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Many statistics used in the social sciences assume that the data conform to a Gaussian
(normal) distribution. But such an assumption is rarely an exact statement. On occasion we
may believe that the distribution of the data resemble a symmetric bell-shaped distribution.
At other times we suspect that such an assumption is at best a rough approximation. In
either case, statistics that are insensitive or robust to deviations from the distributional as-
sumptions have considerable appeal. The purpose of this chapter is to explain and illustrate
one class of robust statistics, the maximum-likelihood type or M-estimators.

How do the usual estimators perform under deviations from the distributional as-
sumptions? A surprising result, due to Tukey (1960), shows that many estimators that
have optimal performance for data sampled from a Gaussian distribution perform poorly
if slight changes are made to ihe tails of the sampling distribution. Thus, poor perfor-
mance of the classical estimators can result from the effects of a few gross errors or outliers
even if most of the data conform to a Gaussian distribution. This is particularly true for
the classical statistics often used by sociologists—estimators of location and spread such
as the mean and variance, and estimation procedures for regression such as least-squares,
weighted least-squares, and maximum-likelihood. Moreover, since such unusual observa-
tions need only involve a few percent of all observations, they are difficult to detect and can
be due to transient or unusual phenomena not typical of the underlying population.

A traditional classification distinguishes between parametric and nonparametric esti-
mators. An estimator is said to be parametric if it is designed to have optimal performance
for a single parametric family of distributions. An estimator is said to be nonparametric or
distribution-free if it is to be used for all nonparameterized distributions. Robust estimators
do not easily fall into either category since they are designed to perform well for a broad
range of distributions that are thought to provide plausible models of empirical data. Hence,
a robust approach to estimation distinguishes between distributions that are more or less
plausible, unlike nonparametric approaches, which treat all distributions equally. Indeed,
for many distributions the performance of the better robust estimators can be quite close
to the best attainable.

A common alternative to robust statistics is to employ a two-step procedure—first clean

the data of unusual observations and then apply the classical estimators. Such a procedure
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is clearly preferable to a naive application of classical estimators to data containing outliers
or gross errors. And occasionally we have strong substantive reasons for rejecting obser-
vations, for example, if we observe negative values for data that take only positive values.
If the correct values cannot be determined, then it is sensible to reject such observations
and apply a classical or robust procedure. But we often lack such definitive substantive
guidance. In its absence, analysts who adopt a two-stage procedure typically utilize a rejec-
tion rule when estimating a location parameter or one or more of the available regression
diagnostics procedures when estimating regression parameters.

Do such two-step procedures perform as well as robust estimators? When estimat-
ing a location parameter, substantial evidence suggests they do not (Andrews et al., 1972;
Hampel, 1974b; Relies and Rogers, 1977; Huber, 1981; Donoho and Huber, 1983). Hampel
(1974b) examined several data-cleaning procedures and found they do not perform as well
as robust M-estimators of location. The same is true for more informal rejection proce-
dures. Relies and Rogers (1977) compared the “performance” of the best location estimates
of several statisticians to the performance of several M-estimators. In analyzing data con-
taining outliers, the statisticians avoided catastrophic failures but were beaten by the better
M-estimators. The conclusion is clear: unless the data are free of outliers and errors, the
use of a robust estimator of location is preferable to procedures that throw away potential
outliers.

When estimating parameters in a regression equation, there is less consensus concerning
the relative merits of robust regression and diagnostic procedures partly because both areas
are in a state of rapid development (see, for example, Cook, 1977; Andrews and Pregibon,
1978; Hoaglin and Welsch, 1978; Belsley, Kuh, and Welsch, 1980; Atkinson, 1982; Cook
and Weisberg, 1982a,b; Gasko and Donoho, 1982; Krasker and Welsch, 1982; Rousseeuw,
1982; Siegel, 1982; Huber, 1983a). Diagnostic procedures, which typically use measures
constructed from residuals and deletion statistics obtained from the OLS estimator, seek
to identify aspects of the data that deviate from the assumptions. As such, they differ
somewhat from robust methods, which seek estimators that can accommodate and control
data that deviate from the assumptions.

The following example, adapted from Rousseeuw (1982), illustrates some basic issues

in robust estimation as well as some of the peculiar difficulties that can arise in regression.
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For this example | generated 30 “good” observations according to

yi = a+ bxi + ej,

where a = 2, b= 1; xmwas drawn from a uniform distribution on (0,10); and e, was drawn
from a Gaussian distribution with mean 0 and standard deviation 0.20. In addition, 20
“bad” observations were drawn from a bivariate Gaussian distribution with mean (22, -2)
and standard deviation 0.60. Figure 1 plots the data and estimated regression lines for the

OLS solution and two solutions obtained from a robust M-estimator due to Bell (1980).
[Figure 1 about here]

The data in Figure 1illustrate a classic example of the effects of so-called “leverage”
points. A leverage point x, is defined as an outlier in the a;’s that can (potentially) exert
a strong influence on the parameter estimates or the predicted value of y, by virtue of its
position in the data (Belsley, Kuh, and Welsch, 1980; Cook and Weisberg, 1982a,b). More
generally, the problems caused by leverage points can be cast in terms of the breakdown
properties of an estimator (Gasko and Donoho, 1982), where the breakdown point of an
estimator is, roughly speaking, the proportion of “bad” or “contaminated” observations
that the estimator can tolerate before yielding an unreasonable estimate. Clearly, the data
in Figure 1 represent an extreme test of any regression procedure since a large proportion
(40%) of the data are contaminated.

M-estimators are obtained by minimizing the sum of general functions of the deviations;
hence, the mean and ordinary least-squares (OLS) estimators, which minimize the sum of
squared deviations, are special cases. Because of their greater generality, M-estimates must
usually be obtained from a numerical procedure that starts from some initial estimate and
iterates until changes in the numerical values are within some desired accuracy. The two
M-estimates in Figure 1 correspond to the solutions obtained by starting the iterations
from the OLS estimate, denoted Bell/OLS, and from a robust (high breakdown) repeated
median estimate (Siegel, 1982), denoted Bell/RM. (See Appendix 1 for a discussion of high
breakdown initial estimates.) Both the OLS estimator (a = 8.37, b = -0.424) and the
Bell/OLS estimator (a = 8.20, b= -0.431) yield similar answers—both are clearly affected

by the presence of the outlying cluster of points. In contrast, the Bell/RM estimate (starting
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estimates a = 3.28, 6 = 0.816) yields a = 2.04 and 6 = 0.999, values quite close to those
used to generate the first 30 observations.1

How do the standard diagnostic tools perform? In this particular example, they fared
poorly and failed to identify the outlying cluster of observations in the data.2 The difficulty
lies in the fact that multiple outliers can mask the effects of one another by increasing the
size of residuals for other observations (Andrews, 1979: Belsley, Kuh, and Welsch. 1980;
Gasko and Donoho, 1982). This problem does not occur with the M-estimator started
from the repeated median estimate, and an inspection of the residuals obtained from this
estimator easily identifies the outlying cluster of observations.

What if the cluster of points is centered at (7, —2) instead of (22, —2)? Because these
points now fall within the range (0,10) on the .r-axis, they are no longer outliers in the x's
and hence are not leverage points. Nevertheless, they exert a large effect on both the OLS
estimator (a = 3.50, 6 = -0.0259) and the M-estimator started from the OLS estimate
(a = 3.65, b= —0.0623). Similarly, the standard diagnostic procedures fail to identify any
of 20 contaminated points. But the M-estimator started from the repeated median estimate
(a = 2.29, 6 = 0.892) yields the same estimates as before (a = 2.04 and 6 = 0.999).

As these results demonstrate, a robust estimator can yield different estimates for dif-
ferent initial estimates. This clearly differs from classical estimation procedures like OLS,
which always yield one estimate given the data and model. Which estimate should one
report when one lacks knowledge of the true underlying structure of the data and is con-
fronted with different estimates? In fact, such a question assumes that ehe data provide
one single indication, an assumption clearly violated by the data in Figure 1 in which 60%
of the observations follow a simple linear pattern and 40% of the observations are clustered
in a spherical pattern. This suggests that multiple solutions for M-estimators can point to
multiple features in the data that may not allow a single simple interpretation. For example,
the M-estimator using a robust starting estimate was able to accommodate and control the
outlying cluster of observations; hence it could be used to estimate the correct parameter
values for the observations that conformed to the linear model. But the existence of mul-
tiple solutions also suggests inadequacies in our theory or model since the goal of fitting a
straight line to all observations in these data is clearly an inappropriate one.

It should be stressed that the problem of what to do with discrepant data is not a simple



statistical matter but rather one that concerns the consequences and substantive interpre-
tation of such data. Sometimes we are interested only in how such unusual observations
may affect the conclusions drawn from the data. But questions concerning the interpreta-
tion of such observations are equally important—are such observations gross errors (that
is, observations sampled with large error) or are they outliers (that is, observations that
differ in important substantive ways from the rest of the population)? Since outliers, as
opposed to gross errors, often provide considerable insight into the data, they merit careful
attention.

Clearly, the data of this example represent a “worst-case” situation since a large pro-
portion of the data are contaminated in an asymmetric way by a tight cluster of leverage
points. Standard diagnostic procedures may be adequate to identify leverage points and
other unusual observations in practice even though they did not fare well in this particular
example. Similarly, although graphical methods such as scatterplots cannot always be re-
lied upon to identify clusters of leverage points in high dimensional multivariate data, the
problem is quickly and easily detected in the bivariate scatterplot in Figure 1 (Friedman and
Stuetzle, 1982). Nevertheless, this example provides a cautionary tale and demonstrates
the potential usefulness of a robust estimator.

The rest of the chapter has seven main sections. Since sociologists may be unfamiliar
with the large statistical literature on robustness,3 Section 1 provides a brief overview of un-
derlying issues. Sections 2-4 focus on the robust estimation of a location parameter. Section
2 defines basic terms pertaining to robust estimation. Section 3 gives a general definition
of an M-estimator, discusses the need for auxiliary estimators of scale, describes the con-
nection between ML- and M-estimators, and presents several commonly used M-estimators.
Section 4 formalizes several desirable properties and concepts introduced informally in Sec-
tion 1. Section 5 presents some robust hypothesis tests and confidence intervals. Sections 0
and 7 discuss a simple extension of M-estimators of location to multiparameter regression
problems and illustrate such an extension with empirical data.

Although some sections assume some familiarity with probability theory and statistical
concepts, many are quite straightforward. Sections 1,5, 6,and 7 present ideas in a relatively
informal manner and require little background. Section 2 and parts of sections 3 and 4 are

more technical; the more difficult parts in section 4 have been starred.
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1. GENERAL ISSUES

The previous example suggested that the classical estimators can behave poorly if the
data contain a large proportion of unusual observations. The following example, due to
Tukey (1960) and reproduced in many sources (Huber, 1977; Mosteller and Tukey, 1977;
Huber, 1981; Iglewicz, 1983), demonstrates how rapidly the optimal performance of some
classical estimators can deteriorate under even small deviations from the parametric as-
sumptions.

Consider the distribution

Fy) = (17 £(3<)’\“a‘1‘ ) + e*(/\JC)O N )

where <t(¢) denotes the standard Gaussian distribution

*w e t2/2' dif? )

4 5t E-oo
e is a small positive number, c is some positive number, and u isa dummy of integration. The
distribution F(y) is commonly called an e-contaminated Gaussian distribution at scale c. (I
use y instead of x to emphasize that primary interest concerns deviations from distributional
assumptions about the dependent variable, not the independent variables.) It represents a
mixture of Gaussian distributions since observations are sampled according to Gau(0,<r2)
with probability 1 —e and Gau(0,c292) with probability e, where Gau(0,a2) denotes a
Gaussian distribution with mean 9 and variance 02.

Note that F(y) resembles a standard Gaussian distribution in the center but has heavier
tails, that is, greater mass for large values of ty. A contaminated Gaussian is often plausible
since it models a sample in which most observations are “good” but a small proportion
are ‘bad”, that is, sampled with greater variance. Such behavior could occur if a few
observations are sampled with gross errors or if the population contains a small proportion
of outliers.4

Two common statistics for spread are the mean square deviation



and the mean absolute deviation

1 "
dn:;]X\l\/i~y\l
1=

A classical result, due to Fisher (1920), states that 8n is about 12% more efficient than dn
under sampling from a Gaussian distribution. That is, under Gaussian sampling, gn with
n = 88 gives as concentrated an estimator of spread as dn with n = 100.

What happens if the underlying distribution differs from a Gaussian distribution? In
particular, is 8" always more efficient than dn? There is a slight technical problem since
8" and dn measure different things. For Gaussian samples, sn converges to the population
standard deviation <, while dn converges to 42 wa, which is about .80(7. To compare the
efficiencies of 8" and dn, Tukey (1960; see also Huber, 1977, 1981) used the asymptotic
relative efficiency, which takes into account these differences between and dn

ARE~ Y .
n~oo Var(cf")/[E(ifn)]2

Suppose ¢ = 3 in expression (1), that is, we sample from the e-contaminated Gaussian
at scale 3. Then (Huber, 1977, 1981)

ARE(e) = - 3(1 + 80e) _

4 . (1+ 8e)2 I 112 (I + 2e)2 (3)

Table 1 gives some values for the expression in (3).
[Table 1 about here]

The results are striking. For any level of contamination between .002 and .50, the
mean absolute deviation dn is a better estimator than the mean square deviation »5" In
the most extreme case (e = .05), dn is twice as efficient as In return, we give up 12%
efficiency if the data conform exactly to a Gaussian distribution, that is, if 6 = 0. Hence,
the use of dn over 8n entails a cost of some efficiency (sometimes called the “premium,”
see Anscombe, 1960) if the assumed distribution holds exactly in return for protection
(“insurance”) against distributions that deviate from the assumed distribution.

This example helps motivate several desirable properties of robust statistics (see Section

4 for a more formal treatment).



1. A robust estimator should satisfy standard statistical properties of consistency, un-
biasedness for symmetric distributions, asymptotic normality, and equivariance under
translation and scale transformations. Roughly speaking, unbiasedness and consistency
require that the estimator yield the correct value 9 for the distribution F(y;9), where
9 is the unknown parameter characterizing F. Asymptotic normality requires that
the distribution of \/n (9 - 9) be Gaussian as n —* oo, whatever the underlying dis-
tribution F(y\9). This property allows the construction of simple tests of hypotheses
and confidence intervals based on the Student (-distribution. Lastly, translation and
scale equivariance require that the estimator be equivariant under location and scale
transformations—adding or multiplying all observations by a constant should change
the estimator in the same way.

2. The value of a robust estimate should change only slightly for small deviations of the
actual distribution from the assumed distribution. Such deviations might be either
large changes in a small fraction of the sample (for example, gross errors as in the
example above) or small changes in a large fraction of the sample (for example, rounding
errors in the data, errors due to the finite number of significant digits in the data, and
so forth). Such an estimator is said to be resistant.

3. The value of a robust estimate should not change drastically even for large deviations
of the actual distribution from the assumed distribution. Large deviations include
qualitative changes in the shape of the distribution, for example, large departures from
symmetry, as in the example in Figure 1. Such an estimator is said to have a high
breakdown point.

4. A robust estimator should be efficient for distributions that plausibly model empirical
data. Typically, one requires that a robust estimator have high efficiency for distribu-
tions that resemble the Gaussian distribution in the center but differ in the tails. Such

an estimator is said to be robust of efficiency.

Lastly, since most robust estimators satisfy the first three criteria and many of these are

efficient for a wide range of distributions, it seems reasonable to require the following.

5. Robust estimators should be practical. That is, estimators should be flexible (for

example, readily generalized to regression), easy to use and describe, reasonable in
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cost, and suitable for the sample sizes that sociologists usually encounter.

The last criterion motivates my focus on M “estimators. Several classes of robust esti-
mators have been studied intensively (see, for example, Huber, 1981): M-estimators, which
are maximum-likelihood-type estimators; L-estimators, which are linear combinations of
order statistics; and R-e3timators, which are derived from rank-order tests. More recently
Johns (1979) has proposed a fourth class of robust statistics: P-estimators, which are ana-
logues of Pitman estimators. P-estimators have excellent properties and extend naturally
to multiparameter problems like regression. However, they require multiple integrals for
multiparameter problems, which must be done by numerical integration. L-estimators are
attractive in one-parameter problems but do not extend easily to regression. R-estimators
and M-estimators extend naturally to regression, but M-estimators are simpler, more flex-
ible, and better understood. M-estimators also appear to have slightly better statistical
properties than R-estimators.

