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ABSTRACT 

Understanding the lateral rotordynamic behavior is critical 
in determining the reliability/operability of rotating equipment.  
Whether examining a centrifugal pump or compressor, steam or 
gas turbine, motor or generator, rotating machinery share the 
same need to accurately predict and measure dynamic behavior.  
Industrial specifications determining fit for purpose rely on the 
accuracy of rotordynamic predictions where direct 
measurement is impractical or otherwise impossible in an 
industrial setting.  Testing to confirm rotordynamic prediction 
and behavior provides both the purchaser and vendor the 
confidence that the design will meet project expectations. 

Rotordynamic shop testing has several options available to 
the project during acceptance tests at the vendor’s shop. These 
options include mechanical run, string and full load/Type 1 
testing as well as verification testing to validate unbalance 
response and stability predictions. Such testing has numerous 
advantages; the most important being the avoidance of 
production disruptions involved with testing at the job site.  
Each test option has associated costs as well as limitations as to 
what lateral vibration characteristics are revealed.  
Understanding these factors is vital to efficiently mitigate the 
risks associated with the purchased equipment. 

Applying best practices and an understanding of the 
industrial (API) test requirements are needed to derive the 
maximum benefit of each test option.  The best practices not 
only involve the test procedure but also the associated 
analytical methods used to post process the measurement 
information.  Whether performing a simple mechanical run test 
or more complex stability verification during ASME Type I 
testing, ensuring that a logical, repeatable and proven 
methodology is followed produces reliable evidence to confirm 
the rotordynamic model and lateral vibration performance.  The 
rationale behind the API test requirements provides an 
understanding of why that test is being performed and its 
correct application to the dynamic behavior. 
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Test options can be separated into two categories; tests that 
reveal portions of the dynamic behavior of the equipment to 
specific operating conditions and those used to verify the 
analytical predictions of that behavior.  API mechanical, string 
and Type I (or full load) tests reveal the rotordynamic behavior 
of the equipment to a given set of conditions.  These are used 
specifically to determine acceptability of the design.  
Unbalance and stability verification testing is used to confirm 
(or provide confidence in) the rotordynamic model.  
Confidence in the model permits extrapolation of the design 
(vendor) and operation (purchaser) beyond the machine’s as-
built and specific shop test conditions.  

INTRODUCTION 

The first task of an annular seal is the restriction of leakage 
flowrate between a rotating shaft and a stationary housing. As it 
turns out, annular gas seals can also have a significant impact 
on dynamic characteristics of compressors and turbines. 
Demands on turbomachinery continue to push designs beyond 
experience limits in terms of speed, power, size, pressure 
development and flow rate all the while demanding higher 
reliability and operability.  To meet the performance objectives 
of the application, almost absolute knowledge of the behavior 
of the machine is necessary.  To aide in this understanding, 
advanced analytical methods have been developed in parallel 
with the increases in computational power.  Whether predicting 
blade flutter due to impingement flow, reaction of a machinery 
train to alternating torque or rub potential due to sudden 
imbalance, current tools sets allow designers to study detailed 
aspects of machinery behavior like never before.   

Shop acceptance testing has long been used as the “final” 
check of the turbomachinery design and is required for all 
special purpose equipment.  With the advancement of 
computational methods, failure rates during testing have been 
greatly reduced.  However, experience has taught us analytical 
methods alone are insufficient to guarantee the “right the first 
time” philosophy that many reliability systems employ.  
Whether used to provide data to baseline prototype equipment, 
to benchmark extensions of current experience limits, or for 
verification of proven practices, testing remains an integral part 
of all reliability systems. 

Understanding the dynamic behavior is critical in 
determining the reliability/operability of rotating equipment.  
Whether designing a pump, compressor, turbine, motor or 
generator, all rotating machinery share the same need to 
accurately predict and measure dynamic behavior.  Literature is 
swamped with failures that resulted from both inadequate 
design and testing methodologies.  While the potential for 
failure originates at the design stage, testing represents the final 
step to identify that potential.  The importance of efficiently 
employing both cannot be understated [1]. 

Turbomachinery is dominated by two classes of dynamic 
behavior; rotordynamics and fluid dynamics.  As their names 
imply, each focuses on a specific dynamic behavior; 
rotordynamics on the rotating system’s vibration and fluid 
dynamics on the mechanical interaction with the working fluid.  
As our depth of understanding increases, the more interrelated 
these behaviors become.  Decisions made in the design of one 

can impact the other with sometimes disastrous effects.  
Nowhere is this more evident than centrifugal equipment, 
especially compression.   For this reason, this tutorial will focus 
on testing the rotordynamic behavior of centrifugal 
compressors.  However, most of the principles and practices are 
applicable across all types of turbomachinery. 

Rotordynamic behavior testing involves both direct 
measurement and inference.  Direct measurement of the 
vibration is typically made at the journal locations.  Internal 
vibration levels at other critical locations can only be inferred 
from these measurements using the rotordynamic predictions.  
Thus, industrial specifications determining fit for purpose rely 
on the accuracy of rotordynamic predictions where direct 
measurement is impractical or otherwise impossible in an 
industrial setting.  Testing to confirm rotordynamic prediction 
and behavior provides both the purchaser and vendor the 
confidence that the design will meet project expectations. 

Rotordynamic shop testing has several options available to 
the project during acceptance tests at the vendor’s shop. These 
options include tests to demonstrate operating behavior at a 
specific condition (mechanical run, string and full load/Type 1 
testing) and verification testing to validate unbalance response 
and stability predictions. Such testing has numerous 
advantages; the most important being the avoidance of 
production disruptions at the job site.  Each test option has 
associated costs as well as limitations as to what lateral 
vibration characteristics are revealed.  Understanding these 
factors is vital to efficiently mitigate the risks associated with 
the purchased equipment. 

