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ABSTRACT 

 

 With the development of techniques and increasing need for the evaluation and 

prediction of pavements’ conditions during and after construction, the methodology of 

nondestructive testing (NDT) is generally applied in the field and on the process of 

research. This text serves as a review of strengths and limitations of technology and 

devices used in NDT testing, providing a potential indicator for evaluation and advanced 

warning, and discussing effects of velocities of testing devices on the responses of 

pavements. The thesis provide parts of theoretical backgrounds for testing and 

backcalculation techniques of an improved NDT testing. 
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 1. INTRODUCTION* 

1.1 Introduction to Nondestructive Testing 

 The evaluation of pavements’ conditions during and after construction is a long-

term and essential process for pavements’ rehabilitations, corrections and future designs. 

The methodology of nondestructive testing (NDT) is generally used for its characteristics 

of reflecting in-situ responses and material properties of pavements as well as not causing 

any damage to structures. For quantitative or qualitative evaluation, outputs from testing 

can be divided into two major types - deflections and material properties. The first type is 

the most straightforward structural response of pavements under loads. Nowadays testing 

devices are able to collect deflection information such as continuous deflected profiles, 

maximal or mean values of deflections over testing sections. And the other type of outputs 

covers dynamic modulus and phase angles which stand for properties of surfaces and 

supporting layers. Such values can be obtained from mastercurves of deflection-time 

histories of pavements under dynamic loads using backcalculation procedures.  

In order to obtain these two types of outputs, various testing devices are being 

developed. Based on types of outputs, the nondestructive testing can be divided into the 

deflection-based and the seismic-based (James et al. 1998). Typical nondestructive testing 

devices are the falling weight deflectometer (FWD), rolling dynamic deflectometer 

(RDD), the Applied Research associates’ rolling wheel deflectometer (RWD), airfield 

rolling wheel deflectometer (ARWD), road deflection tester (RDT), and high speed 

                                                 
*Reprinted with permission from Carlson, Paul, et al. Advancing Innovative High-Speed Remote-Sensing 

Highway Infrastructure Assessment Using Emerging Technologies. No. FHWA/TX-16/0-6869-1. 2017. 
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deflectograph (HSD) which are applied in the field or are in the process of research and 

development. 

1.2 Typical Equipment and Characteristics 

Falling Weight Deflectometer (FWD) is one of the most widely used 

nondestructive testing devices so far. It is able to generate haversine-shaped dynamic loads 

of which the duration and peak values can be adjusted by different mass, stiffness and 

dropping height of the circular loading cell. The time history of deflections can then be 

measured by the sensors mounted along the centerline of the load plate. For each testing 

location, technicians must stop the test vehicle to perform the FWD deflection 

measurements which will require traffic control. The deflections obtained from the FWD 

are non-continuous. 

The RDD is a nondestructive testing device designed and developed at the 

University of Texas at Austin which consists of a vibroseis truck and a servo-hydraulic 

vibrator to generate dynamic load. The dynamic forces are transferred to the pavement 

and the vertical deformations are measured by four rolling deflection sensors. The RDD 

can provide a continuous moving deflection basin profile of pavements with sufficient 

accuracy, but the operational velocity is 1 mph for the first generation and up to 3 mph for 

the second generation (Lee and Stokoe, 2006), which means interruption is also caused to 

the traffic. 

The RDD loading system can also be used with other geophysical devices such as 

Ground Penetrating Radar (GPR) in the Total Pavement Acceptance Device (TPAD). The 

operational speed can reach up to 10 mph with much greater rolling noises to loading and 



 

3 

 

 

data acquisition systems (Stokoe et al. 2013). The RWD is a deflection-based device 

which is designed and manufactured by the Applied Research Associates (ARA). It is 

constructed using a specially designed 53-ft long tractor-trailer to apply a load of 18,000 

lb to the pavement and measures the single moving deflection responses using high 

precision laser distance measuring devices. Deflection is the vertical difference between 

the deflected and un-deflected profiles. The RWD can run at a highway speed (e.g., 55 

mph), but it produces relatively high variance and limited accuracy of deflection, which 

can be used to qualitatively evaluate the pavement structural capacity but not 

quantitatively. 

Comparisons of these three devices have been conducted and are summarized in 

Table 1. 

Nondestructive 

Testing Devices 
Operational Speed 

Type of 

Applied Force 

Type of 

Measured Data 

RDD 1 to 3 mph 

Dead Weight 

on Wheels + 

Dynamic 

Loads on 

Loading Cells 

Continuous 

RWD 45 to 65 mph 
Dead Weight 

on Wheels 
Continuous 

FWD 0 

Dynamic 

Loads on 

Loading Cells 

Discrete 

Table 1. Summary of Nondestructive Testing Devices 
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Nondestructive 

Testing Devices 
Daily Production 

Deflection 

Sensor 

Accuracy 

Distance 

between 

Readings 

RDD 9 miles 0.05 mils 2 to 3 ft 

RWD 36 miles ± 2.75 mils 0.5 in 

FWD 100-300 locations N/A 12 in 

Note: 1 mil = 0.001 inches 

Table 1 Continued 

The information obtained from NDT devices are based mainly upon the type of 

loads applied to pavements and data acquisition systems. First, it is generally 

acknowledged that there is a tradeoff between operational speeds of testing vehicles and 

the precision of the data. Deflections obtained from RWD and RDD are often required to 

be compared with FWD results to prove their accuracy, repeatability and sensitivity. 

Besides, in spite of the interval between adjacent measured data, deflections over a unit 

length (e.g., 100 feet for RWD) are averaged for qualitative evaluations. Second, 

mastercurves of deflection-time histories of pavements under dynamic loads generated by 

FWD can be used for backcalculation of dynamic properties such as dynamic modulus 

and compliance. This cannot be done with the measurements made by the RDD and RWD 

which are the maximum deflections. With continuous measurement, the largest deflections 

can only be used to indicate the weakest pavement sections. 
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The FWD, as the most commonly used nondestructive device, can effectively 

measure the deflection data of the pavement under dynamic loads as well as provide 

deflection-time histories for the stiffness and other dynamic properties of the pavement. 

However, it has obvious weakness – the user time delay due to the ‘stop-and-go’ testing 

procedure of the FWD. The time delay will significantly increase costs for the traffic 

control and induce safety problems to technicians. Meanwhile, the low productivity of the 

testing makes it difficult to obtain real-time conditions of the pavement and make the best 

decisions on the timing of pavement maintenance so as to expect the longest service life 

and the least maintenance costs. 

