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ABSTRACT 

 

Diabetic retinopathy is a major secondary complication of type 2 diabetes. To 

regulate blood glucose levels in type 2 diabetic patients, metformin is popularly 

prescribed as an oral drug in mono- and combination therapies. Metformin was used as a 

responsive and preventative drug on high-fat diet (HFD) induced obese mice that 

emulate type 2 diabetes. Body weight was monitored weekly and systemic glucose levels 

including resting blood glucose levels, the glucose tolerance test, and the insulin 

resistance test were measured monthly. The electroretinogram (ERG) was used to 

measure the retinal light responses, immunohistochemistry to quantify changes in retinal 

protein expression, western blot to assess inflammatory markers, and fluorescein 

angiography to measure neovascularization. 

 HFD-fed mice became hyperglycemic after 2 months of feeding regimen. 

Metformin treatment following hyperglycemia slowed body weight gain and restored 

systemic glucose levels to control levels. Retinal function measured by ERG showed 

decreased amplitudes and delayed implicit times in oscillatory potentials after 1 month 

of HFD and decreased amplitudes and delayed implicit times in a-wave, b-wave, and 

oscillatory potentials starting 2 months of HFD. Metformin treatment after 2 months of 

HFD was not able to restore ERG responses in HFD-fed mice. Furthermore, metformin 

treatment was not able to recover HFD-induced neovascularization. However, metformin 

treatment for the last 4 months in mice fed a HFD for 6 months was able to reduce 

inflammatory marker expression and the immunofluorescent proteins affected by HFD-
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feeding. HFD-fed mice treated with metformin from the beginning of feeding regimen as 

a preventative strategy not only showed slower weight gain but also do not become 

hyperglycemic. However, this preventative strategy did not prevent the HFD-induced 

retinal dysfunction measured by ERG even after 3 months of treatment. Furthermore, 

some HFD-induced changes in retinal protein expression began after 1 month of HFD-

treatment, but metformin treatment concurrent with HFD was not able to prevent HFD-

induced changes. 
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CHAPTER I  

INTRODUCTION* 

Diabetic retinopathy (DR) is one of the major secondary complications of 

diabetes and a leading cause of blindness worldwide. 1  Glycemic control is a critical 

strategy for diabetic patients to prevent the development of secondary complications 2.  

The Diabetes Control and Complications Trial showed that long-term extensive control 

of blood glucose reduces the incidence and progression of diabetic complications such as 

retinopathy, nephropathy, and neuropathy. 3  One drug that effectively controls systemic 

glycemia is metformin. 4, 5  Metformin has been used as an anti-hyperglycemic agent in 

diabetic patients, 6 and it is recommended in combination therapies to control the level of 

glycated hemoglobin (HbA1c) in patients with ineffective monotherapy, 7  The 

effectiveness of metformin as an anti-hyperglycemic agent is based on its ability to 

suppress gluconeogenesis in the liver. 5, 8 In addition to its use as an anti-hyperglycemic 

agent, one beneficial effect from metformin is mild weight loss. 9-11  The action of 

metformin on insulin signaling has made metformin viable for treating non-alcoholic 

fatty liver disease 12 and polycystic ovary syndrome. 13  Furthermore, the effectiveness of 

metformin to treat other diabetic complications, such as nephropathy 14 and neuropathy 

has been investigated. 15  However, whether metformin is able to prevent or reverse DR 

is not known.
___________________
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In the US, obesity associated type 2 diabetes has reached epidemic proportions 

with more than 68% of American adults considered overweight or obese 

(http://win.niddk.nih.gov/statistics/index.htm).  More than 60% of type 2 diabetic 

patients will develop DR. 16, 17  The high-fat-diet (HFD) mouse model is used to study 

type 2 diabetes due to the development of obesity, glucose intolerance, and insulin 

resistance. 18  Unlike other mouse models of metabolic syndromes and type 2 diabetes 

that utilize genetic mutations to induce insulin resistance and obesity, 19 the HFD model 

is a diet-induced obesity model that resembles human obesity-associated type 2 diabetes.  

The HFD mice develop hyperglycemia, hyperinsulinemia, hyperlipidemia, and chronic 

inflammation after several months of HFD regimen and are suitable to study long-term 

diabetic complications. 20, 21  These HFD mice show similar phenotypical deficits found 

in other DR animal models, such as lesions in the retinal vasculature and thickening of 

Bruch’s membrane. 22  Furthermore, mice fed with a HFD containing 42% fat calories 

for 12 months have significantly greater numbers of atrophic capillaries and pericyte 

ghosts compared to mice fed with a normal diet. 23  HFD mice emulate the systematic 

dysfunction that occurs in type 2 diabetes and further show retinal symptoms found in 

DR, thus making HFD-mice a suitable animal model to study type 2 diabetes and 

diabetic retinopathy. 

Previously, we reported that mice fed with a HFD (59% fat calories) develop 

obesity, hyperglycemia, insulin resistance, glucose intolerance, and decreased retinal 

light sensitives. 24  These mice have retinal neovascularization after 7 months of HFD 

regimen. 25  Since metformin is able to maintain normal systemic glycemia in diabetic 
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animals and patients, 4, 5 in this study, we examined whether metformin was able to 

reverse or minimize HFD-induced retinal dysfunction.  We combined electroretinogram 

(ERG) recordings, immunofluorescent staining, fluorescein angiography (FA), and 

western blotting to determine the effects of metformin in HFD-induced diabetic retina. 

Furthermore, metformin has been studied in clinical trials to prevent the incidence of 

type 2 diabetes in individuals who are prediabetic. 26, 27 Therefore, we examined whether 

concurrent treatment of metformin before hyperglycemia was able to prevent the 

development of HFD-induced retinal dysfunction and changes in retinal protein 

expression through means of ERG recordings and immunofluorescent staining, 

respectively. 
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CHAPTER II  

MATERIALS AND METHODS* 

Animals 

Four week old male C57BL/6J mice were purchased from Harlan (Houston, TX, 

USA) and the Jackson Laboratory (Bar Harbor, Maine, USA). All animal experiments 

were approved by the Institutional Animal Care and Use Committee of Texas A&M 

University (AUP# 2014-0285) and were performed in compliance with the ARVO 

Statement for the Use of Animals in Ophthalmic and Vision Research.  Mice were 

housed under temperature and humidity-controlled conditions with 12:12 hour light–

dark cycles.  All mice were given food and water ad libitum.  At 5 weeks of age (body 

weight at 20 g), mice were fed with a standard laboratory chow (control; 10% fat 

calories, 20% protein calories, and 70% carbohydrate calories; Research Diets, Inc., 

New Brunswick, NJ, USA) or a high fat diet (HFD; 59.4% fat calories, 18.1% protein 

calories, and 22.5% carbohydrate calories; TestDiet®, St. Louis, MO, USA).  After 2 

months of HFD regimen, some HFD-mice were given daily metformin treatments at a 

dosage of 150 mg/Kg through oral gavage as the HFD+Met group.  Some HFD mice 

were given daily oral gavage of metformin at 200 mg/kg concurrently from the 

beginning of the feeding regimen as the HFD+Pre-met group. Body weight and food 

intake were measured weekly. Non-fasting blood glucose levels, glucose tolerance, and
____________________
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insulin resistance were measured monthly by taking blood from the tail vein. Glucose 

levels were measured using the Clarity Plus Blood Glucose Monitoring System 

(Diagnostic Test Group, Boca Raton, FL, USA). 