Application of best practices and an understanding of the 
industrial (API) test requirements are needed to derive the 
maximum benefit of each test option.  The best practice not 
only involves the test procedure but also the associated 
analytical methods used to post process the measurement 
information.  Whether performing a simple mechanical run test 
or more complex stability verification during ASME Type I 
testing, ensuring that a logical, repeatable and proven 
methodology is followed produces reliable evidence to confirm 
the rotordynamic model and lateral vibration performance.   

Test options can be separated into two categories; tests that 
reveal portions of the dynamic behavior of the equipment to 
specific operating conditions (Vibration Demonstration Tests) 
and those used to verify the analytical predictions of that 
behavior (Design Verification Tests).  API mechanical run, 
string and Type I (or full load/full pressure) tests reveal the 
rotordynamic behavior of the equipment for a given set of 
conditions.  These are used specifically to determine 
acceptability of the design in a pass/fail mode.  Unbalance 
response and stability verification testing is used to confirm (or 
provide confidence in) the rotordynamic model and analysis.  
Confidence in the model permits extrapolation of the design 
(vendor) and operation (purchaser) beyond the machine’s as-
built and specific shop test conditions.  

The tutorial will cover the following aspects of 
rotordynamic testing: 

 Decision to test: Why and on What Basis? 
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The user must also consider the safety, health and 
environmental impact of possible failures that can be attributed 
to the machinery in question.  The impacts can result in the 
release of gas from component failure due to high vibrations, 
failure to meet regulatory requirements due to unplanned 
outage or injury due to parts release during failure.  The risks of 
each can be determined through a failure mode analysis [3] that 
incorporates the rotordynamic contributions to the identified 
failure modes.   

Experience plays an important role in determining the 
extent of testing to perform.  Experience in this case relates to 
both the vendor and user.  Obviously, prototype machinery or 
equipment that extends the experience limits of the vendor 
should be tested thoroughly.  What may be overlooked is the 
experience of the user with that equipment.  First application of 
technology within a user company may benefit from additional 
testing at the vendor’s shop.  The testing can be used to better 
understand the dynamics and what conditions or operating 
nuances may affect the rotordynamic behavior.  Finally, 
prototype components within the machinery may require 
additional component testing to determine their impact on the 
rotordynamic behavior of the machinery.  

Finally, the results of the rotordynamics analysis should be 
used to weigh the decision to test and which test to select.  
Machines shown sensitive to destabilizing forces or those 
predicted to have low stability levels may benefit from stability 
verification tests.  Similarly, a rotor with high amplification 
factors may influence the decision to perform unbalance 
response verification testing.  Verification testing, as noted 
earlier, is intended to prove the accuracy of the predictive tools 
used to model the rotor behavior and thus assess the 
acceptability of the design.  The use of a proven rotordynamic 
analysis is an effective and efficient mitigation strategy towards 
reducing risk.  

ROTORDYNAMIC TESTING 

Options 

Fundamentally, there are two types of testing options 
available for lateral rotordynamic assessment.  The first type, 
referred to as vibration demonstration tests, demonstrates the 
behavior of the as-built machine and/or train for a specific set 
of operating conditions.  Generally, only the site specific 
instrumentation is used to measure lateral vibration behavior.  
The tests do not address the accuracy of the model or tools used 
to predict the rotordynamic behavior, nor do they attempt to 
estimate or determine the robustness of the design.  Those that 
fall into this category are: 

 Mechanical Run – an example is the API required 
mechanical test [5] 

 String – API 617 refers to this as a complete unit test 
[6] 

 Full load/Full pressure – Referred to as a Type I test 
by ASME [7] 

Many important aspects of the rotordynamic behavior 
cannot be practically measured (i.e. internal vibration levels, 
separation margin to modes above operating speed) nor can 

every possible operating condition or combination of assembly 
/machining tolerances be tested.  To fully understand the 
acceptability of the design and the rotordynamic behavior, we 
must rely on the accuracy of the rotordynamic analysis.   
Consequently, tests to determine the accuracy of those 
predictions were developed.  These additional tests were 
developed to provide more than a pass/fail test, which is 
essentially what the vibration demonstration tests are.  They 
were implemented to determine the robustness of the design.  
This is particularly useful when operating conditions are widely 
variable or when design experience limits are exceeded.  The 
second type of testing option is referred to as design 
verification tests with the two most prevalent being: 

 Unbalance response – This test would include the 
more invasive testing required by API [8] 

 Stability – Not currently specified by API standards. 

Verification testing also has the options of where these tests 
can be performed.  In either case, the tests may be performed in 
a high speed balance bunker, during the mechanical test or 
during the full load testing.  Each option adds additional 
considerations in what can be measured, dynamic effects 
included in the test and what portion of the dynamic behavior is 
analyzed. 

Test Preparation 

Following the decision to perform a rotordynamic test, the 
user should decide which specifications to apply to the test.  
The specification should describe the objectives and 
requirements of the test.  For several of the test options 
described above, API standards have described a specific test 
procedure to be followed.  The API standard details the 
procedure, objective and requirements for the test.  For the 
more specialized testing, the user will need to develop their 
own test specification.  This can be done with the assistance of 
the vendor or by consulting industry specialists. 

Test Objectives  

The objectives of the tests performed should be discussed at 
the initial stages of the project.  Agreement on the test 
objectives will assist in the determination of what equipment is 
needed, measurements to be taken, and conditions to be run.  
Generally speaking, the objectives of each test are listed below.  
Other specialty objectives can be added, but the ones listed 
below would form the basis for each test. 

