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ABSTRACT 

Analyzing Daily Behavioral Data for Personalized Health Management 

 
Randy Ardywibowo 

Department of Electrical and Computer Engineering 
Texas A&M University 

 

Research Advisor: Dr. Xiaoning Qian 
Department of Electrical and Computer Engineering 

Texas A&M University 
 

 

Emerging wearable and environmental sensor technologies provide health professionals with 

unprecedented capacity to continuously collect human behavior data for health monitoring and 

management. This enables new solutions to mitigate globally emerging health problems such as 

obesity. With such outburst of dynamic sensor data, it is critical that appropriate mathematical 

models and computational analytic methods are developed to translate the collected data into an 

accurate characterization of the underlying health dynamics, enabling more reliable personalized 

monitoring, prediction, and intervention of health status changes. However, several challenges 

arise in translating them effectively into personalized activity plans. Besides common analytic 

challenges that come from the missing values and outliers often seen in sensor behavior data, 

modeling the complex health dynamics with potential influence from human daily behaviors also 

pose significant challenges.  

We address these challenges as follows: We firstly explore existing missing value imputation 

and outlier detection preprocessing methods. We compare these methods with a recently developed 

dynamic system learning method – SSMO – that learns a personalized behavior model from real-

world sensor data while simultaneously estimating missing values and detecting outliers. We then 
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focus on modeling heterogeneous dynamics to better capture health status changes under different 

conditions, which may lead to more effective state-dependent intervention strategies. We 

implement switching-state dynamic models with different complexity levels on real-world daily 

behavior data. Finally, we conducted evaluation experiments of these models to demonstrate the 

importance of modeling the dynamic heterogeneity, as well as simultaneously conducting missing 

value imputation and outlier detection in achieving better prediction of health status changes.  



 

3 

DEDICATION 

 

This thesis is dedicated to all my friends, colleagues, professors, and advisors in Texas A&M 

University. Thank you for all the fond memories and life lessons that you all have given to me.  



 

4 

ACKNOWLEDGEMENTS 

 

I would like to thank my research advisor, Dr. Xiaoning Qian, and my colleagues in his research 

group for their guidance and support throughout the course of this research. I also thank my friends 

and colleagues for making my time in Texas A&M University a great experience, and for showing 

me the value of being passionate in any project, research, or endeavor. Finally, thanks to my father, 

mother, and brother for the love and care that they provide to me.  



 

5 

NOMENCLATURE 

 

AR Auto-Regressive 

ARMA Auto-Regressive Moving Average 

BCD Block Coordinate Descent 

BMI Body Mass Index 

EM Expectation Maximization 

FDA Functional Data Analysis 

FPCA Functional Principal Component Analysis 

FVE Fraction of Variance Explained 

GP Gaussian Process 

HMM Hidden Markov Model 

KKT Karush-Kuhn-Tucker 

KL Kullback-Leibler 

MLE Maximum Likelihood Estimates 

PACE Principal Component Analysis through Conditional Expectation 

PCA Principal Component Analysis 

RL Reinforcement Learning 

RMSE Residual Mean Square Error 

SAR Switching-state Auto-Regressive 

SLDS Switching Linear Dynamical System 

SSMO System identification with Simultaneous Missing value estimation, and Outlier 
Detection  



 

6 

CHAPTER I 

INTRODUCTION 

 

Currently, obesity is considered a public health issue as over one-third of the US adult 

population is classified as obsess [9]. However, addressing obesity is believed to be currently 

beyond the capacity of the healthcare industry [13], motivating the development of smart and 

scalable health solutions that can automate personalized activity planning. 

Smart health solutions are becoming ever more feasible with the rapid development of sensors 

and mobile applications that can continuously collect human behavior data such as physical 

activity, food intake, and Body Mass Index (BMI) [5]. However, with such outburst of dynamic 

sensor data, several challenges arise in translating them into personalized activity plans effectively. 

Besides common challenges in analyzing sensor behavior data, such as missing values and outliers, 

modeling the complex health dynamics with potential influence from human daily behaviors also 

pose significant challenges. 

We explore existing methods that firstly preprocess the missing values and outliers. The 

preprocessing methods we explored include off-the-shelf missing value imputation and outlier 

detection methods, such as mean imputation and median filters, as well as analytic methods based 

on functional data analysis methods, such as Functional Principal Component Analysis (FPCA) 

[12, 17]. We compare these methods with a recently developed dynamic system learning method 

– SSMO – that learns a personalized behavior model from real-world sensor data while 

simultaneously estimating missing values and detecting outliers. We show that SSMO is superior 

to the other benchmarked methods with better prediction accuracy for future BMI trajectory. 
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We implement a Switching-state Auto-Regressive (SAR) population model [1] to capture the 

complex interactions of human daily behaviors. We have adopted this model framework due to its 

capability to capture instantaneous changes in human activity and to classify inherent health stages 

in a population. We compare our model to a SSMO, which does not consider these factors, showing 

that considering the switching-state behavior and population-wide effects improves the model’s 

prediction performance significantly. 

Borrowing from SSMO, we simultaneously consider missing value imputation and outlier 

detection while conducting the SAR population model identification. We compare our 

simultaneous imputation and outlier detection method with the aforementioned preprocessing 

approaches, showing that integrating missing value imputation and outlier detection with SAR 

population model identification significantly improves model accuracy. These experiments show 

improved prediction accuracy of BMI changes with different daily activity profiles. 

In addition to deriving personalized health management, the proposed system is generally useful 

for dynamic modeling with big and low-quality data and their translation into healthcare decision 

making outside of clinical settings. With appropriate infrastructure, it will have a profound impact 

on deriving effective smart and connected health solutions using emerging mobile sensors and 

applications.  
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CHAPTER II 

MISSING VALUE IMPUTATION AND OUTLIER  

DETECTION METHODS 

 

Introduction 

As shown in Figure 1, missing values and outliers are very abundant in daily behavior sensor 

data. These defects, if not addressed appropriately, could seriously degrade the accuracy of system 

identification and further affect activity planning. Possible effects include loss of precision due to 

fewer data, computational difficulties due to holes in the dataset, and bias due to distortion of the 

data distribution [14]. Most existing time series models in statistics literature often rely on the 

assumption that the time series data are complete. These models include the ARMA (Auto-

Regressive Moving-Average) models and their extensions, spectral analysis methods, and state 

space models [3, 7, 10, 16]. Typically, a preprocessing step is used to remove these data defects in 

order to use these existing time series models. Popular preprocessing methods include mean value 

fitting, cubic fitting, and polynomial fitting for missing value estimation, and median filtering for 

outlier removal [14]. However, these methods are based on very different assumptions from our 

problem setting. 
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Figure 1. A typical example of life behavior data from mobile sensors  

 

To address these issues encountered in mobile sensor data analysis, we evaluate a recently 

developed linear dynamic system identification engine, SSMO [18]. This engine can 

simultaneously address the issues of missing values and outliers while conducting model 

identification. We carry out a comprehensive performance evaluation of SSMO with both 

parametric and non-parametric Functional Data Analysis (FDA) methods, including Functional 

Principal Component Analysis (FPCA) with different basis functions and Principal Component 

Analysis through Conditional Expectation (PACE), as well as other off-the-shelf missing value 

and outlier detection methods, showing that SSMO is superior to the other benchmarked methods. 

This evaluation provided insight into developing a daily behavioral data model with a solution 

strategy similar to SSMO. 

Dynamic System Identification with Simultaneous Missing Value Estimation, and Outlier 

Detection (SSMO) 

The dynamic system learning method, SSMO, can automatically remove the effects of potential 

outliers in the dataset, fill in missing values, and conduct model identification [18]. To introduce 
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this method, let {𝑥𝑡 ,𝑢𝑡}𝑡=1
𝑇  denote a given a user record with a series of observations, where 𝑥𝑡 

denotes the outcome at time 𝑡 and 𝑢𝑡 denotes the behavior profile at time 𝑡. SSMO adopts a linear 

dynamic system as the underlying model to characterize the relationships between the behavioral 

variables and outcome variables. In our study on obesity, the outcome variable is BMI while the 

behavioral variables include calorie intake (food), calories burned during workout or exercise, and 

workout time. The linear dynamic system is a flexible model that can characterize a wide range of 

dynamics. For instance, the following linear dynamic system can model the 3rd-order dynamics: 

[

𝑥𝑡+1
𝑥𝑡
𝑥𝑡−1

] = 𝐴 [

𝑥𝑡
𝑥𝑡−1
𝑥𝑡−2

] + 𝐵 [

𝑢𝑡
𝑢𝑡−1
𝑢𝑡−2

]+ 𝐶 +𝒘𝑡      (1) 

Here, 𝒘𝑡 is white noise, and 𝐶 is a bias term. This formulation can capture both spontaneous effects 

and delayed effects. When needed, the model can be extended to include higher order dynamics.  