Efficiency is often important in practice since it provides a useful measure of how
closely an estimator estimates the unknown parameter 9. When the data roughly resemble
a bell-shape curve but contain outliers or gross errors, classical estimators like the mean
are usually less efficient than nonparametric estimators like the median, which are in turn

usually less efficient than the robust M-estimators.6

The literature on robustness typically assesses either asymptotic or small (re < 20)
sample performance. Empirical evidence suggests that the performance of robust estimators
for n = 40 is close to their asymptotic (that is, re = o00) performance. Since the samples that
sociologistsencounter are often large (re > 40), the asymptotic performance of M-estimators

is likely to predict their performance well for many sociological applications.

2. DEFINITIONS

Basic Terms. This section briefly reviews some necessary statistical notions. Let 9 be
the unknown parameter characterizing the distribution F(y; 9). A statistic Tn{Yi,..., K"),
that is, a known function of random variables F!,..., Yn, is an estimator of 9 if the value
of Tn is used to estimate 9. The estimate Tn refersto the numerical value of Tn obtained

from a particular sample yi,...,yne (Throughout this chapter | denote a random variable
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by an upper-case letter and its realization by a lower-case letter.)

The empirical distribution function Fn for Yi,...,Yn is defined by
- ﬁ E_' <0> .(n>!1
1=1

where £Si(y) is the indicator function

c if2>vy.;
y { 0, otherwise.

Hence, Fn is a step function with jumps of I/n at the observed values y<

The estimators considered throughout this chapter may be regarded as functions that
depend on the sample only through Fn. Such estimators, called functional estimators, are
denoted

Tn= T(Fn)= Tn(Fn)

The above notation emphasizes that the function T does not vary with the sample size n
although a more general statistic Tn(Fn) could.

The likelihood function Z of n random variables F!,..., Ynis defined as the joint density
of the random variables, where the likelihood is considered to be a function of the unknown
parameter 9. Let K!,..., Kn be independently and identically distributed (i.i.d.) according

to F(y;9). Then the likelihood function is given by

n
= 111 (D) (0:.7)

1= 1

where f(y;6) is the density corresponding to F(y\9).
Maximum-Likelihood Estimators. The maximum-likelihood or MLmestimator Tn is given
by the value of 9 that maximizes the likelihood function in (6) or, equivalently, that mini-

mizes

n
- log£ = 1T p(yi;6), (7
i=i
where
ply;B) = - log/(y; 9. (8)

Under mild conditions ML-estimators can be shown to have minimum variance among

unbiased estimators when the underlying distribution t is known. The function p{y\9) can
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often be expressed as a function that depends on y and 9 only through y-9; for the present
| retain the more general notation.

If the function p(y;9) = -log/(Z;0) is sufficiently regular, for example, if it is differ-
entiable and convex, then the ML-estimator Tn is the value of 9 that is a root of

t
A2 4>{yi-9) = 0, 9)

i=i
where

ipy;0) = ~~p{y\9) =  log/(!/: 9) . (10)

Convexity guarantees that the solution of expression (9) for Tn is unique. Otherwise several

values of Tn, corresponding to local minima or maxima of £, may satisfy (9).

3. M-ESTIMATORS OF LOCATION

This section presents a basic outline of M-estimators of location. Goodall (1983) and
Huber (1977, 1981) give similar but more systematic treatments of the material covered in
this and the subsequent section. | begin with a general definition of an M-estimator, which
is defined in a manner analogous to the definition of an ML-estimator.

Definition of an M-estimator. An M-estimator Tn is given by the value of 9 that

minimizes

n
13 P(yr,9), (11)
=1
or is a root of
n
X >U;0)=0, (12)
1=1

where p is an arbitrary function and i>= -dp/39. Thus, it is sufficient to specify the
function p or V to define an M-estimator, a fact exploited extensively throughout this
chapter. Note that p and V may be more general functions than the corresponding p and
Vifor ML-estimators, which are derived from the assumed parametric density /. Hence,
M L-estimators are special cases of the more general M-estimators.

Location and Scale Equivariance. An estimator T is scale equivariant if T(ay) = aT(y),

that is, if all observations are multiplied by the constant a, the estimate T is multiplied by
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the same constant. An estimator T is location equivariantif T(y+b) = T(y) + 6, that is, ifall
observations are shifted by a value 6, the estimate T shifts by the same constant. Classical
estimators, such as the mean and median, have the property that T(ay + b) = aT(y) -6
and thus are both location and scale equivariant.

As noted earlier, p(y;9) and i'(y\9) can often be expressed as functions that depend
on y and 9 only through y —9. A simple argument shows that M-estimators defined by
p(y ~ 9) or ip(y ~ 9) are location equivariant but need not be scale equivariant.

To make M-estimators scale equivariant it is necessary to introduce an auxiliary esti-
mator of scale Sn = 5(Fn) into the definitions of the M-estimator. Let

w —9
‘m - T (131
where Sn is a suitable auxiliary estimator of scale and k is a “tuning constant” that can
be adjusted to “fine-tune” the performance of the estimator. Then the M-estimator Tn is

both location and scale equivariant if it is defined as the value of 9 minimizing

n
1T AK) (14)
1= 1
or solving
n
AV U'K) =0, (15)
1= 1
where
*>»(«!l)Te ) (

To date, two of the most successful estimators for auxiliary scale (see, for example,

Andrews et al., 1972) are the median absolute deviation (MAD)
MAD (y) = median |yj - Tn| (17a)
and the interquartile range
Q(ym=/%»3/4)T)-F 1/4)T),

where F~1(m) denotes the sample percentiles of y,—Tn. A normalizing constant is sometimes

introduced into the expression for the MAD

*OKN median ly; —Tnl

normed MAD(j/,) = . (176"
0.0745
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The factor of 0.6745 makes Sn = o if the data are sampled from a Gaussian distribution
with variance a2.

Typically the location estimator is of primary interest, and the estimator of auxiliary
scale is a “nuisance” parameter that serves to make the location estimator scale equivariant.
Thus the estimation of the auxiliary scale parameter presents different problems than the
estimation of location. In particular, bias and breakdown appear to be more important
criteria than efficiency (Bell. 1980; Huber, 1981).

Estimation. Note that the expression in (15) can be reexpressed as a weighted mean

problem. To see this, rewrite (15) as

n
1P u,Wi = 0,
1=1
where the weights w, depend on the sample according to wj = y>(u,)/u, for u, ~ 0. Then
Tn is the weighted mean given by

n / n
Thn=22uw, /| H W (18)

1=1 /=1
Hence, to estimate Tn, one can either minimize the expression in (14) using an iterative
Newton-Raphson type algorithm or iterate on the expression in (18) until the sequence of
estimated values for Tn converges to a desired accuracy. In either case, one must start the
iterations from some initial estimate of location, which is typically chosen to be the median.
Then one can use the location estimate to compute the auxiliary estimate of scale and vice
versa.'

Henceforth | restrict attention to translation and scale equivariant estimates of location
under the assumption of a symmetric distribution F. The assumption of a symmetric
distribution is strong but often plausible, particularly if suitable transformations of the data
are allowed. Note, moreover, that an estimator with a high breakdown point can tolerate
large asymmetric departures from the distributional assumptions. Under the assumption of
symmetry, the center about which the density is symmetric provides a natural population
parameter for 9, unlike the more general case of an asymmetric distribution, where the

definition of a natural location parameter is problematic.
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Desirable Shapes for p and ip. Below | derive p and ip for the ML-estimators for
the Gaussian, logistic, double exponential, and Cauchy distributions. As noted earlier, ML-
estimators have minimum variance among unbiased estimators ifthe parametric distribution
F is known; hence the fully efficient M-estimator is the ML-estimator if the data in fact
conform to F. But it isimportant to stress that ML-estimators need not be—and often are
not—robust of efficiency for other distributions. Nevertheless, calculating such expressions
for p and ip serves a useful heuristic purpose by showing how p and ip for the ML-estimators
change with different distributional shapes. In particular, the shape of ipprovides important
insights that help guide the construction of M-estimators possessing higher efficiency for a
wide range of distributions.

Let the sampled observations be i.i.d. according to the known density f. For simplicity,
I assume that the scale of / is known and fixed such that f(9) = Then p and ip
for ML-estimators are given by (8) and (10). Table 2 gives expressions for the normalized
densities for the Gaussian, logistic, double exponential, and Cauchy distributions as well
as the functions p and ip corresponding to the ML-estimators for each distribution. Note
that p and ip for ML-estimators of the Gaussian and double exponential distributions define
two classical estimators of location, the mean and median, respectively; p and ip for the
ML-estimators for the logistic and Cauchy distributions do not correspond to any familiar

estimators.
[Table 2 about here]

To fix ideas, | calculate p and ip explicitly for the ML-estimator for the double exponen-
tial distribution. By (8) and (10), p = —logf(y,&) and ip = —dp/89 = ¢>[log/(j/; 9)\/d9.

The normalized density function for the double exponential distribution is given by

IM)= J=e-V 'V~2r-«l.

V2tt
Taking logs and changing signs yields
-log/(y;0) = i2!ogZ7r+ \y - 9\ . (19)
Hence
p(u) = ~log2" + luf
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where u = y —9. Note that p(u) is proportional to |u| up to additive and multiplicative
constants that arise from the normalizing constants in the density /.

Differentiating (19) with respect to 9 gives

SR = r->'l

Then by (10)

u) = \J”sign(u) »

where sign(u) is defined by*

Figure 2 illustrates the densities in Table 2, which are symmetric about 9 = 0. The
left-hand side of Figure 2 illustrates the central shapes of the densities and plots f(y) for
—3 <y < 0. To compare the extreme tail behavior of the densities, the right-hand side of
Figure 2 plots f(y) for 3 < y < 12; for convenience, the scale of f(y) is increased by a factor
of 10 in this range. Note that the logistic, double exponential, and Cauchy distributions
have progressively heavier tails than the Gaussian distribution, which fall off as exp(—y2).
In particular, the tails of the double exponential distribution fall off as exp(- |;/|) while
those for the Cauchy fall off as 1/;/2. Note also the distinctive central shapes of the double
exponential and Cauchy distributions, which are more sharply peaked than the Gaussian

and logistic distributions.
[Figure 2 about here]

Figure 3, which illustrates ip(u) = <9[logf(y;9)\/d9 for the four ML-estimators, demon-
strates these same characteristics somewhat more vividly. The similar central shapes of
Gaussian and logistic distributions correspond to shapes of m that are linear or close to
linear near the origin. The sharp central peaks of the double exponential and Cauchy
distributions correspond to large slopes of ip near the origin (ip for the median, which is
the ML-estimator for the double exponential distribution, is actually discontinuous at the
origin). The shapes of ip also illustrate the differences in the tails of the distributions. For

large +u, ip(u) is large in absolute value for lighter tailed distributions but small in absolute
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value for heavier tailed distributions. In particular, ip is unbounded for the Gaussian dis-
tribution but bounded for the other distributions. In the case of the Cauchy distribution,

which has the heaviest tails, ip(u) even “«descends,” that is, lim”0 = (»)' as u —*+00.
[Figure 3 about here]

Clearly, the functions p and ip for ML-estimators tell little more than the density /; the
function p = - log/(?/;(?) is simply f(y,9) on a log scale while ip = ¢?[logf(y;9)]/d9 gives
the rate of change for log/(j/;0). But since the functions p and ip for M-estimators need
not be fixed functions of any density /, we might seek to combine features of different p and
ip functions based on the insights gained from examining p and ip for the ML-estimators.
Hence the shapes of p and mpfor the ML-estimators provide a heuristic tool for constructing
more general M-estimators. For example, Figure 3 suggests that a bounded or redescending
ip function may be desirable if the data contain extreme outliers. Similarly, Figure 3 suggests
that if ip is approximately linear near the origin, then the resulting M-estimator is likely to
have good performance for distributions resembling a Gaussian distribution in the center.

Some Common M-estimators 0} Location. This section introduces several common M-
estimators of location and motivates these estimators using the heuristic insights gained
by examining the ip in Figure 3. Table 3 gives expressions for p, tp, and = dip/du for
seven estimators of location: two classical estimators, the mean and median, and five M-
estimators proposed by Huber. Hampel, Andrews, Tukey, and Bell (Huber, 1904; Andrews

et al., 1972; Beaton and Tukey, 1974; Bell, 1980).
[Table 3 about here]

Figure 4 illustrates p, ip, and $for the mean. To illustrate how one obtains M-estimates,
Figure 4 includes three hypothetical points, v = —3, (2 = 1, and ¢(3 = 2, corresponding
to the deviations ugs = yj - 9 of three observations y\, y!, and 13 obtained by setting 9
equal to the sample mean. (Note that w, = yj —9 for the mean and median since neither
requires a tuning constant or an auxiliary estimator of scale.) By definition, the mean is the
value of 9 minimizing Yi p(uj) lwhere p(u,) is a function proportional to the sum of squared
deviations. Hence, the sum of the p(uj) for the three points in Figure 4 can be shown to
be the minimum over all possible values of 9. Equivalently, the mean can be defined by the

value of 9 solving J37'(ui) = 0; hence, the ip(u,) in Figure 4 sum to zero.
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[Figure 4 about here]

Figure 4 helps to explain why the mean behaves poorly for data containing outliers or
gross errors. The plot of p(u) shows that p is a rapidly increasing function of u. Hence,
adding or deleting observations with large positive or negative u can exert a large effect
on the estimate ?n, so that Tn is a highly nonresistant estimator. Expressing the M-
estimator as a weighted mean leads to the same conclusion. By (18) the M-estimator can
be expressed as a weighted mean with weights ip(u)/u; hence, the mean assigns a weight
of 1 to all observations, including observations far from the bulk of the data. Similarly,
because ip(u) = a= y - 9isunbounded in u, one observation placed at y = 00 moves the
estimated value of the mean to +oo. Thus, one sufficiently aberrant value y can cause Tn
to have any arbitrary value.

Figures 5-7 illustrates p, ip, and <3 respectively, for the remaining estimators in Table
3. Since ip(u) = sign(u) for the median, only information on the sign of u = y —9 is used to
obtain the location estimate '/Fn. That is, given two positive values w! and vm with u! < wj,
ip(u!) is identical in value to ip(u<j)s, moreover, letting u? —* oc has no effect on the estimate
Tn, demonstrating the resistance of the median to outlying observations. The discontinuity
of mpat u = 0 is reflected by <X = <5(u), where <5(u) denotes the Dirac delta function,

which is, loosely, a function with an infinite spike for u = 0 and identically zero otherwise.9
[Figures 5-7 about here]

The Huber M-estimator combines features of the mean and median, providing better
protection against extreme outliers than the mean while giving better efficiency for the
Gaussian distribution than the median. The shape of ip, illustrated in Figure 0, is linear
in u for |u| < c and constant for |tii > c¢. Similarly, p(u), shown in Figure 5, is a convex
function proportional to u2 for |u| < ¢ and linear in u for |w| > c. This allows the Huber
M-estimator to act like the mean for centrally located observations and like the median for
observations far removed from the bulk of the data.

The tuning constant ¢ and the auxiliary estimator of scale 5" jointly serve to rescale
the yj. Observations less than cSn units from Tn fall on the linear part of ip (strictly convex
part of p) while observations greater than ¢Sn units from Tn fall on the constant part of ip

(linear part of p). Hence the tuning constant c allows one to adjust the performance of the
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estimator to achieve a desired efficiency for a particular distribution.10 For example, larger
values of the tuning constant c correspond to higher efficiencies of the Huber M-estimator
for the Gaussian distribution since the estimator increasingly resembles the mean as ¢ — 00;
similarly, the estimator increasingly resembles the median as ¢ —* 0. This shows that the
definition of each M-estimator in Table 3 refers more properly to a family of M-estimators
since different values of the tuning constants produce estimators that differ in performance
but have similar overall characteristics as determined by the qualitative shapes for p and ip.

