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ABSTRACT 

 

Predicting sediment transport has numerous implications in Civil Engineering and 

related fields. When there is excess sediment deposit in waterways, ships that move people 

and goods cannot navigate them. Loss of sediment that surrounds hydraulic support 

structures (e.g., bridge piers) may cause structural hazards. In the present dissertation 

research, computational fluid dynamics (CFD) was applied to improve the prediction 

capability of sediment transport in turbulent environments, with a focus on open channel 

flows. 

The CFD tool used is FANS3D (Finite Analytic Navier-Stokes code for 3D flow), 

which solves the Reynolds-Averaged form of Navier-Stokes equations in general 

curvilinear coordinate systems. The code was coupled with sediment transport models to 

solve the hydrodynamics and the resulting transport phenomena. For flows in domains 

with complex geometries, the overset grid technique was adopted, wherein multiple blocks 

with different shapes and structures form the mesh. The wall function approach was 

implemented to account for roughness effects of the physical domain’s boundary surfaces. 

After validation with experimental results, the coupled model was utilized in four practical 

applications: transport of suspended sediment in a channel bend, scour around abutment, 

backfilling of scour hole under a unidirectional flow, and scour around an offshore wind 

turbine support structure.  
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1. INTRODUCTION 

 

1.1. Motivation and Objective 

In Civil Engineering and related fields, sediment transport is of a great interest due 

to its far-reaching implications. For instance, severe scour may lead to structural failure of 

bridges, and high turbidity in rivers and streams due to suspended particles may harm the 

aquatic ecosystem. For engineers to accurately predict the transport processes and take 

necessary measures, numerical simulation has become a widely-adopted approach. 

However, limitations often exist for when the physical environment to be modeled 

involves a complex geometry. The reason is that many of the numerical tools available 

today are suitable only for geometrically simple domains, such as those with prismatic or 

cylindrical shapes. In such cases, the effectiveness of the numerical tools is confined to 

idealized problems. 

 Thus, through the dissertation research presented herein, a computational fluid 

dynamics (CFD) tool was developed to accurately simulate the flow and sediment 

transport in turbulent flow, with a focus on non-cohesive materials (e.g., sand). It was 

achieved by coupling the flow solver FANS3D (Finite Analytic Navier-Stokes code for 

3D flow) with sediment transport models. Overset grid technique was adopted to represent 

complex physical domains with a set of geometrically simple blocks. The coupled tool 

was applied to analyze four practical engineering applications: transport of suspended 

sediment in a channel bend, scour around abutment, backfilling of scour hole under a 

unidirectional flow, and scour around an offshore wind turbine support structure.  
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1.2. Method 

 Here, the major steps taken to conduct and complete the present investigation are 

summarized. For each of these steps, the reader is guided to the part within this dissertation 

where in-depth discussions are further given. 

1.2.1. Model Selection 

 The research effort was embarked upon with a literature review to survey the 

available sediment transport models. The goal was to identify the set of models that are 

appropriate or necessary for the problems to be considered. For instance, analysis of scour 

in front of a cylindrical pier would be best served by a model that describes the incipient 

motion of a particle based on the local shear stress, rather than the depth-averaged flow 

velocity. The literature surveyed and the models selected are discussed in Section 1.3 and 

Section 2, respectively. 

1.2.2. Code Development 

 After selecting suitable models, they were coupled with FANS3D in the form of 

Fortran codes. The sediment transport modules were implemented as a set of subroutines 

that make use of the flow solutions in determining the sediment mechanics. Section 3 

discusses the numerical methods in greater detail. 

1.2.3. Validation 

 The coupled solver was validated with test cases. These are well-documented 

experimental studies with results that can be used to ensure that the numerical tool can 

accurately simulate the physics under a given flow environment and setup. The validations 

are presented in Section 4. 
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1.2.4. Simulation and Analysis 

 Four different engineering applications are discussed in Section 5: suspended 

sediment transport in channel bend, scour around two different abutment types, scour hole 

backfilling under a unidirectional flow, and scour around a hybrid offshore wind turbine 

support structure. In each of these applications, variations in the flow environment (e.g., 

abutment or pier geometry) and/or the sediment characteristics (e.g., particle size) helped 

understand sediment mechanics. 

The applications were chosen on the basis of novelty and potential contributions. 

That is, those cases that effectively demonstrate the capabilities of the present numerical 

tool, but which haven’t been discussed in the open literature, were considered. The 

graphical representations of the simulation results were generated using MATLAB and 

the CFD post-processor Tecplot. 
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1.3. Literature Review 

Discussed below are an overview of sediment transport modeling from the 

literature. Application-specific materials are presented with greater details in Section 5.  

1.3.1. Sediment Modeling Approaches 

 There are mainly two approaches for modeling sediment transport in a moving 

body of water: multi-phase models and diffusion models. The multi-phase models 

determine the interactions between the transport of sediment and hydrodynamics (Hsu et 

al., 2003; Hsu et al., 2004; Amoudry and Liu, 2009). They are widely adopted for many 

applications including sheet flow (Amoudry, 2009; Cheng and Hsu, 2014), suspended 

sediment transport (Muste et al., 2005; Jha et al., 2010; Shi and Yu, 2015), and particle 

dynamics modeling (Finn et al., 2016; Simeonov and Calantoni, 2012). While such studies 

provide well-resolved modeling results, they are computationally costly, especially when 

the flow environment is large and/or complex (Wu, 2008). 

 Diffusion models, on the other hand, treat sediment as a passive scalar, much like 

heat. In other words, it is assumed that the hydrodynamics is not affected by the presence 

of sediment particles in the water column (Villaret and Davies, 1995). In fact, Bagnold 

(1956) found that a sediment-fluid mixture will remain Newtonian for volumetric 

sediment concentrations less than 0.6. Since only one set of continuity and momentum 

equations is solved, diffusion models have an economic advantage over the multi-phase 

counterparts. Thus, for the present dissertation research, for which the goal is to bring 

contributions to the society with practical means of modeling sediment transport, diffusion 

models were adopted.  
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1.3.2. Brief History 

In the early stages of sediment transport modeling, the flow and transport 

environments considered were relatively simple in nature, partly because the computing 

resources available then were extremely expensive by today’s standard (Nordhaus, 2001). 

Kerssens et al. (1979) developed a one-dimensional model for prediction of the suspended 

sediment concentration in a stretch of river. The assumption was that the diffusion 

coefficient for momentum follows a parabolic profile over the depth. One-dimensional 

bed load was modeled by van Rijn (1984), who also investigated the effect of bed form 

roughness. On the other hand, Delft Hydraulics Laboratory (1980) simulated the 

downstream shift of a dredged channel due to both suspended and bed loads, and compared 

the results with a set of flume experiments. The flow was two-dimensional (width-

averaged) and semi-empirical relations were used to correct the prediction models. Van 

Rijn (1981) developed a two-dimensional transport model to predict sediment 

concentration due to entrainment from the bed. Two-dimensional suspended transport was 

further investigated by Wang and Ribberink (1986), for a case where sediment is 

introduced at the inlet. They used a flume with holes on the bottom surface such that re-

suspension does not occur. 

With increase in computing performances, the modeling capacity also improved, 

aided in part by the concurrent advancement in turbulence modeling (Pope, 2000). Lin and 

Falconer (1995) simulated the sediment flux in estuarine waters using a depth-integrated 

finite difference model ULTIMATE QUICKEST. Wu et al. (2000) utilized a three-

dimensional model FAST3D with k-ε turbulence closure to simulate channel bed 
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deformation. However, depth-integration was required for some quantities, such as the 

suspended load. 

From the early 2000s and on, many researchers have utilized three-dimensional 

CFD models to simulate complex sediment transport processes which involve deformable 

boundaries. Jia et al. (2002) simulated the scour around a cylindrical pier in an open 

channel. The numerical model applied was CCHE3D, developed at the National Center 

for Computational Hydrodynamics and Engineering. Roulund et al. (2005) investigated 

the flow and scour around a circular pile with EllipSys3D. They also conducted a set of 

flume experiments and compared the results with the simulation. The authors noted that a 

single test required computational time spanning 2.5 months. Khosronejad et al. (2012) 

simulated scour around piers of different shapes using FSI-CURVIB and compared the 

result with experiments. Three different pier shapes were used: cylindrical, rectangular, 

and diamond. Open-source software solvers are also adopted, as in the work by Sumer et 

al. (2014), who used OpenFOAM with k-ω turbulence model to study backfilling due to 

waves. 

Recently, technological advances such as parallel computing and graphics 

processing units (GPU) are increasingly being utilized for considerable reduction in 

computing time (Zhang and Jia, 2013; Fourtakas and Rogers, 2016; Hou et al., 2016; Sun 

and Xiao, 2016). It is predicted that these tools will make multi-phase approaches and 

higher-accuracy turbulence modeling more practical and accessible in the near future, thus 

contributing to our understanding of the complex physical phenomena.  
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2. GOVERNING EQUATIONS* 

 

2.1. Hydrodynamics Equations 

2.1.1. Reynolds-Averaged Navier-Stokes (RANS) Equations 

FANS3D solves three-dimensional unsteady, incompressible RANS equations in 

non-staggered, general curvilinear coordinate system. The governing equations in tensor 

form are as follows (Wu et al., 2000): 

 
∂𝑢𝑖

∂𝑥𝑖
= 0 (2.1) 

   

 
𝜕𝑢𝑖

𝜕𝑡
+

𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −

1

ρ

𝜕𝑝

𝜕𝑥𝑖
+

1

ρ

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝐹𝑖, (2.2) 

   

where 𝑢𝑖 = mean velocities; ρ = fluid density; 𝑝 = pressure; 𝜏𝑖𝑗 = deviatoric stresses; and 

𝐹𝑖 = external force (e.g., one due to the gravity). The deviatoric stresses are defined as: 

 τ𝑖𝑗 = ρ(𝜈 + 𝜈𝑡) (
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗𝑘, (2.3) 

   

where 𝜈 = kinematic viscosity; 𝜈t = eddy viscosity; 𝛿𝑖𝑗 = Kronecker delta; and 𝑘 = 

turbulent kinetic energy. 

In the current investigation, the standard 𝑘-𝜀 turbulence model by Rodi (1993) was 

adopted. In this model, the eddy viscosity is: 

 𝜈𝑡 = 𝑐𝜇

𝑘2

𝜀
, (2.4) 

   

Here, the turbulent kinetic energy 𝑘 and the dissipation rate 𝜀 are determined from Eqs. 

(2.5) and (2.6), respectively. 

*Reprinted with permission from “Three-dimensional numerical analysis of sediment transport around 

abutments in channel bend” by Han Sang Kim and Hamn-Ching Chen, 2014. Proceedings of the 34th 

International Conference on Coastal Engineering, Seoul, Korea, copyright 2014 by ASCE. 
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𝜕𝑘

𝜕𝑡
+

𝜕(𝑢𝑗𝑘)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝑘
)

𝜕𝑘

𝜕𝑥𝑗
] + 𝐺 − 𝜀 (2.5) 

   

 𝜕𝜀

𝜕𝑡
+

𝜕(𝑢𝑗𝜀)

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝜀
)

𝜕𝜀

𝜕𝑥𝑗
] + (𝑐𝜖1𝐺 − 𝑐𝜖2𝜀)

𝜀

𝑘
 (2.6) 

   

where 𝐺 = production of 𝑘. The standard values are used for the model coefficients: 𝜎𝑘 = 

1.0; 𝜎𝜀 = 1.3; 𝑐𝜇 = 0.09; 𝑐𝜖1 = 1.44; and 𝑐𝜖2 = 1.92. 

2.1.2. Wall Function Approach 

The wall function approach outlined in Wu et al. (2000) was adopted to incorporate 

the effects of the roughness elements (i.e., sediment particles on the bed). Here, the first 

grid point away from a wall surface in the mesh is placed within the logarithmic region, 

based on an a priori calculation with the characteristic length and velocity (White, 2002). 

In calculating the flow, Eq. (2.7) is enforced through an iterative method to obtain the 

local velocity components at the wall function grid level. 