1.3 Objectives and Main Tasks 

The objective of this thesis is to develop a series of numerical pavement models 

with material properties reflecting deteriorating pavement conditions under increasing 

load cycles. Then obtain and compare deflection basins of these pavements under moving 

loads with different speeds. The results will provide potential analytical support for 

developing NDT techniques with highway-speed operations which produce the rate of 

change of the modulus and phase angle of the asphalt surface layer to provide an advance 

warning of pavements’ failure.     

The potential benefits of the technology advancement are: 

 The highway-speed deflection measuring system will produce a continuous 

deflection profile for a pavement to replace the existing deflection test at random 

locations such as the falling weight deflectometer (FWD). 

 The highway-speed deflection measuring system will eliminate the potential user 
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time delay costs and avoid safety problems resulting from the traffic control 

required by the traditional deflection test. The moving deflection measuring 

system can be operated at normal highway speed, e.g., 60 mph, thus it will cause 

no disruptions to the traffic. 

 The pavement manager can employ this system to obtain real-time conditions of 

the pavement and make the best decisions on the timing of pavement maintenance 

so as to expect the longest service life, the least maintenance costs and the least 

delay costs. 

 The pavement construction engineers can use this system to locate, fix, and 

eliminate the weak spots of pavement structures at the time of construction, and 

eventually to assure quality construction to reduce life cycle costs and expect a 

longer service life. 

 Advance warning of developing pavement distress to permit rational pavement 

maintenance and rehabilitation managements.  

Due to the aspects of moving speed increase and the deflection data measurement 

technology improved in the task, the primary work finished are: 

 Develop methodology for fitting the deflection basins under loads of highway 

speed and back calculating pavement layer properties with the deflection data 

measured by the equipment. 

 Develop numerical models with finite element software to explore the 

characteristics of deflection basins under various moving speed and layer 

properties. 
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 Compare theoretical methodology and numerical models, discuss the potentiality 

of the methodology. 
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2. THEORY* 

2.1 Current Nondestructive Evaluation of Pavement 

As described in the previous section, the Falling Weight Deflectometer (FWD) is 

a typical nondestructive pavement evaluation device. It can produce transit impulse 

loading by the loading plate. The resulting deflections of points at given distances from 

the plate can be collected by geophones and the deflection basin of the pavement can be 

determined. 

As a device applying loads different from RDD and RWD, the FWD sets dynamic 

loads of which two peaks simulate vehicles with two axles and then records time histories 

of responses of the pavement through sensors, as illustrated in Figure 1 and Figure 2. 

Because of these characteristics, the deflection basin measured by the FWD can be treated 

as the actual deflection basin of the pavement under moving loads. 

 
Figure 1. Force-Time Relationship of FWD Load 

                                                 
*Reprinted with permission from Carlson, Paul, et al. Advancing Innovative High-Speed Remote-Sensing 

Highway Infrastructure Assessment Using Emerging Technologies. No. FHWA/TX-16/0-6869-1. 2017. 
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Figure 2. Deflection-Time Relationship of the Pavement 

For most backcalculation cases, the peak load and deflection are extracted from 

graphs of load versus time impulses and deflection versus time response created by the 

FWD to evaluate elastic material properties. However, there is much more information in 

these signals. Lytton pointed out that as the falling weight drops to the pavement surface, 

the impulse load creates surface waves and body waves which move in the pavement 

(Lytton 1989). If a fast Fourier transform is performed on the impulse and response, 

signals will be transformed into forms of frequency-dependent components which are 

complex numbers for each frequency. The modulus of different materials of layers can be 

represented as this kind of complex modulus (Lytton 1989). 

( ) ( ) ( )E f E f iE f     (1) 

where, 

( )E f  the complex modulus 

( )E f  the real part of the complex modulus, which is the in-phase component of stress 

divided  by the strain 

( )E f  the imaginary part of the complex modulus which is made up of the lagging 

component of the stress divided by the strain. 
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It is believed that there exists a time lag between the response of the pavement and 

the impulsive load. Figure 3 shows a lag distance between locations where the load acts 

and the maximal deflection occurs. The time lag can be explained and represented by the 

phase angle of the system which consists of two parts: the time lag due to the propagation 

of waves in the pavement and the material damping. There is a relationship between the 

lag angle and material damping ratio  . 

( )
2 tan ( )

( )

E f
f

E f
 


 


 (2) 

 

 
Figure 3. A Moving FWD, Deflection Basin and Complex Modulus 

From the left part of Equation (2), it can be observed that the value of the lag angle 

relies merely on the damping ratio of the material which is independent of the properties 

of external loads. However, from the other part, there is an obvious relationship between 

the lag angle and the ratio of the real part and the imaginary part of the complex modulus, 

both of which are frequency-dependent. 

The concept of phase angle effectively explains the time lag between the response 

of the pavement and the impulsive load which is commonly shown in time histories of 
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loads and deflections in FWD testing. Also, it combines the material damping which is a 

typical property of inelastic material with dynamic properties. Hence, from measured data 

in FWD testing, more information can be obtained to reflect and evaluate actual properties 

of pavement layer materials and structures. 

In modern transportation, high speeds, heavy loads and great capacities of vehicles 

are three important factors which should be considered in designs and evaluations of 

pavements (Sun and Deng 1998). Speeds of vehicles, especially highway speeds, should 

be introduced to insitu and laboratory testing for both improving the effectiveness and 

representing traffic conditions in reality. 

Many researches have been conducted for evaluating effects of loads, pavements 

and their interaction on responses of pavements in order to obtain simplified models 

including necessary factors. Specifically, the importance of speed and frequency of 

vehicles in responses of flexible pavements has been discussed separately (Hardy and 

Cebon 1991). In a dynamic pavement response model, strain magnitudes of base and soil 

decrease and move further behind the load when vehicle speed increases. This idealized 

dynamic response model (Cebon 1988) focuses on the dynamic properties of vehicles and 

pavements which can be simplified as combinations of springs and dampers. Results of 

this research have shown contributions of the velocity to the responses of pavements 

which include the lag behind loads and the magnitude. It can be concluded that from the 

viewpoint of dynamics, the whole system is sensitive to the velocities of vehicles. 

In flexible pavements, both surfaces and base courses are inelastic materials. The 

dynamic behavior of inelastic materials especially viscoelastic materials have been studied 
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and analytical methods have been developed. The term ‘dynamic’ used in some 

experiments and contexts has no connection with structural dynamics such as inertial 

damping or resonance. Instead, the viscosity of materials is focused to describe the 

response to loads with different frequencies. For example, in a viscoelastic material under 

a sinusoidal load with cycle ‘T’, time histories of stress and strain are sinusoids out of 

phase (Lakes 2009). The phase shift can be expressed as 

2
=

t

T





 (3) 

where t is the lag time between stress and strain and  is the phase angle of the 

viscoelastic properties. 