Huber (1964) gives a more technical motivation for his M-estimator and shows that it

is the ML-estimator for a “least informative” distribution. Consider
F(y) = (I-e)4>(j/) + eG/(i/), (20)

where $(!/) is Gaussian and G[y) is symmetric. If G[y) is chosen so that F(y) has tails
that fall off as exp(—]Jt/[), then F(y) can be shown to have minimum Fisher information for
all F in (20) with symmetric G. A standard theorem states that the inverse of the Fisher
information is the Cramer-Rao lower bound on the asymptotic variance of all unbiased
estimators. Hcnce, minimizing the Fisher information results in maximum variance for es-
timators of (20). Since ML-estimators have minimum variance among unbiased estimators,
it follows that the Huber M-estimator minimizes the maximum variance for all distributions
in (20) with symmetric G.

The Hampel M-estimator may be regarded as a refinement of the Huber M-estimator.
Like the Huber estimator, ip is linear for values of |u| < a and constant for u between a
and b. However, Figure 6 shows that ip redescends linearly towards zero for b < |u| < ¢ and
is identically zero for |«| > c¢. This permits the estimator to downweight outlying observa-
tions progressively, providing additional protection against extremely aberrant observations.
Similar performance can be obtained by rejecting extreme outliers and applying the Huber
M-estimator to the remaining data except that the Hampel M-estimator downweights such
observations in a continuous manner, unlike procedures that identify and reject potential
outliers. Because ip redescends, p for the Hampel estimator illustrated in Figure 5 is not a
convex function, as was true for the mean, median, and Huber estimators, but is constant
for |u] > c. This may present technical difficulties since many values of Tn, corresponding

to different roots of J2 I(U) or to local minima or maxima of p(u)i may satisfy (14) or
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(15).

The sine M-estimator, proposed by Andrews, is defined by a ip function that consists of
one oscillation of the trigonometric sine function; hence, ip redescends and is identically zero
for sufficiently large xu. Figure 5 shows that the p(u) for the Hampel and sine estimators
have roughly similar shapes; Figures 6 and 7, illustrating p(u) and highlight the
differences between the two estimators. One advantage of the sine estimator over the
Hampel estimator is that it requires only one tuning constant while the Hampel estimator
requires three. A disadvantage is that ip for the sine estimator ascends and redescends at
equal rates, unlike the Hampel ip function, which is typically adjusted to redescend at a
slower rate than it ascends. In particular, this property for the sine ip function can result in
an inconsistent estimator for certain multimodal densities (see the discussion on consistency
in Section 4).

One unappealing aspect of the Huber, Hampel and sine M-estimators is that ip changes
slope abruptly for certain values of u, resulting in discontinuities for the §=in Figure 7. The
ip function for Tukey’s bisquare is similar in shape to ip for Andrews5sine but changes slope
more smoothly. This allows §>to be continuous and ip to redescend at a slightly slower rate
than it ascends. It should also be noted that the bisquare enjoys greater popularity than
other M-estimators and has received the most empirical study.

The shape of ip for the Bell M-estimator roughly resembles the shapes of ip for the
sine and bisquare M-estimators. However, ip for the Bell M-estimator redescends only
asymptotically, unlike the “hard” redescending ip functions of Hampel, Andrews, and Tukey,
which are identically zero for sufficiently large xu. In particular, Jp possesses an infinite
number of higher order derivatives that are everywhere continuous, unlike the four M-
estimators previously considered. This accounts for the smoother overall shape for ip and
eliminates the abrupt changes in slope for 4>characteristic of the other M-estimators in
Table 3.

Note that the sine, bisquare, and Bell M-estimators have a single tuning constant k
that can be adjusted to achieve different efficiencies for different distributions. Since the
tuning constant k appears in the denominator of u = (y—9)/kS, the effect of a larger value
of k forces a larger proportion of the uj's onto the central portion of the p function, where

the shape of the M-estimator is close to linear, resulting in better efficiency for the Gaussian
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distribution. Similarly, smaller values of the tuning constants force more of the it-’s onto
the tails of the ip function, resulting in better performance for heavy tailed distributions.

To summarize the previous discussion about the M-estimators in Table 3, an exami-
nation of p and ip for the mean helps to suggest why this classical estimator of location
lacks resistance for data containing outliers. Figure 4 shows that p is a rapidly increasing
function of u and that ip is unbounded in u\ hence the estimator is adversely affected by
extreme outliers or gross errors. Similarly, an examination of the ML-estimators for various
parametric distributions suggest that p and ip for the mean correspond to the light tails of
the Gaussian distribution, which fall off extremely rapidly as exp(—y2).

The remaining estimators in Table 3 have bounded ip functions and so offer much
greater resistance against outliers. The median has a ip function that is bounded but
discontinuous at the origin. An examination of the double exponential distribution, for
which the median is the ML-estimator, suggests that the discontinuity of ip corresponds
to the unusual central peak of the double exponential density. The Huber M-estimator
provides a compromise between the mean and median since ip is continuous and linear for
u near the origin but constant for large tu. It can also be motivated as the ML-estimator
for the least-informative distribution, which is Gaussian in the center but has tails that fall
off as exp(—|y|), like those for the double exponential distribution.

The other M-estimators are defined by continuous ip functions that are approximately
linear near the origin but redescend for large *y. Hence these estimators offer greater
protection against distributions with tails that fall off more slowly than exp(—I|y|). The
Hampel M-estimator is similar to the Huber estimator but adds an additional linear segment
that allows ip to redescend; because of this, it requires 3tuning constants. Andrews’sine M-
estimator is also defined by a redescending ip function but is simpler in definition. Tukey’s
bisquare M-estimator is similar to the sine M-estimator but has a smoother ip function for
u close to +1, which permits $to be continuous. The Bell estimator is defined by a ip
function that redescends asymptotically, resulting in an even smoother shape for ip than

the bisquare.
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4. CRITERIA FOR ROBUST STATISTICS

This section formalizes several desirable properties first introduced in Section 1. The
more technical sections have been starred and some readers may wish to skim these sections
on a first reading.

*Standard Statistical Criteria. An estimator Tn = T(Fn) is unbiasedif and only if (iff)

Er(rn)= 0, (21)

where 9 is the location parameter characterizing the distribution F(y\9). If F(y;9) is
symmetric about 9 and p is an even function (equivalently, xp is odd or £-is even), then Tn
is unbiased.

If Fn converges to F, for example, if Fn is the empirical distribution function of obser-

vations sampled according to F, then Tn = T(Fn) is consistent iff for all e > 0
lim Pr(| Tn—9|>1¢) = 0. (22)
n— »oo

That is, consistency requires that Tn converge in probability to the population value 9 as
n —»00. In contrast, bias simply requires that the mean value of Tn equal 9.

Regularity conditions for consistency of M-estimators are somewhat stringent, and
some M-estimators can be shown to be inconsistent under certain special conditions even if
F issymmetric. Roughly speaking, if p[u) is convex or if the underlying density / is strongly
unimodal, the M-estimator is consistent (Huber, 1981; Freedman and Diaconis, 1982). If
the density / is multimodal and p is not convex, the M-estimator can be inconsistent.1l

If the estimator is consistent, then under certain regularity conditions (Huber, 1981)
\/n{Tn - 0) is asymptotically distributed according to Gau(0, A2(T; F, 5)), where 5 is the
estimator for the auxiliary scale parameter and A2(T; F, S)—see expression (28) below—
denotes the variance of the estimator T.

*Influence Curve. One way of evaluating an estimator is to see how it is affected by
one additional observation y in a very large sample. This idea leads to the influence curve

(Hampel, 1974a)



where

F((u) = (I-e)F(iy) + efy(i/), (24)

F(v) is the underlying distribution, e is a small positive number, and £ is the indicator
function defined in (5). (I have replaced the usual F(j/) by F(v) for notational clarity.) The
expression in (24) states that F((v) and F(u) differ only by the presence of a point mass of
size e at u = y. Since Fe(v) approaches F(v) as e —#0, the influence curve may be viewed
as the derivative of Tn with respect to e. It thus provides a useful qualitative picture of the
asymptotic behavior of T under infinitesimal changes in the underlying distribution.12

Under certain regularity conditions (Huber, 1981), the influence curve for M-estimators

IC(j/; F,T,S) = —=mn— — i )

where F is symmetric and 0 is an odd function. (Appendix 2 presents a derivation for
25.) For example, the influence curve for the mean, which does not require an auxiliary
estimator S for scale, is

ICly; F, T)=y.
Similarly, the influence curve for the median is (Huber, 1981; Goodall, 1983)

IC(y; F, T) = sign(e/)

Note that the expression in (25) varies with F only through 5(F) and the integral in
the denominator. Thus, evaluating (25) for different F produces influence curves that have
identical qualitative shapes but different magnitudes. This provides an asymptotic justifi-
cation for choosing a shape for that compromises between the shapes for ip corresponding
to ML-estimators for different distributions F.

Resistance. A robust estimator is said to be resistant if it is insensitive to large changes
in a few observations or small changes in many observations. This property is of considerable
appeal since social scientific data often contain three types of observations that can cause
the classical estimators to lack resistance: gross errors (for example, observations that have

been incorrectly measured or coded), outliers (for example, observations that have large
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substantive differences from the rest of the population), and small errors (for example,
observations that are close but not equal to their true values because of rounding errors).

As noted in the previous section, mpprovides useful information for describing the qual-
itative behavior of M-estimators under large changes to a few observations. For example,
the boundedness of ip is necessary to insure the insensitivity to large changes in a few ob-
servations. Hence, one aberrant observation can completely determine the value of Tn if ip
is unbounded.

The requirement that an estimator be insensitive to small changes in many observations
implies that 'ip be continuous, since many observations occurring at a discontinuity of ip could
change the value of Tn sharply. For example, many strategically placed rounding errors can
cause instability in the estimated value of the median but not of the mean.

Consequently, an M-estimator is said to be resistant iff ip is bounded and continuous.
This definition provides a remarkably simple rule by which to assess the resistance of an
estimator. For example, the mean and median lack resistance since ip is unbounded for
the mean and discontinuous for the median. All other M-estimators discussed in Section 3
are easily seen to be resistant. In practice, the discontinuity of ip for the median presents
fewer difficulties than does the unboundedness of ip for the mean since, for finite n, the
discontinuity of ip causes sharp but bounded fluctuations of the value of 7713." Hence the
median is commonly regarded as resistant despite the discontinuity of ip at the origin.

Breakdown Point. The breakdown point e* of an estimator is, roughly speaking, the
smallest proportion of the sample that can be arbitrarily corrupted before the estimator
produces a large aberrant value. An aberrant value might be toc for a location estimator
or £1 for a correlation estimator. While breakdown provides a somewhat crude measure of
robustness, it is nevertheless extremely useful for examining the effects of large departures
from the distributional assumptions, in particular, large asymmetric corruptions of the
sample. Because data often have marked asymmetries, breakdown may well be the criterion
of greatest practical importance.

The notion of breakdown is originally due to Hampel (1974a), but | present a more
recent finite sample definition due to Donoho (1982; see also Donoho and Huber, 1983;
Huber, 1983b) that need not refer to any sampling distribution F. | consider two types

of arbitrarily corrupted samples Y * of the fixed sample Y. Let Y = (yi,m ., yn) be a
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fixed sample of size n and let Z = (z\,..., zm) consist of m arbitrary values. Then a
sample corrupted by eecontamination is defined by the sample F* = Y U Z consisting of
n + m points, where e= m/(n + m) is the proportion of contaminated points. Similarly, a
sample Y* corrupted by e-replacement is defined by replacing a subset of m points of Y by
Z = (zi,..., zm), where e = m/n is the proportion of contaminated points. A sample that
is corrupted either by e-contamination or e-replacement is called an escorrupted sample.

Given an e-corrupted sample F*, the maximum bias of T is defined as
b(e;Y,T) =sup |T{Y*) - r(F) |, (26)
Y -

where the supremum is over all e-corrupted samples F*. Then the breakdown point e*(F, T)

for the location estimator T is defined as
e*(F, T) = inf{ 6(e; F, T) = oo} . 27)

Note that values of e* range between 0 and 1. For example, the sample mean has a
breakdown point that approaches zero as n —%00. Adding one sufficiently bad observation
to a sample of size n can change the value of the mean by an arbitrary amount; hence e* =
I/(n+1) for samples corrupted by t-replacement. An estimator can also have a breakdown
point of 1, for example, the trivial estimator that gives a constant value regardless of the
sample. However, the breakdown point of a translation equivariant estimator is at best 1/2.
If t* = 1/2, the translation equivariant estimator cannot distinguish between the original
sample Y and the set of contaminating points Z and must break down. The median attains
this upper breakdown point of e* = 1/2 and so has excellent breakdown.

Other M-estimators also have excellent breakdown (Donoho and Huber, 1983). For the
M-estimators in Table 3, breakdown is largely determined by the breakdown of the auxiliary
estimator for scale and, it ip redescends, the breakdown of the initial starting estimator. (See
Appendix 3 for a derivation due to Huber (1983b) for the breakdown point of redescending
M-estimators.) Since the MAD and the interquartile range have breakdown points of 1/2
and 1/4, respectively, a common procedure for estimating a location parameter is to start
the iterations from the sample median using the MAD as the estimator for auxiliary scale.

If this procedure is used and the tuning constant is chosen for reasonably high efficiency
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for the Gaussian distribution, then the breakdown point for M-estimators typically exceeds
0.40 or 0.45 (Huber, 1983b).

How large should the breakdown point be? An instructive example concerns two Hu-
ber estimators studied in Andrews et al. (1972). The estimators were identical except that
one used the MAD for auxiliary scale and had a breakdown point of 1/2, while the other
used the interquartile range and had a breakdown point of 1/4. In small sample Monte
Carlo simulations, the estimator using the MAD performed substantially better than the
estimator using the interquartile range, especially for sampling distributions with heavy
tails. Although the two estimators have identical asymptotic properties for all symmetric
distributions, the estimator using the MAD appeared to deal better with the random asym-
metries that occur in finite sampling from heavy tailed distributions. This suggests that the
difference between a breakdown point of 1/2 and 1/4 can lead to a substantial difference in
performance.

Efficiency. This section reports small sample (n = 20) and asymptotic efficiencies of
several estimators for three sampling distributions. It should be noted that high efficiency
is not always necessary. If we wish to describe or explore the data, a resistant but rela-
tively inefficient estimator like the median often suffices to summarize the data roughly. In
other circumstances nonparametric procedures are appropriate when we are unwilling to
make more than weak assumptions. However, more efficient estimators are often needed
to obtain precise estimates or to reject inappropriate hypotheses. In such cases efficiency
is an important consideration since it lets us assess how closely Tn estimates the unknown
parameter 9.

The fourth criterion in Section 1 stated that a robust estimator should have high effi-
ciency for a range of distributions that cover the distributions we may encounter in practice.
But what is a plausible range of distributions? As noted earlier, suitable transformations
of the data can often make the distribution of the bulk of the data resemble a bell-shape
curve, a tendency sometimes called Winsor’s principle—that “all distributions are Gaussian
in the middle” (Tukey, 1900, p. 457). This suggests the use of a few sampling distributions
that resemble the Gaussian distribution in the center but differ in the heaviness of the tails.
Following Tukey and others (Beaton and Tukey, 1974; Tukey, 1979b), | examined three

distributions: a unit Gaussian, a 5% contaminated Gaussian at scale 10 (see expression 1),



and a slash distribution defined by a unit Gaussian distribution divided by a uniform (0,1)

distribution, which is given formally (Rogers and Tukey, 1972) by

l-e-vV2
y'W27

The Gaussian distribution has comparatively light tails that fall off as exp(—y2/2).
While such tails are lighter than might be expected for most social scientific data, we may
encounter such data on occasion. The contaminated Gaussian distribution has moderately
heavy tails. Such a distribution is often plausible because it models a situation in which one
small segment of the population is measured with greater error or differs substantively from
the remaining population. The slash distribution has extremely heavy, Cauchydike tails
that fall off as I/y 2 for large ty. Since the slash distribution can be obtained by dividing
a unit Gaussian deviate by an unit uniform deviate, it can be regarded as a continuous
mixture of Gaussian distributions with variances ranging from 1 to oo. Hence, the slash
distribution represents a more radical alternative to the contaminated Gaussian, which is a
mixture of two Gaussian populations, and models a population in which variability in the
population or measurement error ranges from a fixed lower limit to arbitrarily large values.