 𝑈

𝑢𝜏
=

1

κ
ln 𝐸𝑦+, (2.7) 

   

where 𝑈 = total magnitude of the velocity parallel to the bed surface (𝑈 = √𝑢𝑖𝑢𝑖); κ = 

von Kármán constant; 𝑦+= viscous length; and 𝐸 =  𝑒[κ(𝐵−∆𝐵)]. The constant 𝐵 has the 

value of 5.2 and Δ𝐵 was determined by Cebeci and Bradshaw (1977) as a function of the 

roughness height 𝑘𝑠. Finally, the kinetic energy 𝑘 and the dissipation rate ε are specified 

by: 

 
𝑘 =

𝑢𝜏
2

𝑐𝜇
1 2⁄

 (2.8) 
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𝜀 =

𝑢𝜏
3

κ𝑦
 (2.9) 

   

The wall function approach has an added benefit of reducing the computational 

cost by enabling one to use a larger grid spacing compared to when other turbulence 

models such as two-layer model are used. This can be explained in terms of boundary 

layer theory. For two-layer model, the idea is to place a set of grid points within the viscous 

sublayer (y+ ≈ 5) to resolve near-wall turbulence using the one-equation model (Chen and 

Patel, 1988). On the other hand, the wall function requires the first grid point away from 

the wall to be placed farther from the wall, in the logarithmic region (y+ ≈ 50). To capture 

the difference in a more physical sense, the first grid spacing away from the wall are 

compared in Table 2.1 for select flow velocities. The estimated distances y+ were 

determined following White (2002). The roughness was assumed to be zero (smooth 

surface) and the characteristic length was set equal to 1 m. 

 

 

Table 2.1. Comparison of first grid spacing for two-layer model and wall function. 

Flow 

Velocity 

Reynolds 

Number 
Two-Layer (y+ ≈ 5) Wall Function (y+ ≈ 50) 

0.1 m/sec 89,000 1.00 mm 10.00 mm 

0.2 m/sec 178,000 0.55 mm 5.50 mm 

1.0 m/sec 890,000 0.13 mm 1.30 mm 

 

 

 The wall function approach, however, is not without disadvantages. It has been 

argued that its accuracy is questionable when there is a strong pressure gradient (Pope, 
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2000). In such cases, other turbulence modeling schemes that resolve the physics more 

closely will be required, such as k-ω or large eddy simulation. However, for the present 

investigation’s purpose of conducting practical simulations of sediment transport 

processes in the engineering scale, the wall function approach as presented was deemed 

feasible. In fact, the wall function approach has been utilized by other researchers in 

similar studies. For example, Wu et al. (2000) adopted the wall function approach to 

investigate the sediment transport around a 180° channel bend. When compared with the 

experiment conducted under the same condition, the predicted bed elevations and 

secondary flow velocity showed good agreement. The study by Zhang et al. (2010) on 

local scour around a submerged vertical circular cylinder also used the wall function 

approach. They noted that this approach increased the computational efficiency by 

avoiding use of fine mesh.  
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2.2. Suspended Sediment Transport Equations 

As discussed in Section 1.3, the sediment suspended in water column was treated 

as a passive scalar in terms of concentration. The following equation, in tensor notation, 

is used to describe the transport of this quantity (Wu et al., 2000): 

 𝜕𝑐

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
[(𝑢𝑗 − 𝜔𝑠𝛿𝑗3)𝑐] =

𝜕

𝜕𝑥𝑗
[(𝜈 +

𝜈𝑡

𝜎𝑐
)

𝜕𝑐

𝜕𝑥𝑗
] (2.10) 

   

where c = volumetric suspended sediment concentration; ωs = particle settling velocity; 

and σc = Schmidt number. In this study, 1.0 was used as the value of σc.  

 This approach calls for appropriate boundary conditions for the free surface and 

the bottom boundary. At the free surface, where the fluid forms a boundary with the air 

above, there is no flux in the vertical direction (Wu et al., 2000). This relationship is 

expressed with Eq. (2.11). 

 
(𝜈 +

𝜈𝑡

𝜎𝑐
)

𝜕𝑐

𝜕𝑧
+ 𝜔𝑠𝑐 = 0 (2.11) 

   

 At the bottom boundary, the flow and turbulence may disturb the sediment 

particles on the bed and produce an upward flux (source), but the physics also dictates that 

the particles eventually settle to the bed (sink). Following van Rijn (1987), the equilibrium 

sediment concentration 𝑐∗ was prescribed at the bottom boundary: 

 
𝑐∗ = 0.015

𝑑50𝑇1.5

𝑎𝐷∗
0.3

, (2.12) 

   

where 𝑑50 = sediment median diameter; 𝑇 = non-dimensional excess bed shear stress; 𝑎 

= thickness of the bed load layer; and 𝐷∗ = non-dimensional particle diameter. 
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2.3. Morphodynamics Equations 

FANS3D was also coupled with a morphologic model, with only the bed load 

transport mode considered (i.e., elevation change due to suspended load was not 

incorporated). The bed load transport model by Roulund et al. (2005) was adopted as the 

main framework, with the slope failure model by Khosronejad et al. (2011). 

The balance of bed load flux within a control volume is modeled with the Exner 

equation (Fortunado and Oliviera, 2007): 

 Δ𝑧

Δ𝑡
=

1

(1 − 𝑛)
∇ ∙ 𝒒𝑏

∗ , (2.13) 

   

where Δ𝑧 = bed elevation change over the time step Δ𝑡; 𝑛 = porosity of the sediment 

particle; and  𝒒𝑏
∗  = volumetric bed load flux. The bed load flux per unit width 𝒒𝑏 is 

determined following Engelund and Fredsøe (1976): 

 
𝒒𝑏 =

1

6
𝜋𝑑50

3
𝑃𝐸𝐹

𝑑50
2 𝑼𝑏 , (2.14) 

   

where 𝑃𝐸𝐹 = percent of particles in motion in the surface of the bed; 𝑼𝑏 = mean transport 

velocity of a particle moving as bed load. The following expressions are used to compute 

𝑃𝐸𝐹 and other associated terms: 

 

𝑃𝐸𝐹 = [1 + (

1
6 𝜋𝜇𝑑

𝜃 − 𝜃𝑐
)

4

]

−1 4⁄

 (2.15) 

   

 
𝜃 =

𝑼𝑓
2

(𝑠 − 1)𝑔𝑑50
 (2.16) 
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𝜃𝑐 = 𝜃𝑐0 (cos 𝛽 √1 −
sin2 𝛼 tan2 𝛽

tan2 𝜙
−

cos 𝛼 sin 𝛽

tan 𝜙
), (2.17) 

   

where 𝜇𝑑= dynamic friction coefficient with the value of 0.51; 𝜃 = Shields parameter; 𝑼𝑓 

= friction velocity; 𝑠 = specific gravity of the sediment; 𝑔 = gravitational acceleration; and 

𝜃𝑐 = critical value of 𝜃 for incipient motion. Note that the right-hand side of Eq. (2.17) 

describes the correctional treatment applied to the critical Shields parameter for a 

horizontal bed 𝜃𝑐0, to account for the local bed geometry (e.g., sloping scour hole) and the 

orientation of the flow velocity. Here, 𝛽 = the local bed slope; 𝛼 = angle between the near-

bed velocity vector and the direction of the bed slope; and 𝜙 = the angle of repose 

associated with the sediment particle. To determine the mean transport velocity of 

sediment particle 𝑼𝑏, it is necessary to solve the system of Eqs. (2.18-2.21) that describe 

the balance of forces acting on an individual particle, depicted in Fig. 2.1.  

 𝐹𝐷 cos 𝜓1 + 𝑊 sin 𝛽 cos(𝛼 − 𝜓) − (𝑊 cos 𝛽)𝜇𝑑 = 0 (2.18) 

   

 𝐹𝐷 sin 𝜓1 − 𝑊 sin 𝛽 sin(𝛼 − 𝜓) = 0 (2.19) 

   

 𝑈𝑟 sin 𝜓1 − 𝛼𝑈𝑓 sin 𝜓 = 0 (2.20) 

   

 𝑈𝑟 cos 𝜓1 − 𝑎𝑈𝑓 cos 𝜓 + 𝑈𝑏 = 0, (2.21) 

   

where 𝐹𝐷 = drag force; 𝑊 = gravitational force; 𝜓 = angle between the direction of the 

sediment particle 𝑼𝑏 and the fluid velocity 𝑼; 𝜓1 = angle between 𝑼𝑏 and 𝑼𝑟, the flow 

velocity relative to the particle. The following equations are also required: 

 
𝐹𝐷 =

1

2
𝜌𝑐

𝜋

4
𝑑50

2 𝑈𝑟
2 (2.22) 

   

 
𝑊 =

1

6
𝜋𝜌𝑔(𝑠 − 1)𝑑50

3  (2.23) 
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𝑐 =

4𝜇𝑠

3𝛼2 (
1
2 𝜃𝑐0)

 (2.24) 

   

 𝑈𝑟 = 𝑈 − 𝑈𝑏 = 𝑎𝑈𝑓 − 𝑈𝑏 , (2.25) 

   

where 𝑐 = force coefficient; 𝜇𝑠 = tan 𝜙; and 𝛼 = constant of value 10. Eqs. (2.18-2.21) are 

solved iteratively using a multi-dimensional Newton-Raphson scheme with Jacobian 

matrix. In the current research, particular attention was given to selection of the 

appropriate initial guesses of the parameters to facilitate convergence (Chapra, 2008); after 

the first time step, the converged solutions from the previous time step were used as the 

initial guesses for the new iteration. 

 

Fig. 2.1. Schematic of forces and velocities experienced by sediment 

particle (Roulund et al., 2005).  
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It is also necessary to ensure that the angle of repose inherent to the sediment type 

is not exceeded anywhere in the domain. Thus, the sand slide correction scheme by 

Khosronejad et al. (2011) was adopted. The algorithm first computes the slope between 

the central cell 𝑝 and its neighbors. If any of these slopes exceeds the angle of repose, 

small volumes of sediments are exchanged among the same neighboring cells while 

maintaining the conservation of mass. This process is repeated until the following 

conditions are met: 

 (𝑧𝑏𝑝 + ∆𝑧𝑏𝑝) − (𝑧𝑏𝑖 + ∆𝑧𝑏𝑖)

∆𝑙𝑝𝑖
= tan 𝜙 (2.26) 

   

 

𝐴ℎ𝑝∆𝑧𝑏𝑝 − ∑ 𝐴ℎ𝑖∆𝑧𝑏𝑖 = 0

4

𝑖=1

 

(2.27) 

   

where 𝑧𝑏𝑝 = bed elevation at the center of the cell 𝑝; 𝑧𝑏𝑖 = bed elevation at the neighboring 

cells’ center points; ∆𝑧𝑏𝑝 and ∆𝑧𝑏𝑖 = the correction height applied to the aforementioned 

points, respectively; ∆𝑙𝑝𝑖 = horizontal distance between 𝑝 and its neighbor 𝑖; and 𝐴ℎ𝑝 and 

𝐴ℎ𝑖 = the areas of the cells 𝑝 and 𝑖, respectively. In this investigation, the angle of repose 

was set to 32° following Messer et al. (1916). 
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3. NUMERICAL MODELING 

 

3.1. Finite Analytic Method 

FANS3D is a general CFD program developed based on the finite analytic method 

of Chen et al. (1990), with the hybrid SIMPLER/PISO velocity-pressure coupling by Chen 

and Korpus (1993) and Pontaza et al. (2005). The current investigation used the 𝑘-𝜀 

turbulence model but the solver also has the capability to calculate flow with large eddy 

simulation (Huang et al., 2011) and detached eddy simulation (Chen and Chen, 2016). It 

has been largely employed in offshore engineering applications, such as vortex-induced 

vibration of pipelines (Huang et al., 2011), hull slamming (Chen and Chen, 2015), and 

violent free surface (Chen and Chen, 2016). Other applications more relevant to this 

dissertation include cohesive soil scour around an array of piers (Chen, 2002), cohesive 

soil scour around an abutment (Chen, 2008), and suspended sediment transport (Kim and 

Chen, 2014) in channel bend. 

The essence of the finite analytic method is that the analytic solutions of the locally 

linearized governing equations are incorporated in obtaining the numerical solutions. This 

leads to advantages in accuracy and convergence rate over other discretization schemes. 

In applying the method, the computational domain is first discretized into numerical 

elements, as depicted in Fig. 3.1. Then, in each of these subdomains, the analytic solutions 

of the governing equations are obtained at the interior node P with the separation of 

variables technique using the dependent variables at the exterior points. In turn, algebraic 

equations relating the analytic solutions at P to the values at the subdomain’s boundaries 
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are established. In the current work, the 19-point scheme by Chen et al. (1995) was used. 

For more detailed description of the method, the reader is also referred to Chen and Chen 

(1984) and Chen et al. (1990). 

 

 

 

 

 

 

 

Fig. 3.1. Numerical element for the 19-point finite analytic method 

(Chen et al., 1995).  
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3.2. Overset Grid Technique 

 With overset grid technique, the physical domain is decomposed into 

geometrically simple blocks, which form the CFD mesh as a whole. The flow solutions 

obtained within each of the blocks are then transferred to others through interpolation. 