2.2 Properties of Viscoelastic Materials 

For elastic solids, the stress is proportional to the strain. The strain of the object 

will not change when the stress is fixed at a constant value. The ratio of the stress and 

strain is the Young’s modulus E . For a viscous fluid, the force applied is proportional to 

the rate of elongation. The ratio is denoted as the viscosity. For a linear viscous material, 

if the strain is held constant from the beginning, the stress will increase to the required 

value then decrease to zero with time. Different from these materials of which strain 

(force) is ideally proportional to strain or its time derivative, viscoelastic materials are 

those for which the relationship between stress and strain depends on time. The properties 

of viscoelastic materials can be described by creep and relaxation. 

Creep is a progressive deformation of a material under constant stress.  
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0

( )
( )

t
J t




  (4) 

where, 

J  creep compliance 

  strain of the material 

  stress of the material 

For a viscoelastic material, it is typically that the strain increases with fixed stress 

and decreases toward zero when the stress vanishes. The creep compliance of a 

viscoelastic solid will eventually increase to a boundary value, while for a viscoelastic 

fluid, it will increase to infinity. 

Relaxation is a progressive decrease of stress when the strain remains constant. 

0

( )
( )

t
E t




  (5) 

where, 

E  relaxation modulus 

  strain of the material 

  stress of the material 

E  represents the stiffness of the material which is the Young’s modulus in elastic 

materials. For viscoelastic materials, the relaxation modulus is a function of time and 

decreases with a fixed strain. The relaxation modulus of a viscoelastic solid has a limit 

value greater than zero when time approaches infinity. 

Asphalt is a typical material for the surface of pavements and shows characteristics 

of viscoelastic solids. For convenience of prediction and analysis of material properties, 
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series of exponentials, power laws, and logarithmic functions are used to represent creep 

compliance and relaxation modulus varying with time (Lakes 2009). 

In this thesis, the Power Law and Prony-series models are applied to represent the creep 

and relaxation function. The Power Law equation 

1( ) mE t E t  (6) 

is mainly used in the backcalculation of material property coefficients for its simplicity 

but including key variables which sufficiently represent modulus of viscoelastic solids 

varying with time. In the programming of backcalculation, small number of coefficients 

contributes to relatively simpler calculation. Physical meaning of m  will be introduced 

later and deflection basins will be compared with different values of m  to describe the 

importance to backcalculate it. 

The coefficients of Prony-series can be defined directly by users in the commercial 

finite element software (ABAQUS 2010). By defining instantaneous elastic modulus 0E  

and certain sets of shear modulus ratios ig , bulk modulus ratios ik and relaxation times i

, based on the relationship between shear, bulk and elastic modulus, time-dependent shear, 

bulk and elastic modulus can be determined. 

 /

0

1

( ) 1 1 i

n
t

i

i

G t G G e




 
   

 
  (7) 

 /

0

1

( ) 1 1 i

n
t

i

i

K t K K e




 
   

 
  (8) 

where ( )G t  and ( )K t  are relaxation shear and bulk modulus, 0G  and 0K  are 

instantaneous shear and bulk modulus which can be transferred from user-defined 
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instantaneous elastic modulus 0E . Based on the relationship between shear, bulk and 

elastic modulus as well as other input coefficients, the relaxation modulus of a linearly 

viscoelastic material can be expressed as 

1

( ) i

tn
a a

i

i

E t E E e








 
   

 
 

  (9) 

where aE ,  a

iE and i  are regression coefficients in the model and satisfy the equations 

below. 

0

a

i iE E E  (10) 

0

1

n
a a

i

i

E E E



   (11) 

i i iE g k   (12) 

The dynamic modulus is given by 

2 2

2 2
1

( )
1

an
a i

i i

E
E E

 


 






  


  (13) 

2 2
1

( )
1

an
i

i i

E
E




 




 


  (14) 

* 2 2E E E    (15) 

tan
E

E






 (16) 

where ( )E   and ( )E   are the storage and loss modulus respectively,   is the angular 

velocity, *E  is the magnitude of the dynamic modulus,   is the phase angle. From 

Equation (13) ~ (16), it can be seen that the magnitude and phase angle of modulus depend 
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upon the frequencies of loads. As mentioned before, in current FWD tests, the transient 

deflection of the pavement is measured after impulsive loads are applied. The peak load 

and peak deflection are assumed to be static measurements and elastic parameters are 

back-calculated. Actually, parameters representing the viscoelasticity of materials can 

play a similar or better role. Experiments have been conducted to show that as an asphalt 

mixture cracks under repeated loading, the dynamic modulus decreases slowly as the 

phase angle increases almost linearly (Reese, 1997).  

After construction, an asphalt surface layer has the maximal value of modulus and 

low phase angle. With repeated loading, the modulus decreases due to fatigue and 

fractures while the phase angle is increasingly greater. An approximate relationship 

(Lytton 1989) between phase angle and the value of m as in Equation (6) is 

2
m


   (17) 

In Reese’s work, the phase angle approaches its maximal value around 34 degrees, when 

the pavement is about to fail. After that, the pavement develops large cracks completely 

through the surface layer. Hence, if the modulus and phase angle (or m ) can be measured 

during the service of a pavement, the current and impending conditions of the pavement 

can be effectively evaluated and predicted. 
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2.3 Theory of Deflection Basin – Pavement Material Property Measuring System 

         
Figure 4. Sketch of Travelling Equipment for Deflection Measurement 

Figure 4 illustrates a potential testing equipment for measuring deflection under 

moving loads. Eventually, this apparatus will measure the moving deflection basin at 

highway speeds under pavement design loads, and determine analytically the viscoelastic 

material properties of the surface layer and the supporting layers of both concrete and 

asphalt pavements. Previous measurements made on Texas pavements have indicated that 

the characteristic length of such pavements is approximately 20–30 ft. The characteristic 

length is defined as the decorrelation distance of a pavement in which the surface 

roughness pattern at one point is decorrelated from the roughness pattern at a second point 

one decorrelation distance away. Figure 5 shows typical Texas pavement decorrelation 

distances. 
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Figure 5. Concept of Characteristic Length of Pavement 

Within the distance, pavements will respond to moving loads and the effects of 

viscoelasticity of the materials will appear in the shapes and magnitudes of the deflection 

basins. 

