA wind direction, NOAA predicted water level, 

and NOAA observed water level. These data sets were downloaded from NOAA (Tides 

and Currents, 2017) websites, and saved in .csv files by the month the data was 

collected. This procedure resulted in approximately 6,000 months of data gathered from 

89 different NOAA gauges across the Gulf of Mexico and the East coast of Florida.  Any 

data available for each gauge from 2010 to 2015 was collected using R programming 

web applications to extract the data and save the files into a database (R Core Team, 
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2017). Date formats were corrected and the data was matched for each time frame. If one 

of the four data sets (NOAA wind speed, NOAA wind direction, NOAA predicted water 

level, NOAA observed water level) was absent for a given time frame, then that entire 

time frame was deleted from the compiled database.  This procedure resulted in only 

complete records being kept and used in the model.  

R programming was used for every aspect of the model (R Core Team, 2017).  

Python was briefly considered for portions of the web data extraction, but R proved to be 

appropriate for XML based web data gathering.  R also has very powerful data 

visualization tools and thus it was decided to use R for the complete project.  

Once the data was gathered, a unique prediction matrix was created for each 

individual NOAA tidal station with wind speed on the x axis and wind direction on the y 

axis.  The matrix contained 30 columns and 360 rows. Wind speeds above 50 miles per 

hour (mph) were not included in the model, as there was insufficient data for these types 

of events to be consistently considered, but moreover other processes such as regional 

scale storm surge begin to predominate at these speeds, thus limiting predictability. The 

difference (diff) between the NOAA predicted water level at the station (pred) and 

NOAA’s observed water level (obs) was taken for each hour (pred - obs = diff).  Each 

occurrence of the same wind speed (ws) and wind direction (wd) for the selected station 

was listed, and the median diff value was entered in the matrix for that (ws) and (wd) 

combination.  

Even with approximately five years of data for each station, a few cells were left 

empty in each matrix, and thus interpolation was used to fill these missing values (the R 
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“interp” function from the R package “akima”) (Akima and Gebhardt, 2016).  The 

interpolation method was tested against several data filling methods such as a moving 

window, spline interpolation, linear regression, kriging, and IDW.  Each method was 

evaluated independently and the computationally efficient and reasonable method was 

used. If the interpolation program was unable to fill a gap in data, the missing value was 

left empty and averaging was used in the next step (the predictive model) to adjust for 

these gaps.  

Predictive Model 

To make hourly predictions for water level at each station for up to 72 hours 

ahead of time, US National Weather Service (NWS) point forecasts of wind direction 

(wd) and wind speed (ws) were obtained (NWS, 2017). NOAA tide station water level 

predictions were also obtained, though importantly they were only based on 

astronomical considerations. The (diff) value in the selected cell from the base model 

was added to NOAA’s future predicted tide level (pred) to adjust for wind influence and 

create the predicted tide level (ETM-pred), thus (diff) + (pred) = (ETM-pred). 

Importantly in the NWS point forecast dataset, exact wind direction in terms of angular 

degrees were not given, but rather a general direction of N, NNE, E, SSE, S, SSW, W, 

NNW. As an example, E corresponds to the values within 68 to 112 degrees. The mean 

of the diff values in the rows (which correspond to wind direction) for 68 to 112 degrees 

took the place of the diff value that was used in combination with pred to achieve the 

ETM-pred value. 
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The ETM-pred value was then cleaned of data spikes using the smooth.spline 

function (“stats” package) in R with the val parameter set at 1 (a less aggressive level of 

smoothing that still only removed the largest spikes) and with a weighting nknots  factor 

of (prediction length in hours/val) (R Core Team, 2017).  The nknots act as “node” 

locations for the connection of separate portions of the arc spline arc and acting as a 

control point.      

Finally, the ETM-pred value was further tuned by incorporating real time 

observations from the NOAA station information.  If ETM-pred was not equivalent to 

obs, then the difference between ETM-pred and obs was calculated and all subsequent 

ETM-pred predictions were shifted accordingly. The influence of the adjustment linearly 

decayed over each hour h out to 48 hours total (the decay rate was 1/48 of the difference 

between ETM-pred and obs per hour) based on an assumption of temporal 

autocorrelation, where predictions now are more likely to be similar to subsequent 

predictions close in time, as compared to those happening more distant in time. For 

hours 48 to 72 of ETM-pred, no further tuning was made. From here forward, we refer to 

final predictive output as sourcing from the ETM model, which is in effect a 

combination of the base model and the predictive model. 

