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ABSTRACT 
 

The application of oil-free-integrated motor-compressors 
has become increasingly popular in recent years.  One of the 
significant features of this class of machinery is compactness, 
providing space-savings compared to traditional-oil-lubricated 
compressors with associated gearboxes and lubrication systems. 

The integration of a turbo separator with such a 
compressor has resulted in the creation of a new class of 
turbomachinery promising even greater system compactness.  
This new machine type provides further size reduction benefits 
through the elimination of large static separation vessels often 
required on traditional compressor trains. 

A compressor manufacturer has successfully developed a 
centrifugal compressor with integrated turbo separator from 
design, development, and prototype testing on a demonstration 
rig through to manufacture, testing, and shipment of a 
production unit.  This paper focuses on the details and results of 
the testing performed at the manufacturer’s factory that 
confirmed the soundness and acceptability of the design.  
Rigorous testing of the demonstration rig has confirmed 
acceptable rotordynamic performance including stable 
operation over a wide range of operating pressures and liquid 
injection rates.  The rotordynamic performance of this 
machinery type has been demonstrated to be virtually 
insensitive to liquid injection. 
 
INTRODUCTION 
 

Compact compression systems are playing an increasingly 
important role in the oil and gas industry as the compactness 
and relatively low weight can not only provide a significant 
cost savings for such applications as offshore oil and gas 
production but can also be an enabling feature for many 
projects where the compression system for an application must 
fit within a specific envelope which defines the remaining 
available space in a brownfield development.  Oil-free 
integrated motor-compressors are a class of turbomachinery 
offering reliable operation with a compact footprint.  The use of 
active magnetic bearings and a high speed motor close-coupled 
to a centrifugal compressor provides the opportunity to do away 
with traditional dry gas seals, the lube oil system (and all oil), 
and a speed increaser.  This design approach results in a very 
compact, power-dense compression solution. 

A turbo separator is another design feature that can be 
closely integrated with the centrifugal compressor to further 
reduce the traditional footprint required for a compression 

system.  The application of centrifugal compression systems 
traditionally requires a large static separator vessel to be located 
upstream of the compressor to remove liquids upstream of the 
compressor.  The weight and footprint of such traditional static 
separators can be quite large (especially for high pressure 
applications).  Integrating a turbo separator into the compressor 
enables a further significant reduction in size and weight for the 
overall compression system by eliminating the need for the 
upstream scrubber. 

 Turbo separation is a relatively new technology.  Like 
cyclonic separation, a turbo separator uses centrifugal force to 
augment density-based gas-liquid separation, but here the flow 
passages are rotating along with the fluids.  This approach has 
the potential to greatly reduce near wall shear forces and thus 
minimize liquid re-entrainment, even at much higher fluid 
velocities.  Commercial development of rotating centrifugal 
separator turbines for oil and gas applications has been 
pioneered by this OEM. Ross et al. (2001) and Rawlins and 
Ross (2001) published descriptions of earlier designs and field 
test results.  Figure 1 is a representative drawing of a rotating 
centrifugal separator turbine.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The development and testing of a self-powered version, the 
so-called IRIS®, is reported by Rawlins and Ting (2002).  
Figure 2 shows a typical field installation of an IRIS® rotating 
centrifugal separator. 

 
Figure 1. Two Phase Rotary Separator Turbine Layout 

after Oxley et al. (2003) 
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 More recent developments of this technology are 

reported in Chochua and Maier (2007), Chochua et al. (2008), 
and Maier et al (2010). 

 The culmination of this effort is an advanced turbo 
separator suitable for integration with compact centrifugal 
compressors.  Figure 3 shows a schematic of the turbo separator 
incorporated into a multistage centrifugal compressor. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
The advantage in terms of compactness is clearly shown in 

Figure 4, a graph of the separation efficiency versus Souders-
Brown factor for various separation technologies.  
 

 As shown in equation (1), this factor k is proportional to 
the characteristic through velocity of the separator UG.  
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 It can be seen that the turbo separator maintains good 
separation efficiency at velocities that are orders of magnitude 
greater than traditional static separation technologies.  This 

higher through velocity translates directly into much more 
compact sizes for the same application.    