SSMO is formulated as follows: let 𝑋 = [x0, x1, … , x𝑇] be the state matrix and 𝑈 =

[u0, u1 ,… , u𝑇−1], be the action matrix. Let Ω𝑥 and Ω𝑢 be the set of observable elements of X and 

U respectively. Furthermore, let 𝑋̂ = [x̂0, x̂1, … , x̂𝑇] and 𝑈̂ = [û0, û1, … , û𝑇−1] denote the 

estimates of 𝑋 and 𝑈. SSMO’s systems identification is formulated as the following optimization 

problem: 

min
𝐴,𝐵,𝐶,𝑋,̂𝑈

  
1

2
∑ ‖[

𝑥𝑡+1
𝑥𝑡
𝑥𝑡−1

] −(𝐴 [

𝑥𝑡
𝑥𝑡−1
𝑥𝑡−2

]+ 𝐵[

𝑢̂𝑡
𝑢̂𝑡−1
𝑢̂𝑡−2

] + 𝐶)‖

2
𝑇−1

𝑡=0

      (2𝑎) 

s. t.    ‖(𝑋̂ − 𝑋)
Ω𝑥
‖
0
≤ 𝜂𝑥 , ‖(𝑈−𝑈)Ω𝑢

‖
0
≤ 𝜂𝑢      (2𝑏) 

The objective function (2𝑎) is a squared loss function to evaluate the goodness-of-fit of the 

parameters 𝐴, 𝐵, and 𝐶, as well as 𝑋̂ and 𝑈̂. The constraints (2𝑏) serve to limit the maximum 

number of outliers to be detected in 𝑋 and 𝑈, while the values of 𝜂𝑥 and 𝜂𝑢 can be estimated by 

the upper bound of the percentage of outliers [18]. 
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SSMO Solution Strategy by Block Coordinate Descent (BCD) 

Block Coordinate Descent (BCD) [15] was used to solve (2) by alternatively optimizing two 

groups of variables: {𝐴,𝐵, 𝐶} and {𝑋̂, 𝑈̂}. {𝐴,𝐵, 𝐶} can be optimized through standard least squares 

optimization, admitting a closed-form solution. To optimize {𝑋̂, 𝑈̂}, we adopt the projected 

gradient descent method to iteratively update 𝑋̂𝑖
𝑘+1 = arg min

𝑋̂𝑖
{‖𝑋̂ − (𝑋̂𝑘 − Δ𝑔𝑋̂𝑘)‖𝐹

2
}, where 

𝑔𝑋̂𝑘 is the partial derivative of the objective function (2a) w.r.t. 𝑋̂𝑘, Δ is the step size that could be 

chosen to be a sufficiently small constant, and ‖∙‖𝐹 denotes the Frobenius norm. The update for 𝑈̂ 

follows a similar procedure. The optimization procedure is summarized in Algorithm 1. 

Algorithm 1 BCD for SSMO 

Input: 𝑋Ω𝑥 , 𝑈Ω𝑥 , 𝜂𝑥, 𝜂𝑢 

Output: 𝐴, 𝐵, 𝐶, 𝑋̂, 𝑈̂ 

While  (not converged) 
Optimize A, B, C by minimizing the least squares problem (2a) without any constraint.  

Optimize 𝑋̂: Select top 𝜂𝑥 elements in  

(𝑋̂ − 𝑋 −Δ𝑔𝑋̂)Ω𝑥
 forming the index set 𝑍𝑋. 

(𝑋̂)
Ω𝑥∪ 𝑍

← (𝑋̂ − Δ𝑔𝑋̂)Ω𝑥∪ 𝑍𝑋
 

Optimize 𝑈̂: Select top 𝜂𝑢 elements in  

(𝑈− 𝑈 −Δ𝑔)
Ω𝑢

 forming the index set 𝑍. 

(𝑈̂)
Ω𝑢∪ 𝑍𝑈

← (𝑈̂ − Δ𝑔𝑈)Ω∪ 𝑍𝑈
 

End 

Return 𝐴, 𝐵, 𝐶, 𝑋̂, 𝑈̂ 

 

Functional Data Analysis (FDA) 

Instead of solving (2) for simultaneous missing value imputation and system learning, we test 

other missing value imputation methods and evaluate them based on the prediction accuracy of 

future trajectory. We are specifically interested in missing value imputation methods for 

Functional Data Analysis (FDA) [12] for studying time series data as in our application. 
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Functional Principal Component Analysis with Different Base Functions  

We explore Functional Data Analysis (FDA) with different base functions for handling missing 

values and outliers before systems learning using our SSMO engine. In the FDA framework, given 

a vector of observations 𝒚, we estimate the underlying function 𝒙 by the penalized least squares 

smoothing method as formulated to minimize the following loss function [12]: 

 
Noting that the underlying function 𝒙 is expressed in a different basis system as 𝒙 = 𝚽𝒄, where 

𝚽 is the basis matrix and 𝒄 is the coefficients representing 𝒙 in the basis system defined by 𝚽, we 

can see that (3𝑎) is a weighted least squares estimation. The roughness penalty term (3𝑏) is added 

to enforce smoothness on the estimation of 𝒙, with 𝜆 being a penalty coefficient, and PEN𝑚(𝒙) as 

the square integration of the 𝑚𝑡ℎ derivative, a measure of a function’s roughness. This function is  

denoted as follows: 

PEN𝑚(𝑥) = ∫[𝐷𝑚𝑥(𝑠)]2𝑑𝑠 .      (4) 

The order of derivative typically penalized here is the second or fourth order derivative [12]. 

We can subsequently substitute 𝚽𝒄 for 𝒙 and express this roughness penalty in matrix form as 

follows: 

PEN𝑚(𝑥) = 𝑐
′𝐑𝑐                         (5) 

𝐑 = ∫𝐷𝑚𝜙(𝑠)𝐷𝑚𝜙(𝑠)′𝑑𝑠  .   (6) 

Note that the loss function (3) is convex and solving this model leads to closed-form solutions 

by the Karush-Kuhn-Tucker (KKT) conditions, similar to classic ordinary or weighted least 

squares problems [12]. The weighting for smoothness penalty can be determined by dividing the 
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training dataset and performing cross validation, using the penalty parameter that produces the 

best estimation accuracy within the cross-validation testing. 

The smoothness assumptions of the estimated behavioral data may change as different variables 

have varying degrees of smoothness, such as BMI vs. the calories the user has burned in a day. To 

comprehensively evaluate the performance, two different basis systems were explored with this 

method, the B-spline basis and Haar wavelet basis. These basis systems were chosen due to their 

stark contrasts, with the B-spline basis offering the smoothest estimation while the Haar basis can 

capture abrupt changes in the data. 

B-spline Basis 

The B-spline basis is a basis system that represents functional data as a combination of 

piecewise spline functions of a certain degree 𝑘, with the corresponding polynomials 

approximating the function along with their derivatives up to 𝑘 − 1 are constrained to be equal at 

these breakpoints or knots. This produces a smooth representation of the behavioral data. To 

accommodate for abrupt changes that may happen in behavioral data, multiple knots may be placed 

in a single time point. 

The equation for a spline function is as follows. Let 𝐵𝑖(𝑡, 𝜏), be a piecewise polynomial function 

defined by the breakpoint sequence 𝜏, with 𝑖 being the number of the largest knot positioned less 

than or equal to 𝑡. Let 𝐾 be the total number of subintervals used. Then, the spline function 𝑆(𝑡) 

is defined as follows: 

𝑆(𝑡) = ∑ 𝑐𝑘𝐵𝑘(𝑡, 𝜏)

1≤𝑘≤𝐾

      (7) 

Haar Wavelet Basis 

The Haar wavelet basis is a basis formed by a sequence of square-shaped functions [6]. Its 

mother wavelet 𝜓(𝑡) and scale function 𝜙(𝑡) are described as follows: 
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𝜓(𝑡) =

{
 
 

 
 1 0 ≤ 𝑡 <

1

2

−1
1

2
≤ 𝑡 < 1

0 otherwise

       (8𝑎) 

𝜙(𝑡) = {
1 0 ≤ 𝑡 < 1
0 otherwise

      (8𝑏) 

The mother wavelet and scale function represents the basis system by different dilations and 

translations n and k respectively, represented by the following equation: 

𝜓𝑛,𝑘(𝑡) = 2𝑛 2⁄ 𝜓(2𝑛𝑡 − 𝑘)      (9) 

This function is put into the basis matrix 𝚽, with the columns being a basis formed by certain 

nonnegative integer 𝑛 and 0 ≤ 𝑘 ≤ 2𝑗 −1. 