 A major advantage of this technique is that it allows one to employ local block 

geometries that best suit different parts of the physical domain being analyzed. For 

instance, assume that scour is simulated around a cylindrical pier placed inside a 

rectangular flume. In such case, the appropriate approach would be to model the pier with 

a cylindrical block and the flume with a prismatic block, with the former embedded in the 

latter. This will facilitate specification of boundary conditions: the inner radial surface of 

the pier block will have the no-slip condition, while the outer surface will be used for 

interpolation with the surrounding block. The key is to understand the characteristics of 

the flow field to be analyzed and recognize which boundary conditions are needed. 

 With overset grid technique, it is critical to achieve high-accuracy interpolation 

between blocks.  In the present investigation, PEGASUS, a pre-processor developed 

originally in the 1980s for aerodynamics simulation, was used to set up the interpolation 

scheme (Benek et al., 1985). PEGASUS is particularly useful in automated hole-cutting 

and linking of multiple blocks according to the user input (Suhs, 2002). By specifying the 

block dimensions and the indices of the surfaces through which information is transferred, 

PEGASUS generates the interpolating protocol. This, in turn, directs the communications 

among the different grid points that are linked to one another. The complete sequence for 

generating a mesh with the overset grid technique is briefly described below. 
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i. Define geometry. 

 First, one needs to define the geometry of each of the blocks that together represent 

the physical flow domain. For example, to generate a mesh for simulation of flow around 

a pier in a channel, the geometry and number of grid points need to be specified for the 

pier and channel blocks separately. In the present investigation, case-specific Fortran 

codes were used for this Step. 

ii. Improve spacing. 

 To obtain numerically stable solutions and to satisfy certain boundary conditions 

near the surfaces (e.g., wall function), the grid spacing for each block is modified as 

necessary. This task can be incorporated into the previous step. 

iii. Assign block identifications. 

 For PEGASUS to recognize different components of the mesh, each block must 

be identified with a unique name. The file containing the names and geometries of the 

blocks are read by PEGASUS as one of the inputs. 

iv. Establish linking with PEGASUS. 

 Lastly, PEGASUS is run to generate the interpolation protocol. In this 

investigation, version 4.0 of the software was adopted (Suhs and Tramel, 1991). The 

outputs from this final process are a modified mesh file made compatible with FANS3D 

and another containing the interpolation information. Together, they constitute the 

computational domain for FANS3D. It should be noted that PEGASUS may also be run 

mid-simulation to update linking for moving domains. 
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3.3. Solution Algorithm 

3.3.1. Overall Algorithm 

 The essence of the dissertation effort is the coupling of sediment transport modules 

with the flow solver. FANS3D exists as a collection of subroutines, each carrying out 

specific functions. Likewise, the sediment transport modules have been implemented in 

the form of subroutines. This facilitates maintenance and modifications. The overall 

solution algorithm is as follows: 

i. Read in grid information and user inputs. 

ii. Initialize flow properties (i.e., velocities, pressure, and turbulence quantities). 

iii. Compute eddy viscosity for turbulence modeling. 

iv. Compute finite analytic coefficients for solving the Navier-Stokes equations. 

v. Compute pseudo-velocities and turbulence terms. 

vi. Perform velocity-pressure coupling and velocity correction. 

vii. Apply relaxation to the solutions for convergence. 

viii. Run bed load transport module and determine bed elevation changes. Update the 

interpolation scheme using PEGASUS as necessary (depending on the application).  

ix. Go back to Step iii above until the specified number of time step is reached. 

x. Generate output files and terminate the program. 

 It should be noted that the transport of suspended sediment is determined at Step 

v along with the turbulence terms for efficiency. The reason is that the transport equations 

are very similar to one another and thus the source terms can be shared. On the other hand, 
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the bed load transport and the resulting bed elevation changes are determined after the 

converged velocities have been obtained. 

3.3.2. Bed Load Transport Algorithm 

The algorithm for determining the bed load transport and the resulting bed 

elevation changes (Step viii of the overall FANS3D algorithm) is given below. It should 

be noted that most, if not all, terms are in dimensional forms. 

i. Calculate the shear stress (𝜏) using the shear velocity obtained from the wall function 

approach (Eq. 2.7) and the fluid density: 

 𝜏 = 𝜌𝑢𝜏
2 (3.1) 

   

ii. Using Eqs. (2.14-2.25), determine the bed load flux per unit width 𝒒𝑏. 

iii. Calculate the volumetric flux 𝒒𝑏
∗  using finite volume approach and the mesh geometry. 

iv. Calculate the elevation change of the bed (Eq. 2.13). 

v. Check whether any region in the bottom surface has local slope exceeding the angle of 

repose of the sediment. In such case, apply sand slide correction (Eqs. 2.26-2.27) to 

enforce slope failure and update the bed elevations.  
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3.4. Computing Environment 

 The simulations were run on the EOS (retired in 2016), ADA, and TERRA systems 

of Texas A&M University’s High Performance Research Computing Facilities. The 

version of FANS3D with which this dissertation was undertaken does not support parallel 

computing, and thus only a single core was employed. The computing time is dependent 

on the application, and it varies widely with numerous factors including the number of 

grid points, number of simulation time steps, and internal iteration settings. Thus, in 

submitting the batch job file, the maximum wall clock time and memory usage limit per 

node were determined based on experience. Because the CFD solver is written in Fortran, 

a compiler must be loaded prior to compiling the code and starting the simulation. In the 

present research, the most recent versions of Intel Fortran compiler at the time of 

simulation were used. All codes were compiled with the double-precision option. 
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4. MODEL VALIDATION* 

 

4.1. Suspended Sediment Transport 

4.1.1. Net Entrainment 

The first validation case was the laboratory investigation by van Rijn (1981), 

which is characterized by net entrainment of sediment from the bed. In a flume, initially 

clear, fully-developed flow was introduced over the sediment bed and the sediment 

concentration was measured after the equilibrium condition was reached. The flume 

dimensions were 30 m × 0.5 m × 0.7 m (length × width × height). The mean velocity of 

the inflow was 0.67 m/sec with the water depth being 0.25 m. The median diameter d50 of 

the bed material (sand) was 0.23 mm and its settling velocity was 2.2 cm/sec. Syphon 

method was employed to sample the water-sediment mixture at five different depths at 

each of the four stations downstream of the inlet. The schematic of the experimental setup 

is provided in Fig. 4.1. 

 

 

Fig. 4.1. Schematic of the net entrainment experiment by van Rijn 

(1981). 

*Reprinted with permission from “Three-dimensional numerical analysis of sediment transport around 

abutments in channel bend” by Han Sang Kim and Hamn-Ching Chen, 2014. Proceedings of the 34th 

International Conference on Coastal Engineering, Seoul, Korea, copyright 2014 by ASCE. 
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The mesh for this case consisted of a single prismatic block with the dimensions 

201 × 3 × 21 (length × width × height) grid points. The effects of the sidewalls were 

assumed to be negligible and the flow was treated as two-dimensional. The wall function 

approach was employed for the bottom boundary, with the equivalent roughness height ks 

set to 0.01 m. At the inlet, the velocity profile of the fully-developed flow was specified 

as the boundary condition, with zero sediment concentration. At the sidewalls zero-

gradient boundary condition was used for all quantities. 

The comparison between the simulation and the measurements is given in Fig. 4.2. 

The Figure shows the results at two different locations, x/h = 4 and x/h = 40 (x and h denote 

the distance from the inlet and the water depth, respectively). The computed and measured 

sediment concentrations were normalized by a reference value of 3,000 mg/L. The vertical 

axis was normalized by h. One can observe that the entrainment from the bed led to the 

increased concentration of suspended sediment between the two stations. For the 

normalized depth above around 0.5, insignificant concentration was predicted. Overall, 

the computed concentrations agree very well with the measurements.   
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Fig. 4.2. Sediment concentration profiles for the net entrainment case. 



 

25 

 

 

4.1.2. Net Deposition 

Another experimental study, conducted by Wang and Ribberink (1986) and 

involving zero entrainment from the bed, was used as the second validation case for the 

suspended sediment module. 

 The experiment was carried out in a straight flume with the dimensions 30 m × 0.5 

m × 0.5 m (length × width × height). The mean longitudinal velocity was 0.56 m/sec. A 

constant flux of sand was supplied at the inlet of the flume, thus mimicking a steady, 

sediment-laden open channel flow. The characteristic diameter of the sediment d50 was 

0.095 mm and settling velocity was 0.65 cm/sec. Samples were taken using syphon at 

different distances downstream of the flume. To ensure that there was no re-entrainment 

of sediment from the bed, the channel bed was perforated and a compartment was placed 

below to capture and contain the sand particles, as shown in Fig. 4.3. 

 

 

 

Fig. 4.3. Experimental setup for net deposition study by Wang and Ribberink (1986). 
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With the physical specifications provided above, the experiment was simulated 

with a domain of the dimensions 201 × 3 × 51 (length × width × height) grid points. With 

the same assumptions as the net deposition case, the flow was treated as two-dimensional. 

The measured distribution of suspended sediment at x = 0.1 m downstream from the inlet 

was taken as the inlet boundary condition for simulation. At the bed, zero-gradient 

condition was used for the sediment concentration, since there was no upward flux.  

 The results are presented in Fig. 4.4, for x/h =5 and x/h = 72. It can be seen that the 

simulation predicted the actual concentrations very well in general. The concentration near 

the bed was over-predicted by the model. It is possible that an improved bed boundary 

condition is required to model the process with higher accuracy. 
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Fig. 4.4. Sediment concentration profiles for the net deposition case. 
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4.2. Bed Load Transport 

The experiment conducted by Khosronejad et al. (2012) involving local scour 

around a cylindrical pier was used to validate the bed load transport module. In this 

particular case, a cylindrical pier of 16.51 cm in diameter was placed in a rectangular 

flume measuring 10 m × 1.21 m × 0.45 m (length × width × height). The bed material was 

uniform sand with 𝑑50 = 0.85 mm. The depth and approach velocity of the inflow were 

18.6 cm and 0.41 m/sec, respectively. The flow and scour under this setup was simulated 

with FANS3D. The predicted time development of the scour depth (z) is plotted in Fig. 

4.5 against the experimental measurements, as well as the simulation result by 

Khosronejad et al. (2012) obtained with their numerical model FSI-CURVIB. 

The comparison shows that FANS3D performed with a reasonably good 

agreement with the measured data. The predicted equilibrium scour depth (zeq) is 7.9 cm, 

which corresponds to an error of 5.4% from the measured value of 7.5 cm.  On the other 

hand, the FSI-CURVIB method by Khosronejad et al. (2012) produced a 15.9% error with 

the predicted zeq of 6.5 cm. It should be noted, however, that the time development of the 

scour depth predicted by FANS3D deviates from the measurements starting at time t ≈ 10 

min. as the rate of scour is reduced. Having observed a similar trend in their simulation, 

Khosronejad et al.  (2012) explained that the discrepancy occurs because the two-equation 

isotropic eddy viscosity turbulence models (e.g., k-ε adopted in the current study) 

overpredict the magnitude of eddy viscosity at places of sharp pressure gradients, thereby 

underpredicting the effect of turbulent horseshoe vorticity system (THSV).  
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Nevertheless, FANS3D predicted the equilibrium scour depth more accurately, 

which can be attributed to the morphologic model employed. In Khosronejad et al. (2012), 

the bed load flux was computed with the near-bed velocity vector and sediment 

concentration, which are obtained with interpolation and an empirical relation, 

respectively. 

 On the other hand, the approach by Roulund et al. (2005) adopted herein 

determines the particle motion from the force balance, taking into account the 

gravitational, drag, lift, and frictional forces acting on the particle.  

Fig. 4.5. Time series of the maximum scour depth around cylindrical pier under the 

experimental setup by Khosronejad et al. (2012). 
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Fig. 4.6 shows both the predicted and measured bed morphologies around the pier 

at equilibrium. The scour depth predicted by the simulation is found near the upstream 

side of the pier inside the area defined by 30° < Φ < 90°, where Φ is the angle measured 

from the upstream nose of the pier. The fact that this area does not encompass the upstream 

nose, as it did in the experiment, evidences the discussion presented above regarding the 

role of THSV. Overall, the prediction and the measurements show good agreement. 

 

 

Fig. 4.6. Bed morphology around the pier at equilibrium (depth in cm; negative 

indicates above initial bed level). Compared are the prediction by FANS3D (top) 

and the measurements reported by Khosronejad et al. (2012) (bottom).  

