
AN IMPROVED ROBUST OPTIMIZATION APPROACH FOR SCHEDULING

UNDER UNCERTAINTY

A Thesis

by

UTKARSH DINESH SHAH

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Efstratios N. (Stratos) Pistikopoulos
Committee Members, Costas Kravaris

Phanourios Tamamis

Head of Department, M. Nazmul Karim

August 2017

Major Subject: Chemical Engineering

Copyright 2017 Utkarsh Dinesh Shah

ABSTRACT

In practice, the uncertainty in processing time data frequently affects the feasibility of

optimal solution of the nominal production scheduling problem. Using the unit-specific

event-based continuous time model for scheduling, we develop a novel multi-stage ro-

bust approach with corrective action to ensure robust feasibility of the worst case solution

while reducing the conservatism arising from traditional robust optimization approaches.

We quantify the probability of constraint satisfaction by using a priori and a posteriori

probabilistic bounds for known and unknown uncertainty distributions, consequently, im-

proving the objective value for a given risk scenario. Computational experiments on sev-

eral examples were carried out to measure the effectiveness of the proposed method. For

a given constraint satisfaction probability, the proposed method improves the objective

value compared to the traditional robust optimization approaches.

ii

DEDICATION

In memory of Prof. Christodoulos A. Floudas.

iii

ACKNOWLEDGMENTS

I would like to thank Prof. Christodoulos A. Floudas under whose guidance I initiated

my research project at Texas A&M University. It was his charismatic personality and

passion that instill in me the basics of computational thinking.

I would like to thank my thesis advisor, Prof. Efstratios N. Pistikopoulos for his guid-

ance in helping me finish my thesis successfully. I would also like to thank people on my

committee, Prof. Costas Kravaris and Dr. Phanourios Tamamis. This work would not have

been possible without academic supports from my lab mates, Dr Yannis Guzman, Logan

Matthews and Wenjie Xu. I cannot imagine my time at Texas A&M University without

the company of Justin Katz, William Tso, Melis Onel, Doga, Barris and Burcu Bekyal. Fi-

nally, I would like to acknowledge my friends and family who provided me with constant

motivation and emotional support.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Prof. Pistikopoulos and

Prof. Kravaris of the Department of Chemical Engineering and Dr. Tamamis of the Energy

Institute.

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was self-supported.

v

NOMENCLATURE

Indices
i, i′ Tasks

j, j′ Units

n, n′, n′′ Events

s State

u Utilities

Sets
I tasks

Ij task that can be performed in unit j

Is task that can process state s and either consume or pro-
duce it

Ics task that consume state s

Ips task that produce state s

J units

Ji units suitable for performing task i

N event points within the scheduling horizon

S states

SP states that are final product

SR states that are raw materials

Parameters
BL

i minimum capacity (batch size) of task i

BU
i maximum capacity (batch size) of task i

Ds demand for state s

vi

H short-term time horizon

M large positive number in big-M

N number of event points

Ps price of state s

ST 0
s initial amount of state s available

STmax
s maximum amount of state s

αi coefficient of constant term of processing time of task i

βi coefficient of variable term of processing time of task i

∆n maximum number of events over which task i is allowed
to continue

ρis proportion of state s produced (ρis ≥ 0) or consumed
(ρis ≤ 0) by task i

Binary Variable
winn′ binary variable for assignment of task i that starts at

event n and ends at event n′

ωini′n′ binary variable for assignment of weight for task i′ fin-
ished in event n′ on task i about to occur in n (n > n′)

Positive Variable
binn′ amount of material undertaking task i that starts at event

n and ends at event n′ (n′ ≥ n)

ST0s initial amount of state s that is required from external
resources

STsn excess amount of state s that needs to be stored at event
n

T f
in time at which task i ends at event n

T s
in time at which task i starts at event n

MIP Mixed Integer Program

LP Linear Program

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF ALGORITHMS . xi

LIST OF TABLES . xii

1. INTRODUCTION . 1

1.1 Statement of Problem . 1
1.2 Outline of Thesis . 3

2. SHORT-TERM BATCH SCHEDULING FRAMEWORK 4

2.1 Time Representations . 4
2.2 Mathematical Model . 6
2.3 Motivating Example . 11

3. ROBUST OPTIMIZATION . 13

3.1 Uncertain Inequality Constraints . 14
3.2 Uncertainty Sets . 16
3.3 Probabilistic Robust Optimization . 20

4. SCHEDULING UNDER UNCERTAINTY 24

4.1 Traditional Robust Scheduling Approach 26

viii

4.2 Reactive Scheduling: Improvements . 29
4.3 An Improved Robust Scheduling Approach 33
4.4 Improving the quality of solution . 40
4.5 Computational Studies . 42

5. SUMMARY AND CONCLUSIONS . 44

5.1 Objectives Achieved . 44
5.2 Further Study . 45

REFERENCES . 46

APPENDIX A. DATA FOR EXAMPLE PROBLEMS 53

ix

LIST OF FIGURES

FIGURE Page

2.1 State-Task Network (STN) for motivating example 12

2.2 Nominal Schedule for motivating example (H =8 hrs) 12

4.1 Soyster Solution for bounded uncertainty case 28

4.2 Solution with probability of constraint violation = 0.1 28

4.3 Reactive Scheduling Simulation . 31

4.4 Proactive-Reactive Scheduling Approach 32

4.5 Improved Robust Scheduling Approach 38

4.6 Improved Robust Soyster Solution . 39

4.7 Quality of Robust Solution . 42

x

LIST OF ALGORITHMS

ALGORITHM Page

3.1 Traditional Robust Optimization . 21

3.2 Iterative Approach for Robust Optimization 23

4.1 Algorithm for Reactive Scheduling . 29

4.2 Algorithm for Proactive-Reactive Scheduling 30

4.3 Algorithm for Improved Robust Scheduling 36

xi

LIST OF TABLES

TABLE Page

4.1 Improved Robust Approach for motivating example with interval-polyhedral
set . 40

4.2 Improved Robust Approach for motivating example with interval-ellipsoidal
set . 41

4.3 Computational Study on Literature Benchmark 43

A.1 Batch Size Data for motivating example and Examples 2-4 54

xii

1. INTRODUCTION

Production scheduling is a decision-making process to determine what to produce,

when to produce and how much to produce. Traditionally, these decisions are carried

out by trained individuals without mathematical optimization using spreadsheets and gantt

charts [1]. The increase in production volumes, product portfolios, alternative production

recipes and energy cost has raised the complexity of manual scheduling. The later coupled

with growing global competition and complexity of manufacturing facilities has made it

essential to deploy effective optimization tools for generating most profitable and effort-

less schedules.

In spite of the literary advances in process scheduling, the gap between academic research

and industrial application of these optimization tools remains wide open. One of the pri-

mary cause can be attributed to accounting for fundamental reality of uncertainty in pro-

cessing parameters. The uncertainty in processing parameters can not only lead to delays

in schedules but also lead to infeasibility for otherwise optimal solution [2] leading to

decrease in operators confidence in the optimal schedule. In order to handle the critical re-

ality of uncertainty in scheduling, we propose a multi-stage robust optimization approach

with corrective action to ensure feasibility of the worst case solution while reducing the

conservatism arising from traditional robust optimization.

1.1 Statement of Problem

The scheduling problem of chemical processes is defined as follows. Given:

i. production recipes (i.e. the processing times for each task at the suitable units, and

the amount of the materials required for the production of each product),

ii. available equipment and the ranges of their capacities,

1

iii. material storage policy,

iv. production requirement, and

v. time horizon under consideration,

Determine

i. the optimal sequence of tasks taking place in each unit,

ii. the amount of material being processed at each time in each unit,

iii. the processing time of each task in each unit,

so as to optimize a performance criterion, for example, to minimize the makespan or to

maximize the overall profit. The most common sources of uncertainty in the aforemen-

tioned scheduling problem are:

i. the processing times of tasks,

ii. the market demands for products, and

iii. the prices of products and/or raw materials.

The uncertainty in market prices and product demands manifest on the scale of 24-48 hrs,

while the uncertainty in processing time parameters manifest on scale of few minutes to

hours. Hence, from a context of short term scheduling with a typical time horizon of 8-16

hrs, processing time uncertainty has the maximum detrimental effect on operations. The

uncertainty in processing time can be described using known or unknown, symmetric or

asymmetric, continuous or discrete distributions. Note that, with increased knowledge

about uncertain parameters distribution, we gain improved probabilistic guarantees on ro-

bust solutions feasibility.

2

1.2 Outline of Thesis

The rest of this book is organized as follows. In Chapter 2, we briefly review the

relevant literature in the area of short-term process scheduling and describe in details the

model used in this work. Chapter 3 provides a background on theory of robust

optimization including the use of probabilistic bounds. Chapter 4 address the issue of

scheduling under uncertainty and proposes a improved robust optimization formulation

for scheduling under uncertainty.

 Finally, in the last chapter, we summarize the contribution of the developments and

point out avenues for future research.

3

2. SHORT-TERM BATCH SCHEDULING FRAMEWORK

Scheduling is a important tool for production facilities, affecting the productivity and

profitability of a facility. The problem of scheduling has received considerable attention

in recent years from both academic and industrial research communities [1, 3] as it arises

in almost any type of industrial production facilities (Pulp and paper, Metals, Oil and

Gas, Pharmaceuticals, Food and Beverages, etc.). The objective of scheduling problem

is to allocate optimal sequences and sizes of task to suitable units subject to availabil-

ity of resource such as materials and utilities to meet market demands. Due to increase

in complexity and flexibility of the production facilities, scheduling problem sizes vary

from simple, single-stage processes to highly complicated, multi-product, multi-purpose

processes. More thorough reviews on scheduling are presented by Floudas and Lin [3],

Mendez et al. [4], Phanden et al. [5] and Maravelias [6].

2.1 Time Representations

Scheduling models can be broadly classified into two main categories based on time

representations, namely, discrete-time and continuous-time models. Early attempts at pro-

cess scheduling were based on discretization of time horizon into a finite number of time

interval [7]. Since, the beginning and ending of tasks are associated with boundaries of

these intervals, one needs to select intervals as small as greatest common factor of arbitrary

processing times. Selecting such small interval often leads to extremely large problem

size, especially for real world problems. Specific solution techniques and reformulation

are employed to reduce the problem size and improve computational efficiency [8, 9].