Glucose tolerance and insulin resistance tests 

Mice were fasted for 8 hours and given a single intraperitoneal (i.p.) injection of 

D-glucose (Sigma-Aldrich, St. Louis, MO, USA) at a dosage of 2 g per kg body weight 

for the glucose tolerance test or insulin (Gibco/Life Technologies, Grand Island, NY, 

USA) at a dosage of 1 unit per kg body weight for the insulin resistance test.  Blood 

glucose levels were measured from the tail vein using the Clarity Plus Blood Glucose 

Monitoring System (Diagnostic Test Group) at 0, 30, 60, 90, and 120 minutes following 

the glucose injection during the glucose tolerance test. Blood glucose levels were 

measured at 0, 15, 30, 45, and 60 minutes following the insulin injection during the 

insulin resistance test. 

In vivo electroretinogram 

The in vivo electroretinogram (ERG) recordings of retinal light responses were 

performed as described previously. 24  Mice were dark adapted for a minimum of 3 hours 

and anesthetized with an i.p. injection of Avertin (2% 2,2,2-tribromoethanol, 1.25% tert-

amyl alcohol; Fisher Scientific, Pittsburgh, PA, USA) solution (12.5 mg/ml) at a dosage 

of 500 µl per 25 g body weight.  Pupils were dilated using a single drop of 1% 

tropicamide / 2.5% phenylephrine mixture for 5 minutes.  Mice were placed on a heating 
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pad to maintain body temperature at 37°C.  The ground electrode was placed on the tail 

and the reference electrode placed under the skin in the cheek below the eye.  A thin 

drop of Goniovisc (Hub Pharmaceuticals, Rancho Cucamonga, CA, USA) was applied 

on the surface of the cornea to keep it moist, and a threaded recording electrode 

conjugated to a mini contact lens (Ocuscience, Henderson, NV, USA) was placed on top 

of the cornea.  All preparatory procedures were done under dim red light, and the light 

was turned off during the recording.  A portable ERG device (OcuScience) was used to 

measure scotopic ERG recordings at light intensities of 0.1, 0.3, 1, 3, 10, and 25 cd·s/m2.  

Responses to four light flashes were averaged at the lower light intensities (0.1, 0.3, 1.0, 

and 3.0 cd·s/m2) while only one light flash was applied for the higher light intensities 

(10 and 25 cd·s/m2).  A one minute recovery period was programmed between different 

light intensities.  The amplitudes and implicit times of the a-wave, b-wave, and 

oscillatory potentials (OPs) were recorded and analyzed using the ERGView 4.4 

software (OcuScience).  Both eyes were included in the analyses and their values were 

averaged. 

Immunofluorescent staining 

Mice were put under deep anesthesia through isoflurane (Zoetis, Parsippany, NJ, 

USA) and cervical dislocation was performed. Mouse eyes were excised and prepared as 

previously described. 24  In brief, eyes were fixed with Zamboni fixative and processed 

for paraffin sectioning at 4 µm.  Each glass slide contained single paraffin sections from 

the control and experimental groups. After deparaffinization and antigen retrieval, 
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sections were washed in PBS, blocked with 10% goat serum for 2 hours at room 

temperature, and then incubated overnight with primary antibodies at 4 °C.  The next 

day, sections were washed with PBS several times and incubated with fluorescent 

conjugated secondary antibodies for 2 hours at room temperature and mounted with 

ProLong Gold antifade reagent containing 4’,6-diamidino-2-phenylindole (DAPI; 

Invitrogen/Life Technologies, Grand Island, NY, USA). The primary antibodies used 

were anti-phospho-protein kinase B (pAKTThr308; 1:100; Cell Signaling Technology, 

Danvers, MA, USA), anti-AKT (total AKT, 1:100; Cell Signaling Technology), anti-di-

phospho-extracellular signal-regulated kinase (pERK, 1:100 Sigma-Aldrich, St. Louis, 

MO, USA), anti-ERK (total ERK, 1:100, Santa Cruz Biochemicals, Dallas, TX, USA), 

anti-phospho-AMPK (pAMPKThr172, 1:100, Cell Signaling Technology), anti-AMPK 

(total AMPK, 1:100, Cell Signaling Technology), anti-phosphorylated NF-κB (nuclear 

factor κ-light-chain enhancer of activated B cells complex) P65 at Ser536 (pP65; Cell 

Signaling Technology), NF-κB P65 (Total P65; Cell Signaling Technology, 1:100, Cell 

Signaling Technology), anti-Cav1.3α1D (L-type voltage gated calcium channel α1D 

subunit, 1:100, Chemicon International, Temecula, CA, USA).  The secondary 

antibodies used were Alexa Fluor 488 goat anti-rabbit IgG (1:150; Molecular 

Probes/Life Technologies, Grand Island, NY, USA) and Cy5 goat anti-mouse IgG 

(1:150; Abcam, Cambridge, MA, USA).  The images were taken under a Zeiss Stallion 

microscope (Carl Zeiss AG, Oberkochen, Germany).  Each fluorescent image from the 

control and other experimental groups were taken under identical settings, including the 

same exposure time and magnification.  Image analysis: In the control, HFD, and 
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HFD+Met group, 3 fluorescent images (n=3) after 7 months treatment were selected and 

analyzed from each retinal tissue section, which included all of retinal layers (from the 

photoreceptor outer segment to the ganglion cell layer). In the control, HFD, and 

HFD+Pre-met groups, 4 fluorescent images (n=1) after 1 month treatment were selected 

and quantified for the inner segments of the photoreceptors and also across all the retinal 

layers (from the outer segments of photoreceptors to the ganglion cell layer). The 

averaged fluorescent intensity per pixel for each image was quantified without any 

modification using the luminosity channel of the histogram function in the Adobe 

Photoshop 6.0 software (Adobe Systems, San Jose, CA, USA), and the green or red 

fluorescent intensities were measured on a scale of 0-255.   