Flow 
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5. APPLICATIONS 

 

5.1. Suspended Sediment Transport in Channel Bend 

5.1.1. Introduction 

The flow and transport of suspended sediment particles, in the form of plume, were 

simulated using FANS3D. The physical domain considered is an open channel with a 90° 

bend and wingwall abutments, which induces complex, three-dimensional flow 

characteristics. The effect of the sediment particle size was also analyzed using two 

different median diameters: 0.10 mm and 0.20 mm.  

 The motivation was ultimately to contribute to environmental engineering research 

by providing a means to simulate and visualize the transport of waterborne particles or 

plumes. One such implication is the transport of contaminated soils, especially those 

originating from concentrated animal feeding operations. It is reported that during floods, 

high amounts of manure and hormone-absorbed soil enter natural streams with the runoff, 

causing disruptive effect in the environment (Sun et al., 2010; Qi and Zhang, 2016; Adeel 

et al., 2017). Being able to characterize how such contaminants behave in complex flow 

environment and where the maximum concentrations occur in a stretch of rivers or streams 

will contribute to the mitigation efforts. 

 Another closely related implication is sedimentation in reservoirs and open 

channel systems. Sedimentation in reservoirs causes operational issues and the turbid 

currents often need to be vented through outlets (Lee et al., 2014; Chamoun et al., 2016). 

High turbidity in natural systems also endangers aquatic species, because thick plumes 
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prevent exposure to the light, and because of heavy metal contamination (Albert et al., 

2015; Kulshreshtha and Shanmugam, 2015; Restrepo et al., 2016). If the transport of 

suspended sediment can be accurately simulated, the results can aid in predicting the light 

attenuation, which is the intensity reduction of light through depths of water column 

(Davies-Colley and Smith, 2001). 

 Not surprisingly, there have been past studies aimed at predicting the suspended 

sediment concentration in flow. Hjelmfelt and Lenau (1970) presented an analytic solution 

for the concentration profile in a uniform flow, with the sediment entrained from the bed. 

The assumptions were that the diffusion coefficient profile over the water depth is 

parabolic and that the depth-average velocity is constant.  

 Early numerical investigations include those by van Rijn (1981), which 

implemented a mathematical model validated with the aforementioned work of Hjelmfelt 

and Lenau (1970), and by Wang and Ribberink (1986), which validated a depth-integrated 

transport model with experiments. In their laboratory setting, a specially fabricated flume 

with perforated bed was used, which allowed no re-suspension from the bed once the 

sediment particles pass through the holes. 

 More recently, CFD simulation was utilized for three-dimensional study in various 

environments. Haun et al. (2013) used a three-dimensional model to predict the sediment 

concentration in various location in a reservoir. Basser et al. (2015) conducted an 

experimental and numerical study of scour around a rectangular abutment including 

suspended sediment, but the focus was given to scour depth at various locations in the 

channel and the plume transport was not discussed in detail. 

http://www.sciencedirect.com/science/article/pii/S2214241X1500142X
http://www.sciencedirect.com/science/article/pii/S2214241X1500142X
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 The present investigation is an improvement upon a previous work by the author 

(Kim and Chen, 2014) by incorporating two different sediment particle sizes and their 

physical characteristics. The flow domain, originally presented by Chen (2008) was 

modified to eliminate those components with little relevance to plume transport. 

5.1.2. Flow Environment 

 In the setup for the present investigation, a sediment plume with the volumetric 

concentration of 1,000 parts per million (ppm) is introduced at the inlet of the channel. 

That is, the concentration profile does not vary along the flow depth. With the intention to 

visualize the movement of particles in the water column, it was assumed that there is no 

deposition or erosion taking place at the bed. Rather, the particles that fall onto the bed 

will simply “pass through” the bed surface. This setup reduces the number of sediment 

sources to only one: the inlet. This approach is identical to the approach used by Wang 

and Ribberink (1986) in their flume study involving a perforated flume. 

 The overall flow environment resembles that used in the study by Chen (2008), 

which analyzed the shear stress and the subsequent cohesive sediment scour around 

abutments with overtopping flow. The original channel consisted of a 90° bend, with 

wingwall abutments on either side of the cross section at the middle of the bend. The 

abutments supported a rectangular bridge, for which the overtopping was simulated. Also, 

the channel featured a depression along its centerline.  

For the current study, however, several modifications were made to the original 

domain. First, since the goal was to simulate the plume transport in the channel bend and 

not the flow overtopping a bridge, the blocks associated with the overtopping were 
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removed. It was also deemed that the presence of the wingwall abutments provided a 

sufficiently complex flow environment worthy of investigation. Secondly, the bed was 

made flat by removing the depression that extended in the longitudinal direction. This 

change has a physical ground; the depression’s slope in the transverse direction (45°) 

exceeded the angle of repose of non-cohesive sediment, which results in slope failure. The 

original and modified meshes are depicted in Fig. 5.1.  

 

Fig. 5.1. Channel configurations for Chen (2008) (top) and the current 

simulation (bottom). The vertical scale was magnified by a factor of 10. 

Inlet 

Inlet 

Outlet 

Outlet 
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The same flow properties as in Chen (2008) were used for the current simulation. 

The approach velocity was 0.43 m/sec, and the flow depth was 0.29 m. The resulting 

Reynolds Number is 112,000. 

The two median sediment diameters considered were d50 = 0.10 mm and d50 = 0.20 

mm, with settling velocities of 0.7 cm/sec and 2.4 cm/sec, respectively (Zanke, 1977). The 

density was assumed to be equal at 2650 kg/m3, and the porosity was assumed to be 0.40. 

5.1.3. Mesh 

 As with the physical configuration, the grid structure of the original mesh was also 

modified. Fig. 5.2 depicts the change made to Block 1, which spans from the channel inlet 

to immediately upstream of the abutments. As shown in the Figure, fewer grid points were 

adopted in the transverse direction. The abrupt changes in the grid spacing were avoided 

with the elimination of the depression in the channel bed. Also, the near-wall spacing 

increased from 0.0016 mm to 9.7 mm. This change was made because unlike the original 

simulation, which used the two-layer model to resolve turbulence, this investigation used 

the wall function approach. Similarly, the spacing in the vertical direction was similarly 

altered (not shown). However, the blocks associated with the abutments maintained their 

original structure and the two-layer model was used. 

The number of grid points for both the original (two-layer) and the new (wall 

function) meshes are presented in Table 5.1. As can be seen, the adoption of the wall 

function approach led to an added benefit of reduction of computing resources. It should 

be noted that this Table excludes the blocks associated with the overtopping flow in the 
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original mesh. The longitudinal, transverse, and vertical coordinate directions are denoted 

with ξ, η, and ζ, respectively.  

 

 

Fig. 5.2. Mesh structures for two-layer model (top) and wall function (bottom). 

Inlet 

Inlet 
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Table 5.1. Number of grid points used for the plume transport study. 

Block Description 

Original 

(two-layer model) 

New 

(wall function) 

ξ η ζ ξ η ζ 

1 Inlet 40 147 25 40 87 25 

2 Middle 109 43 25 89 43 25 

3 Abutment at inner bank 211 44 25 211 44 25 

4 Abutment at outer bank 211 44 25 211 44 25 

5 Outlet 80 147 25 80 87 25 

Total 1,022,375 820,875 

 

 

5.1.4. Simulation Setup 

 In flow simulations with FANS3D, all quantities are in the non-dimensionalized 

forms. For the current study, the characteristic length and velocity scales were set equal to 

the initial flow depth and the approach velocity, respectively. The non-dimensional time 

step size used, 0.15, translates to the physical step size of 0.102 seconds.  

The boundary conditions were chosen to recreate the physical processes. At the 

channel inlet, the longitudinal velocity profile was prescribed using logarithmic profile of 

Wu et al. (2000). The transverse and vertical velocities, as well as the turbulence 

quantities, were set to zero. A uniform profile of 1,000 ppm of sediment concentration 

was prescribed and the turbulence quantities were set to zero. At the outlet, all quantities 

followed the zero-gradient condition, where the values at the node upstream were adopted 

as the boundary condition. At the free surface, the rigid-lid condition was assumed. The 

longitudinal and transverse velocities followed zero-gradient conditions, whereas the 

vertical velocity was set to zero. The turbulence quantities were solved using Eqs. (2.8-

2.9) and the suspended sediment concentration was set using Eq. (2.11). At the sidewalls 
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and the bed, the flow and turbulence quantities were resolved using the wall function as 

discussed in Section 2.1.2. However, the roughness height along the sidewalls were set to 

zero, whereas the bed roughness height was assumed to be three times the sediment 

diameter following van Rijn (1984). The sediment plume was assumed to simply “pass 

through” the boundaries using the zero-gradient condition, instead of using Eq. (2.12).  

5.1.5. Results and Discussion 

 Before presenting the results for suspended sediment, it is first necessary to discuss 

the hydrodynamics in the channel bend. Fig. 5.3 shows the local total velocity magnitude, 

computed at each grid point, of the pseudo-equilibrium flow in three different channel 

depths. It should be noted that values represented by the color contours are relative to the 

characteristic velocity scale. For instance, the value of 3 indicates that the magnitude is 

three times as high as the approach velocity. 

 

Fig. 5.3. Toal velocity magnitude in channel bend: top surface. 

Flow 



 

38 

 

 

 

 

Fig. 5.3. (continued) Toal velocity magnitude in channel bend: mid-depth 

(top of this page), at 9.7 mm from the channel bed (bottom). 

Flow 

Flow 
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It can be seen that the contraction caused by the two abutments led to flow 

acceleration. At the top surface, for instance, the flow magnitudes immediately upstream 

and downstream of the passage along the centerline differ by a factor of 1.5. In each of the 

corners formed by the abutments and the channel sidewalls, sharp reduction in the velocity 

magnitude is observed due to pressure gradient and flow recirculation. Vortices formed 

around and downstream of the abutments, shown in Fig. 5.4, agreeing well Koken and 

Constantinescu (2014). The positive and negative values indicate the counter-clockwise 

and clockwise directions, respectively.  

 

Fig. 5.4. Vortices in the channel bend. The unit is sec-1. 

Flow 

Flow 



 

40 

 

 

The flow behind the abutments are studied in greater detail with the local velocity 

vectors and the total velocity magnitude (Fig. 5.5). Here, the vectors are shown only on 

the top surface of Block 5. As observed in the Figure, there are vortices rotating in opposite 

directions behind each abutment. These, combined with the curvature of the channel, 

generate a unique and complex three-dimensional flow pattern.  

 

 

Fig. 5.5. Flow characteristics downstream of the wingwall abutments. 

Flow 
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 When the suspended sediment transport was initiated in the flow field thus 

described, significant difference was produced between the two diameters. The time series 

of the concentration distribution in the channel are compared in Figs. 5.6 (top surface) and 

5.7 (near-bed plane). Fig. 5.6 is discussed first. It can be clearly seen that the plume 

concentration at the top surface drops sharply immediately after release for d50 = 0.20 mm. 

On the other hand, the concentration associated with d50 = 0.10 mm is at least an order of 

magnitude higher at the same locations because of its lower settling velocity. Immediately 

upstream of the contraction, however, locally higher concentration is observed. This is due 

to the intense mixing driven by the vortices formed (Kwan and Melville, 1994; Barbhuiya 

and Dey, 2004). Downstream of the contraction, the sediment concentration is 

significantly higher along the centerline due to the flow acceleration occurring between 

the abutments. In the frames for t = 40 min. and t = 60 min., plume travelling upstream is 

observed due to the swirl. 

 In Fig. 5.7, which shows the near-bed concentration, the effect of settling velocity 

is seen more clearly. The contour distribution is very similar between the two sediment 

diameters. However, after t = 40 min., one can see that the particles with d50 = 0.10 mm 

travel significantly farther downstream before settling to the bed. Both Figs. 5.6 and 5.7 

indicate the concentration was higher in the area near the inner bank. 
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Fig. 5.6. Suspended sediment distribution at top surface for d50 = 0.10 mm (left) and d50 

= 0.20 mm (right), at t = 0 (top) and t = 20 min. (bottom). 
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Fig. 5.6. (continued) Suspended sediment distribution at top surface for d50 = 0.10 mm 

(left) and d50 = 0.20 mm (right), at t = 40 min. (top) and t = 60 min. (bottom). 
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Fig. 5.7. Suspended sediment distribution near bed for d50 = 0.10 mm (left) and d50 = 0.20 

mm (right), at t = 0 (top) and t = 20 min. (bottom). 
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Fig. 5.7. (continued) Suspended sediment distribution near bed for d50 = 0.10 mm (left) 

and d50 = 0.20 mm (right), at t = 40 min. (top) and t = 60 min. (bottom). 