Principal Component Analysis through Conditional Expectation (PACE) 

Designed for analyzing sparse data, the PACE model is a non-parametric model and gives 

estimations of data from an individual subject by also considering data from the entire collection 

of subjects. This gives the best approximation of a function represented as a linear combination of 

𝑘 functional curves.  

Formulated similarly to the aforementioned Functional Principal Component Analysis (FPCA) 

methods, the data, 𝑋(𝑡) is modelled as noisy sampled points from a collection of trajectories that 

are assumed to be independent realizations of a smooth random function, with unknown mean 

function E[𝑋(𝑡)] = 𝜇(𝑡) and covariance function cov(𝑋(𝑠),𝑋(𝑡)) = 𝐺(𝑠, 𝑡). The domain of 𝑋(𝑡) 

is bounded on a closed time interval 𝑇. Assuming an 𝐿2 orthogonal expansion of 𝐺 exists in terms 

of eigenfunctions 𝜙𝑘  and eigenvalues 𝜆𝑘 : 𝐺(𝑠, 𝑡) =  ∑ 𝜆𝑘𝜙𝑘(𝑠)𝜙𝑘(𝑡)𝑘 , the 𝑖𝑡ℎ user’s trajectory 

can be represented as 𝑋𝑖(𝑡) = 𝜇(𝑡) + ∑ 𝜉𝑖𝑘𝜙𝑘(𝑡)𝑘 , 𝑡 ∈ 𝑇, where 𝜉𝑖𝑘 are uncorrelated random 

variables with zero mean. By also incorporating uncorrelated measurement errors, the model 

considered becomes 



 

15 

𝑌𝑖𝑗 = 𝑋𝑖(𝑇𝑖𝑗) + 𝜖𝑖𝑗 = 𝜇(𝑇𝑖𝑗) +∑𝜉𝑖𝑘𝜙𝑘(𝑇𝑖𝑗)

∞

𝑘=1

+ 𝜖𝑖𝑗         𝑇𝑖𝑗 𝜖 𝑇,       (10) 

Where 𝜖𝑖𝑗 are uncorrelated measurement errors with mean zero and constant variance 𝜎2, and 𝑌𝑖𝑗 

is the 𝑗𝑡ℎ observable data point of the 𝑖𝑡ℎ user.  

To accommodate for the sparsity of daily behavioral data, local linear smoothers are used to 

estimate the mean function 𝜇(𝑡), instead of traditionally taking the average at each time point. This 

is because, in addition to being sparse, the time points of each user data may also not align with 

each other, causing bias in estimating the mean function through averaging. Estimation of the 

variance 𝜎2, is done through estimation of the covariance surface cov(𝑋(𝑇𝑖𝑗),𝑋(𝑇𝑖𝑙)). A linear fit 

is used to estimate the diagonal elements of the covariance matrix, while a local quadratic fit is 

used for the off diagonal elements, as the covariance matrix is maximal along its diagonal. The 

eigenfunctions can be subsequently found by discretizing the smoothed covariance surface. In 

these steps, we utilized the Gaussian kernel to perform the implicit feature mapping of the smooth 

surface estimation. 

As a novelty introduced in the PACE formulation, the principal component scores are estimated 

by conditioning over the observations 𝒀𝑖, rather than through numeric integration of the FPCA 

integral transform commonly used in traditional FPCA [17]. Compared to traditional FPCA, this 

is more suitable for sparse data as not enough points are available to perform a numeric integration. 

This is estimated by the following equation: 

𝜉𝑖𝑘 = 𝐸̂[𝜉𝑖𝑘|𝒀̂𝑖] = 𝜆̂𝑘𝜙̂𝑖𝑘
𝑇 𝚺̂𝑌𝑖

−1(𝒀̃𝑖− 𝝁̃𝑖)       (11) 

With 𝜆̂𝑘, 𝜙̂𝑖𝑘, and 𝚺̂𝑌𝑖  being the estimates of 𝜆𝑘, 𝜙𝑖𝑘, and 𝚺𝑌𝑖 , the covariance matrix of 𝒀𝑖, 

respectively [2]. We apply this formulation for each measured variable separately, estimating the 
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model described above for each type of measured data (calories burned, calories consumed, 

workout time, workout calories, and BMI).  
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CHAPTER III 

MISSING VALUE IMPUTATION AND OUTLIER  

DETECTION METHOD EVALUATIONS 

 

Off-the-shelf Missing Value Imputation and Outlier Detection Methods 

In addition to the methods we detailed in Chapter 2, we also test several off-the-shelf imputation 

methods, including the last value carried forward method and mean imputation method. These 

methods impute missing values by taking the last value observed in the data and the mean of the 

data respectively. To detect outliers with these methods, we utilize a median filter before imputing 

the data. 

Among the missing values and outlier detection approaches we benchmarked, the off-the-shelf 

missing value and outlier detection methods performed the worst based on future BMI prediction 

accuracy. The “mean imputation” method ignores the context as it fails to utilize the underlying 

dynamics of the variables. On the other hand, the “last value carried forward” method takes a 

conservative approach, underestimating the changes over time. Thus, neither method is suitable 

for imputing missing values in dynamic modeling context. 

PCA with B-spline Basis 

In estimating each user’s behavioral data, 4𝑡ℎ order splines were used while imposing a 

roughness penalty on its second derivative. The penalty on second derivative as well as the use of 

B-splines produce a smooth representation of the behavioral trajectories as shown in Figure 2.  
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Figure 2. Missing value estimation and outlier detection using FPCA with B-spline basis 

 

PCA with Haar Wavelet Basis 

This basis system was utilized with no roughness penalty term, reducing the estimation problem 

into a weighted least squares problem. The use of the Haar Wavelet basis captures the 

instantaneous changes in daily behavior trajectories as shown in Figure 3. A comparison of both 

basis function representations is shown in Figure 4. 
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Figure 3. Missing value estimation and outlier detection using FPCA with Haar wavelet 

basis 
 

 
Figure 4. Missing value estimation and outlier detection using FPCA with B-spline and 

Haar wavelet basis 
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Principal Component Analysis through Conditional Expectation (PACE) 

As the PACE method is non-parametric, no assumptions are made on the underlying distribution 

of the daily behavioral trajectory. This allows the method to adapt to each trajectories smoothness 

and instantaneous changes accordingly. To select the number of eigenfunctions used in our model, 

we measure the fraction of variance explained (FVE) and picked the model which explains at least 

95% of the total variation. An example of a trajectory estimated by this method is shown in Figure 

5. 

 
Figure 5. Missing value estimation and outlier detection using PACE 

 

Evaluation 

The methods we detailed are used on daily behavioral data from 25 different users. This daily 

behavioral data consists of data for calories consumed, calories burned, workout time, workout 

calories, and BMI taken in a daily interval. We benchmarked all the methods using both the L-1 

norm error (ABS) and the Residual Mean Squared Error (RMSE) in predicting future BMI 

trajectory. In our tests, SSMO performed better than all the other methods we benchmarked, giving 

the best prediction accuracy overall, as shown in Figure 6 and Table 1. FDA-based imputation and 
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outlier detection methods perform better than naive off-the-shelf methods but the unified SSMO 

method clearly outperforms them. 