Model Testing and Validation 

We conducted three types of tests to assess the validity of the ETM model.  For 

the first, the ETM was fed all the historic data for ws, wd and NOAA’s predicted tide 

levels, for all stations in the Gulf of Mexico. In this test, we were forced to utilize 

NOAA’s actual observed ws and wd recorded at each station in the past, because NWS 
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point forecasts from past dates are not publicly-available. Thus, this test of validation 

uses verified wind data, and can only assess the ability of perfect knowledge on wind to 

accurately predict the observed water level. This test essentially validates the base model 

alone. For each station, the predicted values of ETM were then compared to NOAA’s 

observed water level and the average deviation was recorded.  For comparison, NOAA’s 

own predicted values were compared with the NOAA observed water level and the 

average deviation recorded.  Next, the average deviation of the ETM and the NOAA 

predictions were compared to obtain the percent improvement of the ETM over-and-

above NOAA’s predictions (((NOAA prediction/ ETM prediction)-1)*100). We then 

mapped the distribution of the improvements over the NOAA predictions, using ArcMap 

10.2.2 (NOAA, 2008).   

For the second analysis, NOAA’s predicted tide levels were used in similar 

fashion as input, but ws and wd were sourced from NWS, present-day, real time data 

sets, and subsequently the ETM prediction was saved.  Thus, this test assesses the 

predictive portion of the model, but any error could be both due to ETM-based errors, or 

errors in NWS-predictions in real time. This test essentially validates the predictive 

model, and includes the three-hour adjustment factor as described in the previous 

section. However, like the first test, the predicted values of ETM were then compared to 

NOAA’s observed water level and the average deviation was recorded, as well as the 

deviation between NOAA’s predicted and observed water level, and the deviations were 

compared. 
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For the third analysis, NWS wind speed (ws) predictions were subtracted by 

NOAA observed wind speed to get the difference between observed wind speed and 

predicted wind speed.  This was important to understand the error in the wind 

predictions as the ETM is based on those wind predictions. Then, the difference between 

the ETM tide predictions and the NOAA observed water level was taken for the same 

time frame as the above wind measurements. The two data sets were then regressed 

against each other. The accuracy of NWS wind direction (wd) prediction was not 

assessed.  

Results 

Base Model  

For the first test, the ability of the base model to improve tidal water level 

prediction was dependent on location (Figure 19). In open water the model performed 

very well as seen on the western coast of Florida. Bays proved to be more difficult to 

predict as a myriad of factors such as inlet dimensions and changes in bathymetry can 

cause historic data drift and result in less predictive accuracy for the model. However, 

the areas with the least accuracy were riverine areas. This was due to the model being 

unable to contend with the stochastic events of freshwater input. While these areas are 

still tidal, the model’s inclusion of wind data does not directly relate to water level 

changes related to river flow volumes, as they are distinct physical elements. One of the 

future goals will be to filter these locations or integrate river flow volume predictions. 

ETM accuracy and number of hours of training data per gauge was examined and there 

was a weakly significant trend (r
2
 = 0.0491, y = 1E-04x + 8.1842, p value = 0.09; Figure 
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20).  A total of 18.6 years was needed for NOAA’s model, and thus it would be good to 

see if a longer and larger data set produced trends that are currently undetectable.  

For the second test, the ETM predicted water level showed a mean difference 

from NOAA observed water level across all gauges of 14.08% from the value of the 

observed water level (when this value was averaged over 36 hours from the last ETM 

model prediction), as compared to NOAA’s predicted values which had a mean 

difference from NOAA observed water level of 20.17%.  The ETM showed a 6.09% 

improvement in accuracy over NOAA predictions from 0-36 hours from the last ETM 

prediction across all NOAA gauges in the Gulf of Mexico. At the 60 hour mark after the 

prediction was made, the ETM’s predictive mean deviation from observed water level 

(calculated the same as above) was 16.49% with NOAA’ predictive mean deviation at 

19.51%. At 72 hours, the ETM predictive mean error was at 15.49% with the NOAA 

model predictive mean error at 19.03%.  Thus, the ETM showed a 3.54% mean increase 

in accuracy over NOAA predicted water level at 72 hours out from the last EMT 

prediction. 

For the third test, there was no clear trend between predicted wind error and 

ETM model error (p=0.6066 r
2
=0.008125) (Figure 21). 
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Figure 19: Map of station locations using the Gulf of Mexico as an example.  This map also details model 

accuracy with the legend showing the ETM tide prediction percent improvement over NOAA predicted 

tide levels. Red indicates lower accuracy (0.21% increase in ETM prediction accuracy over NOAA 

predictions) while green indicates high accuracy (61.31% increase in ETM prediction accuracy over 

NOAA predictions).  Even the lowest accuracy is still an improvement over NOAA tide estimates. 
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Figure 20: ETM percent predictive accuracy improvement over NOAA.  The percent accuracy improvement is regressed against the number of hours of 

historic data that was used to create the predictive matrix in the base model. 
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Figure 21: Linear regression between (the difference between NWS predicted wind speed and NOAA 

recorded wind speed) listed on the x axis and (the difference between ETM predicted water level and 

NOAA observed water level) on the y axis.  
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Discussion 

Run Time Considerations 

The data-gathering portion of the base model is relatively costly in computing 

time and requires approximately three to five days to gather and calculate all the data for 

the 89 NOAA gauges across the Gulf of Mexico. Fortunately, this procedure only needs 

to be run once, or updated as more historical data becomes available and is deemed 

important to include into the base model. While there is not a strong correlation between 

number of hours of data collected and the accuracy of the model predictions, the trend is 

nevertheless positive. Thus, another further development of the base model could also 

include greater data-gathering extending back greater than 20 years.   