For the finite sample variances, sampling from the so-called one wild Gaussian (1WG)
is used in place of sampling from a 5% contaminated Gaussian at scale 10. For n = 20,
the 1WG takes 19 observations from a unit Gaussian and 1 observation from a Gau(0, 100).
Although the two sampling plans appear similar, the 1WG samples according to a nonprob-
abilistic rule—it always samples 19 observations from one population and 1 observation from
the other population—and so it is not a probability distribution.

The results in Table 1 showed that an estimator that is 100% efficient for one distri-
bution may perform poorly for other distributions. This suggests that in place of optimal
efficiency for one distribution, we should instead seek estimators that have "high'l efficiency
for a wide range of distributions. Tukey (1979a, p. 104) argues that an estimator with 90%

efficiency should be regarded as highly efficient:

“ALL efficiencies between 90% and 100% are NEARLY the SAME for the
USER. ... Alternate feedings of bodies of data to 2 statisticians, one

of whom uses a 90% efficient estimate, the other using a 100% efficient



estimate, followed by comparing each’s estimates with the corresponding
truths, has to involve like 3000 bodies of data before we can prove which
is which. Nothing methodological that takes this much data to check is
likely to be important.”
Tables 4 and 5 report small sample (e = 20) and asymptotic relative efficiencies for a
number of M-estimators of location for the Gaussian, 1WG, contaminated Gaussian, and
slash distributions. The efficiency of an estimator T relative to a reference estimator Tq for

a distribution F is defined by
effrO(T.F| =100 x ~ 1,

where To is chosen to be the estimator with the smallest variance for F. Asymptotic
relative efficiencies are obtained from an expression for the asymptotic variance A2(T; F, S)

(see Appendix 4 for a derivation)
A2(T-,F,S) = j[\C(y;F, T, S)}2dF(y) . (28)

Small sample relative efficiencies are taken from the results of Monte Carlo simulations

reported in Andrews et al. (1972), Bell (1980), and Goodall (1983).14
[Tables 4 and 5 about here]

With the exception of the 1WG, the reference estimators are the Pitman estimators for
the finite sample results and the ML-estimators for the asymptotic results. The Pitman and
ML-estimators have the smallest finite sample and asymptotic variances, respectively, of all
unbiased estimators; the ML-estimator coincides with the Pitman estimator as re —»00. In
the case of the 1WG, neither the Pitman nor ML-estimators are well-deiined since the 1IWG
samples observations in a nonprobabilistic way. Instead, the subsample mean (Kafadar,
1982), a pseudo-estimator, was used as the reference estimator. The subsample mean
assumes knowledge of the “wild” observation, that is, the observation sampled according to
Gau(0, 100), and computes the mean of the remaining 19 observations.15

A glance at Tables 4 and 5 reveals the poor performance of the mean. This estimator is
the Pitman and M L-estimator for the Gaussian distribution and so has the best small sample

and asymptotic efficiency for Gaussian samples. However, it has only 16-17% efficiency
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for distributions with moderately heavy tails like the 1WG and contaminated Gaussian
and produces extremely variable estimates for the slash distribution, which does not have
finite moments. Overall, the mean has the worst efficiency—by substantial margins—of all

estimators considered for the 1IWG, contaminated Gaussian, and slash distributions.

Other estimators have significantly better performance. For example, the median does
better than the mean for the 1IWG, contaminated Gaussian, and slash distributions. One
gives up 35% efficiency if the data conform exactly to a Gaussian distribution in return
for gains of 40-80% in efficiency for heavier tailed distributions. Such a trade-off is often
reasonable for exploratory or descriptive analyses, especially in light of the other good

properties (high breakdown and resistance) that the median possesses.

A closer examination of Tables 4 and 5 reveals no uniformly best estimator, although
some estimators—notably the mean—can be eliminated from consideration. The Huber
estimators do well for Gaussian samples but less well for 1IWG, contaminated Gaussian,
and slash samples. Although the Huber estimators are definitely preferable to the mean
and generally perform better than the median, other M-estimators in Tables 4 and 5 have

better overall performance.

Some estimators give up a moderate amount of efficiency for the slash distribution in
return for better efficiency at the Gaussian distribution, for example, one of the Hampel
estimators (a=2.5) and one of the bisquare estimators (k=8.8). Andrews’ sine estimator

falls into this group but does slightly better for the slash and slightly worse for the Gaussian.

One helpful criterion for assessing efficiency is the triefficiency of an estimator (Beaton
and Tukey, 1974), defined as the minimum relative efficiency of an estimator for the three
sampling distributions. Table 6 reports the four estimators with highest small sample and
asymptotic triefficiency. For the n = 20 samples, the Bell estimator has a triefficiency of
88.4%, which is the highest small sample figure among estimators considered. A bisquare
estimator with tuning constant k = 6.4 has the next best triefficiency (86.9%), followed
by two Hampel estimators with triefficiencies of 83.0% and 81.8%. The asymptotic results
differ slightly. The best estimator is a bisquare estimator (k = 6), which has a triefficiency
of 89.6%, followed closely by a Hampel estimator with 89.3%, the Bell estimator with 88.5%,
and a bisquare (k = 6.4) with 87.5%.
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[Table 6 about here]

Table 6, like Tables 4 and 5, reveals no uniformly superior estimator. However, given
estimators with high overall performance, we may wish to examine the individual efficiencies
for each estimator, particularly if we consider some sampling distributions to be more
plausible than others. One reasonable approach is to sacrifice a percentage point or two of
efficiency for the slash distribution in return for slightly better performance at the Gaussian
and contaminated Gaussian distributions. Such an approach favors the Bell estimator and
bisquare estimator with k = 6.4 over a Hampel estimator (a = 1.7) and bisquare estimator
(k = 6.0), which have marginally higher asymptotic triefficiencies. Since the Bell estimator
has a simpler definition and uniformly better small sample efficiency than the bisquare with
k = 6.4 (which appears converge slowly to its asymptotic performance—see Holland and
Welsch, 1977), the Bell estimator is a good overall choice. It should be borne in mind,
however, that estimators with efficiencies differing by a percentage point or two may be
regarded, for all practical purposes, as having identical efficiencies.16

Gross Error Sensitivity. A somewhat crude asymptotic measure of robustness is given
by the gross error sensitivity 7* (Hampel, 1974a). Ideally, one observation;/ added to a large
sample should affect the estimator Tn only negligibly—an estimator Tn should summarize
characteristics of the sample and not those of one particular observation. In the worst case,
the estimated value for Tn is determined by one strategically placed observation. These two
cases correspond to IC(y;F,T,S) = 0 and IC(y\ F, T, S) = 00, respectively. Hence, 7* is

defined as the largest absolute value attained by IC(t/; F, T,S), that is,
*=sup |[IC(Y;F,7\5)]. (29)

The gross error sensitivity can also be used to give a rough approximation to the
maximum bias of an estimator T. Suppose one observation is added to a large sample.

Then the maximum bias of T is given asymptotically by £7* since
sup \T(Fe)-T (F)\*n™*
n

by the definition of the influence curve in (23).
Table 7 gives some values for 7* for the estimators and distributions considered in

Table 5. The mean has the worst attainable gross error sensitivity, with 7* = 00, since ip
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for the mean is unbounded. The median has the lowest values for 7* among the estimators
and the distributions listed in Table 7. Goodall (1983) notes that there is a rough trade-off
between gross error sensitivity and efficiency and an examination of Tables 4-7 confirms
that the good gross error sensitivity of the median is gained at the expense of lower overall
efficiency. However, the estimators found to have high triefficiencies in Table 6 represent

excellent compromises and have both high efficiency and low gross error sensitivity.

[Table 7 about here]

5. HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

This section discusses tests of hypotheses and confidence intervals for M-estimators.
While a better understanding of the underlying issues is beginning to emerge (see, for
example, Efron, 1981; Iglewicz, 1983), this subject has received less attention than the
robust estimation of location. Hence the methods discussed here must be viewed tentatively.
In light of these difficulties, | have chosen to concentrate on relatively simple (-like tests
similar to the classical Student (-test and a i-like test due to Johnson (1978; see also Efron,
1981).17 These simple methods appear to perform well (Gross, 1976; Shorack, 1976; Efron,
1981; Martinez and lIglewicz, 1981; Kafadar, 1982; Shoemaker and Hettsmansperger, 1982;
Iglewicz, 1983) and have the added advantage of familiarity and ease of usage.

The classical test of a hypothesis Ho*9 = 9o versus an alternative hypothesis H\:9 > 9q

involves the familiar Student (-test statistic

where the estimators of location and spread are the sample mean y and the sample standard
deviation »", respectively. Given a level a, the procedure typically used is to accept the
alternative hypothesis Hi if the statistic in (30) exceeds the critical value «<*,"-! and
otherwise to accept the null hypothesis HO, where the critical value /caln _! denotes the (1 -
a) 100 percentile of the Student (-distribution with n —1 degrees of freedom. Alternatively,

one can use the statistic in (30) to form the classical 1- 2a central confidence interval

\W~ Ka,n-19n,y + — (31)
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The value a is the level of the test and denotes the probability of a Type | error:

Pr[Reject HO | Ho true] = Pr\\/n(y - 0)/«" > «c,"-!] = a.

For Gaussian distributions, the test statistic in (30) can be shown to be the most powerful
a-level test, that is, a test producing the shortest confidence intervals or, equivalently,
minimizing the probability of a Type 11 error: Pr[Accept Ho | Ho false] .

How does the Student (-test perform if the underlying distribution differs from a Gaus-
sian distribution? For customary levels of a, for example, a < .05, the Student (-test
typically yields a conservative test for most distributions, for example, distributions resem-
bling a Gaussian distribution in the center but having greater mass in the tails (Benjamini,
1983). That is, the classical (-test may lead an analyst to reject the null hypothesis more
often than would be expected from a .05 level test for heavy-tailed distributions. This is
intuitively plausible because the standard deviation is highly nonrobust—a few aberrant
observations cause sn to become extremely large even if the bulk of the data conform to a
Gaussian distribution. Since sn enters into the denominator of t in (30), the value for (, and
hence the level of the test, tends to be biased downward severely, leading to a conservative
test. Moreover, the classical (stest appears to be even less robust with respect to the power
of the test than to the level of the test (Hampel, 1973).

The test statistic in (30) suggests a robust test statistic

where Tn is the M-estimator and <42 = A2(Tn;Fn,Sn) is the estimator of spread defined by
a suitable modification of (28) and with the same M-estimator Tn. Under certain regularity
conditions and for symmetric F, Tn and A2 are independent and have asymptotic Gaussian
and chi-square distributions, respectively (Huber, 1981). Then a standard theorem states
that the distribution of the statistic in (32) should be close to a Student (-distribution with
v degrees of freedom (df ). A key difficulty, however, concerns the appropriate value for
ui which appears to depend in a complicated fashion on the underlying distribution F,
the shape of ip, the value of the tuning constants, and the estimator of the auxiliary scale

parameter S (Shoemaker and Hettsmansperger, 1982).
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To date, two approaches have proven popular in constructing confidence intervals and (-
like tests based on the statistic in (32). One approach (Gross 1976; Kafadar, 1982; Iglewicz,
1983) constructs special tables for the critical values of ( using the results of Monte Carlo
simulations for particular M-estimators and a few selected sampling distributions. Since the
critical values of ( vary for different distributions, a typical procedure is to take the largest
critical value, which provides a conservative test. Iglewicz (1983) reports critical values
for a = .05 and samples sizes of 10, 20, 30, 40, 50, and 100 for the bisquare M-estimator
with k = 9.0 and for sample sizes of 20 for the sine M-estimator with k = 2.4;r. For both
estimators, the conservative critical values occur for the Gaussian distribution.

A somewhat ad hoc but simpler solution followed in this chapter uses critical values Kait'
from standard (-tables but reduces the classical n —1 df by a constant fraction, where the
specific fraction is usually determined by Monte Carlo simulation. For example, Mosteller
and Tukey (1977) recommend 0.7(n - 1) df for the bisquare. Martinez and Iglewicz (1981),
Kafadar (1982), and Iglewicz (1983) find that using the test statistic in (32) with 0.7(n - 1)
df produces critical values that agree closely with those found in simulations for a bisquare
estimator with k = 9.0. Martinez and Iglewicz (1981) suggest using 0.6 (/i—1) df for a sine
M-estimator with k = 3.1;r and for a Hampel M-estimator with a = 2.25,6 = 3.75, and
c= 15.0.18

More formally, the tests considered above are based on a pair of estimators (T",AR).
As noted earlier, the center of the density was a natural location parameter under the
assumption of a symmetric density /. But even under the assumption of a symmetric
density / there is no such natural scale parameter, leading to some arbitrariness in the
choice of the scale estimator A2 (lglewicz, 1983). One consequence is that the choice of
the matching scale estimator, as in (32), does not guarantee a most powerful test in the
sense of producing shortest confidence intervals or minimizing the probability of a Type
Il error. Despite these difficulties, evidence from numerous Monte Carlo studies (Gross,
1976; Shorack, 1976; Kafadar, 1981; Iglewicz, 1983) suggest that the test statistic in (32)
performs well in practice in terms of both level and power.

Since a bisquare estimator with k = 6.4 and Bell estimator with k = 1/0.35 were
found to perform better than the two estimators used by Kafadar and Iglewicz, | checked

the performance of tests using 0.7(n —1) df for these estimators in simple Monte Carlo
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simulations. Following Roeke and Downs (1981) and Kafadar (1982), A2 is defined to be

42= *fimaE3M R

T [EQI-HERI]L !

The denominator of (33) differs slightly from that suggested by the asymptotic expression

in (28) in a manner similar to the small sample correction of n — 1 in the definition of the
sample variance.

Two test statistics were examined in the Monte Carlo simulations: the test statistic t

in (32), and t*, an analogue of a test statistic due to Johnson (1978; see also Efron, 1981),

defined as

r e« '+A ( 2+ 8) ‘34>

where t is the test statistic in (32) and

oy {kSn? EV3(9

M3— (35)

Johnson uses a Cornish-Fisher expansion for the mean and standard deviation and finds
that t* has a distribution matching the Student ;mdistribution more closely than the classical
testatistic in (32). For the mean, » is the third moment of the distribution; (35) presents
a similar expression for M-estimators suggested by the expression in (33) for A2.19

Tables 8-10 report the observed levels for nominal 1%, 5%, 10%, and 15% two-sided
tests using t and t* for the bisquare and Bell estimators with k = 6.4 and k = 1/0.35,
respectively. For comparison, results for the mean and classical Student f-statistic are also
reported. | examined three sampling distributions: the standard Gaussian distribution,
the 5% contaminated Gaussian at scale 10, and the slash distribution. Five thousand
samples of size 20 were used in sampling from the Gaussian and 5% contaminated Gaussian

distributions; 20,000 samples of size 20 were used in sampling from the slash distribution.
[Tables 8-10 about here]

As expected, the classical Student i-test for the mean performs well for the Gaussian
distribution but produces a conservative test for the contaminated Gaussian and slash
distributions. For a nominal 5% two-sided test, the observed levels for the Student i-test

are approximately 3% and 2% for the contaminated and slash distributions, respectively.
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The tests using n - 1 df also do not provide optimal results for the bisquare and Bell
estimators. For example, the observed levels for the ;mtest in (32) for a nominal 5% two-
sided test with 19 df are approximately 6% for the Gaussian and contaminated Gaussian
distributions for both the bisquare and Bell estimators, which produces a somewhat liberal
test. Since reducing the degrees of freedom from n —1to 0.7(ra - 1) implies larger critical
values, the resulting tests are more conservative and produce observed levels in Tables 8-10
that agree more closely with the nominal levels of a .20 The two test statistics( and (* differ
only slightly for the Gaussian and contaminated Gaussian distributions when used with the
bisquare and Bell M-estimators, with t* tending to provide a slightly more conservative
test than (. The differences are more marked for the slash distribution, where (* tends to
provide a less conservative test than (.