Discrete-time methods are a relatively straightforward method to model timing constraints

as they provide exact location of every time t in grid. This simplicity comes in handy

when modeling the change in electricity prices and power availability [10, 11, 12]. How-

4

ever, this simplicity comes at the cost of approximation of continuous nature of processing

task durations and large number of binary variables corresponding to each discrete time

interval.

To alleviate the inherent limitations of discrete-time models, continuous-time repre-

sentation methods have been developed. Unlike discrete-time models where events are

allowed to begin only at certain time intervals, continuous-time models allow event to be-

gin at almost any time point. Continuous representation of time is captured by variable

event times, or event points, which can be defined globally or on a unit-specific basis. A

large number of inactive intervals of discrete-time models are eliminated by using vari-

able time event points, thus, significantly reducing number of integer variables. However,

additional variables and constraints has been defined to accurately model the timing and

sequencing constraints, resulting in models with more challenging structures. As a re-

sult, a significant amount of research has been dedicated to the development of efficient

continuous-time formulations in past two decades.

Continuous-time models can be classified based on type of process representation,

namely, sequential processes and general network-represented process. While sequential

processes do explicitly consider mass balances as they are order- or batch-oriented, general

network-represented processes can handle more general cases of mass splitting and merg-

ing balances. Two groups of general network-represented models have been developed,

slot based model and event based model. Ordered blocks or slot of unknown, variable

lengths represents time horizon in slot based models. While on the other hand, continuous

variables are directly defined to represent timings of tasks in event based models. Event

based models can be further classified as global event-point and unit-specific event-point

model. Global event based models [13] represent time horizon using a set of event (or

time) points that are common for all tasks and in all units. In contrast, event points on a

unit basis are defined in unit-specific models [14].

5

The unit-specific event based continuous-time formulation for short-term was origi-

nally proposed by Floudas and coworkers [14, 15, 16, 17, 18, 19]. Event points are defined

as a sequence of time instances located along time axis of each resource or unit, each rep-

resenting the beginning of a task or utilization of a resource. Since the location of event

points are different for different units, the tasks assigned to same event are allowed to

start at different moments in different units. Due to this additional decomposition of event

points for different units, for the same scheduling problem, the number of event points re-

quired in the unit-specific event based formulation is smaller than the number of events in

global event based models.For a scheduling problem, reduced number of binary variables

that results from unit-specific event-based formulation, leads to smaller model sizes and

efficient solutions for large-scale models.

2.2 Mathematical Model

Due to established advantages of unit-specific event-based models [20, 21], we use

them as they lead to smaller number of binary variables and computationally efficient

models. The work presented in this thesis is based on the continuous time unit-specific

event-based deterministic model proposed by Floudas and co-workers. Note that the for-

mulation presented below may differ from original publication, but in spirit, it is mathe-

matical equivalent and identical with one found in Li and Floudas [22].

Allocation Constraints

Based on the original formulation, a three-index binary allocation variable winn′ is

defined, to determine assignment of a task i that starts in event n and ends in event n′

(n ≤ n′). ∑
i∈Ij

∑
n′∈N

winn′ ≤ 1 ∀ j ∈ J, n ∈ N

∑
i∈Ij

∑
n∈N

winn′ ≤ 1 ∀ j ∈ J, n′ ∈ N

(2.1)

6

Constraint 2.1 allows at most one task to begin (end) at an event n (n′) in unit j. If a given

task can be performed in multiple units, then the task is split into multiple tasks, each

suitable in only one unit.

∑
n′∈N

winn′ +
∑
i′∈Ij
i′ ̸=i

∑
n′∈N

wi′n′n ≤ 1 ∀ i ∈ Ij, j ∈ J, n ∈ N (2.2)

Constraint 2.2 states that if a task starts in unit j at event n, no other task in unit j can end

at event n. Only the task that begins at event n can end at event n.

∑
n′∈N

winn′ ≤ 1−
∑
n′∈N
n′<n

∑
n′′∈N

∑
i′∈Ij

wi′n′n′′+
∑
n′∈N
n′<n

∑
n′′∈N

∑
i′∈Ij

wi′n′′n′∀ j ∈ J, i ∈ Ij, n ∈ N, n > 1

(2.3)

Constraint 2.3 states that a task i in unit j can start at event n only if unit j is idle i.e. all

tasks i′ that started before event n have ended before event n.

∑
n′∈N

win′n ≤
∑
n′∈N
n′≤n

∑
n′′∈N

win′n′′ −
∑
n′′∈N

∑
n′∈N
n′<n

win′′n′∀i ∈ I, n ∈ N (2.4)

Constraint 2.4 allows a task to end only if it had started earlier.

Capacity Constraints

Bmin
i winn′ ≤ binn′ ≤ Bmax

i winn′∀i ∈ I, n, n′ ∈ N (2.5)

Batch size limitations are enforced by constraint 2.5

7

Material Balances

STsn = STs(n−1) +
∑
i∈Ips

ρis
∑
n′∈N

bin′(n−1) +
∑
i∈Ics

ρis
∑
n′∈N

binn′∀ s ∈ S, n ∈ N, n > 1 (2.6)

In Constraint 2.6, the inventory of a state s at event n is adjusted by considering the

inventory in previous event, amount generated in previous event and amount consumed

starting from event n.

STsn = ST0s+
∑
i∈Ics

ρis
∑
n′∈N

binn′∀ s ∈ S, n = 1 (2.7)

Constraint 2.7 accounts for initial inventory of the state s.

Duration Constraints

T f
in ≥ T s

in + αiwinn + βibinn∀ i ∈ I, n ∈ N (2.8)

Constraint 2.8 ensures that the finish time of a task is later than the sum of its start time

and processing time.

T f
in ≥ T s

in ∀i ∈ I, n ∈ N (2.9)

Constraint 2.9 states that finish time of a task is later than its start time.

T f
in′ ≥ T s

in + αiwinn′ + βibinn′ −M(1− winn′)∀i ∈ I, n, n′ ∈ N, n < n′ (2.10)

Constraint 2.10 adjusts the finish time of a task if the task is processed across multiple

event points.

8

Sequencing Constraints

T s
i(n+1) ≥ T f

in∀i ∈ I, n ∈ N, n < N (2.11)

T s
i(n+1) ≤ T f

in +M
[
1− (

∑
n′∈N
n′≤n

∑
n′′∈N

win′n′′ −
∑
n′′∈N

∑
n′∈N
n′<n

win′′n′)
]

+M
∑
n′∈N

win′n∀i ∈ I, n ∈ N, n < N (2.12)

Constraint 2.11 states that start time of task in an event is later than finish time of task

in previous event. If a task spans across multiple event points, a zero-wait condition is

applied when the task ends in event later than n.

T s
i(n+1) ≥ T f

i′n −M
[
1− (

∑
n′∈N
n′≤n

∑
n′′∈N

wi′n′n′′−

∑
n′′∈N

∑
n′∈N
n′<n

wi′n′′n′)
]
∀i, i′ ∈ Ij, i ̸= i′, j ∈ J, n ∈ N, n < N (2.13)

Constraint 2.13 states that start time of a task in an unit has to be later than finish time of

task that occurs in the same unit in previous event.

T s
i(n+1) ≥ T f

i′n −M(1−
∑
n′∈N

wi′n′n)

∀s ∈ S, i ∈ Ics, i
′ ∈ Ips, i ∈ Ij, i

′ ∈ I′j, i ̸= i′, j ̸= j′, n ∈ N, n < N (2.14)

9

For tasks that consume and produce the same state in different units, Constraint 2.14 en-

forces the start time of consumption task to be later than finish time of production task.

Tightening Constraint

∑
i∈Ij

∑
n∈N

∑
n′∈N

(αiwinn′ + βibinn′) ≤ H∀j ∈ J (2.15)

Sum of processing times for all the tasks that take place in a unit should be less than the

scheduling horizon.

Bounds on Variable

T s
in ≤ H, T f

in ≤ H∀i ∈ I, n ∈ N (2.16)

winn′ = 0, binn′ = 0∀i ∈ I, n, n′ ∈ N, n′ < n (2.17)

Objective Function

Several different objective functions can be employed for sort-term scheduling prob-

lems. Two most common types are reviewed below.

Maximization of Profit

max Profit =
∑
s∈S

Ps

∑
n=N

(STsn +
∑
i∈Ips

ρis
∑
n′∈N

bin′n) (2.18)

10

Alternatively, one can optimize the time taken by a schedule (a.k.a. makespan) to meet

given demands of products. Minimization of Makespan

min MS∑
n=N

(STsn +
∑
i∈Ips

ρis
∑
n′∈N

bin′n) ≥ Ds∀s ∈ S

T f
iN ≤MS∀i ∈ I

(2.19)

Note that, if using minimization of makespan as objective, replace time horizon H with

makespan MS in the model. Also, additional constraints like utility balance, intermediate

due dates, storage considerations, etc. can be added to the model.

2.3 Motivating Example

The study was performed on the standard benchmark example originally introduced

by Kondili et al [7]. In figure 2.1, states s1, s2 and s3 represent the raw materials. While

s2 and s3 can be directly used in reaction 2 i2, i3, s1 needs to be under go heating i1

in the heater j1. States s4, s5, s6 and s7 are the intermediate products of the reaction

scheme that produces final products as states s8 and s9. All the reactions can take place

in two reactor units j2 and j3, hence mathematically reaction in one reactor is treated

differently than that in other reactor. Eg., reaction 1 is broken into two tasks i2 and i3

that take place in reactor 1 j2 and reactor 2 j3 respectively. The data for parameters can

be found in appendix. Nominal schedule for profit maximization problem with 8 hrs as

its time horizon is showed below. Note that for above problem, we use 4 events points as

determined by Li and Floudas [22].

11

Figure 2.1: State-Task Network (STN) for motivating example. Reprinted with permission
from [22]. Copyright c⃝2010 American Chemical Society.