Vibration Demonstration Tests 

Mechanical Run Test 

The mechanical run test as required by API is primarily a 
vibration level check.  Measured at the probes located at the 
journal location, vibration levels are checked against the 
specified limit for both overall and non-synchronous 
components.  General mechanical performance is also 
examined including bearing temperatures, close clearance 
rubbing and seal performance typically up to maximum 
continuous speed (MCS).  Supercritical behavior is examined 
by determination of the amplification factor and separation 
margin of typically the 1st critical speed.  (Obviously, the 
behavior of modes above MCS remains undetermined.) 
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String Test 

The string test is not much different than the mechanical 
test mentioned previously.  As the name implies, the string test 
is performed with all or a major portion of the machinery train 
connected (typically everything but the driver.)  The objectives 
of this test are also similar to the mechanical test of a single 
body in that vibration levels are checked against limits, 
mechanical performance is examined, and supercritical 
behavior is analyzed.  However, in this case, these are 
determined for the coupled train configuration.  The string test 
is run to measure the coupled body dynamic behavior (when 
rigid couplings are used in the train) or the coupling spacer 
dynamics (for couplings with unusually long or heavy spacer 
tubes.) 

Full Load / Full Pressure Test 

Full load / full pressure tests are rarely performed based on 
rotordynamic justifications only, mainly due to the costs 
involved.  However, the Type I test does permit vibration level 
checks at operating conditions, stall determination, impact of 
internal loading and deflections on dynamic behavior of 
individual components (seals and bearings) and a binary check 
for stability (yes or no).  Range testing is rarely done during the 
Type I test.  Typically gas properties are held constant, 
clearances are left at as-built values and alternate 
configurations are not considered.  Thus, while some aspects of 
rotordynamic behavior are tested, margins and robustness are 
left unchecked.  The machines undergoing these tests leave 
those factors to analytical studies whose accuracy may remain 
unchecked.  Keep in mind, to predict the stability (stable vs. 
unstable) of any machine is the first step in developing a good 
predictive tool.  However, it is not the only step.  As designs 
extend the operating or design experience, it becomes necessary 
to predict the stability threshold, separation margins and overall 
optimization of the design correctly, thus the need for 
verification testing. 

Design Verification Tests 

Unbalance Response 

The likely first attempt to publish a verification test in an 
industry standard was the unbalance response verification test 
published by API 617.  The objective was simply to verify the 
unbalance response prediction accuracy of the vendor’s 
rotordynamic analysis with regards to the machine’s unbalance 
sensitivity within the operating speed range and the location of 
the critical speeds (below trip speed.)  The verification test 
analyzes both the predictor tool and model employed.  A 
methodology was refined over several editions of API 617 
within the limitations of the mechanical shop test.  
Alternatively, performing this test in the balance bunker has 
gained acceptance with the increase in at-speed balancing of 
rotors and the freedom it permits in terms of weight placement 
and additional measurement points. 

Stability  

Several methods have been developed analogous to the API 
unbalance response verification test with the objective to verify 
the stability predictions of centrifugal compressors.  As with 
the unbalance response, the intent is to measure more than just 

“is the compressor stable” but “how stable is it.”  The 
measurements are then compared against the analytical 
predictions to determine accuracy.  Pettinato et al. [9] presented 
a methodology employing this test during mechanical and 
performance testing (as required by API 617).   

Test Information / Knowledge Gain 

To determine the extent of testing to perform, one needs to 
understand the information or knowledge gained of the 
rotordynamic behavior of the body or train.  While similar 
information can be obtained from several of the tests, the costs 
associated with each determine the overall efficiency of 
obtaining the necessary information to mitigate risks identified 
in the risk matrix.   As before, the tests are separated into 
vibration demonstration and verification testing.  Vibration 
demonstration testing confirms the machinery can meet project 
specifications for a given operating and as-built condition.  No 
attempt is made to confirm the accuracy of the analytical 
prediction beyond confirmation that the specification has been 
met.  Since the accuracy of the analytical prediction remains 
largely in question, inferred information from the analytical 
method should also be questioned. 

Vibration Demonstration tests 

Mechanical Run 

Mechanical testing provides information related to the 
critical speed location and some indication of that modes 
behavior.  The modal information is limited to only those 
modes located below the maximum test speed achieved (trip 
speed in most cases.)  Typically, this is only the 1st critical 
speed.  The modal behavior information is restricted to the 
amplification factor which is sketchy at best.  The amplification 
factor can be highly sensitive to the acceleration/deceleration 
rate and whose magnitude is not restricted by API.  The test 
also validates the balance procedure’s effectiveness in meeting 
the project vibration limit specification. 

For certain low risk applications, this amount of information 
is sufficient.  What isn’t tested however can be significant.  For 
example, subcritical motor applications (incorrectly termed stiff 
shaft) operate below the 1st critical.  This critical speed can 
have high amplification factors and can be damaging if the 
separation margin is lost.  Performing only a mechanical test 
will tell the user whether the mode is on or below the operating 
speed.  The amount of separation remains untested and can only 
be inferred from the unverified analytical predictions.  Thus, 
the impact of support stiffness loss on the location of the mode 
in the field (due to structural or bearing clearance changes) can 
have significant risk associated with it. 