Since a conservative test is usually preferred to one that is liberal, the results in Tables
8-10 suggest that for the Bell estimator, using t* with 0.7(ra —1) degrees of freedom provides
a good overall test that improves on the overly conservative Student (-test. However, a more
systematic study is clearly required to determine the best degrees of freedom, evaluate the
performance of different test statistics and estimators of spread, and assess the effects of
asymmetric sampling distributions. In particular, (* for the bisquare might perform better

with a different adjustment to the degrees of freedom.

6. ROBUST REGRESSION

In this section, | consider M-estimation of the usual linear regression model2l

y = X0 +e

where X is an n x p matrix of known values for p independent variables, y is an n x 1 vector
of observations for the dependent variable, - is a px | vector of unknown parameters, and
6 is an n x 1vector of random disturbance terms e-, *= 1,..., n. The e are assumed to be
i.i.d. with E(e,) = 0.

M-estimators of regression. The OLS estimator bLs is given by

bLS = (X'X)-1X'y .
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(I denote any estimator of the unknown parameter vector 0 by b.) This estimator is
fully efficient if the e, conform to a Gaussian distribution. But like the mean, bi*s lacks
resistance, has a breakdown point of zero, and quickly loses efficiency for error distributions
with heavier tails than the Gaussian distribution.

The usual linear model can be rewritten as
6' = yi X,0, i=1...,1,

where X, is the ith row of the matrix X. This suggests defining the regression M-estimator

as the value of b that minimizes

n
537 u 3 6 )
=1
where
S o e (37>

Taking partial derivatives of the expression in (36) with respect to bj yields the p equations

n
A2 xiji=>{ui) = 0 y=1,...,p, (38)
1=1

where Xij denotes the ijth entry of the matrix X.

Rewriting the last expression in a form similar to the weighted mean in expression (18)
gives
n
y X,juw =0, =1,...,p,
=1
where the weights w, are defined by

Wi = ip(ui)/ui. (39)

This yields a weighted least-squares expression (Holland and Welsch, 1977; Byrd and Pyne,
1979; Hogg, 1979)
b= (X'WX)1 X'Wy, (40)

where W is a diagonal matrix with diagonal elements w,.
Estimation. As in the case of estimating a location parameter Tn, one can either
minimize the expression in (36) using a Newton-Raphson type algorithm or apply the it-

eratively reweighted least-squares (IRLS) method suggested by (40) to obtain numerical
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values for the M-estimator b. Newton-Raphson methods typically employ a search proce-
dure to identify the steepest descent direction at each iteration; the Hessian matrix may be
used to determine if convergence is to a local minimum or saddle point of £ p(u)e For the
IRLS procedure, the initial estimate b(0) is used to calculate the weights u',, which are in
turn used to calculate a new value b(1), continuing until a convergence criterion is satisfied.
Byrd and Pyne (1979) discuss conditions under which the IRLS method converges either to
a saddle point or local minimum. They show that under mild conditions the IRLS method
does not converge to a local maxima in general. Convergence proofs generally assume that
the auxiliary parameter of scale Sn is either known or fixed; however, one also typically
iterates on the auxiliary scale parameter, particularly in the case of estimating regression
parameters.

Hogg (1979) notes that robust estimation of the nonlinear model y = gf(x,,b)+€ follows

from a simple modification of the u,

where y(X, ,b) is a nonlinear function. Then M-estimates are obtained by either minimizing
£2 p(w!) or using an IRLS method obtained by taking partial derivatives of £ p(uj) to
calculate the appropriate weights for the expression in (40).

Leverage Points and Multiple Solutions. The data in Figure 1 considered at the outset
of this chapter illustrated an example of the problems caused by leverage points, that is,
outliers in the x's that can (potentially) exert a strong influence on the parameter estimates
B or on the predicted values y, by virtue of their position in the data. Both the OLS
estimator and the Bell estimator started from the OLS solution were adversely affected
by the outlying cluster of leverage points. However, the Bell estimator started from the
repeated median estimate identified and downweighted the cluster of 20 “bad” points.

The results in Figure 1 showed that the performance of the regression M-estimator
depends heavily on the breakdown properties of tho initial estimator. Consider the Bell
estimator started from the OLS estimate. Such a start provided s moderate-sized initial
estimates of the uj. In this situation, the Bell estimator could not identify the 20 outlying
observations and hence yielded estimates similar to the OLS estimates. In contrast, the

repeated median estimate provided the Bell estimator with 30 small values of u, and 20
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large values of This allowed the Bell estimator to refine the rough initial estimate
(a = 3.28, b= 0.816) by downweighting the 20 leverage points, thus yielding a more precise
estimate (& = 2.04, b = 0.999).

The expression in (38) helps to explain why the Bell estimator started from the repeated
median estimate performed well. For redescending M-estimators like the Bell M-estimator,
the function tp(u) rapidly approaches zero as tu —ao00. Since an extreme outlier in the
x’s produces a large value for uj, the resulting value of ip(iij) is effectively zero. Hence
a large value of x is compensated by a nearly zero value of ip(u) when minimizing the
expression Axip(u) in (38). Then, given a sufficiently high breakdown initial estimate, a
redescending ip function allows the regression M-estimator to downweight leverage points
and other extreme outliers and to have the same high breakdown as the corresponding
location M-estimator (Donoho, 1984).22

Poor breakdown may also explain the performance of the diagnostic procedures for
the data in Figure 1. Gasko and Donoho (1982) find that many such procedures have
surprisingly low breakdown points. Hence, these diagnostic procedures can fail to identify
outliers when the data contain even small clusters of leverage points. This suggests that
the breakdown properties of regression estimators or diagnostic procedures yield important
information about their performance when the data contain severe contamination such as
clusters of leverage points.

As the example in Figure 1 also demonstrates, one difficulty with redescending M-
estimators is the possibility of multiple solutions. As noted earlier, although a single es-
timate for a given set of data and model is attractive, an implicit assumption is that the
data in fact provide a single unitary indication. But multiple solutions often arise if the
error distribution contains multiple modes. Hence, the choice between different estimates
involves issues that cannot be easily resolved by simple statistical criteria. For example,
the M-estimate started from the OLS estimate had a lower value of p(ui) than the M-
estimate started from the repeated median estimate, even though the latter possessed a
higher breakdown point and so summarized the majority of the data better. Thus, auto-
matically accepting the estimate that minimizes £ P{u) may n°t provide a reliable guide
for choosing between different estimates. Instead, multiple solutions often indicate the need

for model criticism or a réévaluation of substantive theory. For example, the goal of fitting
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a straight line to all observations in Figure 1 is clearly inappropriate since the data consist
of two extremely disparate populations, a fact not reflected in the simple linear model used
in the example.

It should be stressed that the M-estimators of regression defined in (36) and (38)
are designed to be robust against deviations from the assumed distribution of the e,’s.
Thus, an implicit assumption is that the matrix X is known and observed without error.
Notwithstanding the conceptual distinction between outliers in the y's and outliers in the
x's (including leverage points), it is often difficult in practice to distinguish between the
two since both produce large values for the u, in (37) given a sufficiently robust (high
breakdown) initial estimator.

Testing. Simple tests of hypotheses about individual parameters bj ofthe form Hq: bj =
fij versus an alternative hypothesis H\:bj > i3j generalize in a straightforward manner from
the tests associated with a location estimator (Hogg, 1979; Huber, 1981). The classical test
forms the (-statistic

f, 40 , -
. )

where 8y is defined by the jth diagonal element of the covariance matrix
Cov(bLS) = (X'X)1",
n—p
and sB is defined by
JEFACHE-CH
i=l
An analogous robust test for b replaces in (41) by the square root of the jth diagonal

of the covariance matrix

Cov(b) =M X "X ) 1",
n—p
where A" is defined in (33), and u, is given in (37). The resulting value of t can then be

used to evaluate the modification of Johnson’s (-statistic given in expression (34).
7. EXAMPLES

The section presents two empirical examples illustrating the robust regression M-
estimators described in the previous section. The first example consists of a simple re-

gression using data on aggregate employment in metropolitan areas previously analyzed in
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a study of urban growth (Norton, 1979). The second example uses data from the 1979
wave of the National Longitudinal Survey of Youth (Borus and Santos, 1983) and examines
individual earnings of young white males employed and out of school at the date of survey.

Growth of Employment in the Service Sector. The urban data describe growth of em-
ployment in the service sectors of the 30 largest Standard Metropolitan Statistical Areas
for the period 1947-1972. These data provide an interesting example since the cities sam-
pled represent a heterogeneous population consisting of older industrial cities (for example,
Boston, Cleveland, Pittsburgh) and younger and rapidly growing sun-belt cities (for exam-
ple, Dallas, Houston, Phoenix). In addition, Norton identifies an obvious outlier (Phoenix)
and presents two sets of parameter estimates—OLS estimates for the full sample and OLS
estimates after deleting data for Phoenix. His procedures provide a convenient compari-
son with robust methods, which are designed to accommodate and identify outliers in an
automatic fashion.

Table 11 presents results for the specification used by Norton. The percentage growth
of employment in the service sector is regressed on the percentage growth of employment in
the manufacturing sector (for details on the definition of these variables, see Norton, 1979,
p. 109). The OLS results for the full sample (n = 30) indicate that cities experiencing no
growth in manufacturing employment nevertheless experienced an average rate of growth of
61 percent in service sector employment for the period 1947-1972. Similarly, a one percent
increase in the growth of manufacturing employment resulted in an increase of 0.4% in the
growth of service sector employment. All parameter estimates reported in Table 11 differ

significantly from zero at the .05 level.
[Table 11 about here]

For the full (n = 30) sample, the Bell M-estimates started from the repeated median
estimate (Bell/RM) differ considerably from the OLS estimates. The Bell/RM estimate of
the intercept implies an increase of 48% in service sector employment for cities experiencing
no growth in manufacturing and differs from the OLS estimate by about two OLS standard
errors. The Bell/RM estimate for sectoral employment implies that a one percent increase
in manufacturing employment corresponds to an increase of 0.6% in the average growth

rate of service sector employment, a value substantially larger than the OLS estimate.
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Figure 8 presents a scatterplot of the 30 data points with the regression lines given
by the OLS and Bell/RM regression estimates superimposed over the data. Of particular
interest is the high leverage position of Phoenix, which experienced an extremely rapid rate
of industrial growth during this period. The scatterplot clearly shows the leverage effect of
the observation for Phoenix on the OLS estimate as well as the insensitivity of the robust

M-estimator to this and other outlying observations.
[Figure 8 about here]

Figure 9 presents a Gaussian probability plot for the residuals obtained from the OLS
and Bell/RM estimators. Such plots are often used to assess the fit between the assumed
and sample distributions of the residuals (see, for example, Cook and Weisberg, 1982b,
pp. 55-58). Residuals are plotted along the y-axis and the expected Gaussian quantiles
along the .r-axis. Note that the pattern of the robust residuals is close to linear, suggesting
that the bulk of the residuals conform to a Gaussian distribution. (The robust residual for
Phoenix is not plotted as it extends beyond the limits of the graph.) In contrast, the pattern
of the OLS residuals deviates markedly from linearity. For both estimates, the pattern of
residuals indicates a small number of outliers since the residuals have an inverted “S” shape
pattern in which large negative values of the residuals fall below and large positive residuals

lie above the bulk of residuals.
[Figure 9 about here]

Because of the outlying position of Phoenix, Norton dropped it and obtained OLS
estimates for the remaining sample (n = 29). For this sample, the OLS estimate of the
intercept (see Table 11) agrees closely with the Bell/RM estimate, but the OLS estimate
of the effect of change in manufacturing employment is slightly higher than the Bell/RM
estimate. Since the Bell/RM estimator assigned Phoenix a weight close to zero (wj =
.00041) in the full sample, the Bell/RM estimates for the sample with Phoenix deleted are
virtually identical to the Bell/RM estimates for the full sample.

Table 12 lists cities with large residuals for the OLS and Bell/RM estimates for the
n = 30 sample. Surprisingly, the magnitudes of the OLS residuals for three cities (San Diego,
Houston, and Atlanta) are larger than the magnitude of the OLS residual for Phoenix.

Note also that Dallas is not identified as a possible outlier by the OLS estimates in the full

- 40 -



robust standard error). Because of this, the effects for collective bargaining and urban
residence achieve significance at the .05 level in the Bell estimates but only approach sig-
nificance for the OLS estimates (p < .15). Thus, despite overall similarities, the differences

in significance levels could lead to quite different substantive conclusions.

Are these lower levels of significance due to the smallermagnitudes of the OLS estimates
or the smaller standard errors of the Bell estimates? A rough indication is provided by
computing the ratios of the different parameter and standard error estimates for collective
bargaining and urban residence. For both variables, the ratio of the OLS estimate to the
Bell standard error is less than 1.7 while the ratio of the Bell estimate to the OLS standard
errors is slightly greater than 2.0. This suggests that the differences between the magnitudes
of the OLS and Bell coefficients are large enough to account for the differences in significance

levels.

In order to investigate the shifts in the coefficient estimates, | examined partial re-
gression plots (Mosteller and Tukey, 1977; Belsley, Kuh, and Welsch, 1980; Henderson
and Velleman, 1981) for collective bargaining and urban residence. Given a model y =
bo + b\Xi + mee+ bpXp + e, let e(j/.023...p) be the residuals obtained by regressing y on all in-
dependent variables except a! and let e(x! 023..#) be the residuals obtained from regressing
x\ onij,.. . xp. Then the partial regression plot for 6! is obtained by plotting e(y.023...p)
against t(x\ 023..P)m Where no confusion may occur, | denote e(x! 023...p) and e(yo023...p)
by e(x! rest) and e(y.re,t), respectively. Mosteller and Tukey (1977) show that slope of the
OLS line through the points of the partial regression plot equals the OLS estimate of b\.
Moreover, the OLS residuals of the partial regression plot are the same as the residuals in

the original model. Thus, these plots provide an extremely useful tool by allowing one to

inspect the effects of individual observations on a particular coefficient.

Figure 11 illustrates the partial regression plot for collective bargaining using the re-
stricted (e = 119) sample. The solid line is the OLS line fitted to the points in the partial
regression plot; the slope of this line equals the OLS estimate for the effect of collective
bargaining in the re = 119 sample. For comparison, | have superimposed a dashed line
whose slope equals the robust parameter estimate; note, however, that this line need not

coincide with the M-estimate fitted to these points, as is the case for the OLS estimate.
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[Figure 11 about here]

Visual inspection suggests a few unusual points are potential leverage points for this
parameter. These points are labeled by an identifier and the weight assigned by the robust
estimator. Considered separately, observations 14 and 99 are potential leverage points
since the extreme positions of each observation along the x- and y-axes could cause the
OLS estimate to shift. However their effects appear to cancel. Similarly, observation 44
has a large ~“deviation but a more central apposition and so seems less influential. More
problematic are the three observations located in the lower right-hand portion of Figure 11.
Because these observations have relatively large residuals, the Bell estimator downweights
the influence of these observations on the Bell estimate. But because the OLS estimator
assigns equal weights to all observations, these observations appear to pull the estimated
OLS line downward as compared to the robust line, which may explain the lower level of

significance for the OLS estimate.

The original data show that the individuals in question reported lower than average
hourly wages ($1.79, $2.90, and $2.56 for observations 56, 107, and 112, respectively).
Althogh these wages seem low for jobs covered by collective bargaining, it is difficult to
assert confidently that the observed data are in error and should be rejected. The Bell
estimator provides a middle ground between complete acceptance and complete rejection of
these observations by downweighting their influence, thus limiting but not eliminating the
information in them.

The partial regression plot in Figure 12 for urban residence shows a similar overall pat-
tern. While several large residuals occur in Figure 12, the positions of three observations
(44, 56, and 99) appear to exert damaging effects on the OLS parameter estimate, resulting
in a smaller estimated slope for the effect of urban residence. The small weights assigned
to these observations, (.299 for observation 44; .320 for observation 56; .295 for observation
99) indicate that robust estimator provides a greater degree of protection against the pos-
sible downward bias caused by the strategic position of these observations than the OLS
estimator. Once again, the three observations identified as potentially troublesome report
unusually low hourly wages but, as before, it is difficult to assert with great confidence that

such values are definitely inconsistent with the reported data for urban residence.
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[Figure 12 about here]

Lastly, Table 14 provides a crude test of the breakdown properties of the OLS and
Bell estimators by presenting results for the raw (untransformed) wage data using the full
(n = 120) sample. Since these data have a pronounced positive skew and include the extreme
outlier, this example presents a situation that departs sharply from the usual distributional
assumptions.