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

70.21

40.51

64.81

45.39 22.13

72.62 35.4

34.04

54.46

88.5

Objective=1498.630000

Heating Reaction1 Reaction2 Reaction3 Seperation

Figure 2.2: Nominal Schedule for motivating example (H =8 hrs)

12

3. ROBUST OPTIMIZATION

The efficacy of a mathematical model relies on the accuracy of information fed to the

model in form of parameters. Typically, these parameter values exhibit uncertainty in data

due to limited information or measurement error. The solution of such a mathematical

model with uncertain parameter values would vary greatly based on which values are re-

alized by these uncertain parameter. One of the methods to immunize the mathematical

models against uncertainty is Robust Optimization. These is done by ensuring feasibility

of the constraints for any possible realization of parameter points in uncertainty sets. These

uncertainty sets are defined by deterministic data of parameter realization. The problem

that corresponds to feasible solution for uncertainty set is also called robust counterpart.

Earliest work in robust optimization was published by Soyster [23], formulating the

so-called "worst-case" robust counterpart, where the problem is immunized against all

possible perturbations of data. The Soyster solution to a problem would ensure that no

possible realization of uncertain parameter would render the solution infeasible. However,

if the uncertain parameters take unbounded distributions, it is impossible to generate a

Soyster solution for which probability of constraint violation is zero for any realization

of uncertain parameter. Thus, it is desirable to generate solutions and quantify the trade-

off between robustness and performance. The interval + ellipsoidal uncertainty set and

a method to provide upper bound on constraint violation probability for given set was

proposed by Ben-Tal and Nemirovski [24, 25]. A linear robust counterpart method was

introduced by Bertsimas and Sim [26], as they proposed and characterized interval + poly-

hedral uncertainty set. The robust optimization framework was extended to mixed-integer

linear programs(MILPs) by Floudas and coworkers [2, ?, 27, 28] with parameters sub-

ject to uncertainty with known or unknown distributions, including unbounded probability

13

distributions.

Traditionally, the quality of a robust solution relies on strength of a priori methods that

define uncertainty sets which satisfy a upper bound on probability of constraint violation

or a lower bound on probability of constraint satisfaction. A tighter probabilistic bound

would allow for improvement in objective value for a given risk, thus leading to a less con-

servative solution. A priori methods were characterized by Ben-Tal and Nemirovski [25]

and Bertsimas and Sim [29] for interval + ellipsoidal and interval + polyhedral uncertainty

sets, respectively. These bounds were extended to apply to other variety of uncertainty sets

and various distributions of uncertainty by Floudas and coworkers [30, 31, 32, 33, 34].

Alternatively, one can characterize the probability of constraint violation of a solution,

namely, a posteriori bounds on constraint violation, which are stronger than a priori bound

of equivalent structure. A nonconvex optimization problem is generated when a posteriori

bounds are incorporated in robust counterparts instead of using uncertainty sets. To avoid

solving a nonconvex optimization problem and to take advantage of tighter a posteriori

bounds, Li and Floudas [31] proposed an iterative method to obtain improved solution for

a particular risk tolerance. Compared to both worst-case solution and traditional one-pass

robust optimization framework, a dramatic improvement in solutions can be obtained by

utilizing tighter a priori and a posteriori bounds along with the iterative framework.

3.1 Uncertain Inequality Constraints

Methods for generating robust counterparts of deterministic models have been devel-

oped to apply on cases, where uncertain parameters are involved in linear or mixed-integer

linear inequality constraints. In practice, these forms can often be achieved with simple

substitutions or reformulations. Given arbitrary function fi(x, y) participating in constraint

14

i, where x and y are continuous and integer variables respectively:

fi(x, y) +
∑
k

aikxk +
∑
l

bilyl +
∑
m

pim ≤ 0 (3.1)

Assume that the exact values of some or all of parameters aik, ∀k, bil, ∀l and pim, ∀m are

uncertain. An equivalent reformulation of constraint 3.1 is:

fi(x, y) + ti ≤ 0

−ti +
∑
k

aikxk +
∑
l

bilyl +
∑
m

pim ≤ 0
(3.2)

A similar reformulation can be applied to an objective function with uncertain parameters.

The general form of LP or MIP under uncertainty is as follows:

max
x,y

∑
k

c̃kxk +
∑
l

d̃kyk

s.t.
∑
k

ãikxk +
∑
l

c̃ilyl ≤ p̃i ∀i

yl ∈ {0, 1} ∀l

(3.3)

Any parameter denoted with tilde is a parameter subject to uncertainty. The solutions

and objective value of Model 3.3 changes for different realization of uncertain parameters.

15

Similar to 3.1→ 3.2 reformulation, we can equivalently express model 3.3 as follows:

max
x,y,z

z

s.t. z −
∑
k

c̃kxk −
∑
l

d̃kyk ≤ 0

p̃ix0 +
∑
k

ãikxk +
∑
l

c̃ilyl ≤ 0 ∀i

x0 = −1

yl ∈ {0, 1} ∀l

(3.4)

Generically, the uncertain inequality constraint i can thus be represented as:

∑
j /∈Ji

aijxj +
∑
j∈Ji

ãijxj ≤ bi (3.5)

where, ãij represents uncertain parameters whose indices j are in set Ji. xj can be contin-

uous, integer or fixed variable to accommodate right hand side parameter uncertainty.

3.2 Uncertainty Sets

Selection of the uncertainty sets are central to formulating the robust counterpart. Un-

certainty set, Ui is a deterministic set of multiple possible parameter realizations that is

going to be imposed on the constraint i. Similar to behavior of guaranteed constraint

feasibility when parameters realize their fixed values, constraint feasibility can be guaran-

teed if the true realization of parameter values is contained within the uncertainty set. An

uncertain parameter aij can be rewritten as function of random variable ξij:

ãij = āij + ξij âij (3.6)

16

where, āij is the constant nominal or expected value of ãij and âij is a positive constant.

Random variable ξij captures the random realizations of ãij . For a bounded uncertainty,

value of âij should be chosen such that ãij ∈ [āij − âij, āij + âij], in other words, ξij ∈

[−1, 1]. The uncertainty set Ui can be defined as set of realizations of ξi that meet some

criteria, where ξi is a vector of all random perturbations of parameters j ∈ Ji.

Various kinds of norm-based uncertainty sets have been defined in the literature. These

norm-based uncertainty sets are conic convex and will help develop robust counterparts as

seen further in this chapter.

A box uncertainty set can be defined using a∞-norm distance from ξi = 0.

U∞i =

{
ξi : ∥ξij∥∞= max

j∈Ji
|ξij|≤ Ψi

}
(3.7)

where the size of U∞i is controlled by parameter Ψi. Geometrically, U∞i represents a

hypercube. If the uncertainty is bounded, selecting Ψi = 1 will include all possible

realization of uncertainty, thus representing the worst-case uncertainty set. Typically, when

Ψi = 1, U∞i is also referred as interval uncertainty set.

A polyhedral uncertainty set can be defined using a 1-norm distance from ξi = 0.

U1
i =

{
ξi : ∥ξij∥1=

∑
j∈Ji

|ξij|≤ Γi

}
(3.8)

where the size of U1
i is controlled by parameter Γi. Geometrically, U1

i represents a poly-

hedron. For bounded uncertainty, selecting Γi = |Ji| will include all possible realizations

of uncertainty as well as some spurious ones (when |Ji|> 1) in U1
i .

A ellipsoidal uncertainty set can be defined using a 2-norm distance from ξi = 0.

U2
i =

{
ξi : ∥ξij∥2=

∑
j∈Ji

|
√

ξ2ij|≤ Ωi

}
(3.9)

17

where the size of U2
i is controlled by parameter Ωi. Geometrically, U2

i represents a ellip-

soid. For bounded uncertainty, selecting Ωi =
√
|Ji| will include all possible realizations

of uncertainty as well as some spurious ones (when |Ji|> 1) in U2
i .

As observed, for bounded uncertainty, utilizing 1-norm or 2-norm based uncertainty sets,

can lead to inclusion of realizations of uncertainty which have zero probability of occur-

rence due to the uncertainty set geometries. In order to alleviate this, interval uncertainty

set is intersected with other norm-based criteria. Intersecting 1-norm and interval set leads

to a interval+polyhedral set:

U1∩∞
i =

{
ξi : ∥ξij∥1=

∑
j∈Ji

|ξij|≤ Γi, ∥ξi∥∞≤ 1

}
(3.10)

where, the size of set is controlled by Γi. For bounded uncertainty set, setting Γi = |Ji|

will ensure that all realization of uncertainty are included in U1∩∞
i . Similarly, intersecting

2-norm and interval set leads to a interval+ellipsoidal set:

U2∩∞
i =

{
ξi : ∥ξij∥2=

∑
j∈Ji

|
√

ξ2ij|≤ Ωi, ∥ξi∥∞≤ 1

}
(3.11)

where, the size of set is controlled by Ωi. For bounded uncertainty set, setting Ωi =
√
|Ji|

will ensure that all realization of uncertainty are included in U2∩∞
i .

In order, to utilize a given uncertainty set Ui onto constraint i, we reformulate constraint 3.5

using 3.6, ∑
j

āijxj +
∑
j∈Ji

ξij âijxj ≤ bi (3.12)

and now ensure maximal feasibility of the constraint for all realizations of set Ui,

∑
j

āijxj +max
ξi∈Ui

{∑
j∈Ji

ξij âijxj

}
≤ bi (3.13)

18

The inner maximization problem is conic convex and exhibits strong duality. Utilizing du-

ality theory, inner maximization problem can be replace by a deterministically equivalent

minimization problem, thus generating a robust counterpart of constraint 3.5. The robust

counterpart of constraint 3.5 subject to a box uncertainty set is:

∑
j

āijxj +Ψi

∑
j∈Ji

âij|xj|≤ bi (3.14)

The robust counterpart of constraint 3.5 subject to a polyhedral uncertainty set is:

∑
j

āijxj + Γizi ≤ bi

zi ≥ âij|xj| ∀j ∈ Ji

(3.15)

The robust counterpart of constraint 3.5 subject to a ellipsoidal uncertainty set is:

∑
j

āijxj + Ωi

√∑
j∈Ji

â2ijx
2
j ≤ bi (3.16)

The robust counterpart of constraint 3.5 subject to a interval + polyhedral uncertainty set

is: ∑
j

āijxj +
∑
j∈Ji

pij + Γizi ≤ bi

zi + pij ≥ âij|xj| ∀j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0

(3.17)

The robust counterpart of constraint 3.5 subject to a interval + ellipsoidal uncertainty set

is: ∑
j

āijxj +
∑
j∈Ji

âij|xj − zij|+Ωi

√∑
j∈Ji

â2ijz
2
ij ≤ bi (3.18)

19

3.3 Probabilistic Robust Optimization

The size of an uncertainty set can be controlled using parameters Ψi, Γi, or Ωi, which

can be generically referred to as ∆i. For bounded uncertainty case, it is possible to include

all realizations of ξi in Ui by setting ∆i value to its maximum values (Ψi = 1, Γi =

|Ji|, or Ωi =
√
|Ji|), thus rendering the probability of constraint i’s violation to zero for

any realization of ξi.