 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
An extensive amount of research and field troubleshooting 

has been directed at understanding, predicting, and eliminating 
self-excited vibrations associated with fluids in 
turbomachinery.  Muszyńska (2005) provides a historical 
background for research on oil whirl and whip phenomena in 
journal bearings going back to Haag (1946) and Hull (1958).  
Ehrich (1967) and Wolf (1968) provided some of the early 
work investigating the effect of trapped fluid in turbomachinery 
rotors.  Previous work by Brenne et al (2005) also documented 
the rotordynamic effect of operating a centrifugal compressor 
under wet gas conditions.  It was noted that at high liquid flow 
rates some subsynchronous vibration components appeared in 
the vibration spectrum that were attributed to potential 
instability.    

Designing a turbomachine to separate liquids from gases 
using a turbo separator must be undertaken with consideration 
to these potential concerns regarding self-excited vibrations.  
This turbomachine has a unique design that has been employed 
with features that help to mitigate the potential for destabilizing 
liquid-rotor interaction.  This paper addresses aspects of the 
design employed to address rotordynamic concerns associated 
with handling fluids in a separator / compressor and documents 
the successful testing of the demonstration rig that helped 
validate the successful design. 
 
FLUID-INDUCED INSTABILITIES – KEY 
PARAMETERS 
 

Fluid-induced instabilities occur in turbomachines as a 
result of the forces associated with the fluid adjacent to the 
rotor having an average velocity in the circumferential direction 
that is different from the speed of the rotor surface.  For a fluid 
film journal bearing, the rotating shaft imparts energy to the 
lubricating oil which can lead to a strong circumferential flow 
as described by Muszyńska (2005).  The strength of this 
circumferential flow directly impacts the tendency of the flow 
to contribute to instability.  Thus by minimizing the strength of 
the circumferential flow by using non-cylindrical geometry 
(such as a multi-lobe sleeve bearing or a tilt-pad bearing) it is 
possible to help prevent instability.   

 
 
Figure 2:  IRIS® Rotary Separator  

 
Figure 3:  Schematic of Integrated Rotating Centrifugal 

Separator-Compressor. 

  
Figure 4. Comparison of Separation Technologies  
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This idea of reducing the strength of the circumferential 
flow also translates to fluid acting on the inside of a rotor.  
Research by Preussner and Kollmann (1988) studied the effect 
of circumferential segmentation of a liquid filled cavity.   
Figure 5 highlights the improvement in rotor stability afforded 
by circumferential sectoring of the liquid filled space on a rotor 
system. In the figure  is the non-dimensional rotational rotor 
speed given in equation (2). 
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The abscissa, b, of Fig. 5 is the ratio of the free liquid surface 
radius to the cavity outer radius.  As can be seen in this figure 
the lower unstable region associated with the non-sectored 
cylindrical cavity results in potential instability across the entire 
range of fluid film thicknesses on the inside of the cylinder.  By 
simply segmenting the cylinder (represented by the upper 
unstable regions) this significantly reduces the range of fluid 
film thicknesses that can result in instability.  This segmenting 
of the fluid containing rotor limits the ability of the fluid to 
whirl with a strong circumferential velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ehrich (1992) noted that adding drain holes to a cavity that 

might otherwise tend to trap fluids is one way to prevent classic 
trapped fluid instability.  He also noted that operating a rotor 
below its first bending mode is an additional means to prevent 
such instabilities.  Ehrich (1967) also derived an equation for 
the rotor asynchronous whirl frequency for a cylinder with 
trapped liquid shown in Equation (3) from which it can be seen 
that as the liquid mass ‘m’ approaches zero the whirl frequency 
equals the dry rotor’s natural frequency.  As the mass of the 
liquid increases, the asynchronous whirl frequency ‘Ω’ (the 
natural frequency of the combined rotor-fluid system) becomes 
a fraction of the dry rotor’s natural frequency.  Thus the liquid 
in the cylinder has a mass effect that affects the system natural 
frequencies.  
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SEPARATOR DESIGN 
 
