
DYNAMIC REGION RRT: APPLICATION TO KINODYNAMIC SYSTEMS

An Undergraduate Research Scholars Thesis

by

BEN SMITH

Submitted to the Undergraduate Research Scholars program
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Nancy Amato

May 2017

Major: Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M University

https://core.ac.uk/display/147260077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Dynamic Region RRT: Application to Kinodynamic Systems

Ben Smith
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Nancy Amato
Department of Computer Science and Engineering

Texas A&M University

In the general motion planning problem the robot must satisfy basic constraints such as

avoiding obstacles and remaining within the boundary of the environment. Kinodynamic

motion planning is a type of planning where additional constraints must be satisfied. Kin-

odynamic planning is a more realistic planning problem as the robot must operate under

constraints such as friction, gravity, velocity, and acceleration while avoiding obstacles as

well. Sampling-based methods are often used to solve these types of problems. These

methods generate robot configurations throughout the environment in order to eventually

connect them to form a valid path from the start position to the goal. Rapidly-exploring

Random Trees (RRT) are types of sampling-based methods that grow a tree from the start

to goal. One important problem with these types of methods appears when planning in

an environment with a narrow passage or cluttered space. In these problems it is unlikely

to generate a sample in the narrow spaces and the robot does not explore these locations.

Dynamic Region-biased Rapidly-exploring Random Trees (DRRRT) is a method that ad-

dresses these issues by guiding an RRT with dynamic sampling regions along an embed-

ii

ded graph of the workspace. DRRRT is effective in general motion planning problems, but

faces issues in kinodynamic problems. Oftentimes, a sample is generated near an obstacle

that is valid, but is found to be unrecoverable because if the robot were to move from that

state with any of the available controls it would collide with an obstacle. This often occurs

in environments with narrow spaces and tight turns such as a maze.

In this work, we aim to address the problems DRRRT faces in kinodynamic problems

with a series of improvements. The resulting method is compared with other motion plan-

ning techniques on two kinodynamic problems consisting of a car-like robot navigating a

grid-like city and a maze, simulating narrow paths with numerous turns.

iii

ACKNOWLEDGMENTS

There are a few people I would like to thank for the help and support they provide.

Thanks to my advisor, Dr. Nancy Amato, for providing the opportunity to participate in

undergraduate research. Also, thank you for continual advice and guidance on this work.

I would also like to thank Read Sandström, a graduate student who I collaborated with

on this work. Thanks for your help in the development of this work and your advice on

working as an effective researcher. Thanks to Dr. Jory Denny for his help on developing

specific aspects of this work. Finally, thanks to my family and closest friends for your

constant support of my work and other endeavours.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vi

LIST OF TABLES . vii

1. INTRODUCTION . 1

2. RELATED WORK . 3

2.1 Motion Planning . 3
2.2 Sampling-based Planning . 4
2.3 Rapidly-exploring Random Trees (RRTs) 4
2.4 Dynamic Region-biased RRT . 5
2.5 Synergistic Comination of Layers of Planning 6

3. METHOD DESCRIPTION . 7

3.1 Topological Bucketing . 7
3.2 Velocity Sampling . 9
3.3 Region Weighting . 11

4. EXPERIEMENTS AND RESULTS . 13

4.1 Experiments . 13
4.2 Results . 13

4.2.1 Discussion . 15

5. CONCLUSION . 17

5.1 Future Work . 17

REFERENCES . 19

v

LIST OF FIGURES

FIGURE Page

2.1 The embedding graph (a) represents paths of exploration through the workspace.
These are explored by dynamic sampling regions that guide RRT growth
(b). 5

3.1 Example progression of Bucket Neighborhood finder: (a) Embedded graph
(magenta) and buckets (dotted lines); (b) RRT growth (c) Construction of
candidate set (red outline) from local buckets. 9