Pr

{∑
j

āijxj +
∑
j∈Ji

ξij âijxj > bi : ξij ∈ [−1, 1], ∆i = ∆
(max)
i

}
= 0 (3.19)

Alternatively for unbounded uncertainty case, to include every possible realization, the

value of parameter ∆i must approach infinity. Also, for either bounded or unbounded

case, imposing every possible realization leads to extremely conservative solutions. A

reduction in ∆i value leads to less conservative solution at an expense of probability of

constraint violation being non-zero.

Pr

{∑
j

āijxj +
∑
j∈Ji

ξij âijxj > bi : ξij ∈ [−1, 1], ∆i < ∆
(max)
i

}
> 0 (3.20)

Say that we have acceptable risk appetite of constraint i’s violation ϵprioi . We can set ∆i

a priori such that regardless of optimal solution x∗, we can guarantee that probability

of constraint violation is utmost ϵprioi . A priori probabilistic bounds are the probabilistic

expression B(∆i) that relate probability of constraint violation to ∆i. As this bounds must

work regardless of the solution, they provide upper bounds on probability of constraint

violation:

Pr

{∑
j

āijxj +
∑
j∈Ji

ξij âijxj > bi

}
≤ B(∆i) = ϵprioi (3.21)

20

Solutions become less conservative for smaller values of ∆i, hence minimum value of ∆i

should be selected such that B(∆i) ≤ ϵprioi . Formulating an optimization problem:

min
∆i

∆i

s.t. B(∆i) ≤ ϵprioi

∆i ≥ 0

(3.22)

In order to obtain tightest possible solution of model 3.22, one needs tight a priori bound

B(∆i). A traditional robust optimization approach can be derived utilizing a priori bounds.

Alternatively, one can quantify the probability of constraint violation a posteriori for a

Algorithm 3.1 Traditional Robust Optimization

Require: Provide Deterministic model M , select uncertainty set type U ? and A priori
probability of constraint violation ϵprioi ∀ i ∈ I
procedure APRIORIROBUSTOPTIM(M, U ?, ϵprio)

MRC ←M
for all i ∈ I do ◃ For each constraint with uncertain parameters

MRC ←robustCounterpartGen(MRC , U
?
i) ◃ Generates Robust Counterpart

∆i ← aPrioriBound(ϵprioi) ◃ Solution of model 3.22
end for
x∗ ← optimizationSolver(MRC , ∆)
return x∗,MRC , ∆ ◃ Retrieve Robust Optimal Solution and robust counterpart

model
end procedure

optimal solution x∗. Similar to a priori bounds, one can define a posteriori bounds as

probabilistic expression B(x∗) which relate probability of constraint violation to x∗:

Pr

{∑
j

aijx
∗
j +

∑
j∈Ji

ξij âijx
∗
j > bi

}
≤ B(x∗) = ϵposti (3.23)

21

For a given x∗, a tighter a posteriori bound B(x∗) will assign lower probability of con-

straint violation ϵposti . Utilizing a posteriori bounds, Li and Floudas [31] proposed alterna-

tive method to calculate robust solution. They proposed a following approximate model:

min
x, ∆i

cx

s.t. −∆i(bi −
∑
j

āijxj) +
∑
j∈Ji

lnE[e∆iξij âijxj] ≤ ln ϵposti ∀ i

∆i ≥ 0 ∀ i

(3.24)

As observed, model 3.24 is non-convex optimization problem and requires deterministic

global optimization approach to obtain the optimal solution. The increased objective value

from using a posteriori bounds comes at an expense of computational power. To mitigate

this increase in computational expense, they proposed an alternative method for utilizing

a posteriori bounds: Needless to mention, tight a priori and a posteriori bounds help re-

duce the number of iterations for alg. 3.2 and improve the objective value of the solution.

Recently, Floudas and coworkers [32, 33, 34] proposed novel a priori and a posteriori

bounds and characterized them to be the strongest bounds proposed in literature to date.

In this work, the bounds are generated by PROTO [35], which relies on these recently pro-

posed novel bounds. Since the bounds generated by PROTO are for independent random

parameters, we assume the parameters follow independent random distributions.

22

Algorithm 3.2 Iterative Approach for Robust Optimization

procedure ITERATIVEROBUSTOPTIM(M, U ?, ϵ)
Set tolerance parameter δ (e.g. 0.01)
x∗, MRC , ∆

satisfy ← AprioriRobustOptim(M, U ?, ϵ) ◃ From alg. 3.1
∆ = ∆satisfy

for all i ∈ I do ◃ For each constraint with uncertain parameters
ϵposti ←posterioriProb(M, x∗) ◃ Using equation 3.23
while |ϵposti − ϵi|> δ do

if ϵposti ≤ ϵi then
∆satisfy

i = ∆i

else
∆violate

i = ∆i

end if
∆i ← 0.5(∆violate

i +∆satisfy
i)

x∗ ← optimizationSolver(MRC , ∆i)
ϵposti ←posterioriProb(M, x∗) ◃ Using equation 3.23

end while
end for
return x∗ ◃ Retrieve Robust Optimal Solution with a posteriori probability of

constraint voilation ϵ
end procedure

23

4. SCHEDULING UNDER UNCERTAINTY

Scheduling problems are inherently plagued with fundamental reality of uncertainty

in processing time parameters, market prices, resources and unit availability, or product

demands. Most of the literary advances in area of process scheduling has ignored this

fundamental reality and proposed nominal-case schedules. Upon realization of uncertain

parameters during operation, these nominal schedules often cause delay or infeasibility of

schedules, leading to confusion on the operation floor.

Typically, there are two approaches for scheduling under uncertainty: reactive ap-

proach and preventive approach [36]. In reactive scheduling, nominal schedules are gen-

erated and updated upon the realization of uncertainty. Generation of new schedules is

based on feedback of realized states to the scheduler. These approaches tend to be com-

putationally expensive, since uncertainty can occur frequently and optimization problems

have to be solved repetitively. Since reactive scheduling relies on rescheduling of nominal

problem upon realization of uncertainty, feasibility of solution cannot be guaranteed. In

order to alleviate computational issues and improve feasibility of the solution, reschedul-

ing algorithms often employ heuristics or decomposition approach.

Earliest approaches in reactive scheduling were based on decision tree analysis [37].

The decision trees were generated by introducing artificial errors to the execution and then

the heuristic chose a reschedule decision such that impact on original schedule is mini-

mal. To avoid future infeasibility, look-ahead procedures were introduced by Rodrigues

et al [38]. Mendez and Cerda proposed general MILP reactive scheduling approach for

multi-purpose batch plants with limited changes in batch sequencing and units for smooth

rescheduling. Penalty incurred by rescheduling actions were incorporated in objective

value by Kopanos et al [39]. Similar methods for reactive scheduling were proposed in the

24

literature [40, 41]. Reactive scheduling models often employ novel techniques to enhance

feasibility, minimize disruption and reduce computational efforts due to rescheduling.

In contrast, proactive scheduling approaches generate schedules prior to realization

of parameters by incorporating a deterministic model of uncertainty in the optimization

problem. Proactive scheduling ensures that the solution remains feasible for all possible

realizations of uncertainty at the cost of detriment in objective value. One of the promi-

nent approaches for proactive or preventive scheduling is robust optimization. Floudas and

coworkers [2, 42] extended robust optimization framework to MILP problem and devel-

oped robust scheduling approach. As described in previous chapter, robust optimization

does not require explicit knowledge of probabilistic models for uncertainty.

Robust scheduling usually suffers from conservatism and large deterioration in objec-

tive value. To overcome this problem, adjustable robust optimization (ARO) framework

was proposed by Ben-Tal et. al. [43] Since only a subset of decision have to take place

"here-and-now", many decisions can be delayed until later point. This holds true especially

for scheduling problem as, only the batch-size and sequence of task needs to decided here-

and-now, while the time to start a task can be decided later on realization of uncertainty.

Instead of obtaining a single, static optimal solution, ARO framework aims at obtaining an

optimal policy that is parameterized in realizations of uncertainty. Effectively, with respect

to process scheduling literature, ARO approach can be designated as a cross between re-

active and proactive scheduling. Often, these decision based on parameter realizations are

assigned using heuristic. Shi and You [44] applied ARO framework to batch scheduling

by formulating a 2-stage problem from deterministic MILP model. This model requires

computationally expensive techniques to obtain solution and is limited to cases where all

uncertain information is revealed before any second stage decision is taken. A multi-stage

ARO approach for scheduling problem was proposed by Lappas and Gounaris [45]. They

generated a robust counterpart of continuous-time global event point model for scheduling

25

by incorporating a decision-dependent uncertainty set. In interest of numerical tractability,

they used a heuristic affine relationship for event time decision rules:

Tn ← [Tn]0 +
∑
i∈I

∑
n′<n

[Tn]in′αin′ (4.1)

where, αin′ is an uncertain parameter. Through case studies, they demonstrated an im-

provement in objective value from ARO method when compared to traditional robust op-

timization method for an arbitrary size of uncertainty set. The disadvantages of ARO are

use of heuristic decision rules, increase in computational size of model and absence of any

probabilistic bounds on the solution.

More thorough reviews on scheduling under uncertainty are presented by Li and Ier-

apetritou [36], Verderame et al. [46] and, Dias and Ierapetritou [47].