 

Fluorescein angiography 

Mice were anesthetized with an i.p. injection of Avertin (12.5 mg/ml) at a dosage 

of 500 µl per 25 g body weight.  Pupils were dilated using a single drop of 1% 

tropicamide / 2.5% phenylephrine mixture for 5 minutes.  Immediately following pupil 

dilation, 10% sodium fluorescein (Akorn, Lake Forest, Illinois, USA) was i.p. injected at 

a dosage of 50 µl per 25 g body weight.  Images were taken using the iVivo Funduscope 

for small animals (Ocuscience).  The vascular parameters were further analyzed with 

Adobe Photoshop 6.0 (Adobe Systems) and the AngioTool software, a free software 

developed by the National Cancer Institute of National Institutes of Health (NCI/NIH, 

Bethesda, MD, USA) 28.  Square areas of 289 x 289 pixel2 in the central retina (400 

pixels from the optic nerve), as well as in the peripheral retinal region (800 pixels from 
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the optic nerve) were cropped with Adobe Photoshop.  For each FA cropped image, at 

least 2 areas from the central and peripheral retinal regions were obtained to analyze the 

microvascular density (the percentage of vascular area to the retinal area), vessel area, 

vessel branch points, and the average non-vascular area (avg. lacunarity) using 

AngioTool.  The primary retinal arteries and veins were not included in the analyses.  

Western immunoblot analysis 

Retina samples were collected as previously described. 24, 25  In brief, 2 retinas 

from a single mouse were pooled and counted as one sample.  Intact retinas were 

homogenized in a Tris lysis buffer (50 mM Tris, 1 mM EGTA, 150 mM NaCl, 1% 

Triton X-100, 1% β-mercapto-ethanol, 50 mM NaF, 1 mM Na3VO4; pH = 7.5).  Samples 

were separated on 10% sodium dodecyl sulfate-polyacrylamide gels by electrophoresis 

and transferred to nitrocellulose membranes.  The primary antibodies used were anti-

phosphorylated NF-κB (nuclear factor κ-light-chain enhancer of activated B cells 

complex) P65 at Ser536 (pP65; Cell Signaling Technology) and NF-κB P65 (Total P65; 

Cell Signaling Technology).  Blots were visualized by using appropriate secondary 

antibodies conjugated to horseradish peroxidase (Cell Signaling Technology) and an 

enhanced chemiluminescence detection system (Pierce, Rockford, IL, USA).  

Statistical analyses 

All data are presented as mean ± standard error of mean (SEM).  Statistical 

analyses were carried out using the Origin 8.6 software (OriginLab, Northampton, MA, 
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USA).  Student’s t-test was used for statistical analyses between the control and HFD 

group.  One-way analysis of variance (ANOVA) followed by Tukey’s post hoc test was 

used for statistical analyses between the control, HFD, and HFD+Met/ Pre-met groups.  

Throughout, the sample size “n” was the number of animals per group included in the 

analyses.  p < 0.05 was regarded as significant.  
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CHAPTER III 

RESULTS* 

Metformin decelerated body weight gain and reversed hyperglycemia in HFD-

induced diabetic animals  

Mice fed with a HFD for 2 weeks (open circle) already had a significant weight 

gain compared to control mice (open square; Fig. 1A).  Treatment with metformin in 

HFD-induced obese mice (gray triangle) significantly slowed down their weight gain 

compared to HFD-mice without metformin intervention (Fig. 1A).  Mice under the HFD 

regimen for 2 months developed hyperglycemia (Fig. 1B), but after metformin treatment 

for only 1 month, the non-fasting blood glucose level of these HFD-mice returned to 

normal levels (Fig. 1B).  The glucose tolerance test performed after 1 month of 

metformin treatment further verified the effectiveness of metformin in anti-

hyperglycemia and reversing the glucose intolerance in HFD-obese mice back to the 

control level (Fig. 1C). Furthermore, the insulin resistance test performed after 1 month 

of metformin treatment also showed metformin’s ability to recover insulin resistance in 

HFD-obese mice (Fig. 1D). Hence, metformin was effective in controlling systemic 

glycemia and weight gain.

____________________
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HFD-induced retinal dysfunction began with dampened oscillatory potential 

responses  

We previously showed that retinal light responses decreased after mice were fed 

a HFD for 3 months. 24  To further determine when HFD-induced obesity caused retinal 

dysfunction, we measured the retinal light sensitivities with scotopic ERG recordings 

after the mice were fed with the HFD for only 1 month.  We found that the amplitudes of 

ERG a- and b-waves were similar between the HFD-mice (gray circle) and the control 

(open square; Fig. 2A, 2B), but the HFD-mice had longer a- and b-wave implicit times 

(Fig. 2B).  These HFD-mice also had significantly decreased OP amplitudes and delayed 

OP implicit times compared to the control mice (Fig. 2A, 2C), which indicates a possible 

early sign of obesity-induced retinal dysfunction, since a delayed OP latency is the first 

sign of an early diabetic retina in both rodents and humans. 29-31   

 

Metformin treatment did not improve the HFD-induced decreases in retinal light 

responses  

After 2 months of HFD, the retinal light responses in HFD-mice (gray circle) were 

further deteriorated (Fig. 3).  Compared to the control mice (open square), these HFD-

mice had decreased a- and b-wave amplitudes (Fig. 3A and 3B) in addition to the 

functional deficits previously observed after 1 month of HFD (Fig. 3A and 3C).  After 5 

months of HFD, the retinal light responses in these HFD-mice (open circle) were worsen 

and significantly lower than the control mice (open square; Fig. 4).  However, the retinal 

light responses in HFD-mice treated with metformin (HFD + Met; gray triangle) did not
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improve as measured by ERG a- and b-waves (Fig. 4A and 4B), and their OPs were 

further aggravated (Fig. 4A and 4C), even though these HFD-mice had been treated with 

metformin for the last 3 months (Fig. 4D). 

Metformin restored cell-signaling proteins in the retina that were affected by HFD 

Although metformin did not recover HFD-induced retinal dysfunction, we next 

examined whether oral administration of metformin impacted the retina of HFD-mice at 

the molecular level.  We determined the activation/phosphorylation of AKT, 32, 33,34,35, 36 

ERK, 37 and AMPK 38 signaling, since these kinases are critical in cell metabolism, 

growth, and survival.  Mice under HFD for 6 months (HFD) had a decrease in the 

phosphorylation of AKT (pAKT) and AMPK (pAMPK) but an increase in activated 

ERK (pERK) in the retina, and there was no apparent change in the total amount of 

AKT, ERK, and AMPK in the HFD-retina compared to control mice (Con; Fig. 5).  The 

retinas from HFD-mice (under a HFD for 6 months) that were treated with metformin 

for 4 months (HFD+Met) had a recovery in these signaling molecules: pAKT was no 

longer dampened and similar to the control, pAMPK had increased compared to the 

control, and the level of pERK was decreased and comparable to the control level (Fig. 