String Test 

String testing will provide the same type of rotordynamic 
information as obtained with the mechanical testing but at the 
higher costs of assembling the entire (or high speed portion) of 
the train.  Information again limited to the critical speed 
location and some indication of the modal behavior.  Ignoring 
other reasons to perform string testing (e.g. fit checks for trains 
being sent to remote portions of the globe), rotordynamic 
justification for the test should be limited to the information 
supplied by the test, namely, dynamic behavior of the coupling 
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spacer(s) and rigid coupling effects on the dynamic behavior of 
individual bodies.  As noted in API 684 [10], a train lateral 
analysis should be requested for unusually long or heavy 
coupling spacers or when rigid couplings are used.  In this case, 
the correct boundary conditions at the shaft ends are obtained 
when the train is modeled (train in this case refers to the bodies 
on either side of the coupling(s) in question.)   

Testing of this train configuration should mimic the 
analytical model to verify the behavior in question.  With a 
rigid coupling, the rotordynamic behavior of the bodies rigidly 
coupled will be affected.  For unusually long or heavy coupling 
spacers, the dynamics of the spacer can only be accurately 
modeled/tested with the hubs attached to the shafts.   

Full Load / Full Pressure (FLFP) Test 

Type I tests provide a stable vs. unstable behavior 
indication of the rotor to specific test conditions.  The test also 
reveals the change in lateral behavior of the measured modes 
(typically the 1st critical speed as with the mechanical test) due 
to internal loading of the compressor and application of gas 
pressures and densities close to the design values at the seals.  
The latter introduces seal dynamics into the testing that is only 
achieved during the FLFP test.  This is important for both 
stability and synchronous behavior especially for machines 
incorporating hole pattern or honeycomb seals.  The presence 
of subsynchronous vibration due to phenomena such as stall, 
surge or whirl may also be revealed during the FLFP test. 

Design Verification Tests 

Unbalance Response 

The unbalance response verification test (URVT) provides a 
measurement of how well the analytical predictions match the 
vibration produced from a known unbalance.  This in turn adds 
confidence to the internal deflection, separation margin and 
unbalance sensitivity calculations made from that analysis.  On 
the shop floor, the unbalance weight addition is typically 
limited to the coupling.  Some turbines and overhung machines 
have the ability to add internal weights or weights to the 
overhung impeller.  Optionally, the test can be performed in the 
vendor’s balance bunker.  The bunker permits more freedom in 
terms of weight placement and measurement of shaft deflection 
at points other than the job’s proximity probe location (mid-
span, for example.)  Of course, the analytical model needs to 
reflect the setup in the bunker; bunker bearings if used and 
support stiffness of the bunker pedestals.  Since the intent is 
verify the accuracy of the analytical predictions, these 
differences in configuration should not affect reaching that 
conclusion. 

Stability 

The stability verification (SVT) test provides confidence in 
the analytical predictions regarding the stability level and 
position relative to the stability threshold.  As with the 
unbalance response verification, options are available regarding 
the platform or test configuration to perform this test.  The 
results of each platform can be summarized below regarding 
the accuracy of the analytic method to predict: 

 Balance bunker – Rotor, bearings, and pedestal 
support impact on stability (bunker bearings if used) at 
various speeds. 

 Mechanical test (Vacuum) – Rotor, job bearings and 
casing support impact on “baseline” stability (or basic 
log decrement reflecting the bearings and rotor only) 
at various speeds. 

 Performance test – Rotor, job bearings, casing support 
and reduced aerodynamic and seal behavior impact on 
stability for a limited speed range. 

 Type I test – Stability level and margin at nearly the 
same operating conditions as expected in the field.  
The range of gas conditions, inlet and discharge 
pressures and flow rates may be limited as a result of 
the test setup. 

Test Benefits 

The benefits derived from the rotordynamic testing can be 
identified for the two groups of testing.  Vibration 
demonstration testing provides the purchaser the following: 

 Demonstration that vibration levels and critical speed 
separation margins (for those under the maximum test 
speed) specifications have been met – All tests 

 A stable vs. unstable check is made for a specific test 
condition – Type I test 

 Proof of effectiveness of the balance procedure in 
meeting vibration level specifications – All Tests 

 Non-synchronous vibration levels examined – Type I 
test, to some degree all tests 

Design verification extends those benefits to: 

 Determining accuracy of unbalance response 
calculation with regards to the unbalance sensitivity – 
Unbalance verification (shop floor) 

 Determining predictive accuracy for mid-span 
unbalances and deflections – Unbalance verification 
(at-speed balance bunker) 

 Reassurance that mid-span deflections are within 
operating clearances for close clearance locations – 
Unbalance verification (higher for at-speed balance 
bunker) 

 Verification of stability level prediction for system 
with no excitations (baseline stability) – Stability 
verification (at-speed balance bunker and during the 
mechanical run test) 

 Reassurance that rotordynamic model of shaft and 
bearings is accurate – URVT and SVT 

 Robustness and optimization of machinery design – 
URVT and SVT 
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 Correctness of the stability model of impellers, annular 
seals and other destabilizing mechanisms as well as 
the effectiveness of any components which are 
intended to reduce the destabilizing effects (shunt 
bypass, swirl brakes, damper seals) – Stability 
verification (PTC Type I and Type II testing) 

The at-speed balance bunker can extend the benefits of the 
URVT by permitting weight placement at and measurement of 
locations that are more sensitive to unbalance and the negative 
effects of high vibrations.  For between bearing machinery, 
critical close clearance locations that impact performance are 
located at or near the mid-span where the first critical speed has 
its peak deflection.  In addition, unbalance creation is more 
likely to occur at the mid-span due to deposits, erosion or 
corrosion and is more likely to excite the 1st critical speed.  
Unbalance placement at the coupling (typically the only readily 
accessible location during the mechanical shop test) does not 
excite the 1st critical speed significantly and provides minimal 
information or assessment of the prediction accuracy of this 
mode. 