4.1 Traditional Robust Scheduling Approach

As demonstrated by ARO approaches, a combination of proactive and reactive solution

strategies would lead to improved objective values while ensuring feasibility of schedule.

As describe in state of problem, for short-term scheduling problem we consider uncertainty

in processing time parameters. Also, for demonstration purposes we consider uncertainty

to be uniform and bound α̃i = [0.7ᾱi, 1.3ᾱi]. Note that, one can handle uncertainty in raw

material or resource availability, market prices or demand as well, but for demonstration

purposes we consider processing time parameters as the only uncertainty. We assume that

uncertain parameters are randomly independent.

Now for deterministic unit-specific event-point model described in chapter 3, only

26

constraints 2.8 and 2.10 contain the uncertain parameter αi
1:

T f
in ≥ T s

in + α̃iwinn + βibinn∀ i ∈ I, n ∈ N

T f
in′ ≥ T s

in + α̃iwinn′ + βibinn′ −M(1− winn′)∀i ∈ I, n, n′ ∈ N, n < n′

Substituting α̃i = ᾱi + ξiα̂i in constraint 2.8 and 2.10 and maximizing the effect of uncer-

tainty for a uncertainty set.

T f
in ≥ T s

in + ᾱiwinn + βibinn + max
ξin∈Uin

{α̂iξinwinn}∀ i ∈ I, n ∈ N (4.2)

T f
in′ ≥ T s

in+ᾱiwinn′+βibinn′−M(1−winn′)+ max
ξin∈Uin

{α̂iξinwinn′}∀i ∈ I, n, n′ ∈ N, n < n′

(4.3)

Where, ᾱi is the expected or nominal value of parameter α̃i and α̂ is a positive constant.

Since, cardinality of uncertainty set Uin is 1, choosing either box, polyhedral or ellipsoidal

sets would make no difference. The robust counterpart can be written as:

T f
in ≥ T s

in + ᾱiwinn + βibinn +∆in{α̂iwinn}∀ i ∈ I, n ∈ N (4.4)

T f
in′ ≥ T s

in + ᾱiwinn′ + βibinn′ −M(1−winn′) +∆in{α̂iwinn′}∀i ∈ I, n, n′ ∈ N, n < n′

(4.5)

For bounded uncertainty case, setting ∆in = 1 would lead to worst-case (a.k.a. Soyster)

solution. Alternatively, nominal scheduled can be achieved by setting ∆in = 0. Any

intermediate value of ∆in would lead to a solution with non-zero probability of constraint

violation.
1Note that tightening constraint 2.15 contains uncertain parameter αi, but for demonstration purposes we

drop that constraint from the model. Since the constraint was redundant the model feasibility and solution is
unaffected.

27

Now replacing, constraints 2.8 and 2.10 with their robust counterparts 4.4 and 4.5 in the

model from chapter 2 and solving the optimization problem for motivating example, we

obtain: where, the transparent shade is the extra time allotted to a task to account for

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

49.49

13.09 41.92

20.94

50.0

56.71 17.0142.53

42.53

Objective=877.720000, εapriorivoil = 0.00, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

Figure 4.1: Soyster Solution for bounded uncertainty case

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.05

24.73

39.56

27.7 13.51

44.33 21.61

20.78

33.25

54.02

Objective=914.820000, εapriorivoil = 0.10, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

Figure 4.2: Solution with probability of constraint violation = 0.1

uncertainty. Now consider the unit reactor 1, tasks occurring in this unit are independent

to tasks in other units.

28

Since, the feasibility of each task in Reactor 1 i.e. probability of constraint satisfaction

of each task in Reactor 1 is 1 − ϵprio = 0.9, the overall probability of feasible operation

of Reactor 1 is (1 − ϵprio)4 = 0.65. Thus the actual probability of feasible operation of a

single unit is much less than that desired. Extending this observation to multiple units and

the actual feasibility of complete schedule would exponentially reduce, in practice, such a

schedule with reduced feasibility is unacceptable. Although, it is worth noting that robust

scheduling model has not added any additional variables or constraint to the problem and

has not lead to any increase in problem size.

4.2 Reactive Scheduling: Improvements

On the other hand, if we were to resort to reactive scheduling approach and reschedule

after realization of uncertainty at every event point. To achieve this reactive scheduling

behavior, we created following algorithm.

Algorithm 4.1 Algorithm for Reactive Scheduling

procedure REACTIVESCHEDULING(M, ξUB)
x∗ ← NominalScheduler(M) ◃ Using deterministic model of Chapter 3
for all n ∈ range(1, N − 1) do ◃ e.g. 4 event points in motivating example

wfx
inn′ ← w∗inn′∀ n′ ≥ n ◃ Fix task assignment of event n

bfxinn′ ← b∗inn′∀ n′ ≥ n ◃ Fix batch size of event n
αin ← randUniform((1− ξUB)αin, (1 + ξUB)αin) ◃ A random value is

assigned to processing time of tasks in event n
x∗n ← x∗ ◃ Store intermediate solution
x∗ ← NominalScheduler(M) ◃ Updated model is re-optimized, winn′ and binn′

are fixed
end for
return x∗n ◃ Retrieve all the solutions

end procedure

29

As observed from example simulation (fig. 4.3), the objective value of the overall

schedule over the horizon is not guaranteed. Due to constant rescheduling, it leads to

confusion on production floor. In order to take advantage of improvement in objective

value that comes from using algorithm 4.1, while maintaining schedule feasibility we pro-

pose a proactive-reactive scheduling approach. In this approach, we modify algorithm 4.1

to generate robust solution for each stage instead of nominal schedule.

Algorithm 4.2 Algorithm for Proactive-Reactive Scheduling

procedure PROREACTIVESCHEDULING(MRC , ξ
UB, ϵprio) ◃ Using deterministic

model of Chapter 3 coupled with constraints 4.4 and 4.5
x∗ ← AprioriRobustOptim(MRC , ξ

UB, ϵprio) ◃ Robust solver from algorithm 3.1
for all n ∈ range(1, N − 1) do ◃ e.g. N = 4 event points in motivating example

wfx
inn′ ← w∗inn′∀ n′ ≥ n ◃ Fix task assignment of event n

bfxinn′ ← b∗inn′∀ n′ ≥ n ◃ Fix batch size of event n
αin ← randUniform((1− ξUB)αin, (1 + ξUB)αin) ◃ A random value is

assigned to processing time of tasks in event n
x∗n ← x∗ ◃ Store intermediate solution
x∗ ← AprioriRobustOptim(MRC) ◃ Updated model is re-optimized,

winn′ and binn′ are fixed
end for
return x∗n ◃ Retrieve all the solutions

end procedure

Observing the simulation example (fig. 4.4) for algorithm 4.2, the rescheduling deci-

sion are not drastic as compared to algorithm 4.1. This modification results in improved

feasibility and practical applicability of method at cost of objective value deterioration.

30

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

70.2 0.01

40.51

64.81

45.39 22.13

72.62 35.4

34.04

54.46

88.5

Objective=1498.640000, |ξ| ≤ 0.3

(a) Nominal Schedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

70.2 0.01 0.01

40.51

64.81

39.85 19.43

63.76 31.08

29.89

47.82

77.7

Objective=1315.790000, |ξ| ≤ 0.3

(b) Second Stage Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

70.2 0.01 100.0

40.51

64.81

39.85 50.0

63.76 13.9534.87

34.87

Objective=984.020000, |ξ| ≤ 0.3

(c) Third Stage Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

70.2 0.01 100.0

40.51

64.81

39.85 50.0

63.76 21.9234.87

34.87

Objective=1015.920000, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

(d) Final Executed Schedule

Figure 4.3: Reactive Scheduling Simulation

31

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.05

24.73

39.56

27.7 13.51

44.33 21.61

20.78

33.25

54.02

Objective=914.820000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(a) Robust Schedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.04 0.01

24.73

39.56

21.94 13.51

50.09 21.61

20.78

33.25

54.02

Objective=914.820000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(b) Second Stage Robust Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.04 100.0

24.73

39.56

21.94 13.03

50.09 20.85

20.05

32.08

52.13

Objective=892.820000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(c) Third Stage Robust Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.04 100.0

24.73

39.56

21.94

50.09 35.12

20.05

32.08

52.13

Objective=897.750000, εapriorivoil = 0.10, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

(d) Final Robust Reschedule

Figure 4.4: Proactive-Reactive Scheduling Approach

32

4.3 An Improved Robust Scheduling Approach

Although the feasibility of solution has improved, the resources and skill to re-optimize

a schedule at every occurrence of uncertainty is not feasible on a complex production

floor. We improve algorithm 4.2, by introducing new constraints in the model at every

stage in rescheduling. Referencing to algorithms 4.1 and 4.2, we define each event point

of information collection from simulation or feedback as the active event point.

T f
in ≥ T̃ s

in + α̃inwinn + βibinn∀ i ∈ I, n is the active event point (4.6)

T f
in′ ≥ T̃ s

in+α̃inwinn′+βibinn′−M(1−winn′)∀i ∈ I, n′ ∈ N, n < n′, n is the active event point

(4.7)

Where, T̃ s
in is the uncertain start time of a task at event n. This constraints are only intro-

duced for an active event point n. Uncertainty in start time of task is induced from uncer-

tainty in processing parameters of task that occurred in previous events (α̃in′′∀ n′′ < n).

Hence we can derive an expression for T̃ s
in as a function of α̃in′′ .