Not surprisingly, the OLS estimate breaks down dramatically, yielding extremely aber-
rant results. All coefficients show large shifts from the results in Table 13 and only the
effect of marital status remains significant at the .05 level. However, the Bell estimates,
standard errors, and significance levels are strikingly similar to those in Table 13. The
Bell estimates differ most for collective bargaining and marital status, with values roughly
0.75-1.0 standard errors higher in Table 14 than in Table 13. The larger coefficients for
collective bargaining and marital status are not surprising in light of the positive skewness

of the distribution of raw wages.
[Table 14 about here]

Obviously, only a naive analyst would fail to omit the obvious outlier and transform
the dependent variable to achieve symmetry, particularly since these features are readily
apparent in even a cursory examination of the stem and leaf display in Figure 10. Never-
theless, it is reassuring that the robust M-estimator yields reasonable estimates even in the

presence of such noticeable departures from the distributional assumptions.

8. CONCLUSION

Careful data analysts have long been alert to the pitfalls resulting from unusual ob-
servations and distributions with greater mass in the tails than a Gaussian distribution.
Unfortunately, the classical estimators routinely used by sociologists perform poorly for
distributions that deviate even slightly from a Gaussian distribution and may produce pa-
rameter estimates that are misleading or useless. This is of considerable practical concern
since empirical data seldom—if ever—conform exactly to a Gaussian distribution.

This chapter has discussed and illustrated one class of robust estimators, the M-
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estimators, which are designed to perform well for a wide range of distributions. The
considerations in Section 4 showed that M-estimators satisfy several common statistical
criteria, are resistant to large changes in a few observations or small changes in many ob-
servations, have a high breakdown point against severe departures from the distributional
assumptions or large contaminations of the data, and perform efficiently for distributions
resembling a Gaussian distribution in the center but differing in the tails. Moreover, M-
estimators are readily extended to problems such as multiparameter regression and tests of
hypotheses.

Because extreme outliers are easily identified by a variety of methods and can typi-
cally be rejected, they seldom cause great difficulties. Hence, alternatives to M-estimators,
such as regression diagnostic procedures and graphical displays (scatterplots, stem and
leaf displays, partial regression plots), are often useful for identifying extreme outliers or
other unusual observations. Still, care must be taken. The usual practice of inspecting the
OLS residuals can fail to identify outliers, as the urban data and the example in Figure
1 illustrated, even when the outliers are easily identified in graphical displays. Regression
diagnostic procedures can also fail to identify extreme outliers in certain extreme situations,
as the example in Figure 1 illustrates. Graphical displays are typically revealing but may
occasionally be misleading in complicated problems involving many independent variables if
the outliers do not have extreme values on any one variable (Friedman and Stuetzle, 1982).

More problematic are situations in which one or more observations exert moderate but
potentially damaging effects on the parameter estimates, standard errors, or significance
levels. The NLS data on wages provide two informative examples in which the OLS and
robust M-estimates differ in significance level. A more careful analysis of these data suggests
that a few individuals with low reported wages appear to exert a downward pull on the
OLS estimates but not on the M-estimates. Although the estimates are roughly similar in
magnitude, the differences are great enough to account for the lower levels of significance
given by the OLS estimator as compared to the M-estimator (p < .15 vs. p < .05). Clearly,
these differences could easily alter the conclusions drawn from these data on two variables
of considerable substantive interest.

Although regression diagnostic procedures and graphical displays can often identify

possibly influential observations in such intermediate situations, the problem of what to do
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with such observations once identified is less straightforward. One approach is to sequen-
tially delete selected observations or subsets of observations and observe the effects on the
parameter estimates. But such a process is arduous, particularly if many observations are
singled out for deletion or if (as in the NLS data) the observations identified as influential
vary across parameters. Moreover, we rarely have definitive substantive guidance for reject-
ing or accepting borderline cases, which can render difficult data-cleaning decisions even
more difficult.

Because the M-estimators provide a formal procedure for progressively downweighting
observations, they allow one to avoid the all or nothing approach of methods that clean the
data. Of course, the additional effort needed to obtain the robust M-estimators may seem
superfluous if the conclusions are unaffected or change in only small ways. But the examples
indicate that the results obtained from the robust estimators can have quite different and
important substantive implications.

Despite many advantages, robust estimators have certain drawbacks. They must be
estimated by an iterative procedure and hence are more costly to compute than the classical
estimators. The use of a robust initial estimate is highly desirable, particularly when multi-
ple solutions exist, but is costly to obtain in large samples with many independent variables.
Although the robust tests proposed in Sections 5 appeared to work well for sample sizes
of n > 20, more work is needed to develop better and more efficient methods for testing
hypotheses and constructing confidence intervals. Finally, although the IRLS estimation
procedure lets one adapt existing OLS procedures to M-estimators of regression, the present
lack of readily available software poses obstacles to widespread use.

Should we abandon classical estimators like the sample mean and OLS estimators?
Although the answer is a qualified no, we would do well to modify our usual practices. One
reasonable approach is to examine the results obtained from both the classical and robust
estimators. If the results agree substantially, we should report the agreement and the results
of either (or both) procedures. If the results disagree, further analysis can often help to
isolate the causes of the differences, and the residuals or weights produced from the robust
procedure can help to identify unusual observations. Such observations can be checked for
error or influence on the estimated parameters or predicted values. They also often help to

suggest deficiencies in the model.
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Based on a variety of theoretical and practical criteria, the redescending M-estimators
are particularly useful. Because of excellent overall performance (resistance, high break-
down, high triefficiency, and low overall gross error sensitivity), the Bell M-estimator rep-
resents a good choice among the more popular redescending M-estimators. However, the
differences between the better redescending M-estimators are often slight and other choices,
such as Tukey’s bisquare with tuning constant 6.0 or 6.4, are likely to give results similar
to those obtained with the Bell M-estimator. It is less easy to make definitive recommen-
dations regarding procedures for constructing confidence intervals and tests of hypotheses,
partly because these topics are less well understood and much more work remains to be
done. However, the results of preliminary Monte Carlo simulations reported in Section 4
indicate that tests using a modification of Johnson’s ¢ -statistic with 0.7(n - 1) df perform
well when coupled with the Bell M-estimator.

Strong negative recommendations are made most easily. The worst estimators and
tests—by substantial margins—are the classical estimators and tests. If the data conform
exactly to the classical assumptions, then one loses little by using robust estimators and
tests. But one can lose substantially by only using the classical methods if the data depart

even slightly from the classical distributional assumptions.
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APPENDIX |

This appendix presents definitions for the least median of squares (Rousseeuw, 1982)

and repeated median (Siegel, 1982) estimators for b in the linear model
2 =x'b+e.

Although neither estimator has particularly high efficiency for Gaussian error distributions,
either can be used to provide a highly robust (high breakdown) initial estimate. Both
estimators are costly to compute for large n and many independent variables.

The least median of squares estimator is defined by the value of b minimizing
meollian (y, - xfb)2, (Al

where i = 1,..., n. In the case of the simple regressiony, = 0o+ 0ix, + the minimization
problem in (Al) corresponds to finding the narrowest strip that covers half of the obser-
vations (Rousseeuw, 1982). Somewhat unexpectedly, the least median of squares estimator
has a slower rate of convergence than (the usual) rel/2 and converges to its asymptotic
performance at the rate n1/3.

The repeated median estimator (Siegel, 1982) is defined by a series of nested medians.
In the case of the simple regression yj = 0o + O\ xj + e,, the repeated median estimate for
0\ is defined by

0i = median median —— (.42)
n M1 Xi3—XL

and the repeated median estimate for 0o by

00 = median median 1 n 2, (A3)
1%921 . *l, —

where t! and ij range overi = 1,...,n.

More generally, let X be an n x p matrix for p independent variables and let the indices

ii,..., iprange over i = 1,..., n. Then the repeated median estimate for b is given by
b = median median ee=  median b (z!,..., i"). (A4)
weo!} ip*{«! <p-i} p
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The vector b(i!,. . ip) denotes the (unique) solution of the system of p equations with p

unknowns

ifit = M ii.l + ¢2*11,2 + ~~+ bpXi®p

2ip= *I~."1 + M.p,a + see+ bpx,',p ,

where Xjj is the !j-th entry of the matrix X. The innermost median of (A4) lets the index
ip range over all values of i = 1,..., n not equal to I 'and takes the element-wise
median of the n —p + 1 values ofb(i!,..., tp-i, ¢). Linear dependencies in the p equations
can be handled by considering only those p-tuples of observations that determine a unique
value for b(t'l, « . ip).

Both estimators can be shown to have breakdown points that approaches 50% as n —» 00
for finite p. While both estimators are based on medians, not all median-based regression
methods have high breakdown. For example, least absolute value regression has a 50%
breakdown point for outliers in the y's but 0% breakdown for outliers in the x's.

The computational complexity of the repeated median estimator requires 0(np) oper-
ations; note that the median can be found in O(n) operations. | suspect that the compu-
tational complexity of the least median of squares estimator is at least as great as that for

the repeated median estimator.

APPENDIX 2

In this appendix, | give an informal derivation of the influence curve for M-estimators;
for rigorous proof, see Huber (1981). Recall the definition of the influence curve in expression
(23)

iM)

where

Fc(v) = (1 - e)F{u) + efy(z/), (AB6)

F(v) is the underlying distribution, e is a small positive number, and £ is the indicator

function defined in expression (5). As before, | have replaced the usual F(y) by F(u) for
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notational clarity. Note that F(u) = [F((")]c=0 | wish to show that

kS(F) V(—kS(TF()F)\
IC(y; F,T,S) = (A7)

where F is symmetric and tp is an odd function.

Two intermediate steps are needed to prove (A7). | first verify the following identity

for Fh+e(u)
n +"M 18-) -0 7)

where h is a small positive number. Substituting (A6) into (A8) yields

Fh-r(W) = (1 - Ne+ e))*M + (h+ eKyM

(L- (h+e)F(u) + ' -h) + c(l - A)*(«)

(- MF() - eF(v) + hEy{v) + £y(i>) -

1-nh

This verifies (A8).

Second,| show that
\dT(Fh)

dh h=0

IC(y;F, T,S) (A9)

By the definition of a derivative for an implicit function

kdT(Fh r.. T(Fh+e)-T(Fh)
dh h=o LT h—o

To verify (A9), substitute the expression for Fh+( in (A8) into the left-hand side of the

above
[dT W j r T[(1- e/(l - h))Fh+ (1 - c/(I - /[*))E»] - T(Fk)m
dh h-0 le—o e h=0
I r[(l - <)Fh=0 + efy] —T(Fh=q)
- «@n €
_ jim T(FO - T(F)
(=0
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by the definition of the influence curve in (A5). Note, however, that some risky and possibly
illegal interchanges of passages to the limit and evaluating the expression at h = 0 are
involved in the above.

| next calculate the influence function for an M-estimator. If ip is an odd function and

the distribution F is symmetric about 9, then asymptotically an M-estimator T(F) satisfies
J tp(u) dF(z/) = 0,

where

IA,0>
Under certain mild regularity conditions (see Huber, 1981), one can substitute Fh(v) for F

into the above and differentiate the result with respect to h

d_
dh/ * (tw VvV ** 17" (A" )
By the chain rule
dip(u)_ dip(u)du_ . .du
R TR T

Then replacing T(F) by T(Fh) in the expression for u in (A10) above yields

d (v-T(Fh)} (u-T(FhU d v-T(F hh

dh V kS(Fh) ) \' kS(Fh) tdh kS(Fh)
But
d_ u-T(Fh) = 1 dT(Fh) v - T(Fh) dS(Fh)
dh kS(Fh) kS dh kS2(Fh) dh
Thus
d /u-T(Fh)y\= ___ 1 fu— T(Fh)N\dT(Fh) u-T(Fh) ,v - T(Fh)N\dS(Fh)
dhw\ kS(Fh) ) kS(Fh) V kS(Fh) ) dh kS2{Fh) V kS(Fh) ) dh

(A12)

Note also that
-A-dFh(v) = J7d[(I - h)F{v) + hfo{v)\ = d[f,(i/) - F(u)} = {6y(u) - f(v))dv, (Al3)

where 6" (*), denoting the Dirac delta function, is the derivative of the indicator function

£(t"). Taking the partial derivative inside the integral (All) gives

i=/ s K w ) 4 » '
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Then substituting (A12) and (A13) into the above yields

+ks>\n 930 | W- ™ (tw K 1 (414

For an even function pand symmetric distribution F, T(Fn) and S(Fn) are asymptotically
independent, and so the second integral in A(14) is identically zero. Then eliminating the

second integral and letting h —* 0 yields

0= dT(Fh)
kS{F) dh
(Aid)
The second integral in (Al5) can be expanded
/ ~/M)dt/ =/ tf(«)Midi/ - J ip(u)dF(v). (¢16)

But by the definition of an M-estimator, the integral of ip(u) over dF(¢/") is identically zero.

Hence, the second term on the right-hand side vanishes and (A16) simplifies

J M« )(M™) T /M )di"=1/ rpr--~W -)6y(u)du. (*417)

Then since 6y (w) is a delta function, the integral in (A17) is simply the value of spevaluated

atv=y
J ipey(uydv = A(jL-Hp.) (Ai8)
Hence, (A15) reduces to
. 1 \dT(Fh)
kS(F) dh jh=0J V / \ kb [r) /

Then rearranging terms and using the identity in (A9) gives the desired result in (A7)
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APPENDIX 3

This appendix reproduces a theorem and proof due to Huber (1983b) regarding the
breakdown point of redescending M-estimators. While the results are important and infor-
mative, they are as yet unpublished and so somewhat inaccessible.

The theorem shows that the breakdown point of a redescending M-estimator depends
on the shape of the function p (or t/'), the value of the tuning constant k, and the sample Y ,
under the assumption that the auxiliary scale parameter 5 is fixed. Huber states that if the
tuning constant is chosen such that efficiency for the Gaussian distribution is reasonably
high and the gross error sensitivity is low, then the breakdown point of redescending M-
estimators is quite high (e* > .40 in most cases). If the estimator of scale is the MAD, then
according to unreported numerical examples, Huber finds that the breakdown point can be
close to optimal, for example, e* = .49 for the bisquare with k = 6.

Let Y = (21,..., yn) be a fixed sample of size n and let Z = (z!,...,zm) consist
of m arbitrary values. | consider samples Y* = Y U Z, that is, samples corrupted by
e-contamination, where e = m/(n + m) is the proportion of contaminated points. For
the purposes of the proof to follow, it is convenient to assume that (1) p(u) is a monotone
increasing even function with minimum p(u) = p(0) = -1 and (2) limu_oo p(u) = 0. (Recall
that p is defined only up to arbitrary additive and multiplicative constants.) In a slight
abuse of notation, let T(Y) denote the M-estimator for the sample Y = (y\,..., yn) and
T(Y*) denote the M-estimator for the sample Y* = Y U Z.

Theorem (Huber, 1983b). Put
£ p(y,-T(Y)) =-A
Vi€Y

for some constant A > 0. (Note that n > A.) Then the breakdown point of a redescending
M-estimator is given by

J> (¢19)

where m* is an integer satisfying [A] < m* < [¢J + 1. ([A] denotes the smallest integer
not smaller than A and [AJ denotes the largest integer not larger than A.) If there is a

constant k < 00 such that p(u) = 0 for |u] > k then m* = [A].
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Remark. Huber conjectures that if p(u) is strictly negative for all finite u, then m* =
14+1-
Proof. First consider the case in which m < A, where to is the number of points in Z;

then T(Y*) does not break down. Clearly

E P(y:=T(Y))<A (¢20)
y.-ev'*
since

E P(V<-T(Y))<A
JiLY

by assumption. Note that equality in (A20) obtains iff p(z¢) = 0 for all zi 6 Z. Choose
some 6 > 0 such that m + n6 < A. Then let k satisfy p(u) > —6 for |u|] > k, and let t be
any real number such that \y, —t\ > k for all ¥, E Y . If for arbitrarily large k, t minimizes

p(y* 0 =~ f°r the y* 6 F*, then the estimator T(Y*) will break down. However
/\
E p(y> I) ~n6
yiev

by the choice of t. Similarly

E p(z! “‘O__m

ztez

E p(y* - ™" ~(n6 + m)- (AZ)

yrEr'*

Hence,

But this implies that

E v+ T(Y) < 53 *+-.<),

y*ev" y*ev"

that is, the left-hand side of (A20) is strictly less than the left-hand side of (A21). Then
T(Y*) falls within a distance k from any point in Y and so does not break down.