3.2 Motivation for Velocity Biasing: (a) General direction of embedded graph
(red arrow) and the direction of new configuration (yellow arrow). (b)
Allowable direction for velocities (red cone). 11

4.1 The experiment environments shown with the query for the robot (car).
The start configurations are shown in red and goals in blue. 14

4.2 On-line planning time comparing the new Dynamic Region-biased RRT
with the original Dynamic Region-biased RRT SyCLoP, and RRT in two
nonholonomic problems. The time values (seconds) are an average over
18 trials. The error bars indicate standard deviation of the times. 14

vi

LIST OF TABLES

TABLE Page

4.1 Success rates in each experiment. 16

vii

1. INTRODUCTION

Sampling-based motion planning is the task of determining a valid path through an

environment from an initial state to a goal state by randomly selecting a state within the

environment. This path is represented by a collection of states, or configurations, that are

described by a set of parameters representing the location and orientation of the robot.

This problem has applications in many fields, such as robotics, video games/animations,

computer-aided design, and bioinformatics.

One method for solving motion planning problems is the Rapidly-exploring Random

Tree (RRT) [1]. RRT is effective in single query scenarios and non-holonomic systems.

Nonholonomic systems or kinodynamic systems are systems that must obey kinematic,

dynamic, and force constraints [2]. In other words, in order to consider the motion from a

current configuration to the next the planner must take the past configurations into consid-

eration. The past configurations will determine the current velocities, accelerations, and

momentum that are associated with the robot at that instant in time. In many environments

there exists a narrow passage. These small spaces cause problems for RRTs. Dynamic

Region-biased RRT (DRRRT) addresses this issue.

RRT is used as a basis for DRRRT [3], which uses an embedding graph to represent the

topology and homotopy of the environment. Dynamic sampling regions are moved along

the graph and sampling is biased within these regions. The embedding graph is generated

by decomposing the environment and building a graph from the resulting tetrahedrons.

However, this graph can often be jagged and can cause the region to be partially inside of

an obstacle.

When considering a nonholonomic systems there are a few problems which DRRRT

does not address. In DRRRT much of the running time is spent in neighborhood finding.

1

When a new sample is chosen the nearest neighbor in the tree must be selected so that the

tree can extend from the neighbor to the new sample. This results in a search over the entire

tree. To limit this we introduce a topological bucketing neighborhood finder that limits

this search to a smaller set of candidates associated with the embedding graph. Another

issue pertains to the dynamics introduced by a nonholonomic problem. In a nonholonomic

problem configurations may also consist of velocity parameters. The simple approach is to

generate these velocities randomly. We introduce a method to bias the randomly generated

velocity along the embedding graph provided by DRRRT to improve exploration. Lastly,

we introduce a region weighting scheme. When generating a new sample, DRRRT must

select a region to sample from. Previously, this was done uniformly over all regions and

the environment. We aim to improve this by assigning each region a probability of being

selected depending on the region’s sampling history. If a region generates more successful

samples its probability of being selected for future samples will increase 1

We demonstrate the method as it applies to car-like robots. To do this we performed

experiments in two simple environments with a car-like robot. The method is compared to

the old DRRRT, SyCLoP, another workspace planner, and standard kinodynamic RRT in

a uniform grid and a small maze.

1This work is done in collaboration with Andrew Bregger. The methods are the same between our theses.
The differences are in our applications and results. We apply these methods to car-like robots in this paper,
while his thesis focusing on applications to drones.

2

2. RELATED WORK

In this chapter, we discuss the important background information for the motion plan-

ning problem and other work related to this method.

2.1 Motion Planning

Motion planning is the task of finding a path through some environment from a start to

a goal position. Traditionally, this path must fit constraints such as avoiding the obstacles

and boundaries of the environment and allowing the object or robot to move along it with-

out collision. In this paper, we discuss motion planning for holonomic and non-holonomic

robots. A holonomic robot is a robot where all of its degrees of freedom (DOFs) are con-

trollable. The DOFs of a robot parameterize its position and orientation. They include the

robot’s position, rotation, and joint angles if applicable. A non-holonomic robot is one

where not all DOFs are controllable, such as a car, which cannot move laterally without

first turning. The motion planning problem is often represented by the workspace and

configuration space or Cspace.