T̃ s
in = T s

i n+
∑
i′∈I

∑
n′<n

|ωin|i′n′α̂i′n′ξi′n′ (4.8)

where, T s
in is the value of start time if all parameters in the problem realize their nominal

values. |ωin|i′n′ is a binary variable which decides whether αi′n′ has any influence on the

next event or not. Combining constraint 4.6 and 4.7, substituting 4.8 and generating robust

33

counterpart with Interval + Polyhedral uncertainty set using equation 3.17:

T f
in′ ≥ T s

in + αinwinn′ + βibinn′ + Γinzin +
∑
i′∈I

∑
n′′∈N
n′′<n

|pin|i′n′+p′in

−M(1− winn′) ∀ i ∈ I, n′ ∈ N, n ≤ n′, n is the active event point

zin + p′in ≥ α̂inwinn′ ∀ i ∈ I, n, n′ ∈ N, n ≤ n′

zin + |pin|i′n′≥ α̂i′n′ |ωin|i′n′ ∀ i, i′ ∈ I, n′ ∈ N, n′ < n, n is the active event point
(4.9)

where, zin, p′in and |pin|i′n′ are auxiliary positive variables introduced as a part of robust

counterpart formulation. The big-M condition in constraint 4.9 will ensure that the con-

straint is redundant if winn′ is inactive.

|ωin|i′n′≤ wi′n′′n′∀ i, i′ ∈ I, n′, n′′ ∈ N, n′′ ≤ n′, n′ < n, n is the active event point

(4.10)

|ωin|i′n′= 0 ∀ i, i′ ∈ I, n′, n′′ ∈ N, n′ ≥ n, n is the active event point∑
i′∈I

∑
n′∈N
n′<n

|ωin|i′n′≤ n− 1 ∀ i ∈ I, n is the active event point

∑
i′∈I

∑
n′∈N
n′<n

|ωin|i′n′≤M
∑
n′∈N
n′≤n

win′n ∀ i ∈ I, n is the active event point

(4.11)

Constraint 4.10 states that uncertainty in task that did not occur cannot influence start time

of any task in future. Constraint 4.11 ensures that the uncertainty in future task has no

influence on the start time of current task. Also, the maximum number of events that can

affect the start time of a task cannot be more than the number of event points that have

elapsed in the schedule so far. If a task is not suppose to start, then no past event can have

34

any influence on its start time.

∑
i′∈I

∑
n′∈N
n′<n

|ωin|i′n′α̂i′n′ ≥
∑
i′∈Ij

∑
n′∈N
n′<n

∑
n′′∈N
n′′≤n′

α̂i′n′wi′n′′n′

−M(1−
∑
n′∈N
n′≤n

win′n) ∀ i ∈ Ij, j ∈ J, n is the active event point (4.12)

Constraint 4.12 asserts that the uncertainty in start time of a task is contributed from un-

certainty in processing time of previous tasks in the same unit. Using inequality along

with big-M constraint instead of equality, helps us ensure that there is no influence of

uncertainty of tasks in previous event, if the current task is not performed.

∑
i′∈I

∑
n′∈N
n′<n

|ωin|i′n′α̂i′n′ ≥
∑
i′∈Ij′

∑
n′∈N
n′<n

∑
n′′∈N
n′′≤n′

α̂i′n′wi′n′′n′ −M(2−
∑
n′∈N
n′≤n

win′n

−
∑
i′∈Ips
i′∈Ij′

∑
n′∈N
n′≤n

wi′n′(n−1)) ∀ s ∈ S, i ∈ Ij, i ∈ Ics, j, j
′ ∈ J, j′ ̸= j, n is the active event point

(4.13)

Constraint 4.13 states that uncertainty in start time of a task is also contributed from un-

certainty in processing time of tasks in a unit where, the raw material for current task was

produced. Together, constraint 4.12 and 4.13 ascertain that uncertainty in start time of a

task, is maximum of sum of processing time uncertainty in the same unit or in a depen-

dent different unit. Grouping constraints 4.9, 4.10, 4.11, 4.12 and 4.13 into M IR
n group of

constraints for every active event point n.

Compared to algorithm 4.2, here in algorithm 4.3, we fix αin to its nominal value

instead of a random value. We add the M IR
n for each active event point. In comparison

to previous reactive scheduling algorithms, this algorithm does not require any form of

35

Algorithm 4.3 Algorithm for Improved Robust Scheduling

procedure IMPROBUSTSCHEDULING(MRC , ξ
UB, ϵprio) ◃ Using deterministic model

of Chapter 3 coupled with constraints 4.4 and 4.5
x∗ ← AprioriRobustOptim(MRC , ξ

UB, ϵprio) ◃ Robust solver from algorithm 3.1
for all n ∈ range(2, N) do ◃ e.g. N = 4 event points in motivating example

wfx
inn′ ← w∗inn′∀ n′ ≥ n ◃ Fix task assignment of event n

αi(n−1) ← ᾱi(n−1) ◃ Processing time values of elapsed events is fixed to their
nominal value i.e. they behavior is changed from uncertainty parameter values to fixed
values

∆i(n−1)←0 ◃ Since the parameters are not uncertain anymore
MRC ←MRC +M IR

n ◃ Adding group of constraints from improved robust
formulation

x∗n ← x∗ ◃ Store intermediate solution
x∗ ← AprioriRobustOptim(MRC) ◃ Updated model is re-optimized,

winn′ and binn′ are fixed
end for
return x∗n ◃ Retrieve all the solutions

end procedure

on-line rescheduling. Once the schedule is generated, task assignment, sequencing and

batch sizes remain unchanged, only the start times of tasks are affected by the uncertainty

in processing time parameter.

Although, compared to traditional robust optimization problem, we need to solve N

instances of the scheduling problem. It must be noted that, every subsequent problem

has lower number of binary decision variables as well as they start with a feasible solu-

tion derived from previous solution instance. Since, the structure of nominal scheduling

model was unaltered by these robust counterpart formulation, any objective function or

constraints such as makespan minimization, resource balance, intermediate due date, etc.

can be applied on the model.

Figure 4.5 and 4.6 are two example instances solved using improved robust scheduling

approach. As observed, the objective value has improved compared to both traditional

robust scheduling and proactive-reactive scheduling for case with ϵprio ̸= 0. While for

36

worst case, there is no improvement in objective value. If one were to solve with ϵprio = 1,

the solution would be same as nominal schedule. Instead of using heuristic to determine

start time of each task, we can logically determine the start time of each task as finish time

of previous dependent task.

Alternatively, one can generate a robust counterpart for constraint 4.6 and 4.7 using

Interval + Ellipsoidal Set. Also, for unbounded uncertainty case, one can generate a robust

counterpart using polyhedral or ellipsoidal uncertainty sets.

T f
in′ ≥ T s

in + αinwinn′ + βibinn′ + Ωintin +
∑
i′∈I

∑
n′′∈N
n′′<n

|uin|i′n′+u′in

−M(1− winn′) ∀ i ∈ I, n′ ∈ N, n ≤ n′, n is the active event point

|uin|i′n′≥ α̂i′n′|ωin|i′n′−|zin|i′n′ ∀ i, i′ ∈ I, n′ ∈ N, n′ < n, n is the active event point

−|uin|i′n′≤ α̂i′n′|ωin|i′n′−|zin|i′n′ ∀ i, i′ ∈ I, n′ ∈ N, n′ < n, n is the active event point

u′in ≥ α̂inwinn′ − z′in ∀ i ∈ I, n, n′ ∈ N, n ≤ n′, n is the active event point

−u′in ≤ α̂i′n′winn′ − z′in ∀ i ∈ I, n, n′ ∈ N, n ≤ n′, n is the active event point

t2in ≥ (z′in)
2 +

∑
i′∈I

∑
n′∈N
n′<n

(|zin|i′n′)2∀ i ∈ I, n ∈ N, n is the active event point

(4.14)

where, tin, z′in, u′in, |zin|i′n′ and |uin|i′n′ are introduced as positive auxiliary variables. The

robust counterpart 4.14 is structured differently than one presented in constraint 3.18 but

in spirit they are the same. These different reformulation follows a second order conic

programming (SOCP) structure and can be solved using commercial MIP solvers like

CPLEX and Gurobi [48] to global optimality (convex problem).

37

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

28.81 14.05

24.73

39.56

27.7 13.51

44.33 21.61

20.78

33.25

54.02

Objective=914.820000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(a) Robust Schedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

31.44 11.57

24.81

39.7

30.23 11.12

48.36 17.8

22.67

36.27

58.94

Objective=960.530000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(b) Second Stage Off-line Robust Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

31.67 11.28

24.78

39.65

30.45 10.85

48.72 17.36

22.84

36.54

59.38

Objective=963.890000, εapriorivoil = 0.10, |ξ| ≤ 0.3

(c) Third Stage Off-line Robust Reschedule

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

36.83 4.91

24.08

38.53

35.42 4.72

56.67 7.55

26.56

42.5

69.06

Objective=1038.940000, εapriorivoil = 0.10, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

(d) Final Improved Robust Schedule ϵprio = 0.1

Figure 4.5: Improved Robust Scheduling Approach

38

0 1 2 3 4 5 6 7 8

Hours

Heater

Reactor1

Reactor2

Seperator

49.49

13.09 40.21

20.94

50.0

56.71 17.0142.53

42.53

Objective=877.720000, εapriorivoil = 0.00, |ξ| ≤ 0.3

Heating Reaction1 Reaction2 Reaction3 Seperation

Figure 4.6: Improved Robust Soyster Solution

39

4.4 Improving the quality of solution

Instead of using a priori bounds, we can use a posteriori bounds to characterize the

quality of robust solution. One can use iterative algorithm 3.2, for characterizing quality of

solution using a posteriori bounds. For purpose of demonstration, we generate solutions

for various a priori probability of constraint violation and then characterize the a posteriori

probability of constraint violation for each individual solution. Since the constraint on

which bounds are applied at is changed at every stage of algorithm, the final constraint on

which a posteriori bounds are applied is:

T̃ s
in + α̃inwinn + βibinn ≤ H ∀ i ∈ I, n = card(n) (4.15)

Constraint 4.15 states that, the finish time of last event should be less than horizon. Hence,

a posteriori probability of constraint violation would characterize the probability of delay

or overtime in the task.