5).  Interestingly, the retinas from these metformin-treated HFD-mice (HFD+Met) had 

an apparent up-regulation of total AMPK and pAMPK compared to control mice, which 

indicated that metformin might have a direct effect on AMPK in the neural retina, since 

metformin is known to up-regulate the expression and activation of AMPK in the 

kidney, 39 adipose tissue, 40, 41 and heart. 42 
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Metformin treatment did not rescue HFD-induced neovascularization in the retina 

We recently demonstrated that after 6 months of HFD, these HFD-mouse retinas 

develop neovascularization with an apparent increase of microaneuryism-like structures, 

25 so we examined whether metformin treatments could stop the process of 

neovascularization in the HFD-mouse retina.  We used FA and AngioTool 28 to compare 

changes in the central and peripheral retinal vasculature of the control, HFD, and HFD + 

Met mice (Fig. 6A).  In the central retina, there were no differences in any vascular 

parameters between the three experimental groups (Fig. 6B).  However, in the peripheral 

retina, mice under HFD for 6 months (HFD) had a significant increase in vascular 

density, vessel area, and the number of branch points compared to the control mice (Fig. 

6C), while the average retinal area without detectable vasculature (avg. lacunarity) was 

decreased in HFD mice (HFD) and HFD-mice treated with metformin (Fig. 6C).  Thus, 

mice under HFD for 6 months had retinal neovascularization, but treatment with 

metformin for 4 months (HFD+Met) did not improve HFD-caused retinal 

neovascularization (Fig. 6C). No differences in neovascularization in HFD-mice were 

observed at 5 months of feeding-regimen compared to control mice (data not shown).   

 Metformin treatment decreased inflammation 

Since metformin has anti-inflammatory properties, 43 we determined if 

metformin could reverse HFD-induced retinal inflammation.  Western blot analysis 

showed a significantly higher expression of phosphorylated P65 (pP65), a subunit of 

nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription complex 
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and a biomarker for inflammation, 44 in HFD-mouse retina (HFD) compared to controls 

(Con), but the retina of HFD-mice treated with metformin (HFD+Met) had less pP65 

compared to the HFD-mouse retina (Fig. 7A).  These data provided evidence that 

metformin indeed reduced retinal inflammation in HFD-mice.  

Treatment with metformin concurrently with the HFD regimen from the beginning 

delays body weight gain and prevents hyperglycemia in HFD-mice 

Metformin is widely used as a preventative medicine for type 2 diabetes as well 

as cancer. 45-47 Instead of treatment with metformin 2 months after HFD-feeding and the 

presence of hyperglycemia, metformin was administered at the beginning of HFD-

feeding to determine whether metformin was able to prevent HFD-induced retinal 

dysfunction. Mice fed with a HFD for two weeks showed a significant weight gain 

compared to control (Fig. 8A, *). However, mice fed a HFD and treated with metformin 

concurrently (HFD + Pre-met) did not show a significant weight gain until week 9 (Fig. 

8A, #), and this group had a significantly lower body weight from weeks 11-19 

compared to HFD-mice without the metformin intervention (Fig. 8A, &). In addition, 

HFD-mice treated with metformin concurrently did not become hyperglycemic (Fig. 8B) 

and did not show glucose intolerance (Fig. 8C), nor display insulin resistance (Fig. 8D) 

compared to the HFD-mice after 3 months of the feeding-regimen. 
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Concurrent treatment of metformin does not prevent HFD-induced retinal 

dysfunction 

Retinal light responses were measured 3 months after mice were fed normal 

chow (control), a HFD, and a HFD with daily metformin treatment concurrently from 

the beginning (HFD + Pre-met). As previously observed, HFD-mice show decreased a- 

and b- wave amplitudes and delayed a- and b-wave implicit times compared to control 

mice (Fig. 9A). HFD-mice that were treated with metformin from the beginning 

(HFD+Pre-met) also had decreased a- and b-wave amplitudes and delayed a- and b-wave 

implicit times compared to control mice (Fig. 9A). The oscillatory potential responses 

for both HFD and HFD-mice treated with metformin (HFD + Pre-met) were worsen after 

3 months of HFD-feeding regimen (Fig. 9C). 

1 month of concurrent metformin treatment does not prevent HFD-induced 

changes in cell signaling in the retina  

Previously, we showed that HFD mice with metformin treatment starting after 2 

months of the diet regimen and subsequently treated with metformin for another 4 

months (HFD + Met group) had reversed changes in cell signaling molecules that were 

caused by HFD in the retina (Fig. 5). We examined what early changes in cell signaling 

that HFD regimen would induce, and if treatment of metformin concurrently with HFD 

from the beginning would prevent the HFD-induced changes in the retina after HFD-

regimen for only 1 month.  We quantified the changes in the inner segments of 

photoreceptors and across the retinal layers (from the outer segment of photoreceptors to 
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the ganglion cell layer) in the retinal sections from mice fed with standard chow (Con), a 

HFD, and a HFD with daily metformin treatment (HFD + Pre-met). There was no 

significant difference in the fluorescent intensities of pAKT (Fig. 10A, 11A), Total AKT 

(Fig. 10B, 11B), pAMPK (Fig. 10C, 11C), and Total ERK (Fig. 10F, 11F) among the 

three groups (Fig. 11A, B, C, F). The fluorescent intensities for Total AMPK (Fig. 10D) 

were increased in the HFD+Pre-met group in the inner segment compared to control 

mice (Fig. 11D, left panel). The fluorescent intensities for pERK (Fig. 10E, 11E), pP65 

(Fig. 10G, 10G), Total P65 (Fig. 10H, 11H) and the L-type voltage-gated calcium 

channel Cav1.3 (LTCC; Fig. 10I, 11I) were increased in both the HFD and HFD+Pre-

met groups in the inner segment compared to control mice (Fig. 11E, G, H, I). There was 

no significant difference in fluorescent intensities among the three groups when the 

fluorescent intensities were analyzed across all retinal layers (Fig. 11).