The workspace of a motion planning problem is the environment which consists of

obstacles and a boundary. Cspace is the set of all configurations of a given robot. A config-

uration is one unique set of values for a robot’s DOFs. For a simple robot in a 2-d world

one configuration could be q = 〈x, y, θ〉 where x and y are the robot’s position in the

world and θ is its rotation angle. Cspace also consists of two subsets, free space (Cfree) and

obstacle space (Cobst). Cobst is the set of configurations in Cspace that are in collision with

an obstacle in the workspace and Cfree is the set of configurations in Cspace that are not in

collision. With this information we can represent the motion planning problem as finding

a continuous path of configurations in Cfree from the start to goal configurations.

3

2.2 Sampling-based Planning

One common and effective technique for addressing the motion planning problem is

sampling-based planning. The goal of sampling-based planning is to construct a graph

that represents Cfree by generating sample configurations in Cfree. These samples are then

connected to form a graph or roadmap. Once the roadmap is constructed, the start and

goal configurations can be connected to the closest point on the roadmap and a path can be

found. One example of sampling-based planning is the Rapidly-exploring Random Tree

[1], which is further explained in the next section.

2.3 Rapidly-exploring Random Trees (RRTs)

Rapidly-exploring Random Trees are a type of sampling based planning algorithm that

are effective single query motion planning problems. That is problems consisting of only

one start and one goal configuration. Rapidly-exploring Random Tree solves a problem

by iteratively expanding outwards from root configuration (qroot). For each iteration, a

random configuration (qrand ∈ Cspace) is generated. Then the nearest configuration to qrand

in the tree (qnear) is found and is extended from qnear in the direction of qrand some

distance ∆d. The end position of the extension becomes a new configuration (qnew) which

is added to the tree if and only if there is a valid path between qnear and qnew.

One specific type of RRT is Reachability-guided RRT (RGRRT) [4]. A reachable

set is defined as a set of configuration that can be reached by a robot given its controls

and configuration. A control is a force that can be applied to a robot to move it from

one configuration to another. RGRRT uses the reachable set to bias the sampling. When

generating samples, if qrand is closer to qnear than any configuration in the reachable set

qrand is discarded. This approach allows to the RRT to better sample the unexplored space

of the environment.

4

(a) Example embedding graph (b) Execution of Dynamic Region-biased RRT.

Figure 2.1: The embedding graph (a) represents paths of exploration through the
workspace. These are explored by dynamic sampling regions that guide RRT growth (b).

2.4 Dynamic Region-biased RRT

In this paper, we extend Dynamic Region-biased RRT (DRRRT) [3] to better support

kinodynamic motion planning problems. Dynamic Region-biased RRT is based on RRT

with some key differences. DRRRT computes a representation of the workspace topology

and uses dynamic sampling regions to guide an underlying RRT planner. The representa-

tion of the workspace topology is known as an embedding graph. The embedding graph

is a skeleton of the workspace represented by an undirected graph. In this paper we use

embedding graph, workspace skeleton, and skeleton interchangeably. Next the embed-

ding graph is converted to a directed graph from the start to goal configurations called a

flow graph. This represents the exploration direction of the robot from the start to goal.

A region is a bounded volume in the workspace such as a bounding box or a bounding

sphere. After computing the flow graph, a region is created at the beginning of the graph

and is guided along the graph to the goal. If the flow graph splits, representing different

paths, or homotopies, through the workspace, multiple regions are dynamically created to

explore each path. At each iteration of the algorithm a region or the environment is chosen

and a sample is generated within that region or environment. Finally, the underlying RRT

extends to this new sample if it is valid (Figure 2.1).