Typically, URVT on the shop floor is limited to the 
coupling location.  Journal probe vibration levels produced by 
adding a 40W/N weight to the coupling is less than 0.00025” at 
MCS.  Performing the verification test in the bunker can permit 
measurement of the mid-span and journal locations to a variety 
of applied unbalances.  Direct measurement of the relative 
displacements along the rotor allows for closer scrutiny of the 
predicted shaft and bearing dynamics as they relate to the 
amount of modal bending and damping at the critical speed.  It 
should be noted that the intent of the test is to determine the 
vendor’s ability to predict the unbalance response behavior of a 
model containing a shaft, bearings and support structure.  The 
results may not be indicative of the actual behavior of the job 
machine and relies on accurate modeling of the bunker pedestal 
dynamics.  However, the assurance gained from verification of 
the predictive method in the bunker should carry over to the job 
rotordynamic predictions. 

Vibration demonstration tests can reveal the presence of 
instabilities.  However, even if no problematic nonsynchronous 
vibrations are observed, the machine’s actual stability could be 
very small (say less than the API design minimum requirement 
of log decrement of 0.1) and close to the stability threshold.  
This state of blindness with respect to the machine’s actual 
stability, as well as the significant uncertainties remaining in 
current modeling tools for stability prediction [11], can only be 
mitigated by directly measuring the machine’s log decrement 
through a SVT.  

Unlike the URVT, a SVT requires additional hardware in 
the form on a temporarily, mounted shaker.  While this is an 
added complication, a SVT is often a cost and technically 
effective alternative to the very expensive Type I test.  Such 
Type 1 testing is unlikely to receive project approval unless it is 
specified very early on during FEED.  SVT can provide a 
valuable stability assessment of the machine during the other 
operations/tests that are often typically specified, namely, at-
speed balancing, MRT or PTC 10 Type II performance tests.  

When done in conjunction with high speed balance or the 

MRT, an SVT can measure the machine’s basic log decrement.  
Figure 2 shows the results of such testing versus speed for a 
particular test rig mounted on tilting pad journal bearings [12].  
Measurement of the basic log decrement provides evidence as 
to whether or not the machine’s rotor/bearing/support system 
has the robustness to counteract the destabilizing mechanisms 
that it will experience in the field.  As shown in Figure 2, such 
basic log decrement testing also provides the opportunity to 
assess competing tilting pad journal bearing models, a topic of 
much debate in the industry [11, 12]. 

 
Figure 2) Base stability measurements versus speed 

RECOMMENDED PRACTICES OF ROTORDYNAMIC 
TESTING 

This section will focus on the rotordynamic testing of 
centrifugal compressors due to the complex dynamic behavior 
of this class of turbomachinery.  Concepts developed in this 
section can be applied to all types of machinery as they all 
share certain aspects of rotating behavior.  In addition, this 
section will focus on rotordynamics only.  The tests listed 
below, especially the non-verification testing, are also used to 
prove other aspects of the machine’s acceptability.  These 
aspects will not be discussed.  

Vibration Demonstration Tests 

Mechanical Run Test 

Mechanical run test of the rotating equipment should be 
viewed as a minimal test to determine the rotordynamic 
acceptability and should be considered for equipment that is 
designed-for-purpose in contrast to equipment selected from a 
catalog. 
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Test Procedure 

For the FLFP test, the procedure should be developed in 
concert with the rotordynamic analysis.  The FLFP test is 
intended to study the stability of the centrifugal pressure under 
similar conditions to the field.  By applying load and pressure, 
destabilizing forces of the seals and impeller/shroud 
interactions are introduced including seal clearance changes 
due to internal deflections as a result of reaching full pressure.  
Operating points during the FLFP test should be determined, in 
part, by the rotordynamic analysis and reflect operating points 
of minimum stability.  These could represent operation at MCS 
near surge (highest differential pressure) or, in some cases, 
partial speed towards stonewall.  Since this test as normally 
carried out is a “pass/fail” (e.g. the rotor is stable or not), test 
conditions should match as close as possible to the field 
conditions.  The parameters of importance include gas MW, 
power, suction and discharge pressure and temperature, speed 
and mass flow.  If the exact gas composition cannot be tested, 
some of these parameters will have to be compromised.  The 
rotordynamic model should be used to determine an appropriate 
combination of factors to produce the maximum instability 
drivers or minimum log decrement.  Miranda and de Noronha 
[17] propose modifications to the FLFP ASME Type I test to 
better assess the stability of centrifugal compression equipment.  
The modifications were intended to create conditions to submit 
the rotor to instability mechanisms as near as possible to the 
design conditions rather than reproduce similarity for 
performance evaluation.  The conditions were developed with 
the aid of the rotordynamic stability predictions. 

As with the Mechanical Test, the FLFP test should consist 
of a warm up portion where the speed is increased gradually to 
permit stabilization and examination of the behavior at lower 
speeds.  This is followed by an extended run at MCS to ensure 
thermal equilibrium of the entire machine is achieved.  During 
this test phase, it is recommended that the operating curve at 
MCS is explored from the surge control line to the end of curve 
(stonewall.)  This operation may include four to five operating 
points and may include other speeds as highlighted by the 
rotordynamic analysis.  (Note: Other factors may dictate 
operation at other points as required, i.e. defining the surge line 
vs. speed, rated point defined at partial speed.) 

Factors such as lube oil conditions and rotor assembly are 
expected to meet the field configuration and specified operating 
ranges.  When practical, the lube oil operating range should be 
explored during the FLFP test. Lube oil inlet conditions impact 
the dynamic behavior of bearings.  As a critical factor in 
determining the rotordynamic behavior, it is important to vary 
these factors over the allowable ranges during testing. 