 

 

Figure 6. BMI prediction trajectory for the benchmarked imputation methods  
 

Table 1: Evaluation results for different missing value estimation and outlier detection 

methods 
 Mean Last Mean + Med Last + Med 

RMSE 1.3106 ± 2.12820 1.0597 ± 1.0590 0.7375 ± 0.6045 0.8576 ± 0.5713 

ABS 1.1126 ± 1.8972 0.8705 ± 0.8541 0.5805 ± 0.5078 0.6499 ± 0.4646 
 Haar B-spline PACE SSMO 

RMSE 0.7227 ± 0.4689 0.6952 ± 0.5164 0.7143 ± 0.5520 0.6714 ± 0.4890 

ABS 0.5716 ± 0.3884 0.5354 ± 0.4137 0.5426 ± 0.4478 0.5174 ± 0.3968 
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CHAPTER IV 

SWITCHING LINEAR DYNAMICAL SYSTEMS 

 

Introduction 

Although SSMO could predict BMI trajectory with good accuracy, the model formulation has 

several shortcomings when used in analyzing daily behavioral data. Firstly, SSMO models the 

daily behaviors of each subject separately. This treatment assumes that each subject’s behavior 

pattern is uncorrelated to one another. However, intuitively, each subject’s behavioral pattern 

should be correlated with each other, as similar behaviors should be linked to similar outcomes. 

Moreover, this assumption would make system identification intractable when dealing with many 

subjects, as each person’s daily behavioral model would need to be identified separately under 

sparse data conditions for each individual. 

Secondly, shown by the prediction results of SSMO, the model is unable to handle instantaneous 

change in BMI, leading to inaccurate short-term predictions. This is a critical issue, as daily 

behavioral data features many instantaneous changes. Moreover, as the main proposed application 

of this system is in active health monitoring, failure to account for these instantaneous changes 

could lead to dangerous false negatives in monitoring health trajectory. 

Finally, a desirable result in modeling daily behaviors is to classify subjects into groups of 

different health statuses. This feature would make disease detection possible as different disease 

stages can be inferred by the current states of each patient. Because SSMO assumes no correlation 

between each subject’s daily behavioral system, this feature can’t be achieved with its current 

formulation. 
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A class of models that could mitigate the shortcomings of SSMO and achieve features 

mentioned above is the class of Switching Linear Dynamical Systems (SLDS). These dynamic 

models incorporate a discrete switching variable that serves to divide temporal data into segments, 

each modelled by a different linear dynamical system. From this class of systems, a population 

model can be derived. This is done by assuming that the states of each subject at any given time 

belong to a set of states shared across all subjects.  

The SLDS population model has several advantages over SSMO. Firstly, unlike SSMO, the 

SLDS population model correlates each subject’s behavior pattern that of other subjects through 

its shared state. This assumption is not only intuitive, but also makes the problem more 

computationally tractable when modeling many subjects’ health trajectory. Secondly through its 

switching behavior, the model is capable of handling instantaneous changes in human behavior . 

Finally, the model can classify subjects into groups of different health statuses. This can be 

achieved by noting that different subjects would tend towards different sets of switching states, 

allowing the use of classification algorithms to discriminate between subjects of different groups . 

Because of this, we explore the Switching-state Auto-Regressive (SAR) model formulated as a 

population model. 

Switching-state Auto-Regressive (SAR) Population Model Formulation 

We implement a Switching-state Auto-Regressive (SAR) population model in our analysis of 

the daily behavioral data set. To model the potential heterogeneous dynamic changes of health 

status, we consider the underlying dynamic system can switch from time to time under different 

conditions. For the 𝑖th subject (𝑖 ∈  {1, … ,𝑁}) at time 𝑡, we assume that there exists a discrete 

latent health state 𝑠𝑡
𝑖 determining the dynamics of a health indicator, represented by 𝑥𝑡

𝑖 , as well as 

the influence from input variables capturing daily life behavior, denoted by 𝑢𝑡
𝑖 .  
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Specifically, we are interested in the observed health indicator BMI as the health status of 

interest, and its change across time. The input variables include calorie intake (food), calories 

burned during workout or exercise, and workout time. SAR models the BMI dynamics by the 

following system model: 

𝑥𝑡
𝑖 = 𝐚(𝑠𝑡

𝑖)
T
𝐱𝑡−1
𝑖 +𝐛(𝑠𝑡

𝑖)
T
𝐮𝑡
𝑖 + 𝑐(𝑠𝑡

𝑖)+ 𝜂𝑡
𝑖       (12𝑎) 

𝜂𝑡
𝑖  ~ 𝒩(0, 𝜎𝑖

2(𝑠𝑡
𝑖))      (12𝑏) 

Note that the SAR model is the extension of the classical Auto-Regressive (AR) models by allowing 

the system coefficients 𝒂(𝑠), 𝒃(𝑠), and 𝑐(𝑠) to be determined by the latent health state 𝑠. In general, 

the system in (12) can incorporate any order of time lags 𝐿𝑥 and 𝐿𝑢 to model the potential high-

order dependence relationships so that 𝐱𝑡−1
𝑖  and 𝐮𝑡

𝑖  can take the following measurements: 

𝐱𝑡−1
𝑖 =  [𝑥𝑡−1

𝑖 ,𝑥𝑡−2
𝑖 ,… ,𝑥𝑡−𝐿𝑥

𝑖 ]
T
      (13𝑎) 

𝐮𝑡
𝑖 =  [𝑢𝑡

𝑖 , 𝑢𝑡−1
𝑖 ,… ,𝑢𝑡−𝐿𝑢+1

𝑖 ]
T
      (13𝑏) 

We adopt a population SAR model assuming that the system coefficients 𝒂(𝑠), 𝒃(𝑠), and 𝑐(𝑠) 

are shared between subjects while each subject has independent measurement noise variance 

𝜎𝑖
2(𝑠). For the case with 𝐿𝑥 = 𝐿𝑢 = 1, the population SAR model is illustrated in Figure 7: 

 
Figure 7: First-order SAR model 
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It has a finite Markov chain layer to model the health state changes along time and an AR model 

layer to capture the “controlled” dynamic changes at different health states. 

To learn the SAR model given the observed daily behavior data and BMI changes, we have the 

following auto-regressive coefficients as well as health states to identify: 

𝜽 = {𝐚(𝑠), 𝐛(𝑠), 𝑐(𝑠), 𝜎𝑖
2(𝑠), 𝑠 ∈ {1, … ,𝑆}, 𝑖 ∈  {1,… , 𝑁}}.      (14) 

As each subject’s time series measurements are independent of each other given the population 

SAR model, we have the following likelihood function of the population SAR model given 

observed data: 

𝑝(𝑥1:𝑁×1:𝑇 ,𝑠1:𝑁×1:𝑇| 𝑢1:𝑁×1:𝑇 , 𝜽) = ∏𝑝𝑖(𝑋𝑖 , 𝑆𝑖|𝑈𝑖 , 𝜽)

𝑁

𝑖=1

  (15𝑎) 

𝑝𝑖(𝑋𝑖 , 𝑆𝑖|𝑈𝑖 , 𝜽) = ∏𝑝(𝑥𝑡|𝐱̂𝑡−1, 𝐮̂𝑡 , 𝑠𝑡 , 𝜽)𝑝(𝑠𝑡|𝑠𝑡−1)

𝑇

𝑡=1

     (15𝑏) 

Learning the SAR Model 

To derive the maximum likelihood estimates (MLE) for model identification, Expectation-

Maximization (EM) is adopted to find the set of system coefficients and variances 𝐚(𝑠), 𝐛(𝑠), 

𝑐(𝑠), and 𝜎𝑖
2(𝑠) for all 𝑠 ∈ {1,… , 𝑆}. This method alternates between estimating the state 

conditional probabilities 𝑝(𝑠𝑡
𝑖|𝑥1:𝑇

𝑖 ,𝑢1:𝑇
𝑖 ) and optimizing the system coefficients based on the 

estimated state probabilities in the expectation and maximization steps respectively. 