5

2.5 Synergistic Comination of Layers of Planning

Synergistic Combination of Layers of Planning [5] (SyCLoP) addresses the problem of

nonholonomic planning. In SyCLoP, the workspace is decomposed to construct a model

of the problem. At each iteration of the algorithm a high-level planner searches this model

for a feasible path which can be used to guide an underlying tree structure. They test their

method on robots with high-dimensional dynamics including a unicycle, a flying unicycle,

and a tractor trailer in environments with multiple narrow passages and a maze.

6

3. METHOD DESCRIPTION

3.1 Topological Bucketing

Algorithm 1 Algorithms for tree extension with topological bucketing.
1: function EXTENDWITHREGION(Region r, Tree t)
2: qrand ← Sample(r) // Or BiasedSample...
3: candidates← FindCandidates(r)
4: qnear ← FindNearestNeighbor(candidates)
5: qnew ← Extend(t, qrand, qnear)
6: if qnew ∈ Cfree then
7: BucketMap[r.Center()].Append(qnew)
8: end if
9: end function

10: function FINDCANDIDATES(Region r)
11: p← r.GetCenter()
12: candidates← BucketMap[p]
13: e← r.GetSkeletonEdge()
14: d← 0
15: while d < threshold do
16: d += distance(p, e.PointBefore(p))
17: p← e.PointBefore(p)
18: candidates.Append(BucketMap[p])
19: end while
20: return candidates
21: end function

One bottleneck in Dynamic Region-biased RRT is in neighborhood finding. This is

caused by using a brute force method which searches the entire tree for the nearest con-

figuration. To improve on this approach we would like to utilize the information provided

by the embedding graph to limit the candidates for neighborhood finding. The solution

to this is topological bucketing. The algorithm for this method is given in Algorithm 1.

7

The embedding graph structure consists of vertices with edges connecting them. These

edges have various edge points or intermediates along it, on which the region is centered

(Magenta line and points in Figure 3.2a). When generating a sample we add the sample

to a ’bucket’ (Defined by blue lines in Figure 3.1) associated with the edge point at the

center of the region. In doing this each successful sample is mapped to its nearest edge

point. When finding the nearest neighbor, instead of searching the entire tree, we can use

the buckets as input to the neighborhood finder and effectively reduce the size of the input.

Algorithm 1 explains this process. In Algorithm 1:1-9 a random sample is first gener-

ated and its candidates are found. Then these candidates are used as input to a brute force

neighborhood finder. A standard RRT extend is then called from the random sample to

the new configuration returned by the neighborhood finder. In Algorithm 1:6-8 the new

configuration is added to the bucket associated with the current region’s center. Here the

bucket map is an associative container that associates a region’s center point with a set of

configurations or a bucket (Figure 3.2b). Finding the candidates of a random sample is

done in Algorithm 1:10-21.

In order to determine which buckets to search over we initially set the candidates

(Red outline in Figure 3.1c) to be the bucket associated with the current region’s cen-

ter (Algorithm 1:11-12). Then we traverse the embedding graph backwards for a distance

d < threshold, adding the configurations in each bucket to the candidates set (Algorithm

1:15-19). For our purposes we set threshold to be the maximum distance that the extender

can extend.

In using this approach we observe two advantages over the standard brute force search

method. First, the size of the input that the neighborhood finder must search over is re-

duced from the entire tree to a small portion of the tree stored in the nearest buckets. Sec-

ond, the configurations in the candidates set are more likely to be near the newly sampled

configuration as they come from the buckets which are at most a distance d < threshold

8

away from the sampled configuration.

(a) Embedded graph defines
buckets

(b) RRT Growth (c) Buckets used for neigh-
borhood finding (red dotted
lines)

Figure 3.1: Example progression of Bucket Neighborhood finder: (a) Embedded graph
(magenta) and buckets (dotted lines); (b) RRT growth (c) Construction of candidate set
(red outline) from local buckets.