Test Requirements 

Test requirements for the FLFP test are defined by 
agreement between the vendor and purchaser prior to the test 
and should be done at the contract stage.  Holding the overall 
vibration limit to the level specified for the mechanical run test 
is impractical due to the additional rotor forces present during 
the FLFP test.  These include aerodynamic forces of the 
impellers, stator-rotor interactions, seals forces and power 
transmission forces.  However, raising the limit to the vendor 

recommended trip setting does not leave margin for off-design 
operation in the field nor deterioration of the balance state from 
erosion or deposits.  An agreed level should take into account 
both factors and fall somewhere in between.  

Other requirements for the rotor and case vibration may 
include: 

 Components of non-synchronous vibration to be less 
than 20% of the vibration limit or 0.2 mils p-p, 
whichever is less 

 No stall related vibration components  

 No instability related vibration (associated with re-
excitation of the 1st natural frequency) 

 Maximum housing vibration less than 0.1 in/sec 

 Limitations regarding thermal instability (Morton 
Effect) vibrations 

Test Deliverables 

Deliverables are similar to the mechanical run test and 
should include data for all purchased components tested (as 
with the string test.)  Increased emphasis is placed on the FFT 
plots of shaft vibration during the test as this is the best 
indicator of instability, stall, whirl and other phenomena that 
produce non-synchronous vibrations.  Performance data should 
be recorded during the test to confirm the input used to predict 
the seal and impeller dynamic behavior and aide further 
stability analysis if needed. 

Rotordynamic Modeling 

When FLFP testing is selected, the rotordynamic model 
should be expanded as necessary to conform to the Level II 
stability analysis requirements of API 617 [18].  Given the cost, 
effort and reasons to perform FLFP testing, a Level I stability 
analysis is insufficient to predict the behavior accurately.  The 
Level II model will reflect changes in the stability level to MW, 
gas pressures and temperatures, seal clearances and rotor speed 
to the best of the vendor’s or purchaser’s analytic capabilities.    
The Level I model uses an empirical relationship that either 
estimates these effects or doesn’t take them into account at all 
when calculating the destabilizing forces present in the 
machine. 

Test Knowledge / Verification 

The FLFP test will reveal the presence of instability, stall or 
whirl for a prescribed set of operating conditions for the 
specific machine’s as-built conditions.  The test is pass/fail as 
no measurement of the stability level or margin is included in 
the test as described.  Rotor stability at different gas 
compositions, other clearances within the tolerance range or 
other operating points is determined by rotordynamic 
predictions.  The ability to operate successfully at these 
alternate points, which cannot be tested under all combinations, 
depends on the stability margin (not measured by FLFP test) of 
the machine.  
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Design Verification Testing 

Such verification testing should be considered for the 
following types of equipment: 

 Special purpose (as defined by API) 

 Loss of production produces an unacceptable financial 
impact 

 Services or applications with a history of bad actors 
(vibration related) 

 Critical service (as defined by the user) 

In addition, verification testing of either the unbalance 
response or stability should be considered when the 
rotordynamic analysis demonstrates concerns or higher risks 
associated with the application.  The verification testing can be 
used to mitigate those risks when applied correctly.   

Unbalance Response Verification Test (URVT) 

Test Procedure 

The URVT test is basically a comparison of measured 
versus predicted vibration levels for the application of a known 
unbalance.  The test is routinely performed following the four 
hour mechanical run test.  For compressors, the verification 
weight is applied to the coupling flange.  This is the only 
practical location available.  For other machinery (e.g., steam 
turbines, overhung single stage compressors), other locations 
may be available.  Steam turbines may have field accessible 
balance planes and overhung compressors an impeller checknut 
with a balance weight placement provision.  The measured 
response of the machine with the verification weight is 
compared against the analytical prediction using the same 
weight and location.  While this is not a complete check of the 
analytic unbalance response accuracy, as it only compares the 
model’s prediction at the probe locations for one weight 
placement, it is an important first step in ensuring the accuracy 
of the model.   

It was recognized early on that an important aspect of the 
URVT test was to compensate for the residual unbalance in the 
machine.  This residual unbalance creates the synchronous 
vibration witnessed during the mechanical test run and is 
present before and after the verification weight is applied to the 
rotor.  The residual unbalance left in a rotor after balancing 
(either low or at-speed balancing) is uncharacterized and, 
therefore, cannot be modeled.  Thus, the analytical model will 
have only the verification weight as an excitation source for the 
response.   

The initial attempt by API 617 6th Edition to compensate for 
the residual unbalance was to apply a significant verification 
weight to the coupling to raise the response to the vibration 
limit.  The implication was that the majority of the response 
would be due to the verification weight placement.  This had 
two important drawbacks (besides being analytically incorrect):  
First, the amount of unbalance weight at the coupling needed to 
raise the response to the vibration limit could reach unsafe 
levels.  Coupling flanges are not designed with the intent of 
adding unbalance weight.  Large rotating forces applied to the 
coupling had a chance of failing the flange or, more probably, 

failing the mechanism used to hold the weight in place.  
Second, the method relied on larger vibration limits <0.002” p-
p versus the current <0.001” p-p and good balance correction 
practices to limit synchronous response on the test stand below 
0.0005” p-p.  For this situation, 75% of the response would be 
attributable to the verification weight.  At the time, this was 
better than no test at all. 