*Reprinted with permission from Kim AJ, Chang JY-A, Shi L, Chang RC-A, Ko ML,
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CHAPTER IV  

DISCUSSION AND CONCLUSION* 

We examined the effects of administering metformin, an anti-hyperglycemic 

agent, as a preventative and recovery drug on retinal function and physiology in HFD-

induced diabetic mice.  We hypothesized that controlling systemic glycemia with 

metformin could recover HFD-induced retinal dysfunction.  To simulate clinical settings 

of human diabetic patients, we started the metformin treatments in these HFD-mice after 

hyperglycemia was detected.  As seen in human patients where the ERG OPs are more 

sensitive to diabetic stress, 48, 49 we observed that one month after HFD regimen, the 

HFD-mice had decreased OPs and delayed OP implicit times, even though these HFD-

mice had not yet developed systemic hyperglycemia.  These data indicate that retinal 

function might be compromised during pre-diabetic conditions preceding systemic 

hyperglycemia.  With the development of diabetes, both ERG a- and b-waves were 

dampened after 2 months of HFD, which were concurrent with the development of 

hyperglycemia.  Treatment with metformin significantly decelerated weight gain and 

controlled systemic blood glucose levels in HFD-mice, but it was not able to restore 

retinal function.  The ERG OP amplitudes were further decreased and implicit time was 

further delayed in metformin-treated HFD-mice (HFD+Met) compared to HFD-mice 

without metformin intervention.   
____________________
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In a recent report, 23 mice fed with a HFD containing 42% fat calories developed 

diabetes by 6 months of the diet regimen, and by 12 months, decreased OPs with delayed 

OP implicit times, as well as vascular complications including atrophic capillaries and 

pericyte ghosts are apparent.  Interestingly, there was no significant change in the ERG 

a- and b-waves recorded from these HFD-mice. 23  We consistently observe that mice 

fed with a HFD containing 59.4% fat calories develop glucose intolerance and insulin 

resistance at the end of 3 months of the HFD regimen, 24, 25 which is consistent with 

other reports using the HFD with the same fat calories. 50-53  These HFD-mice have 

significant weight gain only 2 weeks after the diet regimen compared to control mice.  

As we previously reported, 24, 25 the ERG a- and b-waves in these HFD-mice have 

decreased amplitudes and delayed implicit times.  We further demonstrated that OPs 

were affected in the HFD-mice even prior to systemic hyperglycemia.  These results 

indicate that the dietary fat content affects the temporal progression of DR. Mice fed a 

HFD with 42% fat calories show decreased OPs after 1 year, while we show that OP 

deficiencies are evident only after 1 month of HFD with 59.4% fat calories. More studies 

are necessary to show whether the increased fat concentration in diet speeds up obesity 

and type 2 diabetes or if the fat percentage has a direct impact on the neural retina. 

Despite the inability to recover retinal function, metformin had significant effects 

on several cell-signaling proteins in the retina that were altered by HFD.  In context of 

the pathogenesis of DR, the phosphoinositide 3-kinase-AKT (PI3K-AKT) pathway has 

been shown to regulate angiogenesis. 54 Previously, we showed that HFD-induced type 2 

diabetic retinas have reduced pAKT that is also seen in STZ-induced type 1 diabetic 
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mice. 55  We found that metformin treatments restored pAKT and increased AMPK and 

pAMPK in HFD-mouse retinas.  AMPK is a cellular energy sensor, and activated 

AMPK further stimulates catabolic processes for increasing ATP production. 38  In 

muscles, AMPK activates the PI3K-AKT pathway that leads to increased glucose uptake 

into the muscle cells. 56  We previously showed that activation of AMPK leads to 

activation of AKT and its downstream signaling in the avian retina. 57  Metformin is 

known to up-regulate the expression and activation of AMPK in the kidney, 39 adipose 

tissue, 40, 41 and heart. 42  Hence, the effects of metformin on pAKT could be a 

downstream effect from its activation of AMPK-dependent signaling.   

In addition, increased activation/phosphorylation of ERK (pERK) is correlated 

with the presence of pro-inflammatory cytokines. 58  Activation of ERK is involved in 

the up-regulation of VEGF, an angiogenic protein that causes microvascular 

complications and neovascularization in DR. 59, 60  We showed that phosphorylation of 

ERK was increased in the retinas of HFD-mice, and treatment with metformin reduced 

pERK in HFD-mouse retina.  Furthermore, HFD mouse retinas had increased expression 

of pP65 compared to controls, which was reduced in retinas of metformin treated HFD-

mice.  Obesity is known to induce systemic inflammation, 61-63 but induction of systemic 

inflammation does not correlate with retinal inflammation. 64 Previously, we also 

analyzed the status of intra-ocular inflammation from the vitreous and lens. 65  The 

expression of pro-inflammatory cytokines in HFD-mice was increased, and metformin 

was able to reverse HFD-induced intra-ocular inflammation.  Although it was unable to 
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reverse HFD-induced retinal dysfunction and neovascularization, metformin was able to 

reverse intra-ocular inflammation and HFD-induced effects on retinal proteins. 

In addition, metformin has successfully acted as a protective drug in various 

disease models when used to pre-treat animals prior to the induction of diseases, 

including acute kidney injury 66 and cerebral forebrain ischemia. 67, 68 Since metformin 

treatment following hyperglycemia was unable to reverse numerous HFD-induced 

changes in the retina, we hypothesized that metformin is more effective given at a pre-

diabetic or non-diabetic stage as a preventive strategy rather than as a treatment for 

diabetic retinas. Treatment with metformin in the beginning concurrent with HFD not 

only caused a delayed weight gain in HFD-mice, but also prevented the development of 

hyperglycemia. Nevertheless, both HFD mice and HFD-mice treated with metformin 

concurrently (HFD + Pre-met) showed deficiencies in retinal light responses even after 3 

months of treatment. These data show that decreased retinal light responses as measured 

by ERG are not a result of hyperglycemia, but rather due to other obesity-induced 

changes such as dyslipidemia or inflammation. Furthermore, immunohistochemical 

staining of retinas from mice with 1 month of HFD or HFD with metformin treatment 

(HFD + Pre-met) showed that metformin was unable to reverse HFD-induced changes in 

cell signaling. 1 month of HFD-feeding showed increases in pERK, pP65, Total P65, 

and LTCC Cav1.3 expressions in the retinal photoreceptors. However, treatment of 

metformin for 1 month was not able to act as a protective agent for these changes. The 

increases in pP65 and Total P65 indicate the presence of inflammation in the retina even 

when blood glucose levels are controlled by metformin, showing that inflammation is 
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not an effect of hyperglycemia.  It is possible that it will take a longer time for 

metformin treatments to reverse HFD-induced retinal inflammation, while metformin 

could effectively reverse or prevent systemic hyperglycemia within 1 month.  While 

metformin is not metabolized in the body, it is quickly excreted from the body, but after 

long-term treatments with metformin, it may accumulate in the body and requires longer 

clearance times. 69, 70  

Lastly, after 1 month treatment with metformin, we observed an increase in the 

fluorescent intensities of total AMPK in the photoreceptors. AMPK acts as an energy 

sensor by being activated or inactivated depending on the AMP to ATP ratio in the cell. 