In line with the findings of these studies on trapped liquids, 

several features were incorporated into the turbo separator 
design specifically to minimize rotordynamic effects.  These 
include monotonic sloping of the separator drum inner surface 
to ensure that liquid is driven to the liquid exit at the trailing 
edge of the drum, significant circumferential partitioning of the 
separator rotor to minimize the strength of circumferential 
liquid flow that could otherwise be destabilizing, limiting the 
rotor to subcritical operation, and designing the liquid collector 
to prevent pooling of liquids around the OD of the separator 
drum.  Figure 6 schematically shows the associated geometric 
features of the separator drum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DEMONSTRATION RIG 
 
 The demonstration rig hardware shown in Figure 7 utilizes 
a beam-style rotor configuration with the casing designed to 
incorporate a liquid drain.  The rotor includes the gas/liquid 
separator incorporated within a single stage of compression.  
The rotor is supported on tilt-pad bearings and has a critical 
speed associated with the first forward bending mode of 
approximately 18,000 rpm (above the maximum test operating 
speed of 13,500 rpm). 
 

 
Figure 7:  Demonstration Rig  

 
 

Figure 5:  Theoretical Effect of Segmentation of Liquid Filled 
Cavity on Rotor Stability Zones (after Preussner and Kollmann 

(1988)) 

 

b 

 
 

Figure 6:  Schematic of Separator Drum Features 
Intended to Limit Rotordynamic Impact.
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 The demonstration rig setup also included a Magnetic 
Bearing Exciter (MBE) to provide asynchronous perturbations 
of the rotor at various operating conditions.  Exciter testing was 
conducted to determine the logarithmic decrement (log dec) of 
the rotor-bearing system.  The MBE was used to apply forces to 
the rotor to allow response measurement for the purpose of 
identifying the log dec of the rotor during operation, using the 
same concept as previously done at the authors’ company 
(Moore, et al. (2002) , Moore and Soulas (2003)) and as further 
described in the next section.  The MBE is mounted on one end 
of the compressor shaft (see Figures 8 and 9). The exciter is 
driven by an open-loop control system to introduce forces of 
varying frequency (asynchronous excitation).  The outcome is 
an assessment of the rotordynamic stability at various operating 
conditions with increasing rates of liquid flow to the 
separator/compressor.  This is accomplished via the log dec 
measurement of the first forward whirling mode. 

 

 
Figure 8:  Solid Model of the Magnetic Bearing Exciter 

 

 
Figure 9:  Magnetic Bearing Used for the Excitation 

 
CALCULATING THE LOGARITHMIC DECREMENT 
 

A rotor can be modeled using techniques resulting in the 
general linear system of differential equations (Equation (4)), 
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 For the homogeneous solution (free vibration), a harmonic 
solution is assumed as Equation (5), 
 

teXtX )(                          (5)  

 The eigenvalue may be solved for and takes the form of 
Equation (6), 
 

  idn                     (6)     

 
 The real part of the eigenvalue determines the level of 
damping or stability, where ζ is the damping ratio. The 
logarithmic decrement (δ) is another common way to state the 
level of damping in a system and is related to the damping ratio 
by Equation (7), 
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 Notice the log dec is not defined for damping ratios (ζ) 
equal to and greater than one. 
 The log dec can be measured using the phase slope method 

to identify the point of maximum phase slope ‘ maxP ’.  The 

amplification factor ‘AF’ is calculated using the maximum 
phase slope and the frequency ‘n’ associated of the maximum 
phase slope as shown in Equation (8).  The log dec ‘’ is 
related to the amplification factor as shown in Equation (9). 
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DEMONSTRATION RIG TEST RESULTS 

 
Rig testing included a series of tests with varying inlet gas 

pressures, operating speeds, gas flow rates, and liquid flow 
rates.  The measured vibration of the compressor was stable 
during all testing.  Figure 10 shows a spectrum plot of the shaft 
displacement in a dry operating condition.  Figure 11 shows a 
corresponding spectrum plot while a liquid flow rate of 214.2 
gpm (liquid/gas mass ratio (LGMR) of 0.39) was being 
supplied to the inlet of the machine.  Note that the overall 
vibration amplitudes are very low and that spectrum shows only 
a small 1X component (suggesting stable operation with a very 
small amount of residual unbalance).  No other significant 
frequency content is seen. 
 