Now consider the case m > A. Let 6 > 0 satisfy m —mb > A and k satisfy p(u) > —6

for |u] > k. Also let all points in Z = (2!,..., zm) be equal to z, where z is any real number

such that |z — )| > k, and let t be any real number such that \z —i| > k. Then clearly
- /\ N
E P(z>O 'r&l
ez
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and

J2 p(w - ~A
y.er
Hence,
E P((y* -t)>- (A +m6). (A22)
y.-ev'*
Similarly,
E Pk -z) =-m
Zi€zZ
and
E piy<~S)- 0
yl6Y
Hence,
E  P(('*" <-m. (A23)
y.-ev'*

But this implies that

E N "< E pW-~()>
y‘eYe yieY™*

that is, the left-hand side of (A23) is strictly less than the left-hand side of (A22). Then
T[Y*) falls within a distance k from z. Hence, if z —00, breakdown occurs.
Finally, consider the case m = A. If p(u) = 0 for |w| > k, then (A22) is true if 6 = 0

and z is chosen such that |y —z\ > k for ally GY . Then

L P(y<-T(Y)) = -A

y.ev'
and
£ p(z,-T(Z))=-A,
tisz
if all points in Z = (z!,..., zm) are set equal to z. Hence, the M-estimator T(Y*) has two

possible solutions, T(Y*) = T(Y) and T(Y*) = z. But since the M-estimator T is location
equivariant, it cannot choose between the two solutions. Then letting z —* 00 causes one
solution to be infinite; hence, T breaks down.
Let m* be an integer satisfying [A] < m* < [Aj + 1. Then the three cases imply that
*

e*(Y, T) =
D n+ m*
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APPENDIX 4

This appendix sketches a proof of the asymptotic variance of T given in expression (28);
for details, see Huber (1981, pp. 38-40). Let Fn be the empirical distribution of a sample

drawn from F. Under certain regularity conditions, the influence curve can be written as
Mgy :E 7 8= fim LEN-T(E) ,24)
n— oo 1/71
It is often possible to expand T in a Taylor series in terms of the influence curve
T(Fn)- T(F) = J IC(2/;F,r,5)[dFn(t/)) + dF(2)] + o([IC(y; F, T, S)]12 (¢25)

where o([IC(t/; F, T, 5)]2) refers to second and higher order terms of the influence curve.
Recall that for M-estimators, IC(t/; F, T, 5) is proportional to !p. Hence, the integral of

IC(y; F, T,5) over F vanishes
| IC[r,F,T,S)[dFn(y)-dF(y)} =j IC(y;F,T,S)dFn(y)

The integral over the empirical distribution Fn can be reexpressed in a somewhat more

familiar form

J IC(»; F, T,S)dFn(V) = IC(Z, T,9) (¢ 20)
=1

Then substituting (A20) into (A25) and multiplying both sides by \/n yields

VA(T(Fn)-F(F)) = -~¢1C(2/;F,r,5)+ o([IC(2/;F,F,5)]2 (¢27)
i=i
Often, the last term of the right-hand side of (A27) can be shown to be negligible with

respect to the lower order terms. Then by the central limit theorem, the first term of the

right-hand side of (A27) is asymptotically Gau(0,A2(F, F, 5)), where

A2(F,T,S) = |[IC(7;F,F,5)]2dF(y) (¢28)

APPENDIX 5

This appendix compares OLS estimates, bounded influence regression estimates, and

Bell regression M-estimates for age-adjusted mortality data in 00 Standard Metropolitan
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Statistical Areas. These data have been previously analyzed by Henderson and Velleman
(1981) and Krasker and Welsch (1982).

Table Al presents estimates for the three estimators. The specification follows that used
by Krasker and Welsch (1982) and regresses age-adjusted mortality for the 60 metropolitan
areas on the percentage nonwhite population, average years of education, population (in
thousands) per square mile, precipitation, and the logarithm of sulfur dioxide potential (a
pollution indicator). The OLS estimates presented in Table Al differ slightly from those
given by Krasker and Welsch and are due to different treatment of rounding for the logarithm
of sulfur dioxide potential.

Krasker and Welsch note that the most noticeable differences between the OLS and BIF
estimates occur for the effects of the percentage nonwhite population, population density,
and precipitation. Note however that the differences in coefficients are within 1.5 standard
errors of one another for these parameters. The BIF and Bell estimates are quite close in
magnitude; the most noticeable differences are for the effects of population density and the
logarithm of sulfur dioxide potential. Qualitative differences between the three estimators

are slight.
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NOTES

1. Rousseeuw (1982) describes a highly robust least median of squares estimator that
could also be used as a starting estimate.

2. l examined a number of standard diagnostic measures including the diagonals of the
“hat” matrix, studentized residuals, Cook’s D, DFBETAS and DFFITS (see Belsley, Kuh,
and Welsch, 1980, and Cook and Weisberg, 1982b for details and definitions). At various
cutoff levels suggested by Belsley, Kuh, and Welsch (1980, p. 28), Huber (1981, p. 162), and
Cook and Weisberg (1982b, pp. 25-28, 118, 151-156), none of the procedures identified any
of the observations in the outlying of cluster points as potential leverage points. Similarly,
inspecting the 10 largest scores for each measure identified at most four (diagonals of the
hat matrix) and more usually none (the remaining measures) of the 20 observations in the
outlying cluster. In contrast, the 20 largest residuals obtained from the highly robust M-
estimator belong to the 20 observations in the outlying cluster; the smallest such residual
is —24.6, while the largest residual for the remaining 30 observations is 0.486.

3. Huber (1977, 1981) and Hoaglin, Mosteller, and Tukey (1983) present thorough
overviews of robust statistics. Goodall (1983) and Iglewicz (1983) give excellent introduc-
tions to the theory of M-estimation and robust tests, respectively. Early seminal works
include papers by Tukey (1960), Huber (1964), and Hampel (1971, 1974a). Andrews et
al. (1972) report results from the 1972 Princeton Robustness Study, an early Monte Carlo
study of the small sample properties of over 60 estimators. Mosteller and Tukey (1977)
provide a nontechnical introduction to many concepts and issues. See also the review arti-
cles of Huber (1972), Hampel (1973, 1975), Bickel (1976), and Hogg (1979). For interesting
historical details, see Stigler (1973).

4. Distributions with heavier tails than the Gaussian distribution appear to be com-
mon in practice; see, for example, Student (1927), Daniel and Wood (1980, Ch. 5), Hampel
(1973), Mosteller and Tukey (1977, Ch. 1), Agee and Turner (1979), Hogg (1979), Kleiner,
Martin, and Thomson (1979), Huber (1981, p. 91), and Rocke, Downs, and Rocke (1982).
For historical examples drawn from astronomical observations, see works cited in Stigler
(1973). It should be noted that classical estimators often have good properties for distri-

butions with slightly lighter tails than a Gaussian distribution. Such distributions typically
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arise from somewhat artificial situations, for example, distributions of standardized test
scores (Hogg, 1974).

5. Section 5 describes estimators of spread that are more robust than either »" or dn.

6. Some rather complex adaptive nonparametric estimators can achieve full efficiency.
These estimators, proposed by Stein (1956), assume a symmetric underlying distributions
only and use the sample distribution to approximate aspects of the population distribution.
See Bickel (1982) for a recent overview and Donoho and Huber (1982) for some breakdown
calculations. Hogg (1974) reviews some simpler adaptive estimators.

7. A number of other estimation procedures are commonly used, particularly one-step
solutions to (14) (see Bickel, 1975) and simultaneous estimation of location and scale (see
Huber, 1977, 1981). Estimation is discussed in greater detail in Section 5.

8. The definition of sign(O) = 1 is somewhat arbitrary since the derivative of |u| does
not exist at u = 0. For consistency, 1define the sample median to be the larger of the two
middle observations when the sample size n is even.

9. More formally, the delta function $(u) may be defined as the limit of any sequence of
functions {<5*(«)} such that /~,S '"(«) M u)du = as A — 00, where g(u) is any bounded,
integrable, and continuous function.

10. Table 3 presents the customary definition of the Huber M-estimator, which is
given in terms of the tuning constant ¢ and not the tuning constant k in the denominator
of u = (y —9)/kSn. The Hampel M-estimator is similarly defined but has three tuning
constants a, h, and c. Hence k = 1 for these two estimators.

11. For example, Freedman and Diaconis construct certain symmetric but multimodal
densities for which the bisquare M-estimator, defined by minimizing £ /?(«), is inconsistent
for k < 5.4; they note, however, thai a consistent estimator is obtained for these densities if
k > 5.4 or the M-estimator is defined by the solution of (14) or (15) closest to the median. A
practical implication of these results is that k for redescending M-estimators should not be
chosen too small or, equivalently, ipshould not redescend too quickly. Note that small values
of k are typically avoided in order not to excessively degrade efficiency for the Gaussian
distribution.

12. Replacing the continuous distribution F by the finite sample distribution Fn_!

and e by 1/re in expressions (23) and (24) yields the sensitivity curve (Goodall, 1983). The
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jackknife and bootstrap (see, for example, Efron, 1982) are closely related to the influence
curve.

13. The definition of resistance presented here accords extremely well with a more
technical concept called qualitative robustness, where qualitative robustness is defined either
by continuity in the weak-star topology or the equicontinuity of sequences of estimators.
For discussion and details, see Hampel (1971) and Huber (1981).

14. The small sample variances for two bisquare estimators with tuning constants 6.0
and 8.8 are taken from Goodall (1983). Small sample variances for the bisquare estimator
with tuning constant 6.4 and the Bell estimator are taken from Bell (1980). Remaining
small sample results are taken from results of the Princeton Robustness Study reported in
Andrews et al. (1972). The results reported in Goodall are a continuation of the Princeton
Robustness study and were obtained using the same Monte Carlo data of 640 to 1000 samples
of size 20; hence, results should be comparable for these two studies. Bell uses substantially
larger numbers of samples in his Monte Carlo simulations (10,000, 20,000, and 100,000
samples of size 20 for the Gaussian, 1IWG, and slash distributions, respectively) to obtain
greater accuracy. Hence, some care is needed in comparing the results reported in Table 4.

15. Finite sample variances for the subsample mean and slash Pitman estimators are
taken from values reported in Goodall (1983).

16. The differences between the small sample and asymptotic efficiencies for some
estimators are surprising. One possibility is the relatively small Monte Carlo samples used
in some of the studies. This may account for discrepancies between the small sample and
asymptotic performance for the slash distribution for some estimators.

17. 1would like to thank Bradley Efron for suggesting the use of Johnson’s i-statistic.

18. A number of other possible approaches have been suggested in the literature.
Boos (1980) constructs approximate confidence intervals; however, this approach is limited
to non-redescending t'. Another approach involves estimating the appropriate degrees of
freedom using approximations derived from asymptotic theory. Shoemaker and Hettsman-
sperger (1982) derive one such expression and show that AR has a distribution close to a
chi-square distribution using the estimated degrees of freedom; however they do not exam-
ine the performance of the statistic in (32) using the estimated degrees of freedom. Perhaps

most promising are sample reuse methods such as the bootstrap (see Efron, 1982). How-
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ever, such methods are unusually computer intensive, which may pose practical difficulties.
Rocke and Downs (1981) report some preliminary findings on the performance of A8 and of
jackknife and bootstrap estimators for the variances of several distributions. Iglewicz (1983)
examines both A\ and simpler estimators of spread; he also provides a broad overview of
the construction of robust tests and confidence intervals.

19. Some preliminary evidence (Rocke and Downs, 1981) indicates that the simple tests
based on the Mike statistic in (3'2) perform well for symmetric distributions but less well
for asymmetric distributions. Johnson (1978) and Efron (1981) compare the performance
of the classical Student t, t*, and a bootstrap t for the mean under sampling from a highly
skewed asymmetric distribution in Monte Carlo simulations. Johnson’s simulations indicate
that t* performed far better than the classical student t while Efron’s simulations indicate
a close agreement between the performance of t* and the theoretically superior bootstrap,
which requires far greater computational resources. These results provide heuristic support
for the use of t*. Note, in particular, that small samples drawn from heavy tailed symmetric
distributions may have large random asymmetries.

20. An exception is the performance of the Bell M estimator for the slash distribution,
where the test with n—1 df performs better than the test with 0.7(n —1) df . (The bisquare
estimator shows a similar but less marked trend.) One explanation is that since both the
bisquare and Bell estimators are defined by redescending ip functions, they have a somewhat
slower rate of convergence to their asymptotic performance for light tailed distributions
relative to their rate of convergence for heavier tailed distributions. Hence, the 0.7(n —1)
df , needed for the Gaussian and contaminated Gaussian distributions, overcompensates
somewhat for the slash distribution.

21. For additional discussion of robust estimation of linear models, see Andrews (1974),
Huber (1973), Hill and Holland (1977), Hogg (1979), Carroll (1980), and Huber (1981).

22. Krasker and Welsch (1982) propose an alternative to the M-estimators of regression
examined in this section that is intended to deal specifically the problems caused by leverage
points. The “bounded influence” regression estimator is chosen to minimize the asymptotic
variance for Gaussian error distributions subject to a bound on the asymptotic gross error
sensitivity and incorporates some standard diagnostic measures into its weighting func-

tion. Although not designed specifically to deal with leverage, redescending M-estimators
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of regression nevertheless have excellent breakdown (typically e* > .40) against severe con-
tamination, including contamination by leverage points (Huber, 1983b; Donoho, 1984). In
contrast, the Krasker-Welsch estimator has poorer breakdown (e* = I/(p+ 1), where p is
the rank of the matrix X; see Maronna, Yohai, and Bustos, 1979). Huber (1983a, with
discussion) discusses the Krasker-Welsch proposal in detail. Appendix 5 compares OLS

estimates, bounded influence regression estimates, and Bell regression M-estimates for data

analyzed by Krasker and Welsch (1982).
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Figure Captions

Figure 1: Simple regression for hypothetical data contaminated by a cluster of leverage
points. Solid line: OLS estimate; dotted line: M-estimate started from the OLS estimate;

dashed line: M-estimate started from the repeated median estimate.

Figure 2: Normalized densities f(y) for the Gaussian, logistic, double exponential, and
Cauchy distributions defined in Table 2. The location parameter ¢ = o. Scale is assumed
known and is chosen such that /(0) = \/\/2n. To better compare the extreme tail behavior
of the densities, the right-hand-side illustrates f(y) for 3 < y < 12; f(y) is multiplied by
a factor of 10 in this range. Solid line: Gaussian distribution; dot-dashed line: logistic

distribution; dashed line: double exponential distribution; dotted line: Cauchy distribution.

Figure 3: i>(u) corresponding to the ML-estimators for the Gaussian, logistic, double ex-
ponential, and Cauchy densities in Figure 2. Solid line: Gaussian distribution; dot-dashed

line: logistic distribution; dashed line: double exponential distribution; dotted line: Cauchy

distribution.
Figure 4: p, ip, and 4 for the mean and three hypothetical points, u! = -3, uvi = 1, and
U3 = 2, corresponding to the deviations u, = y9 — ' of three observations y\, y», and y3

obtained by setting 9 equal to the sample mean.

Figure 5: p(u) for the median, Huber, Hampel, sine, bisquare, and Bell estimators.

Figure 6: ip(u) for the median, Huber, Hampel, sine, bisquare, and Bell estimators.

Figure 7: ificyy for the median, Huber, Hampel, sine, bisquare, and Bell estimators.