Flow Flow 
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 The time series of the sediment concentration distributions in the longitudinal mid-

plane are presented in Figs. 5.8 and 5.9 for both median diameters. These Figures show 

the concentration profiles along the depth of the channel, as well as the mixing induced 

by the flow acceleration.  In the first frame of Fig. 5.8, corresponding to t = 20 min. for 

d50 = 0.10 mm, it can be seen from the contours past the abutments that the local maximum 

concentration occurs not near the bed, as Wang and Falconer (1995) proved, but instead 

mid-depth. This is due to the flow acceleration between the abutments and the subsequent 

vortices, which cause mixing. By the same mechanism, the top surface’s concentration is 

lower between the abutments than in the downstream regions.  

 For the case with d50 = 0.20 mm, however, the settling velocity dominated the 

transport mechanism, and the maximum concentration occurs near the bed. The mixing 

due to the flow acceleration and vortices had some influence, though, as evidenced by the 

rise of contours near the outlet of the channel. Comparing Figs 5.8 and 5.9, it is clearly 

seen that the smaller particles, with their lower settling velocity, travel farther before 

settling.  

 The effect of sediment diameter on the plume transport is further investigated by 

observing the concentration distribution in the cross sections upstream and downstream of 

the abutments, as well as in between them. Fig. 5.10 captures the profile views of the 

contours for both sediment diameters at t = 60 min. The Figure reinforces the findings 

already noted that smaller particles result in higher concentration in the water column, 

since the particles settle slower.  
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Fig. 5.8. Sediment concentration in the longitudinal mid-plane for d50 = 0.10 mm 

at t = 20 min. (top), t = 40 min. (middle), and t = 60 min. (bottom). 
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Fig. 5.9. Sediment concentration in the longitudinal mid-plane for d50 = 0.20 mm 

at t = 20 min. (top), t = 40 min. (middle), and t = 60 min. (bottom). 
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Fig. 5.10. Sediment concentrations near the abutments at t = 60 min. for d50 = 0.10 

mm (top) and d50 = 0.20 mm (bottom). 
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5.1.6. Conclusions and Future Works 

 To improve the understanding of how suspended sediment is transported in a three-

dimensional flow, simulation was conducted with two different median diameters, 0.10 

mm and 0.20 mm, inside a channel bend with wingwall abutments. The domain is similar 

to the one used by Chen (2008) with several modifications, including removal of the 

overtopping elements and the depression in the channel centerline. The wall function 

approach was adopted in combination with the two-layer model for different components 

of the mesh. This study has presented the following contributions to the research 

community: 

i. Wall function approach and the two-layer model, which utilize near-wall spacings that 

differ by orders of magnitude, were used together. The interpolation among blocks was 

successfully established by PEGASUS. 

ii. The flow around wingwall abutments was simulated, including vortex shedding. 

iii. The time series of concentration distribution of suspended sediment are provided in 

three dimensions. Locations of relatively high and low concentrations were identified. 

Nevertheless, there is room for improvement for more comprehensive 

understanding of suspended sediment transport. Primarily, the implementation of bed 

boundary conditions that model the actual physical processes (entrainment and deposition) 

at the bed will bring new insight. Also, use of different channel configurations will help 

build additional practical knowledge. 
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5.2. Scour around Abutments 

5.2.1. Introduction 

 The effects of sediment particle size on the scour depth around an obstruction were 

studied. Two different structures were considered: a wingwall abutment and a prismatic 

structure with a semi-cylindrical edge, as depicted in Fig. 5.11. Unlike the former, whose 

cross section tapers in the vertical direction, the latter has a constant cross section. 

Although such geometry is not employed in typical abutment designs (Tonias and Zhao, 

2007), it contributes to the understanding of sediment transport processes. Thus, it will be 

termed and considered as a “round abutment” in the present discussion.  

 The effect of the diameter of a sediment particle on its mobility was studied 

extensively by Shields (1936). The Shields diagram, relating the critical shear stress 

required for the incipient motion of a particle to its diameter and the Reynolds Number, 

has paved the way for decades of sediment transport studies that followed. More recently, 

Briaud et al. (2001) and Briaud (2006) presented a set of curves that relate the critical flow 

velocity and shear velocity based on the erosion function apparatus experiments. 

The relationship between particle diameter and the scour depths has been presented 

in experimental works including Melville and Chiew (1999), Florida Department of 

Transportation (FDOT) (2005), Sheppard et al. (2007), Lee and Sturm (2009), and Lança 

et al. (2011). In these experiments, the physical or dimensionless sediment particle sizes 

were varied and the scour depths around a cylindrical pier were measured. Scour around 

wingwall abutment was recently studied by Mazumder and Barbhuiya (2014), with four 

different sediment diameters.  
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Fig. 5.11. Channel configuration: Wingwall abutment (top) and round abutment 

(bottom). Scale is magnified by factor of 5 in the vertical direction. 
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5.2.2. Flow Environment 

 The flow environment was identical to the experimental setup for the Experiment 

Case 9 discussed in Chen (2008) and Oh (2008), where a constant flow was maintained at 

the inlet of a 6 ft-long channel to observe cohesive scour around a wingwall abutment. In 

the current simulation, to generate a fully-developed flow profile, sufficiently long 

distance was provided between the inlet and the abutment. The initial flow depth and the 

approach velocity were 0.29 m and 0.43 m/sec, respectively. The geometry of the 

wingwall abutment was identical to the one presented in Section 5.1. 

As can be seen in Fig. 5.11, the channel was rectangular and straight, bound with 

smooth sidewalls. The bed was covered with sediment particles as was in the experiment. 

It should be mentioned, however, that because the sediment type was different (cohesive 

vs. non-cohesive), the roughness effect was different from the experimental setup. In 

addition, the bed surface was initially flat for the current simulation.  

The round abutment has a size comparable to that of the wingwall counterpart. For 

variability in sediment particle size, four different median diameters were adopted: 0.20 

mm, 0.40 mm, 0.60 mm, and 0.80 mm. Their physical properties that have implications in 

the transport are summarized in Table 5.2. 

 

Table 5.2. Physical characteristics of sediment with different median diameters. 

d50 (mm) Settling Velocity (cm/sec) Critical Shields Parameter 

0.20 2.38 0.056 

0.40 5.72 0.038 

0.60 8.16 0.034 

0.80 10.07 0.031 
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5.2.3. Mesh 

 The simulation for this investigation was performed in a mesh consisting of the 

block associated with the abutment embedded within the rectangular channel block as 

shown in Fig. 5.12. A hole was generated within the channel block with PEGASUS, for 

which the solution is not obtained during simulation. In Fig. 5.12, the hole points have 

been “turned off” and thus are not visible. To improve interpolation between the two 

blocks, similar grid spacing was adopted in the vicinity of the interface. 

 It should be noted that while the original grid structure of the wingwall abutment 

mesh (compatible with the two-layer turbulence model) was maintained, the round 

abutment mesh was generated to be used with the wall function approach. Thus, a 

relatively large grid spacing was applied near the wall, y+ ≈ 100. The near-bed spacing, 

however, was set to y+ ≈ 100 for both meshes. The number of grid points for the two 

meshes are presented in Table 5.3. Here, the number of grid points include those in the 

hole region. The longitudinal, transverse, and vertical coordinate directions are denoted 

with ξ, η, and ζ, respectively. 

 

 

Table 5.3. Number of grid points employed for the abutment scour simulations. 

Block Description 
Wingwall Round 

ξ η ζ ξ η ζ 

1 Abutment 211 43 25 19 131 25 

2 Channel 117 71 25 117 71 25 

Total 434,500 269,900 
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5.2.4. Simulation Setup 

 The characteristic length and velocity scales were set equal to the initial flow depth 

and approach velocity, respectively. The non-dimensional time step size, 0.2, led to the 

physical step size of 0.14 seconds.  

The boundary conditions of the rectangular channel were set to mimic the physical 

flow conditions. At the inlet, logarithmic velocity was prescribed in the direction of the 

Fig. 5.12. Grid structure for the abutments: Wingwall (top) and round 

(bottom) 
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approach flow, while the transverse and vertical velocity components were set to zero. At 

the outlet, the zero-gradient condition was used. The wall function approach was adopted 

for the sidewalls and the bed. The sidewall surfaces were assumed to be smooth. On the 

other hand, the two abutment types used different turbulence resolving schemes for the 

sidewall surfaces: the wingwall abutment used two-layer model, while the wall function 

approach was used for the round abutment. This is, again, due to the fact that the wingwall 

abutment mesh was originally generated to be used with two-layer model. 

5.2.5. Results and Discussion 

 The hydrodynamics around the abutments are depicted in Fig. 5.13. The velocity 

vectors are placed at 25% and 50% of the initial depth above the bed. For both abutment 

types, strong downward flow is observed in the upstream half of the structure, which helps 

generate the horseshoe vortex. Around the midpoint along the radius of the structure, 

however, the turbulence caused the flow to accelerate upward. In the downstream face of 

the structure, downward flow is again observed.  

While the overall hydrodynamics can be generalized as above, there are subtle 

differences resulting from the geometric characteristics of the abutment types. While the 

steep sidewall slope of the round abutment (i.e., the abutment surface is perpendicular to 

the bed) caused the velocity vectors to be pointing normal to the bed surface in the 

upstream and downstream faces, the relatively low angle of the wingwall abutment 

resulted in less abrupt changes in the vector directions. In addition, the transition from the 

downward to upward flows occurred sooner for the wingwall abutment.  
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Fig. 5.13. Velocity vectors around the wingwall (top) and round (bottom) 

abutments. 
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The shear velocities associated with the different sediment particle diameters are 

compared in Figs. 5.14 and 5.15 for the wingwall and round abutments, respectively. The 

numeric values associated with the color contours represent the non-dimensional shear 

velocity; one can obtain the dimensional values by multiplying them by the characteristic 

velocity scale.  

It was found that larger particle diameter generates higher shear velocity at a given 

location. This is due to the roughness effect of the particle. In the present study, the 

roughness height was set equal to three times the particle diameter (van Rijn, 1987), and 

according to Eq. (2.7), rougher surface generates higher shear velocity.  

Another finding was that the overall distribution of shear velocity is consistent for 

a given abutment structure. For instance, for the wingwall abutment, the maximum shear 

velocity occurred around the upstream corner, marked “A” in Fig. 5.14, regardless of the 

sediment diameter. Extending from the Point A and trailing downstream, a long and thin 

streak of relatively high shear velocity is observed. Such phenomenon is caused by the 

turbulence induced by the sidewall (Koken and Constantinescu , 2014). 

Similarly, for the round abutment, the maximum shear velocity occurred at the 

position marked “B” in Fig. 5.15. However, unlike with the wingwall abutment, 

downstream of the Point B, no streak of intensified turbulence is observed. The reason for 

the absence is that the “roundedness” of the structure prevents abrupt pressure gradient 

and formation of vortices. As a result, for any particular sediment diameter, the regions of 

high shear velocity are found to be more localized.  
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Fig. 5.14. Effect of median diameter on shear velocity around the wingwall abutment: 

(from top to bottom) 0.20 mm, 0.40 mm, 0.60 mm, and 0.80 mm. Flow direction is from 

left to right. 
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Fig. 5.15. Effect of median diameter on shear velocity around the round abutment: (from 

top to bottom) 0.20 mm, 0.40 mm, 0.60 mm, and 0.80 mm. Flow direction is from left 

to right. 
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Simulation of bed load transport in the given flow field showed that increase in 

sediment diameter leads to a deeper scour hole. As can be seen in Figs. 5.16 and 5.17 for 

the wingwall and the round abutments, respectively, d50 = 0.80 mm resulted in the deepest 

scour hole and d50 = 0.20 mm the shallowest. This relationship can be explained in terms 

of roughness, as was the case for the shear velocity: when the diameter is larger, the 

rougher surface creates more turbulence, which contributes to higher shear stress (Bates 

et al., 2005). FDOT (2005) also reported similar finding, where the normalized scour depth 

increased with larger normalized sediment diameter within a certain range.  An everyday 

example of such phenomenon is the drag a person experiences when their arm is stretched 

out of the window of a moving vehicle. 

 

Fig. 5.16. Scour hole depth over time around the wingwall abutment. 
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 The initial rate of scour around the two abutment types is compared in Fig. 5.18. 

It can be seen that the wingwall generates deeper scour hole for all sediment diameters. 

Another key observation is the nonlinearity in the relationship between the sediment 

diameter and the consequent scour depth, which resembles the diminishing returns in 

economics. That is, at any given time, increasing the sediment diameter results in decrease 

in the marginal scour depth. This indicates that there is a threshold value above which the 

associated scour depth will start to decrease. In fact, this is represented as the peak of the 

curve in Fig. 5.19 (FDOT, 2005). Here, D50 = median diameter, D* = the effective 

diameter of the structure, and ys = equilibrium scour depth. 