E-Step 

The expectation step is done by the Forward-Backward algorithm, which estimates the state 

probability 𝑝(𝑠𝑡
𝑖|𝑥1:𝑇

𝑖 , 𝑢1:𝑇
𝑖 ) by combining partial solutions conditioned on past and future 

observations with respect to 𝑡. The partial solutions conditioned on past observations are denoted 
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by 𝛼(𝑠𝑡
𝑖) = 𝑝(𝑠𝑡

𝑖|𝑥1:𝑡
𝑖 , 𝑢1:𝑡

𝑖 ), while the partial solutions for future observations are denoted by 

𝛽(𝑠𝑡−1
𝑖 ) = 𝑝(𝑥𝑡:𝑇

𝑖 |𝑠𝑡−1
𝑖 , 𝑢𝑡:𝑇

𝑖 ). Given the model, we denote  𝑝(𝑥𝑡
𝑖|𝑠𝑡

𝑖 , 𝐱𝑡−1
𝑖 , 𝐮𝑡

𝑖 ) by 𝑝̂(𝑥𝑡
𝑖|𝑠𝑡

𝑖):  

𝑝̂𝑖(𝑥𝑡
𝑖|𝑠𝑡

𝑖)~𝒩(𝐚(𝑠𝑡
𝑖)
T
𝐱𝑡−1
𝑖 + 𝐛(𝑠𝑡

𝑖)
T
𝐮𝑡
𝑖 + 𝑐(𝑠𝑡

𝑖),𝜎𝑖
2(𝑠𝑡

𝑖))      (16) 

Define the log-likelihood 𝐿(𝜽) = log(∑ ∑ 𝛼(𝑠𝑡
𝑖)𝑡𝑖 ) with 𝛼(𝑠1

𝑖) = 𝑝(𝑠1
𝑖 , 𝑥1

𝑖 |𝐱0
𝑖 , 𝐮1

𝑖 , 𝜽), which 

can be solved as a filtering problem by the 𝛼-recursion [11]: 

𝛼(𝑠𝑡
𝑖) = 𝑝(𝑥𝑡

𝑖|𝑠𝑡
𝑖 , 𝐱𝑡−1

𝑖 ,𝐮𝑡
𝑖 , 𝜽)∑ 𝑝(𝑠𝑡

𝑖|𝑠𝑡−1
𝑖 )

𝑠𝑡−1
𝑖

𝛼(𝑠𝑡−1
𝑖 ).    (17) 

On the other hand, the partial solution conditioned on future observations can be solved using the 

𝛽-recursion: 

𝛽(𝑠𝑡−1
𝑖 ) =∑𝑝(𝑥𝑡

𝑖|𝑠𝑡
𝑖 , 𝐱𝑡−1

𝑖 , 𝐮𝑡
𝑖 , 𝜽)𝑝(𝑠𝑡

𝑖|𝑠𝑡−1
𝑖 )

𝑠𝑡
𝑖

𝛽(𝑠𝑡
𝑖),      (18) 

and 𝛽(𝑠𝑇
𝑖 ) = 1. By Bayes’ rule, combining these two partial results yields the desired state 

probability:  

𝛾(𝑠𝑡
𝑖) = 𝑝(𝑠𝑡

𝑖|𝑥1:𝑇
𝑖 , 𝑢1:𝑇

𝑖 , 𝜽) =
𝛼(𝑠𝑡

𝑖)𝛽(𝑠𝑡
𝑖)

∑ 𝛼(𝑠𝑡
𝑖)𝑠𝑡

𝑖 𝛽(𝑠𝑡
𝑖)
.             (19) 

Because each subject’s time series is independent with one another, the expectation step can be 

done independently on each subject. Finally, we can derive the joint state transition probability by 

normalization with 

𝑝(𝑠𝑡
𝑖 , 𝑠𝑡+1

𝑖 |𝑥1:𝑇
𝑖 ,𝑢1:𝑇

𝑖 , 𝜽) ∝ 𝛼(𝑠𝑡
𝑖)𝑝̂(𝑥𝑡+1

𝑖 |𝑠𝑡+1
𝑖 )𝑝(𝑠𝑡+1

𝑖 |𝑠𝑡
𝑖)𝛽(𝑠𝑡+1

𝑖 )      (20) 

M-Step 

 The maximization step uses the state distributions calculated in the expectation step to optimize 

the system coefficients by minimizing the Kullback-Leibler (KL) divergence: 
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𝐸 = ∑∑〈log 𝑝 (𝑥𝑡
𝑖|𝐱̂𝑡−1

𝑖 , 𝐮̂𝑡
𝑖 , 𝐚(𝑠𝑡

𝑖),𝐛(𝑠𝑡
𝑖),𝑐(𝑠𝑡

𝑖))〉
𝑝𝑜𝑙𝑑(𝑠𝑡

𝑖|𝑥1:𝑇
𝑖 )

𝑡𝑖

 

+∑∑〈log 𝑝(𝑠𝑡
𝑖|𝑠𝑡−1

𝑖 )〉
𝑝𝑜𝑙𝑑(𝑠𝑡

𝑖,𝑠𝑡−1
𝑖 )

𝑡𝑖

      (21) 

Rewrite the system coefficients and variables as follows: 

𝐝(𝑠𝑡
𝑖) = [

𝐚(𝑠𝑡
𝑖)

𝐛(𝑠𝑡
𝑖)

𝑐(𝑠𝑡
𝑖)

]  𝐯̂𝑡−1
𝑖 = [

𝐱̂𝑡−1
𝑖

𝐮̂𝑡
𝑖
]      (22) 

The KKT condition [4] to minimize the KL divergence with respect to 𝐝(𝑠) leads to solving the 

following linear system by plugging (16) into (21): 

∑∑𝑝𝑜𝑙𝑑(𝑠𝑡
𝑖 = s|𝑥1:𝑇

𝑖 )

𝑡

𝑥𝑡
𝑖 𝐯̂𝑡−1
𝑖

𝜎𝑖
2(s)

𝑖

 

= [∑∑𝑝𝑜𝑙𝑑(𝑠𝑡
𝑖 = 𝑠|𝑥1:𝑇

𝑖 )

𝑡

𝐯̂𝑡−1
𝑖 (𝐯̂𝑡−1

𝑖 )T

𝜎𝑖
2(s)

𝑖

]𝐝(s)      (23) 

Similarly, 𝜎𝑖
2 may be solved by the following equation: 

𝜎𝑖
2(s) =

1

∑ 𝑝𝑜𝑙𝑑(𝑠𝑡′
𝑖 = s|𝑥1:𝑇)𝑡′

× 

∑𝑝𝑜𝑙𝑑(𝑠𝑡
𝑖 = 𝑠|𝑥1:𝑇

𝑖 )

𝑡

[𝑥𝑡
𝑖 − (𝐯̂𝑡−1

𝑖 )
T
𝐝(𝑠𝑡

𝑖)]
2

    (24) 

Simultaneous System Identification, Missing Value Imputation, and Outlier Detection 

(SSMO) 

One of the critical challenges to learn the SAR model parameters arise from the large number 

of missing values and frequent outlier points in the data set. This is illustrated in a fragment of 

real-world time series BMI measurements in Figure 1. Inappropriate handling of missing values 

and outliers may lead to computational difficulties from the holes in the data set, as well as the 
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bias and loss of precision due to distortion of the data distribution [14]. For example, among the 

approaches that handle missing values [8], the mean imputation method ignores the context as it 

fails to utilize the underlying dynamics of the variables. The last-value-carried-forward method 

takes a conservative approach, underestimating the changes over time. Thus, neither method is 

suitable for imputing missing values in the dynamic modeling context. 

Extending the SAR population model, we develop a method that can simultaneously remove 

outliers, impute missing values, while also conducting SAR model identification [18]. The missing 

value imputation and outlier detection is formulated as follows: denote the state observations and 

actions for subject 𝑖 as 𝑋𝑖 = [𝑥0
𝑖 ,𝑥1

𝑖 ,… ,𝑥𝑇
𝑖 ] and 𝑈𝑖 = [𝑢0

𝑖 , 𝑢1
𝑖 , … ,𝑢𝑇−1

𝑖 ] respectively. Let 𝑋𝑖  and 𝑈𝑖  

denote the set of states and actions for subject 𝑖 while  Ω𝑥𝑖 and Ω𝑢𝑖 be the set of observable elements 

of 𝑋𝑖  and 𝑈𝑖  respectively. We estimate 𝑋̂𝑖 = [𝑥0
𝑖 , 𝑥1

𝑖 ,… , 𝑥𝑇
𝑖 ] and 𝑈𝑖 = [𝑢̂0

𝑖 , 𝑢̂1
𝑖 ,… , 𝑢̂𝑇−1

𝑖 ] for systems 

identification by the following optimization problem instead of directly solving (21): 

min
𝑋,̂𝑈

 ∑ ∑‖𝑥𝑡
𝑖− [(𝐱̂𝑡−1

𝑖 )
T
𝐚(𝑠𝑡

𝑖)+ (𝐮̂𝑡
𝑖 )
T
𝐛(𝑠𝑡

𝑖)+ 𝑐(𝑠𝑡
𝑖)]‖

2
𝑇−1

𝑡=0

𝑁

𝑖=1

      (25𝑎) 

s. t.    ‖(𝑋̂𝑖 − 𝑋𝑖)Ω𝑥𝑖
‖
0

≤ 𝜂𝑥 , ‖(𝑈̂𝑖 − 𝑈𝑖)Ω𝑢𝑖
‖
0

≤ 𝜂𝑢   (25𝑏) 

The objective function (25a) is a squared loss function to evaluate the goodness-of-fit of the 

missing values and outliers of the entire data set 𝑋̂ and 𝑈̂. Meanwhile, the constraints (25b) serve 

to limit the maximum number of outliers to be detected in 𝑋 and 𝑈. The values of 𝜂𝑥 and 𝜂𝑢 can 

be estimated by the upper bound of the percentage of outliers [18]. 