For the real-time ETM predictive model, the computational time was 

substantially lower and runs on an aged AMD dual core laptop in 15 minutes, and a 

more modern eight core machine in six minutes. These rates could likely be improved 

with some code optimization and moving away from “for-loop” structures to “apply” 

structures in R programming since the typical use of the ETM by the programmer is 

produce predictive models, this speed is sufficient to provide real-time data to outside 

users. 

According to our testing, the most computationally costly procedure is 

interpolation of the matrix and kriging was the costliest version that we tested. The time 

frame for this model to run was approximately 90 days.  It was also found that the 

different interpolation methods highly influenced the overall accuracy of the model.  

One area of potential improvement is the use of different interpolation methods in 
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creation of the matrix such as linear regression, kriging, IDW, and moving window 

analysis.  The linear regression interpolation showed a 74% reduction in accuracy over 

NOAA’s astronomical prediction. A column wise moving window averaging model was 

used to try and fill data gaps and resulted in 94% reduction in accuracy. A kriging 

analysis was started to fill the matrix but this method was not easily scalable and was 

very difficult to use. The analysis was unable to complete due to data compatibility 

errors.  This method for data interpolation was subsequently abandoned. The same 

occurred for IDW.  The R interpolation method (interp) was much faster and much more 

stable than other methods and produced an increase in accuracy anywhere between 

0.21% and 61.31%. Another potential way to improve or speed up the interpolation is to 

use linear regression, however this procedure substantially-decreased accuracy (53.78% 

decrease in accuracy).  The interpolation method highly influenced the accuracy of the 

model and this is likely due to the matrix structure of the data.  While unconfirmed, it is 

likely that the data displays a high degree of autocorrelation and thus needs a method 

that does not treat individual columns or rows as discrete data sets.   

Future Work and Potential Improvements to ETM 

One of the short-comings of the ETM is that by design it is based on weather 

forecasts. If the wind predictions are wrong the model will be wrong. Thus, this 

fundamental source of error must to be accepted in the model to make predictions. This 

is to be expected as the weather data becomes more unreliable the further out in time.  

However, there appears to be a threshold where the model accuracy levels off.  A 

comprehensive study of the National Weather Service’s wind predations for the gauge 
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locations needs to be conducted to fully understand the error, but Hu and Skaggs (2009) 

show that weather estimates can show strong regional variations. As weather prediction 

increases in accuracy so will the model’s predictive strength.  

Further improvements can be made in the accuracy assessment of the predictive 

model. Currently past data predictions are not available for each of the stations so a 

proper analysis of the predictive ability of the model is difficult to achieve. The model 

accuracy assessment for the predictive portion of the model is done by recording the 

National Weather Services’ predictions in a database and subsequently comparing these 

predictions to actual measurements. This will require the accuracy assessment to run for 

a year or two to fully understand the impacts of weather prediction using point forecasts 

at each gauge. This will simply take time.  

An addition to the model that could help boost overall accuracy would be to 

incorporate time duration of wind speed and direction. The change in water level when 

the wind shifts direction is not an instantaneous event but an event that occurs over time. 

When winds are sustained out of a given direction and are of a sufficient speed, water 

levels can surpass the ETM’s prediction.   

An attempt was made to incorporate into the model the duration at which a given 

wind speed was exhibited. A variable sized moving window analysis was conducted on 

the historic data looking for sustained periods of a single wind speed and direction. Once 

a range was identified the increase overtime in deviation of the observed water level 

from NOAA’s predicted water level was examined. A rate of change per hour was 

calculated and entered into a separate matrix which was structured like the base model 
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matrix with wind speed on the x axis and wind direction on the y axis. To allow for 

slight variations in conditions, ranges of wind values were used and simplified directions 

were used (i.e. N, NNE, E, SSE, S, SSW, W, NNW). Wind direction could fluctuate by 