3.2 Velocity Sampling

In kinodynamic motion planning each configuration can have DOF values that repre-

sent more than position, such as, velocity. When generating a random configuration one

approach for giving it velocity is to generate a random linear velocity for the configu-

ration. Although this method is fast, it can often lead to configurations which can only

travel in an unhelpful direction. For example, it is possible for a velocity to be generated

which directs a configuration backwards into the tree instead of towards unexplored free

space (Yellow arrow in Figure 3.2a). This is another problem we can address using the

information provided by the embedding graph.

The embedding graph represents the workspace topology and provides us with a guide

from the start to the goal. The embedding graph also consists of multiple intermediate

points along each edge which can be used to represent the direction of the graph (Red

arrow in Figure 3.2a). These directions can be used to bias randomly generated velocities

9

Algorithm 2 Algorithm for biasing velocity along skeleton.
1: function BIASEDSAMPLE(Region r)
2: qrand ← Sample(r)
3: e← r.GetSkeletonEdge()
4: p← r.GetCenter()
5: dir ← unit(e.PointAfter(p)− p)
6: coeff ← unit(qrand.LinearVelocity()) · dir
7: if coeff < alpha then
8: while coeff < alpha do
9: qrand ← Sample(r)

10: coeff ← unit(qrand.LinearVelocity()) · dir
11: end while
12: end if
13: return qrand
14: end function

to be ’along’ the embedding graph. This approach is shown in Algorithm 2.

First, in Algorithm 2:2-4 a random configuration is generated from the current region

with a random velocity. Then, from the region we obtain the current skeleton edge and

point. With this information we can compute the direction of the skeleton, dir, as the unit

vector between the current point and the next point on the skeleton. Next, we set coeff to

be the dot product between the configuration’s unit linear velocity and the direction of the

skeleton. In Algorithm 2:7-12 the goal is to minimize the difference between the config-

urations velocity and the skeleton direction by using the properties of the dot product. If

the two velocities are in opposite directions then the dot product will return -1, provided

the vectors are unit vectors. If the two velocities are parallel the dot product will return

1. We use a parameter, α, to maximize the dot product of the two directions and generate

a velocity which is along the skeleton within some bounds. This is shown in Algorithm

2:8-9 where a new configuration and velocity is generated until the dot product between

the velocity and the skeleton direction becomes larger than α and acceptable to use.

Since generating random samples is a relatively fast operation it is acceptable to re-

10

peatedly sample in this manner. Additionally, α can be tuned to increase the likelihood

to generate an acceptable velocity and decrease the total number of additional samples

needed to find an acceptable velocity (red outline in Figure 3.2b).

(a) (b)

Figure 3.2: Motivation for Velocity Biasing: (a) General direction of embedded graph (red
arrow) and the direction of new configuration (yellow arrow). (b) Allowable direction for
velocities (red cone).

3.3 Region Weighting

At each iteration of Dynamic Region-biased RRT a region is chosen and a new config-

uration is generated from that region. Originally, this decision was made uniformly over

all the regions and the entire environment itself. That is, each region, including the entire

environment, had an equal chance of being chosen for sampling. We know that for the

most part we want samples to be generated in a region, not the environment. Addition-

ally, we want to choose regions which have a history of generating successful samples

that help guide the RRT. To accomplish this we use a new region weighting scheme which

computes a probability, pi, for each region 〈r0, r1, . . . , rn〉 and the environment. We also

define a weight for each region wi = s/t, where s is the number of successful samples

generated in region i and t is the total samples generated in region i. The probability is

11

defined to be:

pi = (1− γ)
wi∑

j=1Kwj

+ γ
1

K + 1
(3.1)

where gamma is a constant in the range [0, 1] and K is the total number of current regions.