Fig. 5.17. Scour hole depth over time around the round abutment. 
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Fig. 5.19. Relationship between normalized median diameter and scour 

depth (FDOT, 2005). 

Fig. 5.18. Comparison of scour rates between the wingwall (W) and round 

(R) abutments.  
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With regards to Figs. 5.16 and 5.18, it should be noted that the results 

corresponding to only the first 8 minutes are presented. The reason is that for the wingwall 

abutment, extensive morphologic changes following a prolonged simulation resulted in 

certain numerical behaviors that do not represent the actual physical phenomena. 

However, the round abutment, with its simpler geometry (e.g., the shape of the cross 

section is uniform), did not cause any numerical instability during the simulation.  

The plan views of the bed morphology around the wingwall and round abutments 

are presented in Figs. 5.20 and 5.21, respectively. It is shown that the general location of 

the maximum depth coincides with that for the shear velocity. Also, increase in diameter 

generates not only a deeper scour hole, but also a larger one. The scour hole area was 

visually determined as the region confined by the boundary with the zero-bed elevation.  
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Fig. 5.20. Scour hole depth around the wingwall abutment at t = 8 min. The 

represented median diameters are (from top to bottom) 0.20 mm, 0.40 mm, 

0.60 mm, and 0.80 mm. Flow direction is from left to right. 

 



 

66 

 

 

 

Fig. 5.21. Scour hole depth around the round abutment at t = 300 min. 

The represented median diameters are (from top to bottom) 0.20 mm, 0.40 

mm, 0.60 mm, and 0.80 mm. Flow direction is from left to right. 
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5.2.6. Conclusions and Future Works 

The purpose of the present study was twofold: first, to simulate scour around a 

wingwall abutment and a semi-cylindrical obstruction (treated as a round abutment), and 

to study the effect of sediment particle size on the scour processes. Four median diameters 

were considered: 0.20 mm, 0.40 mm, 0.60 mm, and 0.80 mm. Because the wingwall 

abutment mesh caused numerical instability during the scour simulation, the equilibrium 

scour depths were obtained only with the round abutment. The following are the main 

contributions this study is bringing: 

i. It was shown that, among those considered, sediments with larger diameter generate 

higher shear stress and deeper scour holes. This is in agreement with FDOT (2005).  

ii. The different geometries of the abutments, particularly with regards to the sidewall 

slope, generated different flow fields around them. 

iii. The relatively sharp edge of the wingwall abutment generated a thin streak of high 

shear velocity in its wake due to turbulence. 

One major weakness of this study is the fact that the scour around the wingwall 

abutment was terminated before the equilibrium depth was reached due to numerical 

instability. A new mesh with different structure may improve the stability. 
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5.3. Scour Hole Backfilling in Unidirectional Flow 

5.3.1. Introduction 

One out of nine bridges in the United States is structurally deficient (ASCE, 2013). 

With such a high number of bridges posing potential hazard to the millions of people who 

use them every day, scour is of a great interest in the field of civil engineering; according 

to a National Cooperative Highway Research Program report (Hunt, 2009), more than 

20,900 U.S. highway bridges are scour-critical. However, the reported data may have been 

distorted by backfilling, the process in which an existing scour hole is filled as the 

approach velocity reduces and/or changes direction, and thus the reality may be worse. 

Because backfilling occurs in the final stage of flood, observations made during the normal 

flow condition may not represent the maximum scour depth (Foti and Sabia, 2014). The 

author believes that numerical simulation with CFD is the most viable approach in 

obtaining the maximum scour depth, as opposed to the final depth, in terms of cost and 

efforts involved. 

There have been a number of numerical studies in the past that simulated sediment 

transport around vertical pier in steady current. Olsen and Melaaen (1993) used a finite 

volume method to simulate the flow around a cylinder in 3D and the resulting scour. At 

every iteration, a new grid was generated to account for the change in bed elevation, which 

was in turn used to update the flow field. Olsen and Kjellesvig (1998) computed the local 

scour depth using a 3D simulation and compared with several empirical formulas, which 

showed reasonable agreement. Jia et al. (2002) predicted the scour depth around a 

cylindrical pier using the CCHE3D model with k-ε turbulence closure. An empirical 
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relation was incorporated in the calculation of shear stress to capture the influence of the 

vertical wash around the structure. Roulund et al. (2005) investigated the flow and scour 

around a circular pile with both experiment and numerical simulation. ElipSys3D flow 

solver was used to calculate the flow field with k-ω turbulence model. For their 

morphologic model, the bed load equation by Engelund and Fredsøe (1976) was adopted. 

The flow characteristics around the pile on both rigid and mobile bed, as well as the scour 

development, showed good agreement with experiment. Zhao et al. (2010) also conducted 

study on scour around a cylinder both experimentally and numerically. The flow was 

solved with RANS equations with k-ω turbulence model. They noted horseshoe vortex 

and vortex shedding as the main factors governing scour process. Khosronejad et al. 

(2012) investigated the scour around piers of different shapes: cylinder, square, and 

diamond. FSI-CURVIB method with a k-ω turbulence model was used to simulate the 

flow. They included the aforementioned correction of shear stress by Jia et al. (2002). 

Pang et al. (2016), on the other hand, combined ANSYS-FLUENT with a Torczon 

optimization algorithm to numerically determine the equilibrium scour depth. Here, the 

Shields parameter around the pile is compared with the critical value to find the optimal 

value leading to the amount of bed deformation, rather than determining the fluid-particle 

interaction. Although this approach brings the benefit of reduced computation time, the 

model can only be applied to a cylindrical pile. 

The numerical investigation of backfilling around a vertical pier was conducted 

only recently by Sumer et al. (2014). In their study, a scour hole developed around a pile 

under a steady current was backfilled when the flow switched to a wave condition. They 
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found that the flow with a particular Keulegan-Carpenter (KC) number results in a 

characteristic equilibrium depth, regardless of the initial bed morphology. The simulation 

utilized the fully-coupled CFD toolbox OpenFOAM using k-ω turbulence model, and the 

morphologic model included both suspended and bed loads. Ahmad et al. (2015) also 

observed wave-induced backfilling in their simulation of scour around multiple piles. 

However, their study focused on the effect of the pile placement on the scour depth, and 

thus the nature of backfilling was not discussed in detail. They used the REEF3D model, 

which employs the finite volume method to solve RANS equation with k-ε closure.  

To the best of the author’s knowledge, there are no numerical studies in the 

literature on backfilling of scour around a vertical pier under a current-only environment. 

It is thus the main purpose of this study to increase the understanding of its process through 

CFD for the first time. A novel approach to simulate backfilling is adopted, where a scour 

hole is first generated under a high flow velocity, then the velocity is reduced but still 

maintained above the critical value for sediment motion (live-bed condition). In turn, the 

sediment flux from the upstream fills the existing hole until a new equilibrium depth is 

reached.  

5.3.2. Flow Environment 

Flows with two different depth-averaged approach velocities and the subsequent 

sediment transport processes were simulated: Uflood = 2 m/sec (flood), Unormal = 1 m/sec 

(normal). The two approach velocities were selected with the intention to maintain live-

bed scour; they both exceed 0.33 m/sec, the critical value for incipient motion for the 

particle size considered in the study (𝑑50 = 0.85 mm) (Briaud, 2013). For backfilling, a 
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time-varying hydrograph is adopted in which the flow switches from the flood to the 

normal condition. The transition of the approach velocity is made after the equilibrium 

scour depth has been reached under the flood condition (zeq,flood). As such, sediment 

particles would continue to roll into the scour hole generated under the flood until a new 

equilibrium depth (zeq,backfill) is reached. The backfilled depth is the difference between 

zeq,flood and zeq,backfill. The theoretical relationship between the flow conditions and the 

respective equilibrium scour depths is depicted in Fig. 5.22. The depth of the approach 

flow was 50 cm. The pier diameter (D) was also 50 cm, creating a one-to-one ratio with 

the flow depth. The Reynolds numbers for the flood and normal flow were 900,000 and 

450,000, respectively. 

 

 

 

Fig. 5.22. Relationship between approach flow velocity and the 

associated equilibrium scour depth under unidirectional flow.  
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The sediment considered in the study is non-cohesive sand with 𝑑50 of 0.85 mm. 

The settling velocity is 10.5 cm/sec following Zanke (1977). The porosity is 0.4 with the 

density of 2,650 kg/m3. The critical velocity for incipient motion is 0.33 m/sec as 

mentioned above (Briaud, 2013). 

5.3.3. Mesh 

The flow regime measured 21D in length and 6D in width. The domain boundaries 

were located at considerable distances away from the pier in order to minimize boundary 

condition effect on scour; the inlet, outlet, and right-side boundary were located 12D, 9D, 

and 6D, respectively, from the center of the pier.  

Verification of the numerical solution was conducted by analyzing its sensitivity 

to different domain densities (497,385 and 330,183 grid points for high- and low- density 

grids, respectively) and dimensionless time step sizes (with a difference by a factor of 2). 

In total, six different simulations were conducted, with their computational environment 

summarized in Table 5.4. 

 

 

Table 5.4. Computational environment for each of the pier scour simulation cases. 

Case Flow Condition Grid Density Time Step 

A1 Normal High 0.20 

A2 Normal Low 0.20 

A3 Normal Low 0.40 

B1 Flood High 0.15 

B2 Flood Low 0.15 

B3 Flood Low 0.30 
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5.3.4. Simulation Setup 

At the inlet, a fully-developed velocity and turbulence profiles, obtained 

beforehand by a CFD simulation in absence of the pier, were used as the inlet condition. 

Both the transverse and vertical components of the velocity were set to zero. At the outlet, 

the zero-gradient condition was imposed for all velocity components and turbulence 

quantities. The same condition was used for the sidewalls, except for the transverse 

velocity component, which was set to zero. At the surface of the bed and the pier, the 

aforementioned wall function approach was used to specify the boundary values. Lastly, 

the top surface was treated as a rigid lid, with zero-gradient condition imposed for all 

velocity and turbulence quantities, except for the vertical velocity component, which was 

zero. 

5.3.5. Results and Discussion 

Hydrodynamics 

For each flow condition, the fully-developed hydrodynamics solutions obtained 

from the respective three simulations (Cases A1-A3 for normal and B1-B3 for flood) 

agreed extremely well with one another. The shear stress 𝜏 distributions around the pier 

for Cases A1 and B1 at the onset of scour (i.e., the bed is rigid and no sediment transport 

has occurred) are compared in Fig. 5.23. For both cases, the maximum shear stress 𝜏𝑚𝑎𝑥 

is found at the position corresponding to Φ ≈ 70°. This is attributed to the combination of 

the contraction of streamlines and the presence of horseshoe vortex (Breusers et al., 1977; 

Roulund et al., 2005). The 𝜏𝑚𝑎𝑥 for Case A1 is four times as high as that for Case B1, 

since shear stress is proportional to the square of the shear velocity (Eq. 3.1). 
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The fluid-structure interaction is further studied with Case B1 in Figs. 5.24 and 

5.25. As shown in Fig. 5.24, the horseshoe vortex at the upstream edge of the pier is 

resolved well. The velocity vectors indicate the strong downwash along the surface of the 

pier and the direction of the flow towards the saddle point. The separation distance is 

0.75D measured from the center of the pier.  Fig. 5.25 shows the wake vortex system, 

generated when the unstable shear layers are detached from the surface of the pier 

Fig. 5.23. Shear stress distribution around the pier at the onset of scour 

(Top: Case A1; bottom: Case B1). Flow direction is from left to right. 
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(Breusers et al., 1977). The nature of the vortex systems presented herein agrees well with 

previous reports (Breusers et al., 1977; Baker, 1980; Eckerle and Langston, 1987; Roulund 

et al., 2005; Zhao et al., 2010). 

 

 

 

Fig. 5.24. Horseshoe vortex near the upstream base of the pier. Flow 

direction is from left to right. 

Fig. 5.25. wake vortex in the downstream of the pier. A full pier, as opposed 

to the half-domain used in the actual computation, is placed for visualization 

purpose. 

Flow 
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Pier Scour 

The time series of scour depths under the two flow conditions are presented in Fig. 