Concrete pavements are expected to respond to the moving loads as an elastic 

surface layer with a viscoelastic supporting layer, the softness of which is indicative of 

expected rapid deterioration of the concrete pavement distress. Asphalt pavements are 

expected to respond to the moving loads as viscoelastic layers in both the surface and 

supporting layers. Aged and brittle asphalt will respond as being more elastic until cracks 

begin to appear, either growing from the bottom up or from the top down. As such, these 

measurements will be an advance indicator of future pavement cracking. The softer 

supporting layers will, as with the concrete pavements, indicate a more rapid deterioration 

rate of cracking and of rutting. Stabilized supporting layers will respond as being more 

elastic until cracks begin to appear, reducing the effective support they provide to the 
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surface layer. Water entering these supporting layers will soften them, making them 

respond in a more viscoelastic way. Table 2 shows these four pavement responses.  

Pavement 

Type 

Type of Pavement Responses 

Surface Layer Supporting Layer 

Asphalt Viscoelastic Viscoelastic 

Concrete Elastic Viscoelastic 

Asphalt over 

Stiffness 

Support 

Viscoelastic Elastic 

Concrete over 

Stiffness 

Support 

Elastic Elastic 

Table 2. Type of Pavement Responses under a Moving Load 

Viscoelastic responses will produce an asymmetric deflection basin with a steep 

leading edge and a shallow trailing edge, as shown in Figure 6. The greater the maximum 

deflection and steeper the leading edge indicate pavements that are more susceptible to 

load-related distress. 

 
Figure 6. Illustration of Asymmetric Deflection Basin under a Moving Load 

Having such information acquired at highway speeds for every characteristic 

length of the pavement along its entire length will pinpoint trouble spots long before 

serious distress begins to develop. This makes possible an effective planning program for 

maintenance and rehabilitation of entire pavement networks. 
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This thesis is to study characteristics of the actual deflection basin, figure out 

factors affecting it and then provide a potential backcalculation method for those important 

material property coefficients. From the data collected from the geophone. It is clear that 

the whole deflection basin shows obvious asymmetry. It is likely that the inelasticity of 

the pavement and foundation cause such a phenomenon. Hence, in this thesis, the 

supporting layer (base course) will be processed as a viscoelastic material. Improved 

expressions and parameters will be applied as those of surface layer to reflect the real 

situation better. 

2.4 Elastic Solution of Pavement Deflection 

2.4.1 Analysis of Beams on Elastic Foundation 

The solution of beams on elastic foundation (Hetenyi 1946) calculates the 

deflection of an arbitrary point along a pavement under various types of loading. A beam-

on-elastic foundation solution can be applied in the back calculation of material properties 

of both the surface and supporting layer with measured deflection data. The assumption 

made in the beam-on-elastic foundation solution is that the beam is supported on an elastic 

foundation. A unit deflection of the beam will cause relevant reaction of the foundation as 

illustrated in Figure 7. The assumption and calculation method for the reaction of the 

foundation was introduced by Winkler in 1867. 
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Figure 7. Beam on Elastic Foundation  

Assume that a beam is supported on the foundation and acted upon by a 

concentrated load, the equation of external force acting on the beam can be expressed as: 

0p bk y ky   (18) 

p  reaction load of the foundation per unit length  

bwidth of the beam 

y deflection of the beam 

0k modulus of the foundation 

The form of the reaction follows Hooke’s law and the value is proportional to all 

three dimensions. Having defined the reaction of the foundation, based on the equilibrium 

state of the beam (Figure 8), the summation in the vertical direction can be expressed as, 

B

p=ky

0

x

A

y

P q
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Figure 8. Vertical Equilibrium State of an Element of the Beam 

( ) 0Q Q dQ kydx qdx      (19) 

It can be simplified that, 

dQ
ky q

dx
   (20) 

Based on the known conditions that the shear force is the first derivative of the moment, 

dM
Q

dx
  (21) 

and the differential equation of a beam in bending, 

2

2

d y
EI M

dx
   (22) 

E  elastic modulus of the beam  

I moment of inertia of the cross section of the beam 

by using Equation (19)~(22), it can be derived that, 

4

4

d y
EI ky q

dx
    (23) 

M+dM

dx

q+dx

Q

pdx=kydx
Q+dQ

M
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The solution of the differential Equation (23) can be obtained from the homogeneous part 

and a particular part corresponding to q . Especially when the beam is loaded by an 

individual concentrated load, the solution will consist of the homogenous part only.  

For the homogeneous part, assume that  

mxy e  (24) 

Then, substitute Equation (24) into (23), four roots of two different values can be obtained. 

4
1,2,3,4 ( 1 )

4

k
m i

EI
    (25) 

in which the factor 4

4

k

EI
is called the characteristic of the system, denoted as , the 

dimension is length-1. 

So, the solution of the homogeneous part is 

(1 ) (1 ) ( 1 ) ( 1 )

1 2 3 4

i x i x i x i xy Ae A e A e A e               (26) 

Replace the complex index with the trigonometric functions, 

cos sin

cos sin

i x

i x

e x i x

e x i x





 

 

  


 
 (27) 

Equation (26) can be expressed as 

 

 

1 4 1 4

2 3 2 3

cos ( ) sin ( )

   cos ( ) sin ( )

x

x

y e x A A x Ai A i

e x A A x A i A i





 

 

   

   
 (28) 

Assume that, 
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 

 

1 4 1

1 4 2

2 3 3

3 2 4

A A C

i A A C

A A C

i A A C

 


 


 
  

 (29) 

The solution can be rewritten as follows, 

   1 2 3 4cos sin cos sinx xy e C x C x e C x C x         (30) 

In order to obtain the four parameters 1 4~C C of the Equation (30), actual boundary 

conditions should be taken into consideration. First, compared to the length of the 

pavement, no matter what the loading form is, the wheel of vehicles or loading plates, the 

scale of the loading along the pavement is fairly small. Hence, it is reasonably assumed 

that, at the spot long enough from the loading area, the deflection approaches zero. The 

terms including
xe
vanish in the Equation (30), which becomes 

 3 4cos sinxy e C x C x     (31) 

Second, when the beam is acted on by a concentrated load, the deflection would show a 

characteristic of symmetry from two sides of the loading point, which means that the first 

derivative of Equation (31) would be zero at the point 0x  . 

