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ABSTRACT

The optimization of a complex system involves the determination of optimum

values for a set of design parameters. The optimization search happens in order to

meet a specific set of objectives concerning the quantities of interest (QOI). Also, the

design parameters are a subset of the input parameters and the QOIs are determined

from the output parameters. Particularly, when the parameter space is large, opti-

mization necessitates a significant number of executions of the simulator to obtain

a desired solution in tolerance limits. When the simulations are expensive in terms

of computation time, an emulator based on regression methods is useful for predic-

tions. This work presents a novel methodology that uses an iterative hybrid global

optimization method (GOM) using genetic algorithms (GA) and simulated annealing

(SA) model coupled (HYBGASA) with a Gaussian process regression method based

emulator (GPMEM) to optimize a set of input parameters based on a set of defined

objectives in a nuclear reactor power system. Hereafter this iterative hybrid method

comprising of HYBGASA and GPMEM would be called as the “IHGOM”. In addi-

tion to optimization, IHGOM iteratively updates the trial data obtained from the

neighborhood of the near optimal solution, used to train the GPMEM in order to re-

duce regression errors. The objective is to develop, model and analyze IHGOM, and

apply it to an optimization problem in the design of a nuclear reactor. Development

and analysis of IHGOM and its implementation in a nuclear reactor power system

problem is a significant contribution to the optimization and the nuclear engineering

communities.
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1. INTRODUCTION

This chapter presents the dissertation outline, background and motivation driving

the work. An introduction is presented for optimization and regression, along with

the objectives. An overview is given of existing work related to optimization in

nuclear engineering, applications of regression, and the application of hybrid methods

in optimization.

1.1 Dissertation Outline

The dissertation begins with an introduction to the developed optimization method.

In this chapter, the background and motivation in the development of the optimiza-

tion method is presented. A detailed description of the objectives and tasks in the

development of the method is given. This chapter includes an introduction to the

theoretical aspects of optimization and regression. Overall, this chapter presents an

outline and a foundation on which this research has been built.

Following the introduction, the description of the novel method developed in this

research is presented in Chapter 2. This chapter describes all the necessary modules

and presents a graphical solution flow of the work. The implementation details and

convergence criteria is presented in this chapter. This chapter presents a detailed

view of the selection of the tuning/hyper-parameters and sensitivity studies.

Following the method description, an implementation on a set of problems demon-

strating the novel method is presented in Chapter 3. The method is implemented to

solve a test problem and two defined reactor problems. A detailed problem descrip-

tion with analysis of the results are presented in this chapter.

The dissertation is concluded with a recap of the objectives and a summary. A

discussion on prospective applications and paths for future work are presented that

1



includes an intense sensitivity study and method improvements.

1.2 Background and Motivation

The optimization of a complex system involves the determination of optimum

values for a set of design parameters in order to meet a specific set of objectives

based concerning the quantities of interest (QOI) in which the design parameters are

a subset of the input parameters and the QOIs are determined from the output pa-

rameters. The system can be an experiment or a computational model. Particularly,

when the parameter space is large, optimization necessitates a significant number of

executions of the system to obtain a desired solution in tolerance limits. When the

simulations are expensive in terms of computation time, an emulator may be used.

The emulator is based on regression methods and is used as a black box to predict

the values for the output parameters based on the values of the input parameters.

The motivation for this study is to develop an optimization method that has an

efficient search scheme and is fast enough to reach a desired optimal solution.

1.2.1 Optimization in Nuclear Engineering

Previous work related to optimization in nuclear engineering that uses GA in-

cludes core design [1, 2, 3], plant design [4], nuclear system availability and mainte-

nance scheduling [5], fuel management [6] and spent fuel management [7]. However,

coupled neutronics-thermal hydraulics problems have not been explored, and the

effectiveness of using GA in solving coupled problems have not been evaluated.