Solution Strategy 

To simultaneously fit the system coefficients, estimate the state probabilities, as well as 

imputing missing values and removing outliers, we alternatively optimize three groups of 

variables: the state distributions 𝑝(𝑠𝑡
𝑖|𝑥1:𝑇

𝑖 ,𝑢1:𝑇
𝑖 ), the system coefficients 𝜽 = {𝐝(𝑠), 𝜎𝑖

2(𝑠)}, and 
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the missing value and outlier estimates {𝑋̂𝑖 , 𝑈̂𝑖} for all 𝑖 ∈  {1, … ,𝑁} [15]. Calculating the state 

distributions and optimizing 𝜽 can be done based on the EM algorithm. On the other hand, the 

missing values and outliers for each subject 𝑖 are estimated using the projected gradient descent 

method as follows: 

𝑋̂𝑖
𝑘+1 = arg min

𝑋̂𝑖
{‖𝑋̂𝑖 − (𝑋̂𝑖

𝑘 −Δ𝑔𝑋̂𝑖
𝑘)‖

𝐹

2
} 

s. t.    ‖(𝑋̂𝑖 − 𝑋𝑖)Ω𝑥𝑖
‖
0

≤ 𝑎       (26) 

Here, 𝑔𝑋̂𝑖
𝑘 is the partial derivative of the objective function w.r.t. 𝑋̂𝑖

𝑘 , Δ is the step size that could 

be chosen to be a sufficiently small constant, while ‖∙‖𝐹 denotes the Frobenius norm. The 

optimization procedure is done as follows: First, select 𝜂𝑥 elements in (𝑋̂𝑖
𝑘 − 𝑋̂𝑖 − Δ𝑔𝑋̂𝑖

𝑘)
Ω𝑥𝑖

 with 

the largest magnitudes as the outliers at the current iteration, forming a set 𝑍𝑋𝑖. Second, assign the 

set of missing values Ω𝑥𝑖 and the set of detected outliers 𝑍𝑋𝑖 with new estimates as follows: 

(𝑋̂𝑖
𝑘+1)

Ω𝑥𝑖∪ 𝑍𝑋𝑖
= (𝑋̂𝑖

𝑘 −Δ𝑔𝑋̂𝑖
𝑘)
Ω𝑥𝑖∪ 𝑍𝑋𝑖

. The remaining elements in 𝑋̂𝑖
𝑘+1 are set to take the same 

values as 𝑋̂𝑖
𝑘 . The update for 𝑈̂𝑖  follows a similar procedure. The entire model identification, 

missing value imputation and outlier detection procedure is summarized in Algorithm 1. An 

example of this algorithm ran on a test dataset shown in Figure 8. With the different colors 

representing states, Figure 8 shows that the solution strategy can infer the model parameters as well 

as the latent states of the system accurately. 
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Algorithm 1 SAR Population Model Identification, Missing Value Imputation, and Outlier Detection 

Input: 𝑋Ω𝑥𝑖
, 𝑈Ω𝑥𝑖

, 𝜂𝑥, 𝜂𝑢 ∀𝑖 ∈ {1, … ,𝑁} 

Output: 𝒂(𝑠), 𝒃(𝑠), 𝑐(𝑠), 𝑋̂𝑖 , 𝑈̂𝑖,  
∀𝑖 ∈  {1, … ,𝑁}, ∀𝑠 ∈ {1, … ,𝑆} 

Randomly initialize 𝒂(𝑠), 𝒃(𝑠), 𝑐(𝑠), 𝜎𝑖
2(s), and 𝑝(𝑠𝑡

𝑖|𝑠𝑡−1
𝑖 ) ∀𝑖 ∈ {1,… , 𝑁} 

𝑘 ← 0 
While  ‖𝐿𝑘+1(𝜃) − 𝐿𝑘(𝜃)‖ > 𝜀 

E-step: Estimate (𝑠𝑡
𝑖) ∀𝑖 ∈  {1, … ,𝑁} , ∀𝑡 ∈ {1,… , 𝑇} by (19), and 𝑝(𝑠𝑡

𝑖|𝑠𝑡−1
𝑖 ) by (20). 

M-step: Optimize 𝒂(𝑠), 𝒃(𝑠), 𝑐(𝑠) by (23), and 𝜎𝑖
2(s) by (24) 

For 𝑖 ∈  {1, … , 𝑁} 
Optimize 𝑋̂𝑖: Select top 𝜂𝑥 elements in  

(𝑋̂𝑖 −𝑋𝑖 − Δ𝑔𝑋̂𝑖)Ω𝑥𝑖
 forming the index set 𝑍𝑋𝑖 . 

(𝑋̂𝑖)Ω𝑥𝑖∪ 𝑍𝑋𝑖
← (𝑋̂𝑖− Δ𝑔𝑋̂𝑖)Ω𝑥𝑖∪ 𝑍𝑋𝑖

 

Optimize 𝑈̂𝑖: Select top 𝜂𝑢 elements in  

(𝑈̂𝑖 − 𝑈𝑖 − Δ𝑔𝑈𝑖)Ω𝑢𝑖
 forming the index set 𝑍𝑈𝑖. 

(𝑈̂𝑖)Ω𝑢𝑖∪ 𝑍𝑈𝑖
← (𝑈̂𝑖 − Δ𝑔𝑈𝑖)Ω𝑢𝑖∪ 𝑍𝑈𝑖

 

End 

𝑘 ← 𝑘 + 1 

End 

Return 𝒂(𝑠), 𝒃(𝑠), 𝑐(𝑠), 𝑋̂𝑖 , 𝑈𝑖,  
∀𝑖 ∈  {1, … , 𝑁}, ∀𝑠 ∈ {1, … , 𝑆} 

 
Figure 8. Inference of SAR model with 3 possible switching states   
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CHAPTER V 

SWITCHING-STATE AUTO-REGRESSIVE POPULATION MODEL 

EVALUATION 

 

We have implemented the population SAR model with the SSMO solution strategy on a real-

world daily behavior dataset. This dataset consists of daily fitness behaviors of 25 different users. 

The dataset include diet, sleep, exercise information, and BMI collected from various sensor 

devices. In this dataset, almost all users show significant missing values and outliers, with patterns 

similar to Figure 1.  

In our evaluation experiments, we first illustrate that integrating missing value imputation and 

outlier detection with model identification outperforms the common two-step procedure of data 

preprocessing and model identification. We then evaluate the SAR models with different 

complexity levels and identify an appropriate model for the population dynamics in the given data 

set. We benchmark different models and methods by conducting one-step ahead prediction of 

future BMI trajectory. 

Missing Value and Outlier Detection Evaluation 

The simultaneous missing value and outlier detection of our method have been tested against 

several analytic and off-the-shelf imputation and outlier detection methods. The methods we have 

compared include the mean value imputation, last value carried forward imputation, Principal 

Component Analysis (PCA) with B-spline bases [12], and PACE, a nonparametric Functional 

Principal Component Analysis (FPCA) method for sparse data [17]. The mean and last value 

carried forward imputation method is augmented with a median filter for outlier removal. 
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In our tests, the SAR population model with simultaneous imputation and outlier detection 

performs better than all the other methods we have benchmarked, giving the best prediction 

accuracy overall, as shown in Table 2. The analytic methods PACE and PCA with B-spline bases 

perform better than naive off-the-shelf methods, but our unified simultaneous imputation and 

outlier detection method clearly outperforms them. A comparison of our method and the analytic 

methods benchmarked for imputation and outlier detection is shown in Figure 9. 