ϵprio
ϵpost

Objective Value
Reactor 1 Reactor 2 Separator

0 0 0 0 877.72
0.10 0.000058 0.001206 0.020499 1038.94
0.20 0.000396 0.000396 0.027774 1092.86
0.30 0.006358 0.001648 0.047201 1137.73
0.40 0.004707 0.004707 0.074537 1175.53
0.50 0.009923 0.009923 0.106614 1209.93
0.60 0.017221 0.030504 0.141310 1242.99
0.70 0.048277 0.048277 0.182355 1278.02
0.80 0.074537 0.097187 0.236754 1323.55
0.90 0.163992 0.163992 0.314623 1377.97
1.00 0.500000 0.500000 0.500000 1498.63

Table 4.1: Improved Robust Approach for motivating example with interval-polyhedral
set

40

ϵprio
ϵpost

Objective Value
Reactor 1 Reactor 2 Separator

0 0 0 0 877.72
0.10 0.001359 0.001359 0.001439 981.32
0.20 0.002875 0.002875 0.006955 1036.12
0.30 0.006882 0.006882 0.017221 1084.46
0.40 0.013184 0.013184 0.033458 1126.54
0.50 0.020499 0.020499 0.055364 1165.65
0.60 0.032187 0.032187 0.085654 1203.83
0.70 0.053099 0.035522 0.125663 1244.50
0.80 0.105064 0.101074 0.182355 1296.49
0.90 0.194580 0.188738 0.266706 1359.05
1.00 0.500000 0.500000 0.500000 1498.63

Table 4.2: Improved Robust Approach for motivating example with interval-ellipsoidal set

Table 4.1 and 4.2 represent the application of improved robust approach on motivating

example using interval + polyhedral and interval + ellipsoidal sets respectively. All these

experiments were conducted using GAMS/Gurobi [49, 48] and the probabilistic bounds

were generated using PROTO [35]. It should be noted that, robust counterpart with inter-

val polyhedral sets are solved using mixed-integer quadratically constrained programming

(MIQCP), which increases the computational expense as compared to polyhedral sets.

Since, interval + ellipsoidal uncertainty set have tighter probabilistic bounds, it offsets the

increase in computational cost by improving the objective value for a given a posterori

probability of constraint violation ϵpost. Thus using the probabilistic bounds one can quan-

tify the quality of robust solution and choose an appropriate schedule that matches their

risk appetite.

41

900 1000 1100 1200 1300 1400 1500

Objective Value

0.0

0.1

0.2

0.3

0.4

0.5
Ellipsoidal
Polyhedral

0.0 0.2 0.4 0.6 0.8 1.0

εprioviol

0.0

0.1

0.2

0.3

0.4

0.5

εp
o
s
t

v
io
l

fo
rS

ep
ar

at
or

Ellipsoidal
Polyhedral

Figure 4.7: Quality of Robust Solution

4.5 Computational Studies

As observed from figure 4.6, for worst-case solution, improved robust scheduling and

traditional robust scheduling lead to same objective value, batch sequencing and batch size.

Hence, by using any type of proactive solution technique, the Soyster solution cannot be

improved upon and it should match the solution of traditional robust approach. This fact

can be utilized to verify the integrity of our approach. We apply our improved robust

optimization framework on benchmark instances from Li and Floudas [22] at ϵprio = 0

and ϵprio = 1 to verify the integrity of our approach.

42

Example
Horizon
(hr) H

Event
points n

Objective Value
Traditional
Robust Approach

Improved Robust
Approach

ϵprio = 0 ϵprio = 1 ϵprio = 0 ϵprio = 1
ME 8 4 877.71 1498.63 877.71 1498.63
P2 8 6 1150.00 1583.44 1150.00 1583.44
P3 9 5 60.00 210.00 60.00 210.00
P4 10 6 160.07 400.00 160.07 400.00

Table 4.3: Computational Study on Literature Benchmark

43

5. SUMMARY AND CONCLUSIONS

In this chapter, we summarize the major contribution of the proposed improved robust

optimization method and suggest the possible avenues for future research.

5.1 Objectives Achieved

In this work, we proposed a novel multi-stage robust optimization framework for pro-

cess scheduling application without use of any heuristics [44, 45]. For a given level of

risk, we demonstrated that our approach yields better objective values as compared to

traditional robust optimization approaches [2, 42]. In our iterative scheme of schedule

generation, we assimilate the delay in tasks for a unit in an uncertainty set and provide

probabilistic bounds on the delay of particular units’ processing time. To best of our

knowledge, for the first time in literature, we provide a tool to study delay risk versus ob-

jective value trade-off using these strong probabilistic bounds. Moreover, our method does

not require explicit information regarding uncertainty of the parameter, but can take advan-

tage of available information [35]. As the structure of underlying deterministic model is

unaltered, our approach can benefit from its computational efficiency as well as its ability

to handle real-life scenarios like utility limitations, storage policies, changeover times, etc.

Avoiding heuristics helps us obtain rescheduling decisions, which can be implemented by

the operators without use of a computational tool. It should be highlighted that, since we

are using an unaltered deterministic model, our problem size is much smaller compared

with alternative methods proposed in the literature to date.

44

5.2 Further Study

There are several avenues of research that extend quite naturally from the work pre-

sented in this thesis. They can be summarized as follows.

• The area of simultaneous planning and scheduling is important to production schedul-

ing community. Planning problem aims at quantifying long-term production goals,

while scheduling problem seeks to determine the specifies of the production sched-

ule itself. While the method developed in these work can handle uncertainty in low-

est level of decision making, integrating it with uncertainty aware planning problem

would improve the reliability of this method.

• The problem of demand side management (DSM) has received significant interest

in production operations literature. The rise in electricity demand coupled with in-

creasing penetration of intermittent renewable energy into power supply mix has

increased the level of uncertainty tremendously. It would be beneficial for the plan-

ning and scheduling models for industrial DSM to account for the uncertainty.

• The area of plant design and synthesis is plagued with uncertainty in market prices

and demand. A implementation of multistage proactive-reactive algorithm would

greatly enhance the productivity and profitability of the plant.

45

REFERENCES

[1] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell, I. E. Gross-

mann, J. Hooker, C. Méndez, G. Sand, and J. Wassick, “Scope for industrial ap-

plications of production scheduling models and solution methods,” Computers &

Chemical Engineering, vol. 62, pp. 161–193, 2014.

[2] X. Lin, S. L. Janak, and C. A. Floudas, “A new robust optimization approach for

scheduling under uncertainty:: I. Bounded uncertainty,” Computers & Chemical En-

gineering, vol. 28, no. 6, pp. 1069–1085, 2004.

[3] C. A. Floudas and X. Lin, “Continuous-time versus discrete-time approaches for

scheduling of chemical processes: A review,” 2004.

[4] C. A. Méndez, J. Cerdá, I. E. Grossmann, I. Harjunkoski, and M. Fahl, “State-of-the-

art review of optimization methods for short-term scheduling of batch processes,”

Computers & Chemical Engineering, vol. 30, no. 6, pp. 913–946, 2006.

[5] R. K. Phanden, A. Jain, and R. Verma, “Integration of process planning and schedul-

ing: a state-of-the-art review,” International Journal of Computer Integrated Manu-

facturing, vol. 24, pp. 517–534, jun 2011.

[6] C. T. Maravelias, “General framework and modeling approach classification for

chemical production scheduling,” AIChE Journal, vol. 58, pp. 1812–1828, jun 2012.

[7] E. Kondili, C. Pantelides, and R. Sargent, “A general algorithm for short-term

scheduling of batch operationsI. MILP formulation,” Computers & Chemical En-

gineering, vol. 17, pp. 211–227, feb 1993.

[8] C. T. Maravelias, “On the combinatorial structure of discrete-time MIP formulations

for chemical production scheduling,” Computers and Chemical Engineering, vol. 38,

46

pp. 204–212, 2012.

[9] S. Velez and C. T. Maravelias, “Multiple and nonuniform time grids in discrete-

time MIP models for chemical production scheduling,” Computers and Chemical

Engineering, vol. 53, pp. 70–85, 2013.

[10] P. M. Castro, A. P. Barbosa-po, H. a. Matos, and A. Q. Novais, “Simple Continuous-

Time Formulation for Short-Term Scheduling of Batch and Continuous Processes,”

Industrial & Engineering Chemistry Research, vol. 43, pp. 105–118, 2004.

[11] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “New Continuous-Time Schedul-

ing Formulation for Continuous Plants under Variable Electricity Cost,” Industrial &

Engineering Chemistry Research, vol. 48, pp. 6701–6714, jul 2009.

[12] P. M. Castro, I. Harjunkoski, and I. E. Grossmann, “Optimal scheduling of contin-

uous plants with energy constraints,” Computers & Chemical Engineering, vol. 35,

no. 2, pp. 372–387, 2011.

[13] C. T. Maravelias and I. E. Grossmann, “New General Continuous-Time StateTask

Network Formulation for Short-Term Scheduling of Multipurpose Batch Plants,” In-

dustrial & Engineering Chemistry Research, vol. 42, no. 13, pp. 3056–3074, 2003.

[14] M. G. Ierapetritou and C. A. Floudas, “Effective continuous-time formulation for

short-term scheduling. Part 2. Continuous and semicontinuous processes,” Industrial

& Engineering Chemistry Research, vol. 37, no. 11, pp. 4360–4374, 1998.

[15] M. Ierapetritou, T. Hené, and C. Floudas, “Short-term scheduling of batch plants

with multiple intermediate due dates,” Computers & Chemical Engineering, vol. 23,

pp. S515–S518, jun 1999.

[16] S. L. Janak, X. Lin, and C. a. Floudas, “Enhanced Continuous-Time Unit-Specific

Event-Based Formulation for Short-Term Scheduling of Multipurpose Batch Pro-

47

cesses: Resource Constraints and Mixed Storage Policies,” Industrial and Engineer-

ing Chemistry Research, vol. 43, no. 10, p. 2516, 2004.

[17] M. A. Shaik and C. A. Floudas, “Improved unit-specific event-based continuous-

time model for short-term scheduling of continuous processes: Rigorous treatment

of storage requirements,” Industrial and Engineering Chemistry Research, vol. 46,

no. 6, pp. 1764–1779, 2007.

[18] M. A. Shaik and C. A. Floudas, “Unit-specific event-based continuous-time approach

for short-term scheduling of batch plants using RTN framework,” Computers &

Chemical Engineering, vol. 32, no. 1, pp. 260–274, 2008.

[19] M. A. Shaik and C. A. Floudas, “Novel Unified Modeling Approach for Short-Term

Scheduling,” Industrial & Engineering Chemistry Research, vol. 48, pp. 2947–2964,

mar 2009.

[20] M. A. Shaik, S. L. Janak, and C. A. Floudas, “Continuous-time models for short-

term scheduling of multipurpose batch plants: A comparative study,” Industrial and

Engineering Chemistry Research, vol. 45, no. 18, pp. 6190–6209, 2006.