1.2.2 Hybrid Optimization Methods

Researchers have explored non hybrid GOM based on Gaussian processes, but

those are limited to the concept of expected improvement [8, 9], and did not involve a

global evolution-based optimization strategy. GA has had the problem of having local

2



convergence of parameters, which forces the search to explore other regions using a

SA based hybrid [10, 11, 12, 13] method. These articles show the hybrid method has

performed better than other non-hybrid GOMs. SA replaces the traditional “1-flip

neighborhood” local optimization method in GA to take care of the issue of local

convergence. Even though GOM implementation is dependent on the problem, a

common iterative strategy is always used in all the multi-objective problems.

1.2.3 Regression

Predictive analysis using regression, response surfaces, Gaussian processes, and

Bayesian methods have had significant acceptance in the research community. Partic-

ularly, machine learning using GPMEM is extensively used wherein several complex

system have been emulated [14, 15, 16, 17, 18] using Gaussian process based re-

gression methods. However, very limited work is performed in the nuclear reactor

design domain. Therefore, an integrated approach of a global evolution based op-

timization method and Gaussian processes applied to a coupled neutronics-thermal

hydraulics problem would be a significant contribution to the nuclear engineering

research community.
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1.3 Global Optimization Methods

This section presents an overview of the theoretical background of optimization,

types of optimization methods, and heuristic methods.

1.3.1 Introduction to Optimization

Optimization is the process of the determination of a set of values for the design

parameters that solves a maximization or minimization function of a set of objectives

derived from the QOIs. The QOIs are functions of the design parameters, but the

functional forms are not known. Let S be a set of feasible solutions of the design

parameters, and f is a fitness function such that:

f : S → IR, (1.1)

and f is a quantifiable form derived from the objective functions. The goal is to

determine a globally optimal solution i.e. find a feasible optimal solution s∗ ∈ S

such that,

f (s∗) ≤ f (s) , for all s ∈ S. (1.2)

Let

f ∗ = f (s∗) = min
s∈S

f (s) , (1.3)

is the optimal cost for a minimization function. Therefore,

S∗ = {s ∈ S : f (s) = f ∗} = arg min
s∈S

f (s) , (1.4)

defines the set of pareto optimal solutions. If optimization is performed in the global

design space it is called a GOM. When the minimization function is a combination

of several minimization/maximization functions, it is called a multi-objective opti-
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mization search (MOOS). In MOOS, the objectives can be conflicting. This means

that there are trade-off solutions and therefore there is no single optimum solution,

but rather a number of pareto optimal solutions. An inherent property of the pareto

optimal solutions is that no solution from the pareto set can be said to be better

than any other.

1.3.2 Neighborhood

Neighborhood is defined as N (s) where N (s) ⊂ S and s ∈ S are a set of solutions

close to s. Each i ∈ N (s) is a neighbor of s. For an instance (S, f) of a combinatorial

optimization problem and a neighborhood N , a solution ŝ is locally minimal with

respect to N if:

f (ŝ) ≤ f (i) , for all i ∈ N (ŝ) , (1.5)

with Ŝ denoting the set set of local optimal solutions of (S, f). Any local solution

is global optimal if in the neighborhood N defined for a problem P , and for any

instance (S, f) of P , Ŝ ⊆ S∗.

1.3.3 Optimization Methods

Optimization methods are broadly divided into three categories:

1.3.3.1 Exact Algorithms

Exact algorithms are guaranteed to find a global optimal solution. In most cases

where there is a significant number of design parameters are close to NP hard, the

run times to obtain the optimal solution are unreasonably high. The effort usually

grows polynomially with problem size for most of the P problems, however for NP

problems the effort grows exponentially with problem size. A subset of popular

exact algorithms are the simplex method, branch-and-bound methods, and Benders

decomposition.
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1.3.3.2 Approximate Algorithms

Approximate algorithms are guaranteed to find an approximate solution within

a known approximation ratio. These algorithms are relatively faster than exact

algorithms for large-scale problem instances. For many hard problems, it can be

shown that, unless some very unlikely statement is true, there cannot be an efficient

approximation algorithm with a constant approximation ratio.