Exciter 

Separator / 
Compressor 

Rotor 
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Figure 10:  Vibration Spectrum of Demonstration Rig with No 

Liquid Injection, Inlet Pressure of 550 psi, and Operating Speed 
of 12,000 rpm 

 
 

 
 

Figure 11:  Vibration Spectrum of Demonstration Rig with 
214.2 gpm (LGMR = 0.39) of Liquid Injection, Inlet Pressure 

of 550 psi, and Operating Speed of 12,000 rpm 
 
The magnetic bearing exciter was used to collect the 

vibration response data associated with an asynchronous 
excitation imposed on the non-drive end of the compressor 
shaft via the magnetic bearing exciter.  A sample plot showing 
the asynchronous response of the drive end of the 
separator/compressor rig shaft with an excitation imposed using 
the exciter located on the non-drive end is shown in Figure 12.  
The log decrement of the first forward bending mode was 
measured using the phase slope technique for a variety of test 
conditions with the goal of determining the effect of increasing 
rates of liquid flow on the measured log dec values providing 
an indication of the effect of the liquid injection on the stability 
of the unit. 
 

 
 

Figure 12:  MBE Asynchronous Sweep at Pinlet  = 550 psi: 
Vibration Amplitude & Phase Angle vs. Excitation Frequency 

(kcpm) 
 

Figure 13 shows the variation of log dec values for a 
variety of test points at a compressor running speed of 12,000 
rpm with the liquid/gas mass ratio plotted on the x axis.  The 
trends for measured log dec variation with increasing liquid/gas 
mass ratio showed little change or a slight increase suggesting a 
neutral or slightly positive impact on stability associated with 
increasing liquid injection. 
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Figure 13:  Measured Log Decrement Values for the 

Demonstration Rig Operating at 12,000 rpm 
 
Figure 14 shows a similar trend with a log dec values that 

change little or increase slightly with increasing liquid/gas mass 
ratio for tests with the demonstration rig operating at 550 psi 
inlet pressure and 12,000 rpm and 13,500 rpm operating 
speeds. 
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Figure 14:  Measured Log Decrement Values for the 

Demonstration Rig Operating at 13,500 rpm 
 
A test was also performed with a sudden increase in liquid 

flow rate to determine the sensitivity of the 
separator/compressor vibrations to a sudden change in the 
liquid flow rate.  Figure 15 provides the results of this test 
demonstrating steady vibration as the liquid flow rate was 
increased rapidly from 0 gpm to 163 gpm and then suddenly 
decreased back to 0 gpm. 
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Figure 15:  Vibration Trends for Test with Sudden Liquid 
Rate Increase 

 
CONCLUSIONS 
 

Testing has been successfully performed on a 
demonstration rig that validates the rotordynamic acceptability 
of the separator / compressor design operating in both dry and 
wet conditions. 
 
NOMENCLATURE 
 
a  = Liquid cavity outer radius 
AF  = Amplification Factor 
b  = Non-dimensional radius of liquid free surface 
c  = Bending rigidity of shaft 
[C]  = Damping matrix 
i  = (-1) 
F(t)  = Force vector 
K  =Souders-Brown factor 

[K]  = Stiffness matrix 
m  = Mass of trapped liquid inside a rotor 
M  = Mass of rotor 
[M]  = Mass matrix 

maxP  = Maximum phase slope 

Pinlet  = Inlet pressure 
t  = Time 
UG  =Gas superficial velocity 
X  = Displacement vector 

X   = Velocity vector 

X   = Acceleration vector 
  = Non-dimensional rotational rotor speed 
  = Logarithmic decrement 
         = Complex eigenvalue 
ρL  = Liquid density 
ρG  = Gas density 
  = Angular velocity of rotor 
d  = Damped natural frequency (imaginary part of 

complex eigenvalue) 
n  = Undamped natural frequency 
  = Asynchronous whirl frequency 
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