5.26. It was deemed that equilibrium has been reached if the change in the scour depth 

during any 15-min. period of time does not exceed 1% of D. For both flow conditions, the 

variability in the grid density nor time step size does not have significant effect on the 

simulation results; the equilibrium depths are within 4% of D from one another. However, 

higher degree of sensitivity is observed with the change in grid density. This is evidenced 

by the virtually identical equilibrium depths associated with the same grid density but 

different time step size (A2-A3 and B2-B3 pairs). On the other hand, reducing only the 

grid density while keeping the time step size constant resulted in a shift in the equilibrium 

depths (A1-A2 and B1-B2 pairs). From this sensitivity analysis, Cases A3 and B3 are 

chosen to represent the respective flow conditions for comparison. Accordingly, the 

equilibrium scour depths zeq,normal and zeq,flood are 56.1 cm and 70.4 cm, respectively. The 

difference is 28.6% of D. Scour under the flood condition reached the equilibrium much 

quicker at t ≈ 30 min., compared with t ≈ 50 min. under the normal flow.  
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Fig. 5.26. Top: Time series of the maximum scour depth for normal (Cases A1, A2, 

and A3) and flood (Cases B1, B2, and B3) flow conditions. Bottom: Location of 

the maximum scour depth corresponding to each flow condition.  



 

78 

 

 

Also shown in Fig. 5.26 is the time series of Φz, the location of the maximum scour 

depth at a given time (not to be confused with the maximum scour depth of a given flow 

condition). At the start of the scour, z for both flow conditions is found at Φ ≈ 170°, 

radially 1.0D away from the pier’s center. Dargahi (1990) similarly observed the initial 

scour around a cylinder to occur in its wake, which was attributed to the primary wake 

vortices. Immediately afterward and until t ≈ 1.5 min., the value of Φz oscillates within 

the range between 20° ≤ Φ ≤ 40°. What follows is an interesting phenomenon and a 

striking difference in the scour patterns between the two flows. For Case B3, Φz sharply 

increases to 50° then immediately drops to 6°. Within 20 min., Case B3’s Φz converges to 

0°, which corresponds to the upstream nose of the pier. On the other hand, for Case A3, 

Φz undergoes gradual increase while oscillating within a 10° interval, until reaching an 

equilibrium of 56° (Φz,eq). With respect to the radial direction, the temporal maximum 

depths after the initial scour occur at the interface between the pier and the bed.   

It is noted that Φz does not reach ≈ 70°, where the maximum shear stress is found 

at the onset of scour, nor does it converge to ≈ 45° in the early stages, as reported in the 

literature (Dargahi, 1990; Escauriaza and Sotiropoulos, 2011). This is due to the fact that 

even in the far-field, the flow environment creates a live-bed condition. As such, Φz occurs 

where the oncoming sediment flux is insufficient to replenish the locally eroded volume, 

rather than coinciding with the location of the highest shear stress. The oscillation in Φz 

is caused by ripples associated with the live-bed condition. 

  The bed morphology around the pier is further investigated with Figs. 5.27 and 

5.28 for Cases A3 and B3, respectively. Case A3 is discussed first. At t = 5 min., there is 
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an area of deposition downstream of the pier, with the maximum height of ≈15 cm 

(measured from the initial flat bed). The “mound” has been formed by the particles eroded 

from near the base. At t = 20 min., the mound has travelled further downstream and the 

wake scour is clearly observed. As flow continues, the part of the scour hole downstream 

of the pier becomes more elongated. 

Fig. 5.28 also shows that the eroded material from around the pier generates a 

deposit in the downstream at t = 5 min. However, because of the higher velocity (2 m/sec 

vs. 1 m/sec), the mound is located further downstream compared to Case A3. The mound 

is also larger in size, but the maximum heights are similar between the two cases, at ≈15 

cm. At t = 10 min., as with Case A3, the mound travels further downstream and the scour 

hole becomes larger. The location of the temporal maximum depth is clearly observed at 

the upstream nose of the pier. At t = 15 min. and 20 min., both the area and depth of scour 

increase. Most notably, the boundary between the flat bed and the scour hole is located 

significantly further upstream for Case B3. This poses implications in the backfilling 

process, as discussed in the next section. The widths of the scour holes (in the transverse 

direction), on the other hand, do not differ significantly between the two Cases. 
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Fig. 5.27. Time series of bed morphology for normal flow condition (Case A3). 

Flow direction is from left to right. Negative depth indicates above initial bed level. 
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Fig. 5.28. Time series of bed morphology for flood flow condition (Case B3). Flow 

direction is from left to right. Negative depth indicates above initial bed level. 
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Backfilling 

After Case B3 has reached the equilibrium, the resulting morphology was used to 

simulate backfilling. It began by first obtaining a fully developed flow with Unormal while 

keeping the bed rigid. Then, sediment transport was commenced. To allow for a systematic 

comparison with the scour under Unormal, the same time step size as in Cases A3 was used. 

Fig. 5.29, the time series of z and Φz during backfilling, sheds light on the different 

physical processes that take place around the pier. To facilitate discussion, the total 

duration is divided into three stages based on the trend in Φ (also indicated on the Figure). 

Stage I, which spans from t = 0 to t ≈ 30 min., corresponds to the period in which 

Φz remains at 0°. The scour depth decreases from 70.6 cm to 65.2 cm. However, it is 

relatively constant for the initial 6 min. This is attributed to the time it takes for sediment 

particles to collect near the upstream edge of the scour hole until the local slope reaches 

the angle of repose. Once the slope of the entire face reaches the angle of repose, the 

deepest part of the hole begins to be backfilled due to sand slide. This phenomenon occurs 

only because the equilibrium scour hole generated by the flood flow has a slope less than 

the angle of repose in the said region. Had the slope been equal to the angle of repose, the 

scour depth will be backfilled immediately.  

Stage II begins with the sudden shift of the location of the temporal maximum 

depth from the upstream nose towards the wake of the pier. In the approximately 100-min. 

period, Φz then gradually increases from 82° to 106°. The backfilled depth is 6.3 cm. The 

rate of backfilling is relatively constant, as can be seen by the linear relationship between 

scour depth and time in the Figure.  
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Fig. 5.29. Top: Time series of the maximum scour depth during backfilling. 

Bottom: Corresponding location of the maximum scour depth. Both z and Φz under 

backfilling converge to their Case A3 counterparts. 

I II III 

I II III 
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In Stage III, backfilling continues until reaching zeq of 59.0 cm. The error between 

zeq,backfill and zeq,normal is 2.9 cm (5.8% of D). This is similar to observation made by Sumer 

et al. (2013) with oscillating flow, where the backfilled equilibrium depth for a given KC 

number was equal to the equilibrium scour depth with an initially flat bed with the same 

KC number. Meanwhile, Φz sharply drops to 64° then soon converges to an equilibrium 

value of 56°, with minimal fluctuation. It should be stressed that this value is equal to Φz 

under Unormal. The temporal maximum depth remains at the pier-bed interface throughout. 

To the best of author’s knowledge, this is the first report revealing both the equilibrium 

depth and its location for a given flow velocity to be independent of the initial bed 

morphology. The total backfilled depth is 11.4 cm, corresponding to 22.8% of D. Time 

scale to reach the backfilled equilibrium (≈ 200 min.) is considerably greater than those 

associated with scour (< 60 min.).  

The overall bed morphology pre- and post- backfilling are presented in Fig. 5.30, 

along with the equilibrium morphology of A3 for comparison. The Figure shows that the 

boundary between the flat bed and the scour hole advances downstream during backfilling. 

As a result, the size of the scour hole upstream of the pier contracts in the longitudinal 

direction. The width of the hole also becomes narrower, particularly in the downstream. 

On the other hand, the depth in the wake region remains relatively constant, indicating 

that the backfilling process takes place mostly in the vicinity of the pier and upstream. The 

post-backfilling and Case A3 results show remarkable agreement in the general size and 

shape of the hole upstream of the pier. In the wake region, however, Case A3 features 

higher elevations. It can be deduced that if the normal flow condition is to be sustained for 
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an extended period of time after the equilibrium scour depth is reached, the wake vortex 

will cause further scour downstream of the pier. 

 

Fig. 5.30. Bed morphology before backfilling (top), after backfilling 

(middle), and for Case A3 at equilibrium (bottom). White arrow is placed 

at the scour hole boundary. Flow direction is from left to right. 
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5.3.6. Conclusions and Future Works 

The three-dimensional CFD solver FANS3D was employed to simulate scour hole 

backfilling under unidirectional flow. The coupled sediment transport model determines 

the rate of transport from the force balance on a particle. The code was then validated with 

the experimental investigation. The equilibrium scour depth predicted by FANS3D show 

a good agreement with the measurements. The time scale of simulated scour is 

significantly greater than that of the experiment, however, which is attributed to the fact 

that the two-equation turbulence models underpredict the effect of turbulent horseshoe 

vorticity system (THSV).  

Backfilling was induced by generating the equilibrium scour hole under Uflood, then 

transitioning the flow to Unormal. The equilibrium scour depths zeq,normal and zeq,flood were 

first obtained in a separate simulation for comparison. This step also served as a 

verification procedure, where the grid density and time step size were varied to determine 

the numerical solution’s sensitivity to them. After observing the error to be insignificant, 

the cases associated with the low-density domain and the larger time step size were chosen 

as the references. It was found that the time to reach equilibrium under Uflood is 60% of 

that for Unormal, while zeq,flood is greater than zeq,normal by 28.6% of D. 

For both flows, in the early stages of scour, the sediment particles eroded from 

around the pier forms mound-like features downstream. The deposit continues to travel 

further downstream, until finally reaching the outlet boundary of the domain. With 

sustained flow, the holes grow in size mostly in the longitudinal direction, caused by 

extensive scour in the wake of the pier. While the equilibrium scour holes are of a similar 
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width, the boundary between the flat bed and the hole under the flood is located 

significantly further upstream.  

From zeq,flood of 70.4 cm, the scour depth is backfilled to 59.0 cm, which is within 

5.8% of D from zeq,normal of 56.1 cm. The backfilled depth equates to 22.8% of D. The 

duration of the backfilling, measured until the new equilibrium depth is reached, is ≈200 

min. In addition, the location of the temporal maximum depth shifted from the upstream 

nose of the pier to Φ = 56°, which is equal to Φz,eq under Unormal. 

This particular investigation has presented the following key contributions to the 

research community: 

i. Backfilling around a vertical pier under a current-only flow was simulated for the first 

time, using the CFD tool FANS3D coupled with a sediment transport model. 

ii. It was found that both the equilibrium scour depth and its location for a given 

unidirectional approach flow are independent of the initial bed morphology.  

iii. Backfilling is observed to occur non-uniformly over the scour hole. Rather, in the 

present simulation, the upstream nose of the pier is backfilled first, followed by the range 

defined by 82° ≤ Φ ≤ 106°. In the final stage of the process, Φz converges to the normal 

flow’s Φz,eq.  

iv. It was demonstrated that the initial rate of scour can be highest in the wake of the pier, 

supporting a previous experimental observation. 

v. The time series of the scour around a pier under two different approach velocities are 

analyzed. 
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vi. The applicability of CFD to scour forecasting is proved. The output can be incorporated 

into existing scour evaluation tools, such as HEC-18 (Arneson et al., 2012) and the 

observation method for scour (OMS) (Briaud et al., 2009). 

 To improve this investigation, a realistic hydrograph can be adopted, instead of the 

idealized velocity changes used herein. Extending this work to other types of structures, 

such as abutments, would contribute to the engineering discipline as well. 
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5.4. Scour around Hybrid Support Structure for Offshore Wind Turbine 

5.4.1. Introduction 

 With the growing interest in harnessing wind energy, increasing efforts are 

directed at developing and maintaining reliable offshore wind turbine structures 

(Kallehave et al., 2015; Rodrigues et al., 2015; Colmenar-Santos et al., 2016). Currently, 

most common types of structure used in wind energy operations are gravity-base 

foundations, monopiles, and tripods and jackets (Colmenar-Santos et al., 2016). Because 

these structures are constantly exposed to waves and currents in the sea environment, scour 

around them is of a great interest to the engineers.  

However, most of the previous studies aimed at predicting and mitigating scour 

around wind turbine structures have been centered around cylindrical piles. Sumer et al. 

(1992) studied the time scale of scour around a vertical pile under current and waves 

through series of experiments. They concluded that under a wave condition, the Keulegan-

Carpenter number and the Shields parameter dominate the time scale. Petersen et al. 

(2015) conducted laboratory and field investigations of scour around scour protections 

around piles in sea environment. It showed that the upstream and transverse perimeter 

undergo severe scour due to horseshoe vortex and flow acceleration. Baykal et al. (2017) 

simulated scour and backfilling around a circular pile in waves. It was found that the 

equilibrium depths are the same for the scour and backfilling processes for a given 

Keulegan-Carpenter number. A comprehensive study of the nature of scour development 

at offshore windfarm foundations by Whitehouse et al. (2011) was also limited to 

monopiles, although various scour protection methods were discussed in both cohesive 
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and non-cohesive beds. The focus on monopiles is likely to have been economy-driven, 

as exemplified by the fact that 75% of the offshore wind farms in Europe are supported 

by monopiles (European Wind Energy Association, 2012). 