 
Figure 9. Missing value and outlier detection method comparison 

 

Table 2: Evaluation result for different missing value estimation and outlier detection 

method 
 Mean + Med Last + Med B-spline PACE Simultaneous 

RMSE 
0.72463 ± 

0.53953 

0.50286 ± 

0.48841 

0.46668 ± 

0.48512 

0.42348 ± 

0.48489 
0.032114 ± 

0.016565 

ABS 
0.29995 ± 
0.17872 

0.17697 ± 
0.12145 

0.15886 ± 
0.12179 

0.11965 ± 
0.10518 

0.024125 ± 

0.011585 

 

Model Selection 

We evaluate several different model parameters on the order of time lags of the state 

observations, 𝐿𝑥, the order on the input variables, 𝐿𝑢, as well as the number of states on the SAR 

model 𝑆. We find that the parsimonious setup that gives the best accuracy is where 𝐿𝑥 = 𝐿𝑢 = 1, 

while 𝑆 = 3. The ABS prediction accuracy of different testing setups is shown in Table 3. In this 
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table, S1 denotes the one state model, reducing to the traditional AR model, S2 denotes the model 

with two latent states, and S3 denotes the model with three latent states. Increasing 𝐿𝑥, 𝐿𝑢, or 𝑆 

further did not yield any improvements in prediction accuracy. 

Table 3: Absolute one-step-ahead prediction error of the SAR population model under 

different model parameters 

  𝐿𝑋 

  1 2 3 

𝐿𝑈 

1 
S1: 0.045±0.030 
S2: 0.029±0.013 

S3: 0.024±0.012 

S1: 0.072±0.027 
S2: 0.037±0.016 
S3: 0.059±0.056 

S1: 0.084±0.030 
S2: 0.052±0.024 
S3: 0.074±0.072 

2 
S1: 0.049±0.024 
S2: 0.029±0.012 

S3: 0.031±0.013 

S1: 0.059±0.034 
S2: 0.040±0.019 

S3: 0.041±0.021 

S1: 0.084±0.032 
S2: 0.064±0.042 

S3: 0.051±0.033 

3 

S1: 0.056±0.023 

S2: 0.041±0.015 
S3: 0.037±0.026 

S1: 0.068±0.026 

S2: 0.040±0.017 
S3: 0.074±0.072 

S1: 0.096±0.060 

S2: 0.064±0.044 
S3: 0.045±0.030 

 
The corresponding system coefficients obtained for the parsimonious model with the best 

prediction accuracy are shown in Table 4. For all three states, BMI would carry over to the next 

time point with very small changes, as the coefficients for BMI is close to one for all the states. 

On the other hand, the input variables that capture daily behavior influence have less significant 

contribution to current BMI when compared to the effects of previous BMI. This makes intuitive 

sense: The inherent BMI change dynamics should be relatively stable, while the input variables 

should only produce incremental changes to the previous BMI. 

We conjecture that State 2 represents the most active state; State 1 represents the least active 

state, while State 3 is an intermediary state in between these two. We speculate this due to the 

following observations: First, note that the coefficient for BMI for State 2, denoted by 𝑎(2), is the 

smallest followed by 𝑎(3) and 𝑎(1). Furthermore, 𝑎(2) < 1 and 𝑎(1) > 1. This means that 

without any external intervention as observable input variables, subjects in State 2 inherently lose 

weight the fastest while subjects in State 1 inherently gain weight. Second, we observe that with 
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increasing workout time, subjects in State 2 may have increasing BMI, but subjects in State 1 have 

decreasing BMI. We speculate that subjects in State 2 are gaining muscle mass while subjects in 

State 1 can better control their weight with more workout time. 

The remaining coefficients also make sense intuitively. For example, for all the states, 

consuming food increases BMI while exercise helps control BMI.  

Table 4: Normalized SAR coefficients for different variables under different states  

Variable State 1 State 2 State 3 

BMI 1.0003 0.9824 0.9950 

Exercise Calories -0.0032 -0.0047 -0.0043 

Food Calories 0.0007 0.0187 0.0104 

Workout Calories 0.0031 -0.0080 0.0017 

Workout Time -0.0251 0.0261 0.0072 

 

Prediction Accuracy Evaluation  

We compare our model with the linear dynamic system model without switching states, denoted 

as SSMO [18]. Unlike our model, this model does not consider the potential heterogeneous 

dynamic changes in daily behavior data, and models each individual’s dynamics with a different 

model instead of adopting a population model. 

We benchmark the two models using both the L-1 norm absolute difference error (ABS) and 

the Residual Mean Squared Error (RMSE) in conducting one-step ahead prediction of future BMI 

trajectory. Our tests show that the SAR population model performs significantly better than SSMO 

as shown in Figure 10 and Table 5. 

Table 5: Prediction accuracy comparison 
 SSMO SAR 

ABS 0.22353 ± 0.28732 0.024125 ± 0.011585 

RMSE 0.40324 ± 0.61404 0.032114 ± 0.016565 
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Figure 10. Prediction trajectory comparison  
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CHAPTER VI 

INTERVENTION POLICY GENERATION USING  

GAUSSIAN PROCESS REINFORCEMENT LEARNING 

 

Introduction 

Using the learned model discussed in previous chapters, we propose an intervention framework 

that gives daily activity suggestions to control and specify user BMI at a desired level. To 

formulate this, a Reinforcement Learning (RL) method was adopted using Gaussian Processes 

(GP) to generalize the RL framework for continuous observation states and action variables. An 

advantage of Reinforcement Learning is that it does not require a detailed description of the 

underlying health dynamics [19]. Because of this, the method can be adopted to any model 

formulation such as the SAR population model described in previous chapters. On the other hand, 

non-parametric models such as Gaussian Processes eliminates the problem of model bias, making 

them a powerful tool for adaptive control [20].  

Reinforcement Learning (RL) 

Solving a RL problem consists of iteratively learning a task from interactions [19]. During 

learning, an agent interacts with the target system by taking an action 𝐮𝑡 , a combination of inputs 

that include variables such as calories to burn and calories to consume. The system then evolves 

from the state 𝑥𝑡 to 𝑥𝑡+1, representing change in BMI. Assuming the SAR model formulation, the 

latent health state 𝑠𝑡 also has a transition probability according to the underlying health dynamics.  

The agent receives a numerical signal 𝑟𝑡  called the reward which provides a measure of how good 

the action taken at 𝑥𝑡 was. This reward function can be defined as a Gaussian curve centered at the 

desired BMI level. 
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The objective of this method is to learn the optimal policy, 𝛑∗, corresponding to the optimal 

intervention plan to set the user’s BMI at the desired level. With this, the value function 𝑉𝛑(𝑥) 

can be defined as the expected cumulative reward. As BMI regulation is a continuous task without 

a terminating state, a discounted sum of future rewards is used to define the expected state-value 

function as follows: 

𝑉𝛑(𝑥) = E𝛑[𝑅𝑡|𝑥𝑡 = 𝑥] = E𝛑 [∑𝛾𝑘𝑟𝑡+𝑘+1

𝑁

𝑘

|𝑥𝑡 = 𝑥]      (27) 

Here, 𝛾 ∈ (0,1] represents the discount factor while 𝑁 is the number of simulated transitions of 

the system. Thus, the optimal state-value function is defined as follows: 

𝑉∗(𝑥𝑡) = max
𝐮
{ 𝑟𝑡 +𝛾E𝑥𝑡+1[𝑉

∗(𝑥𝑡+1)|𝑥𝑡, 𝐮𝑡]     (28) 

The state-action value function is defined by: 

𝑄∗(𝑥𝑡 , 𝐮𝑡) = 𝑟𝑡 + 𝛾E𝑥𝑡+1[𝑉
∗(𝑥𝑡+1)|𝑥𝑡 ,𝐮𝑡]     (29) 

With the 𝑄∗ obtained, the optimal policy can be obtained directly as 𝛑∗(𝑥𝑡) = argmax
𝐮
𝑄∗(𝑥, 𝐮).  

In our problem, the states and actions are both continuously valued quantities. Thus, a function 

approximation technique is required for value function approximation. Gaussian process models 

are a powerful nonparametric method for generalizing reinforcement learning algorithms to 

continuous spaces. 