   4 3 4 30
cos sin 0x

x
y e C C x C C x    


         (32) 

So, it can be derived that, 

4 3C C C   (33) 

Then, back to the equilibrium state of the beam, the beam is acted on by the concentrated 

force and reaction from the foundation, which should counteract in the equilibrium state 

of the beam. 
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 
0 0

2 2 cos sinxP kydx kC e x x dx  
 

     (34) 

Eventually, 

2

P
C

k


  (35) 

Therefore, the deflection of a beam of unlimited length acted by a concentrated load can 

be expressed as 

 cos sin
2

xP
y e x x

k


    (36) 

When the beam is under uniform loads, the analysis procedures are similar. The 

uniform load can be treated as a combination of multiple concentrated loads, therefore, 

the deflection can be calculated by the integral of multiple deflections under concentrated 

loads. As the location of the calculated point varies, the deflection can be divided into 

three types when the beam is under uniform load. 

 
Figure 9. Three Cases of the Beam under Uniform Loads 

Figure 9 shows that the point needs calculating is located under and at two sides of the 

loading, the deflection of point C can be expressed separately as 

B

a

A

b

B

q

a

C B

q

A

Cb

A

bC

q

a
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 

 

 

1

2

3

2 cos cos
2

cos cos
2

cos cos
2

a b

a b

a b

q
y e a e b

k

q
y e a e b

k

q
y e a e b

k

 

 

 

 

 

 

 

 

 


  




  



 


 (37) 

Though Hetenyi’s solution expresses sensible assumptions, analysis and 

calculation methodd for the deflection of the beam under various types of loading, the 

parameters applied in this method are not time-dependent thus none of them are 

representative when the loading in this task is at highway speed. The form of the deflection 

equation, the parameters of the beam and foundation should be modified to represent their 

dynamic characteristics. 

2.4.2 Modification of Modulus of the Foundation 

As for soil-structure interaction problems, Winkler’s assumption is applied 

broadly which denotes 0k as the modulus of foundation and the reactive pressure the 

foundation acts on the beam is proportional to the vertical deflection of the foundation like 

an elastic spring (see Equation(18)). Beam-on-elastic foundation solution does not contain 

any description for the determinant of the modulus 0k . Actually in early research, the 

modulus 0k is taken as a known constant for a given type of foundation. The reaction at a 

given point is related only to the modulus at that point and the whole foundation system 

is like an individual spring laying at intervals under the beam.  

In 1955, Terzaghi pointed out that the reaction of subgrade is correlated to the 

elastic properties as well as the dimensions of the area acted upon. (Terzaghi 1955). In 
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1937, Biot published a paper determining the relationship of the modulus
0k and properties 

of the soil and the beam (Biot 1937). He pointed out when a concentrated load acted on a 

three-dimensional subgrade, by evaluating the maximum bending moment the correlation 

with the Winkler’s model for the maximum moment could be expressed as 

0.108
4

2 2

0.95

(1 ) (1 )

s s

s s

E E B
k

EI 

 
  

  
 (38) 

where  

sE elastic modulus of the soil  

I moment of inertia of the beam 

s Poisson’s ratio of the soil 

E  elastic modulus of the beam 

B width of the beam 

Also, in 1961, Vesic extended such situation by considering deflection, shear and moment 

distribution along the beam (Vesic 1961). 

4

12
2

0.65

(1 )

s s

s

E E B
k

EI



 (39) 

Above are two examples of relations researchers found about the modulus of the 

soil and properties of the beam and soil. Later researchers figured out that the modulus of 

the soil is a complex parameter affected by the distribution of loading, thickness of the 

surface and many other factors which represent the characteristics of the whole system. 

The modulus 0k will be expressed in a new form in this task. In Design and 

Construction of Post-Tensioned Slabs-on-Ground (2nd edition), when it comes to 
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differential deflection distance, for slabs over 50 feet, the effective distance for 

determining the allowable differential deflection is 6 (  is the characteristic length) 

rather than the entire length of slabs. Similarly, transform the modulus of the soil from 0k

to 2E and . 

2

6 /

E
k


  (40) 

where 

2E  elastic modulus of the soil 

  characteristic of the system (length-1) 

For convenience, denote1/  as the characteristic length. 

24 4

14 4 6 /

Ek

EI E I
 


  


 (41) 

where, 

1E  elastic modulus of the beam 

2E  elastic modulus of the soil 

I moment of inertia of the beam, 
3

12

bh
I  , ,b h are the width and height of the cross 

section of the beam respectively 

  characteristic of the system (length-1) 

From the Equation (41), 
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1/3

2

1

1

2

E

h E


 
  

 
 (42) 

 

 

4/3

2

1/3

1

1

6 2

E
k

h E
  (43) 

In the task, the surface of the pavement can be seen as the ‘beam’ on the foundation and

h is the thickness respectively. 

2.5 Viscoelastic Solution of Pavement Deflection 

2.5.1 Laplace Transform of Material Coefficients 

Beam-on-elastic foundation solution is based on the assumption that both pavement 

and foundation materials are linear elastic which are independent of time. Such 

assumption cannot explain the asymmetry of deflection basins. Moreover, viscoelastic 

properties of surface and viscoelastic properties of supporting layers are of vital 

importance to evaluating and predicting the current and impending conditions of the 

pavement. Therefore, in this thesis, material property coefficients are required to be 

expressed as time or frequency dependent functions and certain coefficients will be 

backcalculated.  

In previous sections, a power-law function and a Prony-series express the modulus 

of viscoelastic materials as time-dependent functions. Equation (6) ~ (9) express the 

relationship between relaxation modulus and time which effectively represent the 

characteristic of viscoelastic solids. As time approaches infinity, the relaxation modulus 

decreases to a value greater than zero. For the time dependent modulus and frequency 

dependent modulus, Laplace transform is applied. For Equation (6), 
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  1

1 1
0

( ) ( ) (1 )m st mE s E t E t e dt E s m


      L  (44) 

where the gamma function is defined as follows 

1

0
( ) ( 1)!m tm t e dt m


      (45) 

The reason why Laplace transform is applied to obtain time-dependent viscoelastic 

response is that Laplace transformed equations of viscoelastic responses are identical with 

the responses of an elastic material. Laplace Transformed solutions can be calculated by 

standard elastic analysis, and then inverted to obtain the time-dependent response (Cost 

1964). For the relationship between the time-dependent response of one viscoelastic 

material and its transformed response, an approximate inverse Laplace transform was 

developed by Schapery (1975). 

  1

2

( ) ( )
s

t

E t sE s


  (46) 

s  is a real and non-negative parameter in Laplace transform. In approximation method, 

the value evaluated for s  is 
1

2t
. 

No matter what expression (Equation (6) or Equation (9)) is applied to express the 

time-dependent modulus of viscoelastic surface of the pavement, Laplace transform can 

provide efficient approximation of time dependent modulus of viscoelastic materials. 