The first term is determined by the ratio of the region’s weight to the sum of all current

regions’ weights. This allows us to determine, to some extent, how well this region is

performing. The second term represents uniform probability to select a region based on

the input parameter γ. Here K + 1 is used to include the environment. If γ = 1 then the

probability is exactly uniform, and if γ = 0 the probability is strictly based on the region’s

weight compared to the sum of all regions’ weights. Since this probability is based on the

weight of all current regions, we must dynamically update each region’s probability when

any region is added, deleted, or generates a sample.

Using this scheme we effectively bias sampling to regions which historically generate

more successful samples, and thus, are more likely to be in areas of free space which have

higher clearance between obstacles and more space for exploration.

12

4. EXPERIEMENTS AND RESULTS

4.1 Experiments

All methods were implemented in a C++ motion planning library (PMPL) developed in

the Parasol Lab at Texas A&M University. PMPL uses a distributed graph data structure

from the Standard Template Adaptive Parallel Library (STAPL) [6], a C++ library for

parallel computing developed at Parasol Lab.

All experiments were performed on a desktop, at Parasol Lab, running CentOS 7 with

Intel R© CoreTM i7-3770 at 3.40 GHz, 16 GB of RAM, and the GNU gcc compiler version

4.8.5.

4.2 Results

The new Dynamic Region-biased RRT was compared against the original Dynamic

Region-biased RRT [3], SyCLoP [5], and a standard kinodynamic RRT. SyCLoP is cho-

sen for comparison because it is another example of a planner which utilizes workspace

information during planning time. The new algorithm is demonstrated on a nonholonomic

robot (car) in two environments, a 3 by 3 grid used to represent a grid-like city where a

vehicle would need to make sharp turns, and a maze which consists of non-uniform paths

and frequent turning. These environments are shown in Figure 4.1. The car-like robot

used in these environments is a 6 DOF rigid body using a control set which allows forward,

backward and rotational movement. This robot does not exactly simulate the dynamics of

a car. For our purposes the constraints needed to simulate a car, such as lateral movement

and not being able to rotate without moving forward or backwards, are not implemented.

These additions are left to future work. Each time an extension is made the best control is

selected and applied with a fixed timestep.

Each experiment trial ran until the query was solved (success) or the trial reached the

13

(a) 3x3 Grid (b) Maze

Figure 4.1: The experiment environments shown with the query for the robot (car). The
start configurations are shown in red and goals in blue.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

A
v

er
ag

e
T

im
e

(s
)

3x3 Grid

New DynamicRegionRRT
DynamicRegionRRT

SyCLoP
RRT

(a) 3x3 Grid

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

A
v

er
ag

e
T

im
e

(s
)

Maze

(b) Maze

Figure 4.2: On-line planning time comparing the new Dynamic Region-biased RRT with
the original Dynamic Region-biased RRT SyCLoP, and RRT in two nonholonomic prob-
lems. The time values (seconds) are an average over 18 trials. The error bars indicate
standard deviation of the times.

node (20k) or time limit. The time limit was set to 3 minutes for the 3x3 grid and maze.

A total of 20 experiments were performed for each method on each environment. After

trimming the best and worst performance form the 20 runs we are left with 18 runs shown

in Figure 4.2 with their average total runtimes and error bars representing the standard

deviation of the runtimes. Additionally, success rates for each method and environment

are shown in Table 4.1.

14

4.2.1 Discussion

As shown in Figure 4.2a, in the 3x3 grid environment the times are similar for each

experiment, but SyCLoP proves to be slightly faster. The new additions to DRRRT do not

appear improve the performance over the original DRRRT in this environment. Due to

the simplicity of this problem RRT performs very well. The methods can solve this grid

by navigating around the edge and potentially only making one turn on the outer corner.

This explains why the times are faster on this environment when compared to maze. One

way to increase the difficulty would be to remove the space beside the obstacles on the left

and right side of the grid. This would force the planner to make more turns through the

obstacles. Experiments in more difficult environments are left to future work.