1.3.3.3 Heuristic Algorithms

Heuristic algorithms find a “good” solution “fast”. There is no guarantee on

the quality of the solution in general. Optimization of large instances with a large

parameter space is difficult using exact algorithms and therefore the best choice

is heuristic methods. Heuristic methods usually imitate a natural process such as

annealing, biological evolution, food foraging, and bird flocking. Popular heuristic

methods are tabu search (TS), evolutionary algorithms (EA), ant colony optimiza-

tion, simulated annealing (SA), and particle swarm optimization (PSO). The focus

of current research is heuristics algorithms.

1.3.4 Heuristic Methods

The term heuristics, stems from the Greek word heuriskein, which means to find

or discover. Heuristics methods are used for search, discovery, learning, and problem-

solving of large-scale practical problems. The solutions are not guaranteed to be

perfect, but are acceptably good solutions with relative speed. Heuristic methods

are based on the following generic execution steps:

1.3.4.1 Construction Heuristics

Start with a feasible solution from scratch. This solution can be randomly gen-

erated or else generated from predefined conditions. Sometimes greedy methods are
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used to generate the construction heuristics.

1.3.4.2 Local Search

Given a feasible solution, iteratively search for a better neighbor until a local

optimum is obtained. Two common methods in local search are “best improvement”

and “first improvement”. In “best improvement”, the neighborhood is extensively

searched and the best local optimum is obtained. However, in “first improvement”,

the first fitter solution in the neighborhood is used as the local optimum. These

methods are dependent on the problem.

1.3.4.3 Meta-heuristics

Once the local optimum is obtained, a search beyond the neighborhood is per-

formed. Usually randomized methods are used to escape poor quality local optimum,

and the search is converged to a global optimum. To increase the speed and the qual-

ity of the solution, several meta-heuristic strategies are combined together and hybrid

algorithms are employed.

A brief introduction to popular heuristics methods are presented as follows:

1.3.4.3.1 Tabu Search: Tabu search [19, 20, 21] is a local search method that uses

memory to store information about previously visited solutions, and hence restricts

future searches to non visited solutions only. It is very effective in the sense that it

avoids repetitive searches, but it is also memory intensive. This method is usually

used with other local search methods to guide those to escape from local optimality

traps. Following steps describe the Tabu search method:

• Start with an initial random solution.

• Create a candidate list of moves where these moves are the prospective new

solutions.
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• From the candidate list determine the best admissible candidate based on tabu

restrictions and aspiration criteria. Designate this solution based on the best

admissible candidate as the new current solution and record it as the new best

solution if it improves the previous best solution.

• Repeat the above steps until a defined stopping criteria is obtained. Update

the aspiration criteria and tabu restrictions if desired.

1.3.4.3.2 Genetic Algorithms: GA is a search heuristic machine learning model

which is derived from the process of natural selection based on the theory of species

evolution [22]. It involves the processes behind natural selection, such as inheritance,

reproduction, crossover, mutation. A detailed description of GA is presented in

Section:1.3.4.4.

1.3.4.3.3 Particle Swarm Optimization: Particle Swarm Optimization (PSO) [23,

24] is a population based stochastic optimization method developed by Dr. Eberhart

and Dr. Kennedy [25] in 1995, inspired by the social behavior of bird flocking or

fish schooling. It is an evolution based method where a particle keeps track of its

coordinates in the problem space which are associated with the best solution it has

achieved so far. The method starts with an initial random solution and searches

for a pareto optimal solution by updating generations. GA and PSO have lots of

similarities, however, PSO does not have operations such as mutation and crossover.