In 1997, Nicholas et al. [19] defined an improved procedure 
to better correlate test stand vibrations to the analytic 
predictions.  This methodology was subsequently adopted by 
API 617 7th Edition and is explained in API 684 [20].  Their 
method took advantage of vibration diagnostic equipment that 
permitted vector subtraction of recorded databases.  The 
procedure can be summarized as: 

1. Record the probe synchronous readings during 
coastdown from trip speed following the four hour 
mechanical run test – This represents the baseline 
vibration of the rotor 

2. Add the verification weight to the rotor – The method 
is general enough to accommodate weight placement 
anywhere on the rotor 

3. Bring the rotor back to MCS and achieve steady state 
conditions (i.e. constant bearing temperature, vibration 
magnitude and phase) – Attempt to reproduce the 
operating condition of the machine at the conclusion 
of the four hour test in step #1.  The sampling 
frequency and speed increment should be identical to 
that used in Step #1. 

4. Record the probe synchronous readings during 
coastdown from trip speed following Step #3 – This 
represents the combined vibration of the rotor 
(verification weight and residual unbalance) 

5. Vectorially subtract the synchronous vibration 
database taken in Step #1 from that recorded in Step 
#4 – The resulting data represents the response due to 
the verification weight placement 

6. Compare the resultant data in Step #5 to the analytical 
predictions (incorporating the range of bearing 
clearances and oil inlet temperatures) – This is the test 
for accuracy of the unbalance response predictions 

Graphically (and using vector math) the method can be 
described as: 

 A baseline response reading, ଵܸሬሬሬԦ, (known) is taken at 
one speed and one probe and is attributed to the 
residual unbalance, ௥ܷሬሬሬሬԦ, in the rotor (unknown). 

 The subsequent response, ଶܸሬሬሬԦ, (known) taken after the 
addition of the verification weight, ௩ܷሬሬሬሬԦ, (known) to the 
rotor is recorded.  The net unbalance present in the 
rotor at this stage can be described as ௥ܷ ൅ ௩ܷሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ. 

 Performing the vector subtraction of the 1st reading 
from the second yields the response, ௦ܸሬሬሬԦ ൌ ଶܸሬሬሬԦ െ ଵܸሬሬሬԦ.  
The accompanying vector math with the unbalance 
state of the rotor, ܷଶሬሬሬሬԦ െ ଵܷሬሬሬሬԦ ൌ ௥ܷ ൅ ௩ܷሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬԦ െ ௥ܷሬሬሬሬԦ ൌ ௩ܷሬሬሬሬԦ, 
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Figure 16) Shaker with Bolted Shaft Extension [30] 

 
Figure 17) Shaker with Sleeve Mounted on Tapered Shaft End [9] 

There are several key objectives that are important to the 
successful design of the excitation device: 

 Design for ease of installation and removal during 
shop testing, 

 Minimize alteration of the machine’s balance state and 
rotordynamics when the device is installed, 

 Provide sufficient force capacity and bandwidth to 
excite the mode of interest when the machine is 
operating at the test conditions. 

When utilizing an electromagnetic shaker, its laminated 
sleeve or shaft extension can add sufficient weight and inertia 
to significantly alter the machine’s baseline dynamics. 
Rotordynamic calculations should be conducted during the 
shaker’s design process to examine the impact on the machine’s 
rotordynamics, in particular, to ensure minimal impact on the 
mode of interest’s stability and frequency. If it is undesirable to 
alter the test speeds, one may have to accept lower than desired 
separation margins for other critical speeds. While it is vital to 

protect the machine from damage during the testing, it should 
also be recognized by all parties that typical vibration 
acceptance criteria are not applicable during a SVT. Regardless 
of the exciter’s impact on the rotordynamics, it is a good 
practice to design the shaker’s rotor assembly with a balance 
correction plane as well as check balance the rotor assembly 
with the shaker installed prior to testing. Low synchronous 
vibrations help improve the quality of the SVT measurement 
data and the resulting damping estimation. 

Finally, the frequency content and direction of excitation 
must be determined. Both must provide the type of 
measurement data needed for the damping estimation technique 
originally chosen. If time domain estimation techniques are 
employed, the best signal-to-noise ratio (SNR) can be obtained 
through a blocking test. A type of tuned-sinusoidal method 
[32], blocking testing effectively tries to isolate a mode by 
exciting at its natural frequency and in its predominant 
direction. Several investigators have successfully applied this 
excitation method [9,27,33] for stability verification testing of 
rotor systems. Direction of the blocking excitation, forward or 
backward whirling or along one axis, can be chosen to best 
excite the mode of interest. 

If a frequency domain estimation technique is chosen, the 
required measurement data consists of frequency response 
functions (FRF) across the frequency range containing the 
mode of interest. Calculated using correlation functions that 
consider noise in the system, a measured FRF has units of 
response (displacement, velocity or acceleration) divided by 
force. The frequency range is spanned by the excitation device 
using stepped sine, chirp or pseudorandom signals, with the 
final choice determined by the desired SNR and testing time. 
Stepped sine is generally considered to have the best SNR, 
while other frequency signals can provide faster measurement 
times. 

The direction of the applied excitation must be considered 
when the FRFs are being calculated during the measurement 
process.  When exciting in only one direction, such as along the 
machine’s horizontal splitline or along one proximity probe’s 
axis, the FRFs are easily calculated according to single input, 
multiple output (SIMO) procedures. Contrary to popular 
thinking, such SIMO testing along only a single axis is 
sufficient to excite the first forward whirling mode and can 
provide accurate damping ratio estimates when used with an 
appropriate MDOF frequency domain technique.  