Similarly, the modulus of the viscoelastic base can also be written in a Power law form as 

in Equation (6). Hence, coefficients k  and   in Equation (42) and (43) can be transformed 

into time-dependent terms. 
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 

 

 

4/3

2

1/3

1

1/ 2

( )1
( )

6 2 ( )

( ) ( )
s t

E t
k t

h E t

k t sk s






 (48) 

 

1/3

2

1

1/ 2

( )1
( )

2 ( )

( ) ( )
s t

E t
t

h E t

t s s



 


 
  

 



 (49) 

where 1 2( ), ( )E t E t are the time-dependent modulus of surface and base respectively.  
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3 BACKCALCULATION ANALYSIS* 

3.1 Shape of Deflection Basin – Deflection and Slope 

Figures 3 and 6 show deflection basins of pavement under moving load. From 

those graphs, distances between the locations where maximal deflection and zero 

deflection happen are not equal. In order to obtain such asymmetric deflection shape using 

data measured by lasers set on the tow vehicle, Gumbel probability density curve (Gumbel 

1935) is applied in this task. 

( / )

0( ) xW x W e
  (50) 

where, 

( )W x  the cumulative probability curve of the Gumbel distribution. 

x the measuring distance. 

0 ,  ,  W    the model coefficients. 

The shape of slope of Gumbel probability density curve is similar to the 

asymmetric deflection basin. Five measured data by lasers are enough to calculate 

coefficients 0 ,  ,  W   which can be applied to obtain an approximation function of the 

whole deflection basin. For curve fitting, the reference point at which the deflection equals 

zero is set to be advanced to the vehicle. 

Take four sets of data from ABAQUS results and use ‘nlinfit’ commander in a 

mathematics software (MATLAB 2015), the model coefficients can be obtained. The 

results from ABAQUS and fitting results are shown in Table 3 and Figure 10 separately. 

                                                 
*Reprinted with permission from Carlson, Paul, et al. Advancing Innovative High-Speed Remote-Sensing 

Highway Infrastructure Assessment Using Emerging Technologies. No. FHWA/TX-16/0-6869-1. 2017. 
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From Table 4, it can be seen that Gumbel probability density curve can represent the shape 

of the deflection basin to some extent. 

Distance from Trailing 

Reference Point (ft) 
Deflection (in) 

7.779 -1.909E-02 

8.779 -2.344E-02 

10.779 -1.828E-02 

11.779 -1.284E-02 

Table 3. Sample Data from ABAQUS 

 
Figure 10. Fitting Curve Using MATLAB 

Laser 

Number 

Data from 

ABAQUS (in) 

Data from Fitted 

Curve (in) 

Relative Error 

(%) 

1 -0.01909 -0.01898 0.58 

2 -0.02344 -0.02370 1.11 

3 -0.01828 -0.01764 3.52 

4 -0.01284 -0.01338 4.24 

Table 4. Data Comparison 
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After calculating coefficients 0 ,  ,  W   , the Gumbel probability density curve and 

the slope of the curve at any point can be determined. 

3.2 Coefficients Backcalculation Using Correspondence Principle 

A beam-on-elastic foundation solution is introduced in the previous sections. Also, 

transformation of the solution from elastic to viscoelastic and application of the 

approximate inverse Laplace Transform method have been introduced. Deflections of the 

points where lasers are set can be expressed as in Figure 11. 

 
Figure 11. Locations of Lasers and Loads 

h is the thickness of the surface, 1 4~x x are distances of lasers and the location where the 

load acts. Denote v as the velocity of the vehicle. Based on Hetenyi’s solution (Hetenyi 

1946), express the deflection values and the slope of the deflection basin under static loads 

as 

( ) cos sin /x xw x Ae x Be x q k       (53) 

   ( ) cos sinx xw x B A e x B A e x           (54) 
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then change terms ,k with those in Equation (48) and (49) to obtain ( , ), ( , )w x t w x t , 

 
1/ 2

( , ) ( , )
i i

i i i s t
w x t s w s t


  (55) 

 
1/ 2

( , ) ( , )
i i

i i i s t
w x t s w s t


   (56) 

i
i

x
t

v
  (57) 

Four lasers can provide data 1 4( , ) ~ ( , )w x t w x t , and the fitted Gumbel probability 

density curve can provide 1 4( , ) ~ ( , )w x t w x t  . Eight data are enough for solving six 

unknown coefficients 1 2 1 2, , , , ,A B E E m m . 

The analysis described above also requires the thickness h of the pavement surface 

layer that can be determined with sufficient accuracy by an accompanying Ground 

Penetrating Radar (GPR) survey. Both the moving deflection basin and the GPR surface 

layer thickness will be coordinated with the on-board sub-meter accuracy of GPS 

equipment. 
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4 SIMULATION RESULTS* 

4.1 Construction of Finite Element Models 

The objectives of building numerical models using a finite element software 

(ABAQUS 1989) are: 

 Due to the complexity of the problem and lack of insitu testing data, a finite 

element software is essential for obtaining deflection data of the surface of the 

pavement to backcalculate properties of materials. 

 The shape of a deflection basin is affected by various factors such as the speed of 

loading, material properties and so on. A finite element software can effectively 

control input variables for researchers to figure out how those variables influence 

the shape individually. 

 Based on previous assumptions and analysis, loading with highway-speed is of 

necessity to replace current stationary FWD loads from two aspects: getting rid of 

traffic control and providing more information for evaluation and prediction of the 

pavement. A finite element software can provide cases with different loading 

speeds, which give a straightforward comparison of deflection basins at different 

loading speeds. 

For convenience of modeling and calculation, the numerical models and 

simulation of a moving vehicle are simplified in terms of the following aspects: 

1. The whole pavement structural system is divided into three layers, of which the 

                                                 
*Reprinted with permission from Carlson, Paul, et al. Advancing Innovative High-Speed Remote-Sensing 

Highway Infrastructure Assessment Using Emerging Technologies. No. FHWA/TX-16/0-6869-1. 2017. 
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top is the surface of the pavement, the middle is the base course and the bottom is 

the subgrade course. The thickness of the three layers are 4 in, 6 in and 70 in. Such 

a layer arrangement is representative of typical flexible pavements. The thickness 

of the subgrade course is set to be much greater than the surface to represent a 

semi-infinite course.  

2. Contact areas of tires and pavement surface are assumed to be two identical 

rectangles which represent two parallel tires. The size of one is 8.4 7.2 in. The 

tire contact pressure is assumed to be a uniform pressure, of which the value is 100 

psi. 