71 Metformin has been identified as an activator of the AMPK pathway in numerous cell 

types including hepatocytes, 72, 73 endothelial cells, 74 cardiomyocytes, 75 cancer cells, 76 

and adipose tissue. 41 In photoreceptors, we found that the expression of total AMPK 

was increased after 1 month of metformin treatment, while there is a significant increase 

in pAMPK after 4 months of metformin treatment. A recent study shows that metformin 

administration through intraperitoneal injection also increases pAMPK in the mouse 

retinas.77 Thus, the activation of AMPK by metformin in the neural retina is a primary 

effect, since metformin is able to reach the neural retina through blood circulation 

regardless of its routes of administration. 

 In summary, long-term treatment with metformin successfully reversed 

hyperglycemia and decreased retinal inflammation in HFD-mice, but was unable to 

restore retinal light responses. Early treatment with metformin prevented HFD-mice 
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from becoming hyperglycemic, but it did not prevent HFD-induced retinal dysfunction 

and changes in cell signaling.  

Following chronic hyperglycemia, changes in the normal metabolic state 

including inflammation, oxidative stress, and dyslipidemia have been hypothesized as 

major contributors to proliferative diabetic retinopathy.78, 79 Besides its main function as 

an anti-hyperglycemia agent, metformin addresses these secondary metabolic 

disturbances in addition to controlling systemic blood glucose levels within a single 

treatment. Our data shows metformin effectively reduces intra-ocular inflammation, but 

retinal function was unable to be recovered and its dysfunction could not be prevented 

with prior treatment. This evidence challenges predominant theories that a pro-

inflammatory state in the retina is driving the downstream metabolic changes leading to 

neovascularization and proliferation. Despite metformin’s beneficial effects on the 

overall metabolic state of the retina, retinal dysfunction was unable to be prevented. Our 

specific use of metformin was to target hyperglycemia, the initiator of metabolic 

dysfunction. However, our data showed that recovery of hyperglycemia did not recover 

retinal function and further demonstrated that mice that never become hyperglycemic 

still acquire retinal dysfunction. This data proposes that hyperglycemia and 

inflammation may not be the causes for retinal dysfunction caused by obesity. Attempts 

to stall the development of DR pathogenesis have been widely unsuccessful, largely 

because numerous metabolic changes occur following chronic hyperglycemia. Targeting 

single downstream signaling pathways have failed to prevent angiogenesis, and we show 

that controlling two major proposed contributors in hyperglycemia and inflammation 
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through metformin does not prevent retinal dysfunction. There is a critical need to 

pinpoint the source of retinal dysfunction and neovascularization or targeting a 

metabolic mechanism that can deter the pathogenesis of DR.  

In a high-fat-diet obesity model, another potential contributor in driving retinal 

dysfunction and neovascularization is oxidative stress. Metformin administered to 

diabetic rats reduces oxidative stress in plasma, the aorta, and the kidney.80 Although 

metformin does show capabilities in reducing oxidative stress, further experiments are 

necessary to verify its anti-oxidative capabilities specifically in the retina. Since 

mitochondrial oxidative phosphorylation and the nicotinamide adenine dinucleotide 

phosphate- (NADPH) oxidase (NOX) system are the two major sources of oxidative 

stress, it would be beneficial to know if metformin also has an effect on limiting the 

production of reactive oxygen species from these metabolic producers. Immediate 

experiments such as IHC staining of key markers such as superoxide dismutase 2 

(SOD2) and NADPH-oxidase 2 (NOX2) on metformin treated HFD-mice may indicate 

metformin’s potential on reducing oxidative stress. In addition, experiments using the 

Seahorse XF analyzer would be able to measure energy production produced from 

oxidative phorphorylation and glycolysis. Using the Seahorse XF analyzer, experiments 

with photoreceptors and/or endothelial cells in high glucose conditions (30 mM) can be 

treated with metformin to see if supplementation with this drug can reduce the 

overproduction of reactive oxygen species as a byproduct of mitochondrial oxidative 

phosphorylation. Furthermore, fluorescence ROS assays can be done on cultured 
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photoreceptors and/or endothelial cells with and without metformin treatment to measure 

the presence of different types of reactive oxygen species through fluorescence. 

Although our data indicates that 4 months of metformin treatment does not have 

a statistical difference in neovascularization in the peripheral eye compared to high-fat-

diet fed mice, it is possible we are making a statistical type II error because the amount 

of mice included in our analysis is only n=4. Although, the ANOVA p-value comparing 

the HFD and HFD+metformin group is 0.2 and we fail to reject the null hypothesis, the 

range of values especially in the # of branch points parameter shoes a tight range of 

values in the metformin treated mice group compared to the HFD group indicating that 

metformin is having some effect on delaying or decreasing neovascularization. 

Metformin has been reported to reduce VEGFR2 activation in Strepzotocin(STZ)-

induced diabetic mice.81 We have also shown that the amount of VEGF in the lens and 

vitreous of mice treated with metformin is comparable to control levels and decreased 

compared to HFD mice. 65 Despite having conflicting reports in cancer-related 

angiogenesis, 82 metformin has shown to have anti-angiogenic effects in the oxygen-

induced retinopathy mouse model with reduced vasculature and expression of VEGFR2. 

83 Further experiments are necessary to observe if the high-fat-diet model with 

metformin treatment also has similar effects of VEGF and VEGFR2 expression after 

metformin treatment. Before in vivo experiments with metformin treatments are done to 

check the possibility of a type II statistical error, western blot or IHC experiments 

probing for VEGF and VEGFR2 protein expression would show if metformin treatment 

similarly has effects in reducing VEGFR2 in the high-fat-diet model and thus be 
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potentially alleviating angiogenesis. Metformin treatment on endothelial cells has 

previously been completed, but the conditions of high-fat-diet have not been replicated. 

Further in vitro experiments on endothelial cells can be done to see if a high-fat-diet like 

conditions shows proliferation and migration in endothelial cells. Using high glucose 

conditions or administration of palmitate to emulate the increase of glucose levels or free 

fatty acids in HFD conditions, experiments on endothelial cells such as the MTT assay 

or scratch assay can be done with or without metformin treatment to see if metformin 

could have anti-angiogenic effects specifically on endothelial cells in HFD-like 

conditions.   