Gaussian Process (GP) 

A Gaussian Process is a generalization of a Gaussian probability distribution where the 

distribution is over functions instead of assuming a model with a given structure. To introduce this 

model, let 𝐗: {𝐱𝑖 ∈ ℝ
𝑎|𝑖 = 1,2,… , 𝑛} be the supporting input points while 𝐘: {𝐲𝑖 ∈ ℝ

𝑏|𝑖 =

1,2,… , 𝑛} be the vector of corresponding output observations, while 𝑛 is the number of 

observations. In this model, we assume that there is a functional relationship between inputs X and 
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outputs 𝐘 such that 𝐲𝑖 = ℎ(𝐱𝑖) + 𝜀, 𝜀~𝑁(0,𝜎𝜀
2). We can describe the inference of the function ℎ 

by the posterior probability: 

𝑝(ℎ|𝐗,𝐘) =
𝑝(𝐘|ℎ,𝐗)𝑝(ℎ)

𝑝(𝐘|𝐗)
     (30) 

Similar to a Gaussian distribution which can be represented by a mean vector and a covariance 

matrix, a GP can be modeled by a mean function and a covariance function as follows: 

𝒎ℎ = E[ℎ(𝐱𝑡)] = 𝐶𝑜𝑣(𝐱𝑡 ,𝐗) + (𝐊 +𝜎𝜀
2𝐈)−1𝐘     (31𝑎) 

𝐶𝑜𝑣ℎ = Var[ℎ(𝐱𝑡)] = 𝐶𝑜𝑣(𝐱𝑡 , 𝐱𝑡) + 𝐶𝑜𝑣(𝐱𝑡 , 𝐗)(𝐊 + 𝜎𝜀
2𝐈)−1𝐶𝑜𝑣(𝐗,𝐱𝑡)     (31𝑏) 

Here, 𝐊 is the kernel matrix with 𝐊𝑖𝑗 = 𝐶𝑜𝑣(𝐱𝑡
𝑖 ,𝐱𝑡

𝑗)  ∀ 𝐱𝑡 ∈ 𝐗. A common covariance function 

that we have adopted in our method is the squared exponential, denoted as follows: 

𝐶𝑜𝑣𝑆𝐸(𝐱𝑡
𝑖 ,𝐱𝑡

𝑗) = 𝜉2 exp [−
1

2
(𝐱𝑡

𝑖 − 𝐱𝑡
𝑗)
T
𝚲(𝐱𝑡

𝑖 −𝐱𝑡
𝑗)]     (32) 

The parameters 𝜉 and 𝚲 are collected in a hyperparameter vector denoted by 𝝍. The log-evidence 

is given as follows: 

𝐿 = log 𝑝(𝐘|𝐗,𝝍) = ∫𝑝(𝐘, ℎ(𝐗), 𝐗, 𝝍)𝑝(ℎ(𝐗)|𝐗,𝝍)𝑑ℎ 

= −
1

2
𝐘T(𝐊+ 𝜎𝜀

2𝐈)−1𝐘−
1

2
log|(𝐊 + 𝜎𝜀

2𝐈)| −
𝑎

2
log 2𝜋      (33) 

Maximizing this quantity yields a functional model ℎ that is nonparametric, rewards data and 

simplicity of the fitted model. 

GP Modeling of the Value Function 

To model the value function using a Gaussian process, the training targets can be generated by 

computing a discrete set of points 𝑉(𝑥𝑡) ∀𝑡 ∈ {1, … , 𝜏}. On the other hand, the training inputs are 

𝑥𝑡 ∀𝑡 ∈ {1, … , 𝜏}. Similarly, the state-action value function 𝑄(𝑥𝑡, 𝐮𝑡) can be modeled by 

computing the points 𝑄(𝑥𝑡 ,𝐮𝑡) ∀𝑡 ∈ {1, …, 𝜏} with the training inputs 𝑥𝑡, 𝐮𝑡  ∀𝑡 ∈ {1,… , 𝜏}. These 
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steps produce a GP approximation of the value function and the state-action value function, 

denoted by 𝑉(∙)~𝐺𝑃𝑣(𝒎𝑣, 𝐶𝑜𝑣𝑣) and 𝑄(∙,∙)~𝐺𝑃𝑞(𝒎𝑞 ,𝐶𝑜𝑣𝑞) respectively. 

Using these values, the optimal action policy is given by the maximum of the mean function of 

𝐺𝑃𝑞 . This is obtained by solving the following optimization problem: 

𝛑∗(𝑥𝑡) = argmax
𝐮
𝑄∗(𝑥𝑡 , 𝐮) = argmax

𝐮
𝑚𝑞(𝐮)     (34) 

Noting the potential non-convexity of this optimization problem, we utilize a simulated annealing 

approach in obtaining a global maximum [21]. The entire Gaussian Process Reinforcement 

Learning (RLGP) procedure is described in Algorithm 3. 

Algorithm 3 Reinforcement Learning Gaussian Process 

Inputs: 

Model Parameters: 𝑥0,𝜃 
RL Parameters: 𝑟(∙), 𝜏, 𝛾, 𝜀, 𝑁 

𝑘 ← 0 
Randomly initialize 𝛑0 
While  ‖𝐿𝑘+1 −𝐿𝑘‖ > 𝜀 

𝑘 ← 𝑘 + 1 
Simulate 𝜏 transitions using the model 𝜃, applying 𝐮𝑡   ∀𝑡 ∈ {1, … , 𝜏} from 𝛑𝑘−1 
{𝑟𝑡}𝑡=1

𝑡=𝜏 ← {𝑟(𝑥𝑡)}𝑡=1
𝑡=𝜏 

Estimate 𝑉(𝑥𝑡)   ∀𝑡 ∈ {1, …, 𝜏} by (27) 
Approximate 𝑉(∙)~𝐺𝑃𝑣 with 𝑉(𝑥𝑡) and 𝑥𝑡 ∀𝑡 ∈ {1,… , 𝜏} 
For ∀𝑖 ∈ {1, … , 𝜏} 

For ∀𝑛 ∈ {1, … ,𝑁} 

For each 𝑗 ∈ {1, … , 𝑈}, randomly sample 𝑢𝑡
𝑗
 from 𝑡 ∈ {1, … , 𝜏} forming 𝐮𝑛 

𝑄(𝑥𝑖 , 𝐮𝑛) =  𝑟(𝑥𝑖 ,𝐮𝑛) + 𝛾𝐸[𝑉(𝑥𝑖
′)|𝑥𝑖, 𝐮𝑛, 𝜃, 𝐺𝑃𝑣]  

End 
𝑄(𝑥𝑖 ,∙)~𝐺𝑃𝑞 with 𝑄(𝑥𝑖 ,𝐮𝑛) and 𝐮𝑛 ∀𝑛 ∈ {1, … ,𝑁} 

𝝅∗(𝑥𝑖) = argmax
𝐮

𝑄∗(𝑥𝑖, 𝐮) = argmax
𝐮

𝑚𝑞(𝐮)  

End 

𝛑∗(X) = {𝝅∗(𝑥𝑖)}   ∀𝑖 ∈ {1,… , 𝜏}   
Approximate 𝛑𝑘(∙)~𝐺𝑃𝝅𝑘 with 𝛑∗(X) and 𝑥𝑖 ∀𝑖 ∈ {1, … , 𝜏} 

Calculate 𝐿𝑘 by (33)  

End 

Return 𝛑∗ = 𝛑𝑘~𝐺𝑃𝝅𝑘 
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CHAPTER VII 

CONCLUSION 

 

We have implemented and carried out comprehensive evaluation of population Switching-state 

Auto-Regressive (SAR) models together with missing value imputation and outlier detection on 

real-world daily behavioral data. Different from the existing common procedure of imputation and 

outlier detection as separated data preprocessing step when analyzing behavioral sensor data, we 

handle missing data and outliers by simultaneously considering them while conducting model 

identification. We have conducted model selection to obtain the most accurate and parsimonious 

representation of the given data set and have shown that the identified model makes intuitive sense. 

From our evaluation experiments, conducting missing value imputation and outlier detection 

while simultaneously identifying the model significantly improves model accuracy when 

compared with methods that firstly preprocess the data. In addition, we show that considering 

population-wide effects and dynamic heterogeneity significantly improves prediction performance 

on our data set. 

As the dynamics of human behavior data has been largely an uncharted research territory, 

characterizing the science of these unknown dynamics demands more in-depth study of the 

principles and complex relationships among the health outcomes and their control variables. By 

understanding these relationships, we plan to derive an automatic health intervention framework 

using the learned daily behavioral health model. Ultimately, integration of these highly analytic 

models in real-world clinical implementation demands collaboration with systems engineering and 

health implementation science to ensure optimal patient treatment.  
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