3. The movement of vehicles can be represented by consecutive loading steps in 

which the locations of the loading areas are changed with time. For precision of 

the modelling, one contact area is divided into three parts in the moving direction. 

The length of each step equals the time vehicles travel at the distance of one part 

at a given speed. The conceptual sketch of load moving is illustrated in Figure 12.  

 

Figure 12. Simulation of Moving Load 
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4. The mesh size of the system is determined by dimensions of different sections. For 

loading sections, the mesh size coincides with the width and length of the contact 

area. For other sections, mesh sizes are adjusted based on dimensions of sections 

to maintain a reasonable ratio for each element. Figure 13 shows a model after 

meshing. 

 

 

Figure 13. Numerical Model after Meshing 

4.2 Material Properties 

In order to represent trends of the phase angle and modulus representing pavement 

materials in their life cycles. Three typical sets of viscoelastic surfaces and base courses 

are created as Table 5. The subgrade is set to be an elastic material of which the elastic 

modulus is 4.5 ksi. 
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1( ) mE t E t  Type 1 Type 2 Type 3 

Surface 

E1 (ksi) 41.453 76.028 123.210 

m 0.449 0.368 0.250 

 (degree) 40.41 33.12 22.50 

Base 

E1 (ksi) 7.96 15.761 28.925 

m 0.533 0.456 0.363 

 (degree) 47.97 41.04 32.67 

Table 5. Coefficients of Three Flexible Pavements 

Equation (6) expresses the modulus as time-dependent and Equation (9) ~ (12) 

describe Prony series. By adjusting values in Prony series, different modulus and m can be 

obtained. For example, input instantaneous modulus and Prony series coefficients as Table 

6, an equivalent power law function for the material is defined as in Figure 14. 

i i (s) ig , ik  a

iE (ksi) 
aE

(ksi) 
0E (ksi) 

1 4.09E-06 0.3620 1267.000 

8.05 3500 

2 2.56E-04 0.3630 1270.500 

3 7.71E-03 0.1765 617.750 

4 2.10E-01 0.0740 259.000 

5 3.88E+00 0.0165 57.750 

6 6.53E+01 0.0057 19.950 

Table 6. Prony Series and Instantaneous Modulus of Surface (Type 2) 

 
Figure 14. Fitted Power-Law Function with Prony-Series Data of Surface (Type 2) 
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Other Prony series data and fitted curves are shown in the Appendix.  

Besides viscoelasticity of materials, basic information defining the surface and 

base inertial damping are input into ABAQUS. 

 
Table 7. Basic Properties of Surface 

 
Table 8. Basic Properties of Base 

Table 7 and Table 8 show basic inertial damping of asphalt surface and base. The 

effects of dynamic properties of pavements on responses have been introduced in previous 

sections. This thesis compares two analyzing methods in ABAQUS: the first one considers 

viscoelasticity of materials as well as inertial damping ratios which reflect conditions of 

whole system while the other one eliminates the inertial damping to show effects of 

moving loads on deflection basins due to viscoelasticity of materials only. This 

assumption can be achieved using ‘Visco’ and ‘Dynamic’ types of analysis methods 

Density (lbf              ) 0.0002098

Rayleigh Inertial Damping

Ratio (Alpha)
0.93

Rayleigh Inertial Damping

Ratio (Beta)
0.0027

Basic

Properties

of Surface

2 4/s in

Density (lbf              ) 0.0001798

Rayleigh Inertial Damping

Ratio (Alpha)
0.41

Rayleigh Inertial Damping

Ratio (Beta)
0.0061

Basic

Properties

of Base

2 4/s in
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individually in ABAQUS, of which the previous one is used when inertial effects can be 

neglected (ABAQUS 2010).   

4.3 Results of Simulation 

4.3.1 Results of ‘Visco’ Analysis 

Comparison of the deflection basins caused by loads of different velocities in 

Figure 20 shows that velocities of moving loads affect not only the values of the deflection 

but also shift the distance between the location of the maximal deflection and the location 

of the load or the trailing reference point. It can be seen that: 

1. With the increase of speed, the maximum deflection will decrease; 

2. There exists a lag distance between locations where the load acts and the maximum 

deflection occurs; 

3. With the increase of speed, the distance between the locations of maximum 

deflection and the reference point will also increase.  

 

Figure 15 (a)-(c) Pavement Type 1 under Different Moving Loads Using ‘Visco’ 

                                  Analysis 
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Figure 15 (a)-(c) Continued 

Deflection basins of other two types of pavements under different moving loads 

are shown in the Appendix. 

Deflection basins of different pavements under the load moving at 50 mph in 

Figure 15 show the responses of pavements under different loading cycles. Changing 

from material Type 3 to material Type 1 represents the increasingly deteriorated 

pavements of which the modulus decreases while the phase angle increases. From Figure 
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16, it can be seen that with increasing deterioration of pavements, the magnitude of 

deflection will increase and the lag distance from the location of maximum deflection to 

the location of the load and the trailing reference point will increase.   

   

   
Figure 16 (a)-(b) Pavements under Moving Loads v= 50mph Using ‘Visco’ Analysis 

Comparison of deteriorating pavements under other moving loads are shown in 

Appendix. 
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4.3.2 Results of ‘Dynamic’ Analysis 

 For simulating pavement structural system in real conditions, cases including 

inertial damping are shown in this section. It is assumed that the deterioration of pavement 

has no effects on the value of its inertial damping ratio. Similarly, Pavement Type 1 under 

different moving loads and comparison of deteriorating pavements under the load moving 

at 50 mph are presented in Figure 17 and Figure 18. 

 
Figure 17 (a)-(c) Pavement Type 1 under Different Moving Loads Using ‘Dynamic’ 

                               Analysis 
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Figure 17 (a)-(c) Continued 
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Figure 18 (a)-(b) Pavements under Moving Loads v= 50mph Using ‘Dynamic’ Analysis 

Other cases are shown in Appendix. 

The results of cases considering inertia damping of the pavement are similar to 

those of cases focusing on the viscoelasticity of materials. Moreover, the shift distance is 

more obvious. In order to show effects of inertia damping, pavement Type 1 under moving 

load of 50 mph using ‘visco’ and ‘dynamic’ analysis methods presented in Figure 19 and 

Figure 20. 
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Figure 19 (a)-(b) Pavement Type 1 under Moving Loads v=50 mph with/without Inertia 

Damping 
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Figure 20 (a)-(b) Pavement Type 1 under Moving Loads v=15 mph with/without Inertia 

Damping 

It shows that inertia damping reduces the magnitude of deflections and increase 

the lag distance. Hence, it can be concluded that the asymmetry of the deflection basin is 

caused by both the viscoelasticity and inertia damping of pavement materials.   
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5 SUMMARY AND CONCLUSIONS* 

5.1 Capabilities of New Concept 

Based on the work that has been accomplished in this thesis, there are following 

findings: 

 The literature review reveals that the current deflection measurement systems 

generally consist of two types: stationary (like FWD) or travelling slowly (like 

RDD and TPAD) and dynamic (like RWD). The RDD, TPAD and RWD are 

limited for their lack of accuracy and can only be used for qualitative evaluation 

using averaged or maximum deflection data. The analysis of the FWD testing is 

able to output material properties of pavement layers. However, the operational 

time of the testing significantly increases costs and risks.   