Despite metformin’s numerous beneficial effects on the retina, a potential reason 

why the overall function in the retina does not recover is due to a phenomenon called 

“metabolic memory.” Metabolic memory is the persistence of hyperglycemia-induced 

changes even after reversing back to normoglycemia. 84  Metabolic memory was first 

observed in dogs, 85 but it has also been documented in STZ-induced diabetic rats. 86, 87  

Here we show that metformin was able to reverse blood glucose levels back to the 

normal level in HFD-mice, but continued treatments with metformin could not restore 

the retinal function, which indicates that retina might have a strong “metabolic memory” 

to be overcome. Although metformin was able to reverse systemic glucose levels and 

inflammation, it is possible that reversal of hyperglycemia and inflammation might not 

be able to completely stop or restore HFD-induced dysfunctional retina. Hence, it may 

require a combination therapy in addition to anti-hyperglycemic, anti-inflammatory, plus 

other treatments to reverse obesity-induced DR.  
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In addition, vascular endothelial growth factor (VEGF) is a growth factor that is 

mainly implicated in its role on endothelial cells in stimulating angiogenesis. After 

binding to its tyrosine kinase receptors, VEGF stimulates the RAS-ERK and PI3K-AKT 

pathways for cell proliferation. The immunohistochemistry data after 4 months of 

metformin treatment indicates decreased ERK activation compared to only HFD-fed 

mice. However, HFD-fed mice had decreased AKT activation and metformin treated 

HFD-mice had further increased AKT activation back to control levels. In regards to 

angiogenesis, this increased AKT activation may be contributing to increased 

angiogenesis in metformin treatment and interfering with other anti-angiogenic 

responses such as decreased ERK signaling activation. To verify that activation of the 

PI3K-AKT pathway in metformin treated mice is not restricting metformin’s potential in 

limiting angiogenesis, HFD and HFD + metformin treatment can be administered to 

endothelial specific AKT knockout mice and similarly tested for neovascularization 

through fluorescein angiography. If these AKT knockout mice given HFD and 

metformin treatment show significantly decreased neovascularization compared to HFD-

mice, metformin plus AKT pathway inhibitors may be a potential route for treatment or 

prevention of angiogenesis.   

The data presented in this thesis challenges the common conception that 

controlling hyperglycemia and/or inflammation will deter the progression of diabetic 

retinopathy. Metformin is shown to control systemic hyperglycemia and reduce intra-

ocular inflammation but do not show statistically significant improvements in retinal 

function or neovascularization. Further experiments on metformin’s effects on the retina 
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can reveal what signaling pathways were unaffected or exacerbated through metformin 

treatment and provide insight into potential new therapies in preventing or delaying 

diabetic retinopathy. 
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APPENDIX 