Figure 8: Scatterplot of the percentage growth of employment in the manufacturing sec-

tor and the percentage growth of employment in the service sector, 30 largest standard

metropolitan statistical areas. Solid line: OLS estimate; dashed line: Bell/RM estimate.



Figure 9: Gaussian probability plot of the expected Gaussian quantiles versus residuals
obtained from the OLS and Bell/RM estimators, full sample (ra = 30). Solid line: OLS

residuals; dashed line: Bell/RM residuals.

Figure 10: Stem and leaf display for untransformed hourly wages in 1979 dollars for 19 year
old white males employed and out of school, full sample (n = 120). The outlying observation

has wages of $404/hour.

Figure 11: Partial regression plot for collective bargaining in the workplace, restricted
sample (n = 119). The residuals e(z®lbar rest) and e(f/rex) are plotted along the x- and

2 axes, respectively.

Figure 12: Partial regression plot for urban residence, restricted sample (n = 119). The

residuals e(zulsban rest) and e(y.rest) are plotted along the x- and ;/eaxes, respectively.



Table 1: Asymptotic relative efficiency of the mean absolute deviation d" to the mean
square deviation for an e-contaminated Gaussian distribution at scale 3.

e ARE(e)
0 0.876
.001 0.948
.002 1.016
.005 1.198
.01 1.439
.02 1.751
.05 2.035
.10 1.903
2 1.510
.5 1.017

1 0.876



Table 2: The densities f(y;9) for the Gaussian, logistic, double exponential, and Cauchy
distributions and the functions p and ip for the corresponding ML-estimators.

Distribution p(u) ip(u)
. 1 .. 1 %
Gaussian exp[-(y - 0)2/2] < logz;r + <u
logistic I= cosh \J— (y-0)* ~log2;r + 2logcosh**"muj tanh (/? m)
double A~ x P(/f]21~9)\) I log2 * + " « Nsign («)
exponential v 2tt
2nu
Cauchy jloi| + los(i + 5«J) 2+ nu2

spaa



Table 5: Some common M -estimators of location.®

Estimator p(u) P(u) =) Range of u
mean -;u 2 u 1 w| < 00
median M sign( ii) 6(u) |[m < 00
Huber, 12 u 1 w < ¢

2u
c>0,
k = C |« - 1c2 csign(u) 0 u > ¢
Hampel, 12 u 1 lul < a

2U
0O<a<b<ec,
k = a\u\ - Xa2 asign(w) 0 a<|u<b

ab — " a2+ aoc"‘_/\é Slwul C - bS|gn(u) b< M <e¢
(c-
]
1Q / .M
- o 1) ><(2 0 0 luf > ¢
. 1 —cos(tu) .

Andrews’ sine, —sin("u) cos(ttu) lul < 1

2 m
k>0

2/ w2 0 0 M > 1
Tukey’s ti(l-u2)2 @- u2)(l —5u2 l«] < 1
bisquare,
k>0 1/6 0 0 M > 1
Bell > ( v\ s 00

<
! 41-(>4 ) 1 U(l + 75 1™ «2>(" 4 r u

k>0

®Tuning constants are denoted by a, b, ¢, and k. The function p(u) is defined up to arbitrary
additive and multiplicative constants. Following Holland and Welsch (1977) and Goodall
(1983), constants are chosen such that p(0) = 0 and <(0) = 1.



Table 4: Finite sample (n = 20) relative efficiencies for the M-estimators in Table 3.a

Estimator

mean

median

Huber

Hampel

sine

bisquare

Bell

Reference

®Variances (times n) are reported in parentheses.

Tuning
constant

1.5

2.0

1.2, 3.5, 8.0

1.7, 3.4, 85

2.5, 45, 9.5

2.1t

6.0

6.4

8.8

1/0.35

Scale
parameter

Normed
MAD

MAD

MAD

MAD

MAD

Gaussian

100.0%
(1.000)

66.8%
(1.498)

95.2%
(1.050)

98.1%
(1.019)

83.0%
(1.205)

88.5%
(1.130)

95.6%
(1.046)

93.5%
(1.070)

86.4%
(1.158)

89.0%
(1.123)

96.1%
(1.041)

90.6%
(1.103)

100.0%
(1.000)

1WG

16.2%
(6.485)

67.7%
(1.555)

86.2%
(1.222)

82.7%
(1.273)

86.0%
(1.225)

90.3%
(1.166)

93.4%
(1.127)

93.1%
(1.131)

89.4%
(1.177)

88.9%
(1.184)

93.6%
(1.125)

89.5%
(1.177)

100.0%
(1.052)

Slash

0.0%
(12951.48)

84.1%
(6.60)

63.5%
(8.75)

52.8%
(10.52)

89.1%
(6.23)

82.1%
(6.76)

69.3%
(8.01)

71.7%
(7.74)

81.8%
(6.79)

86.9%
(6.39)

68.4%
(8.12)

88.4%
(6.28)

100.0%
(5.552)

Reference estimators are the Pitman
estimators for the Gaussian and slash distributions and the subsample mean for the 1WG.



Table 5: Asymptotic relative efficiencies for the M-estimators in Table 3.®

Estimator

mean

median

Huber

Hampel

sine

bisquare

Bell

Reference

®Asymptotic variances are reported in parentheses.

estimators.

Tuning
constant

15

2.0

1.2, 3.5, 8.0

1.7, 3.4, 8.5

2.5,45,95

2.1t

0.0

6.4

8.8

1/0.35

Scale
parameter

Normed
MAD

MAD

MAD

MAD

MAD

Gaussian

100.0%
(1.000)

03.7%
(1.571)

90.4%
(1.037)

99.0%
(1.010)

85.8%
(1.106)

91.6%
(1.092)

97.5%
(1.025)

90.0%
(1.042)

91.4%
(1.094)

93.2%
(1.073)

98.0%
(1.020)

93.2%
(1.073)

100.0%
(1.000)

5%C10

17.5%
(5.950)

00.3%
(1.722)

84.6%
(1.228)

81.6%
(1.273)

84.1%
(1.235)

89.3%
(1.164)

92.7%
(1.121)

92.6%
(1.122)

89.8%
(1.150)

91.1%
(1.141)

92.8%
(1.120)

90.3%
(1.151)

100.0%
(1.039)

Slash

0.0%
(00)

77.1%
(6.283)

65.7%
(7.379)

54.3%
(8.925)

95.9%
(5.053)

89.5%
(5.413)

75.3%
(6.441)

82.5%
(5.879)

89.6%
(5.412)

87.5%
(5.538)

75.2%
(6.443)

88.5%
(5.475)

100.0%
(4.847)

Reference estimators are the ML-



Table 6: Four estimators with high finite sample and asymptotic triefficiencies.

Finite sample (n = 20) results

Estimator

Bell
bisquare
Hampel
Hampel

Tuning
constant

1/0.35

6.4

1.2, 3.5, 8.0
1.7, 3.4, 8.5

Triefficiency

88.4%
86.9%
83.0%
82.1%

Estimator

bisquare
Hampel
Bell
bisquare

Asymptotic results

Tuning
constant

6.0

1.7, 3.4, 8.5
1/0.35

6.4

Triefficiency

89.6%
89.3%
88.5%
87.5%



Table 7: Gross error sensitivity for the Meestimators in Table 3.

Estimator

mean

median

Huber

Hampel

sine

bisquare

Bell

Tuning
constant

1.5
2.0
1.2, 3.5, 8.0
1.7, 3.4, 8.5
2.5, 45,95
2.U
6.0
6.4
8.8

1/0.35

Scale
parameter

Normed MAD

MAD

MAD

MAD

MAD

Gaussian

00
1.253
1.731
2.095
1.403
1.547
1.859
1.817
1.680
1.713
2.018

1.642

5%C10

00
1.312
1.909
2.307
2.207
2.456
3.002
1.967
1.796
1.840
2.200

1.763

Slash

00
2.507
6.448
7.153
3.254
3.843
4.893
4.709
4.728
4.871
5.827

4.065



Table 8: Observed level of a based on 5,000 samples of size n = '20 drawn from a Gaussian
distribution by nominal level a, estimator, and test (t and t*).a

Nominal level a

Location Test Degrees of
estimator statistic freedom” .15 .10 .05 .01
Mean t 19 .158 .105 .0520 .0102
19 157 .104 .0530 .0098
bisquare, t 19 .103 .109 .0598 .0150
k = 6.4 I+ 19 101 1109 .0584 0144
t 13 .155 101 .0530 .0114
*x
¥ 13 .153 .100 .0530 .0118
Bell, t 19 101 .107 .0590 .0142
k = 1/0.35 f* 19 .158 .100 .0570 .0128
t 13 .153 .100 .0510 .0104
1>
! 13 1149 .099 .0504 .0100

“The test statistics f and (* are defined in expressions (32) and (34), respectively.
" See text.



Table 9: Observed level of a based on 5,000 samples of size n = 20 drawn from a 5%
Contaminated Gaussian distribution by nominal level a, estimator, and test (t

and i*).®
Location Test Degrees of Nominal level a
estimator statistic freedom” .15 .10 .05 .01
Mean t 19 131 .074 .0304 .0042
f* 19 .230 .148 0712 .0082
bisquare, t 19 .160 113 .0614 .0144
k = 6.4 19 .158 113 .0592 .0136
t 13 152 .105 .0530 .0090
*
' 13 152 104 0526 .0098
Bell, t 19 157 .108 .0594 .0128
k = 1/0.35 t* 19 .155 .108 .0572 .0130
t 13 .150 .102 .0506 .0090
13 .149 .102 .0498 .0086

®See notes to Table 8.



Table 10: Observed level of ¢t based on 20,000 samples of size n = 20 drawn from a Slash
distribution by nominal level a, estimator, and test (i and t*).a

Nominal level a

Location Test Degrees of
estimator statistic freedom™* .15 .10 .05 .01
Mean t 19 113 .060 .0207 .0015
/> 19 270 172 0771 0127
bisquare, t 19 .155 .105 .0524 .0102
k= 6.4 f* 19 161 111 .0583 .0117
t 13 .148 .096 0467 .0071
* 13 154 .104 .0514 .0090
Bell, t 19 .150 101 .0492 .0092
k = 1/0.35 f* 19 .154 .105 .0535 .0096
t 13 142 .094 .0438 .0060
I 13 147 097 0467 0071

aSee notes to Table 8.



Table 11: OLS and Bell estimates for regression of the percentage growth in employment
in the manufacturing sector on the percentage growth in employment in the
service sector, 30 largest standard metropolitan statistical areas.

Full Sample Restricted Sample
(n = 30) (n = 29)

oLS Bell/RMa Bell/OLS6 oLs Bell/RMa

Growth in 0.44c 0.66 0.43 0.74 0.66
manufacturing (0.04) d (0.02) (0.02) (0.06) (0.04)
12.42e¢ 16.67 14.84 12.17 12.02

Intercept 61.03 47.86 56.95 45.85 47.89
(6.49) (3.27) (4.47) (5.40) (3.74)
9.40 11.44 11.44 8.49 10.39

aBell estimate started from the robust repeated median estimate.
"Bell estimate started from the nonrobust OLS estimate.
cParameter estimates.

AStandard errors in parentheses.
e ;mvalues (Student t on n —1df and t* on the 0.7(n —1) df for the OLS and Bell estimators,

respectively).



Table 12: Seven largest residuals for the OLS and Bell/RM estimates, full (ra = 30)
sample.®

OLS San Diego Houston Atlanta Phoenix New York Kansas City Pittsburgh

93.37 72.95 56.82 -49.02 m44.03 -36.66 -36.26
Bell Phoenix San Diego Houston Atlanta Dallas Kansas City New York
-221.93 61.47 55.82 45.87 -39.93 -34.38 -28.95
(0.0004) (0.1335) (0.1748) (0.2777) (0.3617) (0.4560) (0.5615)

®Weights for the Bell/RM estimator are reported in parentheses. Small weights correspond
to large residuals.



Table IS: OLS and Bell estimates for determinants of log transformed wages for 19 year
old white males employed and out of school.

Full Sample Restricted Sample
(n = 120) (n = 119)
OoLS Bell OLS Bell
Ability score 0.050® 0.335** 0.358** 0.334**
(0.262)6 (0.146) (0.155) (0.147)
0.191c 2.294 2.316 2.280
R’s education —0.127 -0.016 - 0.010 -0.016
(0.186) (0.104) (0.109) (0.104)
-0.680 -0.156 -0.091 -0.159
Father’s education 0.008 0.003 0.004 0.003
(0.010) (0.005) (0.006) (0.005)
0.871 0.496 0.629 0.489
Father’s SES -0.005 -0.051 -0.033 -0.052
(0.075) (0.042) (0.044) (0.042)
-0.066 -1.234 -0.752 -1.245
Collective 0.356 0.584** 0.428t 0.589**
bargaining = 1 (0.470) (0.262) (0.274) (0.261)
0.758 2.234 1.562 2.264
Urban 0.561 0.483** 0.388t 0.485**
residence = 1 (0.414) (0.231) (0.242) (0.230)
1.355 2.097 1.607 2.114
Job in the 0.989** 0.999%*** 1.041*** 0.997***
manufacturing (0.437) (0.244) (0.255) (0.243)
sector = 1 2.262 4.112 4.082 4.124
Married = 1 2.153*** 1.221%** 1.081*** 1.224%**
(0.555) (0.309) (0.332) (0.361)
3.877 3.953 3.254 3.885
Intercept 4.326** 3.818*** 3.560*** 3.824%**
(2.056) (1.145) (1.200) (1.141)
2.104 3.340 2.965 3.358

®Parameter estimates.

AStandard errors in parentheses (*" and An for the OLS and Bell estimators, respectively).
¢ ¢evalues (Studentt onn - 1df and t* on the 0.7(rc- 1) df for the OLS and Bell estimators,
respectively).

t Significant at the .15 level.
*Significant at the .10 level.
**Significant at the .05 level.
***Sjgnificant at the .01 level.



Table 14: OLS and Bell estimates for determinants of untransformed wages for 19 year
old white males employed and out of school, full (ra = 120) sample.®

oLS Bell
Ability score -6.621 0.341**
(4.815) (0.160)
-1.375 2.145
R’s education -2.605 - 0.012
(3.418) (0.114)
-0.762 - 0.102
Father’s education 0.113 0.003
(0.176) (0.006)
0.638 0.430
Father’s SES 0.586 -0.045
(1.374) (0.046)
0.427 -0.982
Collective -1.055 0.730**
bargaining = 1 (8.612) (0.287)
0.591 2.571
Urban 4.486 0.568**
residence = 1 (7.596) (0.252)
0.591 2.266
Job in the -0.068 1.097***
manufacturing (8.021) (0.267)
sector = 1 -0.009 4.166
Married = 1 25.511** 1.538***
(10.192) (0.339)
2.503 4.605
Intercept 20.519 3.693***
(37.720) (1.254)
0.588 2.974

®See notes to Table 13.



Table Al: OLS, Bounded Influence (BIF), and Bell estimates for determinants of mortality
rates in U.S. metropolitan areas (n = 60).a

- oLS BIF Bell
Percent Nonwhite 3.35*** 2.60*** 2.72%**
(0.59) (0.67) (0.48)
5.68 3.88 5.75
Mean years of -13.28* -13.67** -13.84**
education (6.98) (6.12) (5.68)
-1.90 -2.23 -2.42
Population (1000°s) 2.82 7.13t 4.497
per square mile (3.76) (4.68) (3.07)
0.75 1.52 1.47
Precipitation 1.64%** 2.01%+* 1.90%**
(0.62) (0.44) (0.50)
2.66 4.57 3.83
Log SO2 13.80*** 13.61*** 15.36***
(3.82) (4.10) (3.11)
3.61 3.32 5.00
Intercept 930.09*** 915.23*** 922.17***
(96.23) (30.97) (78.43)
9.66 11.30 12.12

®Parameter estimates, standard errors in parentheses (»" for the OLS and BIF estimators
and An for Bell estimator), and (mvalues (Student t on n - 1 df for the OLS and BIF
estimators and t* on 0.7(n - 1) df for Bell estimator).

ASignificant at the .15 level.
*Significant at the .10 level.
**Significant at the .05 level.
***Significant at the .01 level.
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