 The proposed highway speed deflection basin-pavement material property 

measuring system uses a new concept of measuring the shape of the deflection 

basin instead of just the values of a single deflection, based on which the 

viscoelastic properties of the pavement layers can be calculated in addition to the 

elastic properties in the existing back-calculation approaches that are used with the 

FWD. 

 The results of numerical models show the effects of speeds on the shapes of the 

deflection basins. Also, it shows the effects viscoelasticity and inertial damping on 

the shapes of the deflection basins. Such results demonstrate the sensitivity with 

                                                 
*Reprinted with permission from Carlson, Paul, et al. Advancing Innovative High-Speed Remote-Sensing 

Highway Infrastructure Assessment Using Emerging Technologies. No. FHWA/TX-16/0-6869-1. 2017. 
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which a moving deflection basin can detect reliably the rate of deterioration of an 

asphalt pavement. Measuring this rate in the early stages of deterioration will give 

an advanced warning of when severe pavement cracking will occur and will give 

pavement network managers the necessary lead time to plan and executive timely 

cost-effective maintenance practices.  

5.2 Future Work 

The future work of the theoretical parts of this new methodology includes: 

 Finalize the backcalculation analytical process for coefficients in the model of 

‘beams on viscoelastic foundation’ to prove the accuracy of this theoretical model. 

 Make ABAQUS runs using pavement layer properties for intact and deteriorated 

pavements to verify the accuracy of the backcalculation process and sensitivity of 

this model to changes of pavement properties. 

 Discuss whether it is necessary to convert the analytical backcalculation process 

into artificial neural network models. 
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APPENDIX A 

PRONY DERIES AND FITTED POWER-LAW FUNCTIONS 

i i (s) 
ig , ik  a

iE (ksi) 
aE

(ksi) 

0E

(ksi) 

1 4.09E-06 0.3620 1448 

15 4000 

2 9.22E-06 0.1000 400 

3 2.08E-02 0.0791 316.500 

4 5.12E-01 0.0276 110.579 

5 6.99E+00 0.0126 50.383 

6 1.21E+02 0.0097 38.852 

Table A.1 Prony Series and Instantaneous Modulus of Surface (Type 3) 

       
Figure A.1 Fitted Power-law Function with Prony-Series Data of Surface (Type 3) 

i i (s) ig , ik  a

iE (ksi) 
aE

(ksi) 

0E

(ksi) 

1 4.09E-06 0.3632 955.216 

0.263 2630 

2 1.28E-05 0.1000 263.000 

3 5.50E-03 0.2645 695.631 

4 1.39E-01 0.0586 154.075 

5 3.00E+00 0.0141 37.196 

6 8.66E+01 0.0048 12.641 

Table A.2 Prony Series and Instantaneous Modulus of Surface (Type 1) 
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Figure A.2 Fitted Power-law Function with Prony-Series Data of Surface (Type 1) 

i i (s) ig , ik  a

iE (ksi) 
aE

(ksi) 

0E

(ksi) 

1 0.0014 0.9059 724.72 

0.7396 800 

2 0.0123 0.256 204.8 

3 0.1141 0.0706 56.48 

4 1.1981 0.0182 14.56 

5 15.29 0.0045 1.6 

Table A.3 Prony Series and Instantaneous Modulus of Base (Type 1) 

 
Figure A.3 Fitted Power-law Function with Prony-Series Data of Base (Type 1) 
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i i (s) 
ig , ik  a

iE (ksi) 
aE

(ksi) 

0E

(ksi) 

1 0.0019 0.6072 485.76 

1.6913 800 

2 0.019 0.1882 150.56 

3 0.1898 0.0595 47.6 

4 1.8977 0.0189 15.12 

5 20.93333 0.0066 5.28 

Table A.4 Prony Series and Instantaneous Modulus of Base (Type 2) 

 
Figure A.4 Fitted Power-law Function with Prony-Series Data of Base (Type 2) 

i i (s) ig , ik  a

iE (ksi) 
aE

(ksi) 

0E

(ksi) 

1 0.0026 0.4667 373.36 

4.69 800 

2 0.0305 0.1625 130 

3 0.3106 0.0609 48.72 

4 2.8247 0.0242 19.36 

5 27.2709 0.0117 9.36 

Table A.5 Prony Series and Instantaneous Modulus of Base (Type 3) 
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Figure A.5 Fitted Power-law Function with Prony-Series Data of Base (Type 3) 
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APPENDIX B 

DEFLECTION BASINS OF ‘VISCO’ ANALYSIS 

 

 
Figure B.1 (a)-(b) Pavement Type 2 under Different Moving Loads Using ‘Visco’  

                                   Analysis 
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Figure B.2 (a)-(b) Pavement Type 3 under Different Moving Loads Using ‘Visco’  

                                   Analysis 
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Figure B.3 (a)-(b) Pavements under Moving Loads v=40 mph Using ‘Visco’ Analysis 
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Figure B.4 (a)-(b) Pavements under Moving Loads v=25 mph Using ‘Visco’ Analysis 
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Figure B.5 (a)-(b) Pavements under Moving Loads v=15 mph Using ‘Visco’ Analysis 
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APPENDIX C 

DEFLECTION BASINS OF ‘DYNAMIC’ ANALYSIS 

 

 
Figure C.1 (a)-(b) Pavement Type 2 under Different Moving Loads Using ‘Dynamic’  

                                Analysis 
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Figure C.2 (a)-(b) Pavement Type 3 under Different Moving Loads Using ‘Dynamic’ 

                                Analysis 
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Figure C.3 (a)-(b) Pavements under Moving Loads v=40 mph Using ‘Dynamic’ Analysis 
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Figure C.4 (a)-(b) Pavements under Moving Loads v=25 mph Using ‘Dynamic’ Analysis 
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Figure C.5 (a)-(b) Pavements under Moving Loads v=15 mph Using ‘Dynamic’ Analysis 
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