Figure 1. Metformin slows the rate of weight gain and controls diet-induced 
hyperglycemia in HFD mice. Mice were fed a normal chow diet (Control [open 
square]) or HFD (open circle). Two months after the diet regimen, half of the HFD mice 
were given daily oral metformin treatments (gray triangle). (A) Mice fed a HFD had 
significant weight gain starting 1 week after HFD-feeding compared to control mice (*). 
The HFD-fed mice given daily metformin (HFD+Met) showed decelerated weight gain 
compared to the HFD mice without metformin intervention (HFD). # indicates statistical 
significance between the control and HFD+Met groups. & indicates statistical 
significance between the HFD and HFD+Met groups. (B) HFD-fed mice had an increase 
of non-fasting blood glucose after 2 months of the diet regimen. Following 1 month of 
metformin treatment, the resting blood glucose levels of HFD+Met mice were back to 
control levels. (C) The glucose tolerance test and (D) insulin resistance test shows the 
ability of metformin to control HFD-induced hyperglycemia. *,#,&P < 0.05. 
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Figure 2. Scotopic ERG implicit times and oscillatory potential responses are 
decreased in mice given HFD for 1 month.  (A) Representative scotopic ERG and 
oscillatory potential waveforms recorded from control and HFD-fed mice at light 
intensity of 25 cd·s/m2 are shown. (B) The average scotopic ERG a- and b- wave 
implicit times were delayed in HFD-mice after 1 month of HFD compared to the control, 
but there was no difference in the ERG amplitudes.  (C) The oscillatory potential 
amplitudes (OP1 to OP4) of HFD mice were significantly decreased and the implicit 
times were delayed compared to those of the control. Student’s t-test was used for 
statistical analysis.  *p < 0.05. 
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Figure 3. Scotopic ERG amplitudes, implicit times, and oscillatory potential 
responses are further decreased in mice given HFD for 2 months.  (A) 
Representative scotopic ERG and oscillatory potential waveforms recorded from control 
and HFD-fed mice at light intensity of 25 cd·s/m2 are shown. (B) The average scotopic 
ERG a- and b- wave amplitudes were decreased and implicit times delayed in mice 
under 2 months of HFD compared to the control.  (C) The oscillatory potential 
amplitudes of HFD mice are also significantly decreased and the implicit times are 
delayed compared to the control. Student’s t-test was used for statistical analysis.  *p < 
0.05. 
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Figure 4. Metformin treatment for 3 months does not improve HFD-induced retinal deficiencies. The control mice were fed 
standard chow for 5 months (control).  HFD mice were given HFD for 5 months (HFD).  The HFD + metformin mice were given 
HFD for 5 months and metformin for the last 3 months.  (A) Representative scotopic ERG and oscillatory potential waveforms 
recorded from control, HFD mice, and HFD-mice treated with metformin at light intensity of 25 cd·s/m2 are shown.  (B) HFD mice 
have decreased a- and b-wave amplitudes and delayed b-wave implicit times compared to the control (*).  The HFD + metformin 
mice have decreased a-wave and b-wave amplitudes and delayed b-wave implicit times compared to the control (#).  The HFD + 
metformin mice had delayed b-wave implicit times compared to those of HFD mice (&), but there was no statistical difference 
between the HFD and the HFD + metformin groups in a-wave amplitudes, b-wave amplitudes, and a-wave implicit times.  (C) The 
oscillatory potential amplitudes were decreased and implicit times delayed in HFD mice compared to the control (*).  The oscillatory 
potential amplitudes were decreased and implicit times delayed in HFD + metformin mice compared of the control (#).  Furthermore, 
HFD + metformin mice had decreased OP amplitudes and delayed implicit times compared to the HFD mice (&).  (D) Maximal 
scotopic a- and b-wave amplitudes are unchanged in control mice over time.  However, maximal scotopic a- and b-wave amplitudes 
of HFD mice are decreased after 2 months and further decreased after 5 months of the diet regimen.  Treatments with metformin for 
3 months (HFD + Met) did not reverse the a- and b-wave amplitudes to the control level.  *, #, &p < 0.05. 
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Figure 5. Metformin reverses HFD-induced effects on the immunofluorescent intensities of several proteins in mice retina.  Mouse retinal 
sections (4 µm) were processed for immunofluorescent staining.  Control mice (Con) were given standard chow for 7 months.  The HFD mice (HFD) 
were given a HFD for 7 months.  The HFD + metformin (HFD + Met) mice were given HFD for 7 months and treated with metformin for the last 5 
months. (A-C) The fluorescent images of pAKT (A) and total AKT (B), and the statistical analyses of the fluorescent intensities in the control, HFD, 
and the HFD+Met retinas (C) are shown.  The pAKT fluorescent intensity of HFD-retinas is significantly lower (*) than the other two groups.  (D-F) 
The fluorescent images of pERK (D) and total ERK (E), and the statistical analyses of the fluorescent intensities in the control, HFD, and the HFD+Met 
retinas (F) are shown.  The fluorescent intensity of pERK in the HFD mouse retina is significantly higher (*) compared to the control and the HFD+Met 
retinas.  (G-I) The fluorescent images of pAMPK (G) and total AMPK (H), and the statistical analyses of the fluorescent intensities in the control, HFD, 
and the HFD+Met retinas (I) are shown.  The fluorescent intensity of pAMPK in the HFD-retinas is significantly lower (*) compared to the control and 
HFD+Met retinas (*), while pAMPK is significantly higher in the HFD+Met mouse retina (#) compared to that of the control and HFD-retinas.  The 
fluorescent intensity of total AMPK is significantly higher in the HFD+Met retina (#) compared to the other two groups.  Scale bar = 50 µm.  ONL, 
outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer.  (C, F, and I)  The box-plots represent the 
distribution of fluorescent intensities within the specific group.  The black line represents the median, and the gray line represents the mean of the 
specific group. N is the animal number of the group.  *, #p < 0.05. 
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Figure 6. Metformin does not reverse HFD-induced neovascularization.  Fluorescein angiography was 
used to determine the retinal vasculature in mice fed with normal chow (control), HFD for 6 months 
(HFD), or HFD mice treated with metformin (HFD+metformin).  (A) The AngioTool software was used to 
determine the vascular parameters including vascular density, vessel area, the number of vessel branch 
points, and the average non-vascular space (avg. lacunarity).  (B) There is no statistical difference in 
vascular density, vessel area, the number of branch points, and avg. lacunarity between control, HFD, and 
HFD + metformin (HFD+Met) mice in the central region of retinas.  (C) In the peripheral regions of 
retinas, HFD-mice (HFD) and HFD-mice treated with metformin (HFD+Met) have statistical differences 
compared to the control (*) in vascular density, vessel area, number of branch points, and avg. lacunarity.  
The box-plots represent the distribution of fluorescent intensities within the specific group.  The black line 
represents the median, and the gray line represents the mean of the specific group. N is the animal number 
of the group.  *, #p < 0.05. 
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Figure 7. Metformin reduces HFD-induced inflammation. Retinas were collected 
from mice fed normal chow, HFD for 6 months, and HFD mice treated with metformin 
for the last 4 months.  (A) Tissues were harvested and subjected to Western blot analysis 
of phosphorylated P65 (pP65) and P65 (Total P65; loading control).  The HFD-retina 
has a significantly higher pP65 (*) compared to the other two groups.   
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Figure 8. Metformin treatment delays body weight gain and prevent development 
of hyperglycemia in HFD-mice. Mice were fed a normal diet (Control), HFD, or a HFD 
with daily oral metformin treatment simultaneously (HFD + Pre-met). (A) Mice fed 
HFD had significant weight gain starting two weeks after HFD compared to the control 
(*). Mice fed a HFD and treated with metformin (HFD + Pre-met) did not have a 
significant weight gain until 9 weeks of HFD-feeding compared to the control (#). HFD 
mice treated with metformin (HFD + Pre-met) do not gain as much body weight as the 
HFD mice from weeks 11-19 (&). (B) HFD-fed mice had an increase of fasting blood 
glucose levels after 2 months of the diet regimen (*). However, HFD-fed mice treated 
with metformin do not develop hyperglycemia. (C) Treatment with metformin 
simultaneously with HFD-regimen from the beginning(HFD + Pre-met) prevents the 
development of glucose intolerance after 3 months of HFD. (D) HFD mice treated with 
metformin concurrently (HFD + Pre-met) show significant differences in insulin 
resistance compared to HFD-mice (&). *, #, &P < 0.05. 
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Figure 9. Concurrent metformin treatment does not prevent HFD-induced retinal 
dysfunction. Mice were fed a standard chow for 3 months (control), a HFD for 3 months 
(HFD), or a HFD with daily metformin treatments for 3 months (HFD+Pre-met). (A) 
HFD mice have decreased a- and b-wave amplitudes and delayed a- and b-wave implicit 
times compared to control mice (*). The HFD+Pre-met mice also have delayed a- and b- 
wave amplitudes and delayed a-wave implicit times compared to the control (#). 
However, HFD+Pre-met mice have improved b-wave implicit times compared to HFD 
mice (&). (B) The oscillatory potentials amplitudes were decreased and implicit times 
delayed in HFD- mice compared to controls (*) and also with HFD+Pre-met mice 
compared to controls (#). *, #, &P < 0.05. 
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Figure 10. Metformin treatment for 1 month does not prevent HFD-induced 
changes in cell signaling in the retina. Each slide contained tissue from a mouse fed 
standard chow for 1 month (Con), a HFD for 1 month (HFD), and a HFD with daily 
metformin treatment simultaneously for 1 month (Met). The fluorescent images of 
pAKT (A), Total AKT (B), pAMPK (C), Total AMPK (D), pERK (E), Total ERK (F), 
pP65 (G), Total P65 (H) and L-type calcium channel Cav1.3 (I, LTCC) are shown. Scale 
bar: 50 µm. IS: inner segment.  
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Figure 11. Quantification of immunofluorescent intensities of mouse retinal proteins after 1 month of feeding 
regimen. Each image in Figure 10 was quantified.  The left panels represent quantifications of the inner segments of 
the photoreceptors, and the right panels represent quantifications across all the retinal layers (from the outer segments 
of photoreceptors to the ganglion cell layer). (A) pAKT; (B) Total AKT; (C) pAMPK; (D) Total AMPK; HFD mice 
treated with metformin (HFD+Pre-met) have increased Total AMPK fluorescent intensities in the inner segment 
compared to the control. (E) pERK; both HFD and HFD mice treated with metformin (HFD+Pre-met) groups have 
increased pERK fluorescent intensities in the inner segment compared to the control. (F) Total ERK; (G) pP65; both 
HFD and HFD+Pre-met groups have increased pP65 fluorescent intensities in the inner segment compared to the 
control. (H) Total P65; both HFD and HFD+Pre-met groups have increased Total P65 fluorescent intensities in the 
inner segment compared to the control. (I) LTCC Cav1.3; both HFD and HFD+Pre-met have increased LTCC Cav1.3 
fluorescent intensities in the inner segment compared to the control. *P < 0.05.  