In maze DRRRT performs well compared to the original DRRRT and RRT. In this

environment there is one feasible path and our method finds it immediately due to pruning

of the embedding graph. Branches of the graph that lead to dead-ends in the maze will be

pruned and planning will not be guided in that direction.

The error bars in maze are high for all methods indicating some inconsistency involved

when solving this problem. These inconsistencies may be caused by the reaching unrecov-

erable states. A configuration is known as an unrecoverable state if it is difficult to make

a successful extension from it. If these occur extending the tree can become very difficult

and may lead to failure to solve the problem. For DRRRT we intend to address this by

introducing reachability guidance. This is discussed in Section 5.1

Another possible cause for higher runtimes in 3x3 grid is choosing to explore a path

which is not optimal. In this environment, there are many paths to take to the goal, some

of which could take longer than others due to the extra turning necessary. If these paths

become the priority for sampling then the overall performance can be slower.

In the maze, the extra paths are trimmed reducing this problem, however the tight turns

15

Table 4.1: Success rates in each experiment.

Environment New Dynamic Region-biased RRT Dynamic Region-biased RRT SyCLoP RRT
3x3 Grid 100% 100% 100% 100%
Maze 94% 100% 100% 100%

cause slower times overall.

These results show us that our initial implementation may not be correct and there

areas for improvement in our algorithm. This leads to our discussion on future work,

which includes improving our the presented methods and introducing a few new ideas.

16

5. CONCLUSION

In this paper, we introduced three algorithmic additions to Dynamic Region-biased

RRT, a topological bucketing approach for neighborhood finding, a biased method for

sampling velocities, and a weighting scheme for choosing regions. We attempt to show

how these changes are applicable to nonholonomic problems, but the results show that

there is room for more improvements. We discuss how we plan to make these improve-

ments in the next section.

5.1 Future Work

In the future, we will investigate the causes of the poor running times. Specifically,

bucketing improves neighborhood finding times, however it appears to have an adverse

effect on the overall runtime. Another area for improvement is in velocity biasing. In ad-

dition to biasing the direction of a configuration’s velocity we would like to dynamically

adapt the velocity to the current speed of the robot and the expected extenstion distance.

This extension distance can also be dynamically updated based on the speed of the robot

and the size and direction of local embedding graph edges. Currently the extension dis-

tance is constant for each environment. However, many environments (especially cluttered

spaces) can have different regions of the environment which would need different exten-

sion distances. For example, an environment could have one region where the free space

is large and open, but another region with a narrow passage. In the former case a larger

extension distance would allow the robot to explore this more open space quickly, while a

short extension distance would allow more turning to navigate tighter spaces in the latter

case.

Additionally, we would like to introduce reachability guidance to Dynamic Region-

biased RRT. In reachability guidance, the reachable set of a configuration is considered

17

when making extensions. A reachable set is the set of configurations that a given configu-

ration can reach by applying all provided controls. We will work on methods to compute

or approximate the reachable set in order to avoid extending to configurations which have

poor reachability.

Lastly, we want to further test this method on more interesting environments. For a

car-like robot this could be a cluttered environment (unlike the grids used in this paper) or

a city street layout which is not uniform. We could also test the car with a trailor attached,

which would introduce more complicated dynamics.

18

REFERENCES

[1] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” tech.

rep., 1998.

[2] S. M. LaValle and J. J. Kuffener Jr, “Randomized kinodyanamic planning,” 2001.

[3] J. Denny, R. Sandstrom, A. Bregger, and N. M. Amato, “Dynamic region-biased

rapidly-exploring random tree (wafr 2016),” 2016.

[4] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling for planning

under differential constraints,” pp. 2859–2865, 2009.

[5] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Motion planning with dynamics by a syn-

ergistic combination of layers of planning,” IEEE Transactions on Robotics, vol. 26,

pp. 469 – 482, 2010 2010.

[6] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato,

and L. Rauchwerger, “STAPL: A standard template adaptive parallel C++ library,” Jul

2001.

19