The goal of this investigation was twofold: to demonstrate the ability to perform 

CFD simulation for a hybrid offshore wind turbine support structure, and to study how its 

upper geometry, positioned away from the bed, affects the scour depth. Here, the term 

hybrid is used because the structure takes a form between the gravity-base and the jacket 

structures (Park et al., 2013), as depicted in Fig. 5.31. 

 

Fig. 5.31. Schematic of the hybrid structure 

(Lee et al., 2016). 
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As the Figure shows, the structure consists of three main components: (from 

bottom to top) a cylindrical disc, a base, and a jacket structure. The disc is held to the 

ground with suction piles. This design was developed and lab-tested with a 20:1 model at 

Korea Institute of Civil Engineering and Building Technology (KICT), with the goal to 

improve the structural dynamics in the coastal waters of Korea (Park et al., 2013; Lee et 

al., 2016).  

Although the role of a cylindrical pier’s diameter on the scour around it has been 

discussed extensively (Sumer and Fredsøe, 1992; Sumer et al., 1993; Ettema et al., 2006; 

Zhao et al., 2010; Arneson et al., 2012), to the best of the author’s knowledge, the present 

investigation is the first one involving such a complex non-cylindrical structure.  

5.4.2. Flow Environment 

The CFD simulation was also conducted with the 20:1 model, with its geometry 

simplified to facilitate the investigation. Mainly, the disc was assumed to be extending far 

below ground, with no suction piles, and the jacket was replaced with a cylindrical shaft. 

For variability in the superstructure geometry, three different shaft diameters were 

adopted, defined as a percentage of the base’s top diameter: 25% (Case A), 50% (Case B), 

and 75% (Case C), as depicted in Fig. 5.32. 
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Fig. 5.32. Hybrid structure configuration for (from top to 

bottom) Cases A, B, and C. 

Flow 

Flow 

Flow 
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The simplifications applied to the prototype may have consequences which do not 

exactly represent the physical processes occurring in the experiment or in the field. First, 

replacing the jacket with a single cylindrical superstructure will change the vortex 

structure around the structure and in its wake. Secondly, the assumption that the disc 

extends deep into the ground will prevent the flow and subsequent sediment transport 

which may occur below the structure as its bottom becomes exposed. However, the 

simplified geometry nevertheless captures the significant physical characteristics of the 

support structure, and it was deemed suitable for the investigation’s focus. It must be 

remembered, however, that the decision to simplify the domain was made solely on 

pragmatic basis (e.g., to reduce time involved in pre- and post-processing, as well as 

computing), and it is actually possible to generate a mesh that represents the exact 

geometry of any physical structure using the overset grid technique. 

The experimental flow conditions at KICT are summarized in Table 5.5 (obtained 

through personal communications with KICT personnel). The condition for Run 3 was 

chosen as the flow environment to be simulated. The selection was based on the fact that 

the water depth is the highest, corresponding to a high tide, and it was determined that the 

flow and scour simulation of this “demanding” condition would benefit the stakeholders 

the most.  

 

 

Table 5.5. Flow conditions for the hybrid structure experiment. 

Run Flow Depth Approach Velocity Reynolds Number 

1 0.159 m 0.4 m/sec 57,000 

2 0.200 m 0.4 m/sec 71,000 

3 0.241 m 0.4 m/sec 86,000 
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5.4.3. Mesh 

The mesh employed a total of ten blocks for the simulation. The coordinate system 

used and the number of grid points for each block are presented in Table 5.6. The 

configuration of those surrounding the support structure is shown in Fig. 5.33. As can be 

seen, finer spacing was adopted near the wall surfaces for the wall function approach. 

Among those that conform to the surfaces, small blocks (Blocks 9 and 10) were placed to 

function as an “intermediary” between the other blocks, ensuring complete transfer of 

solutions.  

The blocks associated with far-field flow are shown in plan-view in Fig. 5.34. The 

top surfaces of the disc and the base are colored magenta and green, respectively. As with 

the backfilling study discussed in Section 5.3., only half of the physical domain was 

simulated, since the time-averaged flow around a cylindrical structure is symmetrical. The 

Figure is used to show that the grid spacing, in general, expands gradually going from the 

immediate vicinity of the structure to the far-field. 

 

 

Table 5.6. Mesh information for the hybrid structure simulation. 

Block Number Coordinate System Number of Grid Points Linked Blocks 

1 Cylindrical 4,095 3,4 

2 Cylindrical 20,475 9,3,10 

3 Cylindrical 8,463 1,2,4,9,10 

4 Cylindrical 97,643 1,3,5,6,7 

5 Cartesian 19,575 4,7 

6 Cartesian 19,575 4,7 

7 Cartesian 30,885 4,5,6 

8 Cylindrical 25,935 9 

9 Cylindrical 30,576 2,3,8,10 

10 Cylindrical 4,095 2,9,3 
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Fig. 5.33. Grid configuration of the blocks forming the turbine structure. 

Fig. 5.34. Grid configuration of the far-field in plan view. Flow direction is from 

left to right. 
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5.4.4. Simulation Setup 

 The boundary conditions for the blocks associated with the far-field flow (blocks 

4-7) were set such that the combined effect produced the boundary conditions appropriate 

for a rectangular channel (see Section 5.3). For other blocks, the wall function approach 

was taken to resolve turbulence and velocity near the surfaces. During bed load transport, 

PEGASUS was called every time step to update and maintain accurate interpolation 

scheme among the blocks. 

5.4.5. Results and Discussion 

 The effect of different shaft diameter is first examined through the horseshoe 

vortex formations. The results are shown in Fig. 5.35 for all shaft diameters. Three 

different horseshoe vortices are observed, each forming at the upstream nose of the disc, 

base, and the shaft, separately. The most notable effect the shaft diameter had was the 

height of the horseshoe vortex forming at the base; as the shaft’s diameter decreased, the 

vortex’s height increased, as indicated in Fig. 5.35 with red arrows.  

The general size of each of the vortices, however, varied according to the height 

of the obstruction providing the adverse pressure gradient; the smallest was observed in 

front of the disc, and the largest in front of the shaft.  This trend was consistent among all 

three shaft diameters.  
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Fig. 5.35. Horseshoe vortex for each shaft diameter: (from top to 

bottom) Cases A, B, and C. The red arrow points to the height of the 

horse-shoe vortex. Flow direction is from left to right. 
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The shear velocity distribution, depicted in Fig. 5.36, shows that the vortices reach 

farther when the shaft is larger. More specifically, the regions of highest shear velocity 

(contours colored in orange and red) become larger. However, with increasing shaft 

diameter, the shear velocity is lower directly downstream and upstream of the structure. 

The explanations are as follows: the higher shear velocity on the side of the structure is 

caused by the flow being diverted against the obstruction; the lower magnitude in the 

upstream is due to the interaction between the approach flow and the backwash of the 

vortex; the downstream phenomena is due to flow separation and recirculation. The reader 

is reminded that because only the shaft’s diameter is changing with the lower portion of 

the structure remaining unvaried, the physics established for flow around cylindrical piers 

cannot be directly applied.  

 The time series of the scour depth, presented in Fig. 5.37, shows that the larger 

shaft diameter in general produces deeper scour hole. The exception occurred during the 

time span between 130 min. and 290 min. when the scour depth for Case B was greater 

than that for Case C. However, after this brief period, the initial trend was restored and the 

larger diameter again generated greater scour depth. The overall tendency for a larger 

diameter to generate deeper scour hole is due to the increase in horseshoe vortex strength 

and shear velocity, and this is in agreement with previous findings with cylindrical piers 

(Sumer and Fredsøe, 1992; Sumer et al., 1993; Ettema et al., 2006; Zhao et al., 2010; 

Arneson et al., 2012). 
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Fig. 5.36. Shear velocity contours: (from top to bottom) Cases A, B, and C. 

Flow direction is from left to right. 
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The bed morphologies at t = 700 min. are presented in Fig. 5.38, showing the 

relationship between the shaft diameter and the scour hole shape. Increase in the shaft 

diameter resulted in not only a deeper scour hole, but also a larger one. In the Figure, the 

area of the scour hole is determined from the area inside of the boundary between the 

scour hole and the flat bed level (Scour = 0). The effect of the stronger wake vortex for 

Case C is easily seen with the more pronounced color contour for scour depth 6 cm-7 cm.  

Fig. 5.37. Time series of scour depth around the hybrid structure. 
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Fig. 5.38. Bed elevations at t = 700 min.: (from top to bottom) Cases A, B, 

and C. Flow direction is from left to right. 
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5.4.6. Conclusions and Future Works 

 This investigation showed that, for the present hybrid wind turbine support 

structure, larger shaft diameter leads to a deeper scour hole. The actual model’s geometry 

was simplified using cylindrical components to facilitate simulation. An assumption was 

made on the scour environment as well (i.e., no sediment transport below the structure). 

 Regardless of the shaft diameter, horseshoe vortices formed in front of the vertical 

obstructions: the disc, the base, and the shaft. However, the height at which downward 

wash begins varied according to the shaft diameter. Also, larger shfat diameter generated 

higher shear velocity on the side of the structure, while lower values of shear velocity were 

observed immediately downstream and upstream. In summary, this investigation has made 

the following contributions to the research community: 

i. The overset grid technique was employed to solve for the hydrodynamics and scour 

around a hybrid structure. The interpolation scheme was updated every time with 

PEGASUS. 

ii. The effect of the shaft diameter on the vortex structures was analyzed. The fact that 

only the upper portion of the structure was varied, instead of the entire length, provides 

the novelty. 

To further the understanding of flow and scour around such hybrid structures, 

following future studies are suggested: 

i. Investigation on the effect of the base height on the scour processes. This will 

incorporate determining the threshold height over which varying the diameter of the shaft 

does not have any impact on the scour hole. 
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ii. Verification using different grid density and structures. In the present investigation, 

only one set of meshes were used, with the same number of grid points.  

iii. Inclusion of a case where the shaft diameter equals that of the base. This was omitted 

in the present investigation because such geometry will inevitably require a considerably 

different grid structure. 

Lastly, the author would like to acknowledge that part of the funding for this 

project was provided by KICT.  
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6. CONCLUSIONS 

 

The CFD solver FANS3D was coupled with sediment transport models to develop 

a practical numerical tool, capable of simulating the physical processes in three 

dimensions. After validating the implementation against experimental measurements, the 

coupled solver was utilized to investigate several engineering problems involving 

transport of non-cohesive sediment as a plume or bed load. The overset grid technique 

was utilized with the pre-processor PEGASUS to generate CFD meshes for the complex 

flow domains.  

The simulation of plume transport in channel bend using two different sediment 

diameters showed how the complex flow characteristics create zones where the sediment 

concentration is orders of magnitude higher than in the surroundings. Because of the 

settling velocity, the plume associated with the smaller diameter traveled considerably 

farther. In the case of scour around abutments, it was observed that although larger 

particles are heavier than the smaller ones, they can be more prone to incipient motion due 

to the increase in roughness. The third application proved that backfilling can occur if the 

approach flow velocity is high enough to cause particles to roll into an existing scour hole, 

but is below the critical threshold to bring the particles out of it. Lastly, the geometry of 

an offshore wind turbine support structure was varied to study its effect on the scour 

processes. The results show that the structure of the horseshoe vortex is affected even 

when the change is made far from the bed. 
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Nevertheless, the present numerical tool is without limitations. First, at the present 

state, it can only be applied to cases where the sediment is non-cohesive and 

homogeneous. Additional development is necessary to be able to simulate transport of 

mixed sediment types (e.g., mixture of clay and sand). Secondly, the current version 

neglects the effect of suspended sediment on bed elevation changes (see Section 5.1). 

Another assumption behind all applications presented herein are that the ambient fluid is 

fresh water. As the chemical and physical composition of water may affect the transport 

mechanism, attention must be given to the flow environment (e.g., salinity). 

In summary, this dissertation presented interesting aspects of sediment mechanics 

through CFD. Through this effort, the capabilities of the newly coupled FANS3D and the 

applicability of the overset grid technique were demonstrated. Knowledge can be 

furthered, however, by implementing more advanced turbulence models or by considering 

larger scales, aided by parallel computing. In fact, the author intends to continue exploring 

sediment transport modeling through these and other new approaches and techniques. 
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