X and wind speed could fluctuate by Y before the moving window analysis decided that 

the conditions were no longer like the start conditions and the window was closed. The 

window was also limited by time. A time frame of less than 10 hours was not considered 

as shorter time frames could have too much stochasticity to obtain a reliable rate of 

change. Once this rate value was calculated and entered into the matrix the predictive 

program accessed the matrix and used the duration value to add to the (ETM-pred) value 

when the duration characteristic was met in the predicted wind conditions.  No accuracy 

analysis was conducted as the method proved to need more development than time and 

money allowed, and the method was dropped from the model.  Anecdotal observations 

of model performance showed that using ‘Duration’ aided in reducing underestimation 

of more extreme tidal events such as cold fronts. However, the relationship between 

water level and duration appears to be non-linear. The additive method that was 

implemented with the ETM produced estimates that would compound leading to large 

errors overtime. Limiting parameters needed to be implemented to control maximum and 

minimum rates in water level changes and the length of time the duration factor could be 

added. Basic attempts were made to test this at a few gauges in Galveston Bay and 

proved to be somewhat effective in limiting erroneous predictions, but each gauge in the 

gulf is different with different limiting factors. If duration could be implemented the 

ETM model’s accuracy could be increased even more.  
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User-friendly Maps and ETM Output Graphics 

An interactive, GIS-based Graphical User Interface (GUI) was created to display 

station results in map form (Figure 22 and 23) (Appelhans, Detsch, Reudenbach, and 

Woellauer, 2017).  The GUI was constructed in .html format, and is ready to be hosted 

on the web and made accessible to the public. The latitude and longitude coordinates for 

each gauge location were gathered and compiled and a R programming function 

(mapview) was used to plot and link them (Appelhans, Detsch, Reudenbach, and 

Woellauer, 2017).   

Each point can be clicked on and was linked to a pop-up window, displaying 

ETM predictions for that location. R programming was used to create this .png graphical 

plot (Urbanek, 2017) that included NOAA’s prediction, the ETM prediction, and the 

observed tidal measurement. The location, wind speed and direction, time, and water 

level are all included in the graph as well.  

These graphical pop-up window plots are stored in a figure repository that can be 

accessed individually by the program designer, or by the end user through the .html-

based GUI. The graphs are flexible and can auto resize the y axis to allow for large 

changes in observed water level or time represented without the graph becoming hard to 

read. To produce all hourly graphs for 89 separate stations across the Gulf of Mexico, 

the average run time of ETM is approximately 15 minutes. 
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Figure 22: Graph of ETM tide prediction (black line), NOAA tide prediction (red line), and observed 

water level (green line). The top x axis denotes wind speed (top) and wind direction (bottom). This figure 

shows a close up of the graphs attached to the popup icons in the GUI map. 
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Figure 23: HTML GUI of gauge locations with popup graph of prediction. Red line is the Enhanced Tide Model, Black line indicates NOAA’s estimate, 

and the Green line is the observed water level. The Blue circles on the map show each prediction location. 
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Conclusion 

The ETM model possesses the potential to predict the tide level universally, as it 

simply requires empirical seed data, as opposed to a numerical or processed-based model 

that represents a single system. By using recorded data at each location, the model 

incorporates many stochastic factors such as inlet dynamics, gauge location, bathymetry, 

time, and local weather factors. This flexible model allows for a predictive model to be 

created in almost any location on earth that has a tide gauge, astronomical tide 

predictions, and wind data. The two-part structure of the ETM model (base and 

predictive) allows for its expansion to any location that has enough data to appropriately 

fill the base matrix. As new stations come on line, they can be incorporated after 20 

months.  

Public use of the ETM can enable the transportation and shipping industry to 

operate more safely in shallow waters, allow outdoor enthusiasts access to recreational 

fishing and hunting location at the appropriate portions of the tidal cycle, support the 

public use of boat ramps within more appropriate tolerance limits, enable infrastructure 

construction and ecological restoration operations to have advance notice of optimum 

water level working conditions, and improve the prediction of flood risk for coastal 

communities. We envision the ETM as a resource for industry and the public to make 

informed decisions that impact their livelihood.   
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CHAPTER V  

 

CONCLUSIONS 

 

This body of work demonstrates the importance of understanding tides when 

conducting hydrologic salt marsh restoration. The total area benefited by physical 

intervention in the Magnolia Beach marsh site was much larger than the amount of earth 

removed. Barrier removal as a form of hydrological restoration proves to be a very 

promising method and produces a high return on investment. By correcting the 

hydrology, the biotic and abiotic marsh systems will begin to recover. Little further 

human intervention is needed for continued success of the Magnolia Beach marsh.  

 The ETM also proved to be highly successful in predicting wind influenced tides 

in tidally connected waters. The potential exists for improvement of the model for even 

greater accuracy. Currently the model is already an effective tool to increase navigation 

safety, predict coastal flooding, and aid coastal restoration project planning. Adding 

wind duration estimates to increase accuracy and making this a web hosted product are 

also future goals.  

 The information obtained from this project will contribute to the knowledge of 

intertidal hydrology and marsh restoration, and allow for informed decision making by 

the public, government officials, and coastal managers.  
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