Figure 18 presents the FRFs from a SIMO test conducted on 
a simulated rotor system with known stability. In this case, 
horizontal excitation is applied at the inboard bearing and four 
FRFs are obtained, one for each of the four bearing probes. 
Noise has been added to the measurements to simulate real 
world conditions. Table 2 compares the actual stability levels of 
the first sister modes with that obtained using the SIMO 
measurement data and a MDOF estimation technique.  For 
either horizontal (SIxMO) or vertical (SIyMO) forcing, 
excellent accuracy is achieved not only for the primary mode of 
interest (1F) but also its sister backward mode (1B). Vertical 
forcing provides a slightly more accurate damping estimate for 
the 1F mode because the mode shape is more vertically 
oriented for this particular machine. Such performance has 
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dependent stiffness and damping characteristics, or using the 
traditional, whirl frequency independent model of 
synchronously reduced coefficients [11,12]. Current API 
standards require the use of synchronously reduced coefficients 
for predictions. However, it is recommended that measurements 
should be correlated with predictions using both representations 
to help shed light on this ongoing debate. Comparing the 
correlations of the two representations is especially important 
for base stability testing when using bearings with center pivots 
and low (<0.4) pad preloads.   

If an SVT is conducted as part of a performance test (e.g. 
PTC 10 type I or II), the measurements should be correlated 
with API Level II stability predictions that include the 
dynamics created by the machine’s internal seals and other 
components. Each manufacturer has its own methodology for 
how these internal dynamics are modeled and analyzed. As 
required by API Level II stability analysis procedures, this 
methodology should be explained and documented by the 
manufacturer. 

SVT Deliverables 

 For each test condition, the predicted range of stability 
(log decrement and damped natural frequency) for the 
machine with, and without, the presence of the shaker 
device. 

 Description of the damping ratio estimation technique 
employed 

 Measured operating data for each stability test 
condition, such as: 

o Speed 

o Inlet and discharge pressure and temperatures 

o Molecular weight 

o Oil supply pressure, temperature, and flow rate 

 When stability estimates are obtained from outputs’ 
time transient data, 

o Sampling frequency 

o Number of transients events recorded 

o For each output location and operating condition, 
plot showing the measured time transient data 

 When stability estimates are obtained from frequency 
response functions, 

o Description and records of the calibration of the 
input force measurement 

o Number of averages taken, window type and 
overlap percentage 

o Frequency resolution 

o For each input/output location and operating 
condition,  

 Plot showing the final measured FRF 
(magnitude and phase) and the identified FRF 
from the estimation technique  

 Plot showing the final measured coherence 
associated with the measured FRF 

 Comparison of the measured stability (log decrement 
and damped natural frequency)  versus the predicted 
range for each tested operating condition 

 Depending on the specifics of the acceptance criteria, 
the resulting stability predictions from the corrected 
analytical model should presented to determine 
acceptability of the design.   

SVT Requirements 

Currently, there are no industrial standards in place for 
guidance on what acceptance criteria should be applied for this 
type of design verification testing. Individual OEMs and end-
users are developing their own acceptance criteria in the 
meantime. It is recommended that the criteria should have a 
similar two-step evaluation process as that standardized for the 
URVT: 

1. How well does the original rotordynamic model and 
analysis predict the measured stability results? 

2. If the model has poor accuracy with respect to the 
measured stability results, does the machine still have 
acceptable rotordynamic performance over the full 
range of design/operation after its model has been 
corrected based on the test results? 

When assessing the accuracy the stability measurements 
and predictions, there is a key difference with the correlations 
done during an URVT: the measured vibrational response 
should not be under-predicted for the URVT, while the 
measured log decrement should not be over-predicted in the 
SVT.  

The exact methodology used to correct the model should be 
agreed upon, prior to testing, by the purchaser and OEM. Once 
again, this is another area where manufacturers and end-users 
are developing their own methodologies. Pettinato et al. [9] 
applied two methods to correct the model and determine 
acceptability of a particular centrifugal compressor design.  
One method applied a bias shift using the base stability 
measurements, while the second method applied a slope 
correction based on measurements that included aerodynamic 
excitations within the machine. 

SVT Knowledge / Verification 

Analogous to the knowledge obtained from the URVT, the 
stability verification test assesses the rotordynamic predictions’ 
accuracy to help verify a design’s stability characteristics 
beyond the pass/fail nature of the vibration demonstration tests. 
No nonsynchronous vibrations may be observed during a full 
load, full pressure test. However, the machine’s stability level 
(log decrement) and margin away from instability remain in 
question. For the selected test conditions, the SVT yields some 
insights by providing a measurement of the stability level and, 
using this measurement in conjunction with the predictions, an 
estimate of the machine’s stability threshold. 
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Since we cannot test every situation, we must rely on the 
accuracy of the model to design for these other situations. The 
SVT provides at least some verification concerning the 
reliability of the model’s stability predictions. 

CONCLUSIONS 

Rotordynamic testing is an effective and efficient tool, 
when applied appropriately, to mitigate machinery risks.  The 
tutorial presented the basis for determining the machinery 
application risks.  Test options available to address those risks, 
test procedures, preparation for the test, knowledge gained from 
each test and the testing benefits were discussed.  The 
difference between vibration demonstration and design 
verification testing was highlighted.  The principle difference 
being that vibration demonstration tests assess the acceptability 
of rotordynamic behavior in a pass/fail mode while design 
verification testing is used to confirm the rotordynamic 
predictions.  This verification provides confidence in 
extrapolating the design (by the vendor) and operation (by the 
purchaser) beyond the machine’s as-built and specific shop test 
conditions.  The recommended practices of performing the test 
options for vibration demonstration and verification testing 
concluded the tutorial.   
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