[21] J. Li, N. Susarla, I. A. Karimi, M. A. Shaik, and C. A. Floudas, “An Analysis of Some

Unit-Specific Event-Based Models for the Short-Term Scheduling of Noncontinuous

Processes,” Industrial & Engineering Chemistry Research, vol. 49, pp. 633–647, jan

2010.

[22] J. Li and C. A. Floudas, “Optimal Event Point Determination for Short-Term

Scheduling of Multipurpose Batch Plants via Unit-Specific Event-Based Continuous-

Time Approaches,” Industrial & Engineering Chemistry Research, vol. 49, pp. 7446–

7469, aug 2010.

48

[23] A. L. Soyster, “Convex Programming with Set-Inclusive Constraints and Applica-

tions to Inexact Linear Programming,” Operations Research, vol. 21, pp. 1154–1157,

oct 1973.

[24] A. Ben-Tal, L. El-Ghaoui, and A. Nemirovski, Robust Optimization. Princeton Uni-

versity Press, 2009.

[25] A. Ben-Tal and A. Nemirovski, “Robust solutions of Linear Programming problems

contaminated with uncertain data,” Mathematical Programming, vol. 88, pp. 411–

424, sep 2000.

[26] D. Bertsimas and M. Sim, “Tractable Approximations to Robust Conic Optimization

Problems,” Mathematical Programming, vol. 107, pp. 5–36, jun 2006.

[27] Z. Li, R. Ding, and C. A. Floudas, “A Comparative Theoretical and Computational

Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Ro-

bust Mixed Integer Linear Optimization,” Industrial & Engineering Chemistry Re-

search, vol. 50, pp. 10567–10603, sep 2011.

[28] P. M. Verderame and C. A. Floudas, “Multisite Planning under Demand and Trans-

portation Time Uncertainty: Robust Optimization and Conditional Value-at-Risk

Frameworks,” Industrial & Engineering Chemistry Research, vol. 50, pp. 4959–

4982, may 2011.

[29] D. Bertsimas and M. Sim, “The Price of Robustness,” Operations Research, vol. 52,

pp. 35–53, feb 2004.

[30] Z. Li, Q. Tang, and C. A. Floudas, “A Comparative Theoretical and Computa-

tional Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on

Constraint Satisfaction,” Industrial & Engineering Chemistry Research, vol. 51,

pp. 6769–6788, may 2012.

49

[31] Z. Li and C. A. Floudas, “A Comparative Theoretical and Computational Study on

Robust Counterpart Optimization: III. Improving the Quality of Robust Solutions,”

Industrial & Engineering Chemistry Research, vol. 53, pp. 13112–13124, aug 2014.

[32] Y. A. Guzman, L. R. Matthews, and C. A. Floudas, “New a priori and a posteriori

probabilistic bounds for robust counterpart optimization: I. Unknown probability

distributions,” Computers & Chemical Engineering, vol. 84, pp. 568–598, 2016.

[33] Y. A. Guzman, L. R. Matthews, and C. A. Floudas, “New a priori and a posteri-

ori probabilistic bounds for robust counterpart optimization: II. A priori bounds for

known symmetric and asymmetric probability distributions,” Computers & Chemical

Engineering, vol. 101, pp. 279–311, jun 2017.

[34] Y. A. Guzman, L. R. Matthews, and C. A. Floudas, “New a priori and a posteriori

probabilistic bounds for robust counterpart optimization: III. Exact and near-exact a

posteriori expressions for known probability distributions,” Computers & Chemical

Engineering, vol. 103, pp. 116–143, aug 2017.

[35] L. Matthews, Y. Guzman, and C. Floudas, “PROTO: Platform for Robust OpTimiza-

tiOn.,” 2018.

[36] Z. Li and M. Ierapetritou, “Process scheduling under uncertainty: Review and chal-

lenges,” Computers & Chemical Engineering, vol. 32, no. 4, pp. 715–727, 2008.

[37] K. B. Kanakamedala, G. V. Reklaitis, and V. Venkatasubramanian, “Reactive sched-

ule modification in multipurpose batch chemical plants,” Industrial & Engineering

Chemistry Research, vol. 33, pp. 77–90, jan 1994.

[38] M. Rodrigues, L. Gimeno, C. Passos, and M. Campos, “Reactive scheduling ap-

proach for multipurpose chemical batch plants,” Computers & Chemical Engineer-

ing, vol. 20, pp. S1215–S1220, jan 1996.

50

[39] G. M. Kopanos, E. Capon-Garcia, A. Espuna, and L. Puigjaner, “Costs for

Rescheduling Actions: A Critical Issue for Reducing the Gap between Schedul-

ing Theory and Practice,” Industrial & Engineering Chemistry Research, vol. 47,

pp. 8785–8795, nov 2008.

[40] J. P. Vin and M. G. Ierapetritou, “A New Approach for Efficient Rescheduling of

Multiproduct Batch Plants,” Industrial & Engineering Chemistry Research, vol. 39,

pp. 4228–4238, 2000.

[41] S. L. Janak, C. A. Floudas, J. Kallrath, and N. Vormbrock, “Production scheduling

of a large-scale industrial batch plant. II. Reactive scheduling,” Industrial and Engi-

neering Chemistry Research, vol. 45, no. 25, pp. 8253–8269, 2006.

[42] S. L. Janak, X. Lin, and C. A. Floudas, “A new robust optimization approach for

scheduling under uncertainty. II. Uncertainty with known probability distribution,”

Computers and Chemical Engineering, vol. 31, no. 3, pp. 171–195, 2007.

[43] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski, “Adjustable robust so-

lutions of uncertain linear programs,” Mathematical Programming, vol. 99, pp. 351–

376, mar 2004.

[44] H. Shi and F. You, “A computational framework and solution algorithms for two-

stage adaptive robust scheduling of batch manufacturing processes under uncer-

tainty,” AIChE Journal, vol. 62, pp. 687–703, mar 2016.

[45] N. H. Lappas and C. E. Gounaris, “Multi-stage adjustable robust optimization for

process scheduling under uncertainty,” AIChE Journal, vol. 62, pp. 1646–1667, may

2016.

[46] P. M. Verderame, J. A. Elia, J. Li, and C. A. Floudas, “Planning and Scheduling

under Uncertainty: A Review Across Multiple Sectors,” Industrial & Engineering

51

Chemistry Research, vol. 49, pp. 3993–4017, may 2010.

[47] L. S. Dias and M. G. Ierapetritou, “Integration of scheduling and control under un-

certainties: Review and challenges,” Chemical Engineering Research and Design,

vol. 116, pp. 98–113, 2016.

[48] I. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2016.

[49] GAMS Development Corporation, “General Algebraic Modelling System (GAMS),”

2013.

52

APPENDIX A

DATA FOR EXAMPLE PROBLEMS

53

Table A.1: Batch Size Data for motivating example and Examples 2-4

task i unit j αij βij BL
ij −BU

ij (µ)
Motivating Example

heating (i = 1) heater 0.667 0.00667 0-100

reaction 1
(i = 2) reactor 1 1.334 0.02664 0-50
(i = 3) reactor 2 1.334 0.01665 0-80

reaction 2
(i = 4) reactor 1 1.334 0.02664 0-50
(i = 5) reactor 2 1.334 0.01665 0-80

reaction 3
(i = 6) reactor 1 0.667 0.01332 0-50
(i = 7) reactor 2 0.667 0.00833 0-80

separation (i = 8) separator 1.3342 0.00666 0-200
Example 2

heating 1 (i = 1) heater 0.667 0.00667 0-100
heating 2 (i = 2) heater 1.000 0.0100 0-100

reaction 1
(i = 3) reactor 1 1.333 0.01333 0-100
(i = 4) reactor 2 1.333 0.00889 0-150

reaction 2
(i = 5) reactor 1 0.667 0.00667 0-100
(i = 6) reactor 2 0.667 0.00445 0-150

reaction 3
(i = 7) reactor 1 1.333 0.01333 0-100
(i = 8) reactor 2 1.333 0.00889 0-150

separation (i = 9) separator 2.000 0.00667 0-300

mixing
(i = 10) mixer 1 1.333 0.00667 20-200
(i = 11) mixer 2 1.333 0.00667 20-200

Example 3
task 1 (i = 1) mixer 1.5 0 0-150
task 2 (i = 2) reactor A 4.5 0 0-60
task 3 (i = 3) reactor B 1.5 0 0-30
task 4 (i = 4) reactor C 1.5 0 0-30
task 5 (i = 5) separator 3.0 0 0-150

Example 4
task 1 (i = 1) unit 1 1.666 0.03335 0-40
task 2 (i = 2) unit 2 2.333 0.08335 0-20
task 3 (i = 3) unit 3 0.667 0.0666 0-5
task 4 (i = 4) unit 4 2.667 0.008325 0-40

54

(a) STN of Motivating Example. Prices of s8 and s9 is 10 $/µ. Reprinted with permission from
[22]. Copyright c⃝2010 American Chemical Society.

(b) STN of Example 2. Prices of s12 and s13 is 5 $/µ. Reprinted with permission from [22].
Copyright c⃝2010 American Chemical Society.

55

(a) STN of Example 3. Prices of s6 and s7 is 1 $/µ. Reprinted with permission from [22]. Copy-
right c⃝2010 American Chemical Society.

(b) STN of Example 4. Prices of s6 is 10 $/µ. Reprinted with permission from [22]. Copy-
right c⃝2010 American Chemical Society.

56

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF TABLES
	Introduction
	Statement of Problem
	Outline of Thesis

	Short-term Batch Scheduling Framework
	Time Representations
	Mathematical Model
	Motivating Example

	Robust Optimization
	Uncertain Inequality Constraints
	Uncertainty Sets
	Probabilistic Robust Optimization

	Scheduling under Uncertainty
	Traditional Robust Scheduling Approach
	Reactive Scheduling: Improvements
	An Improved Robust Scheduling Approach
	Improving the quality of solution
	Computational Studies

	SUMMARY AND CONCLUSIONS
	Objectives Achieved
	Further Study

	REFERENCES
	APPENDIX Data for Example Problems