Instead, each particle keeps track of the change in velocity towards the global and

local best solution. The following simple analogy related to bird flocking describes

the PSO method . Suppose a group of birds are randomly searching for food in an

area and there is only one piece of food in the area being searched. At the beginning

the birds do not know where the food is, but they know how far the food is in each

iteration. How do they know that? They follow the bird which is nearest to the
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food. PSO is a continuous technique, therefore it is not suitable for combinatorial

problems.

1.3.4.3.4 Ant Colony Optimization: Ant Colony Optimization (ACO) [26, 20] is a

search method used to determine the optimal path in a graph based on the foraging

behavior of ants. Ants, while seeking a path between their colony and a source of

food, deposit pheromones on the ground in order to mark a favorable path for other

members on the colony to follow. Other ants who follow perceive the presence of

pheromones and tend to follow paths where the pheromone concentration is higher.

In this way the ants iteratively determine an effective way to obtain food. The

optimization method, ACO uses this foraging mechanism to determine an optimal

solution. The following steps describe the ACO method:

• Initialize pheromone trails.

• While the stopping criteria is not met

– Construct ant solutions

– Apply local search

– Update pheromone values

1.3.4.3.5 Greedy Randomized Adaptive Search Procedures: Greedy Randomized

Adaptive Search Procedures (GRASP) is a greedy adaptive search method used to

determine a global optimal solution. In GRASP, each iteration consists of the con-

struction of a greedy randomized feasible solution followed by finding a local optimal

solution in the neighborhood of the feasible solution. In one of the implementations

of GRASP, an elite solution obtained randomly is used as a guiding solution and then

GRASP is used to link a path from the initial solution to the guiding solution. It is

an effective search method, however it is very expensive due to its greedy nature.
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1.3.4.4 Genetic Algorithms

This section starts with a biological background of GA. Every living organism

consists of animal cells with every cell consisting of a nucleus that has the genetic

information of an organism. The DNA molecule in the nucleus consists of thread-like

structures called chromosomes. The chromosome is a constitution of genes with a

gene located at specific locations called locus. A gene is the basic physical and func-

tional unit consisting of instructions that define an organism i.e. how the organism

survives, how it appears, and how it behaves in its environment. These character-

istics determine the adaptability of the organism in the environment, referred to as

the fitness of the organism. Basically, a gene encodes a trait of the organism, e.g.

color of the skin.

In GA, a population of individuals i.e. a set of chromosomes to an optimization

problem, is manipulated using the above mentioned processes to evolve towards a

new generation of population with stronger individuals. The chromosome consists of

a set of genes that carry intrinsic characteristics of a symbolic individual. The adap-

tation capability known as the fitness of an individual in the environment depends on

these intrinsic characteristics. In GA [27, 28], the selection and evolution process is

defined in such a way that only the stronger individuals, i.e. the individuals having a

higher fitness level, in a generation pass their characteristics to their off-spring, hence

making them stronger. Therefore, the population in a newer generation is more fit

as compared to the population in the previous generation.

The GA flow starts with a random set of individuals selected from a set of possible

configurations i.e. a set of possible values for the input parameters. These are referred

to as a “population” in a “generation”, with the first set of individuals called the

“initial” population or the “first” generation. Each individual is then evaluated,
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and a “fitness” value for that individual is calculated. This is the stage where the

modules are executed and a solution is obtained for the input parameters given by

the “individual”. The fitness value is calculated by how well the solution fits to

our objectives. This stage is called the “evaluation” stage. Next, we select a set

of fit individuals from the population to obtain a “new” population for the next

generation. Selection is made such that “bad” designs (individuals with low fitness

value) are discarded and “good” designs are carried forward to the next generation.

The selected individuals are called “parents”. This stage is called the “selection”

stage, and the set of selected individuals form a “mating pool”. Then, crossover

is performed by creating crosses of the parents i.e. the individuals in the “mating

pool”, to create a set of even “fitter” individuals. The idea is that the individuals

of the new population inherit the best characteristics of their parents. This stage is

called as the “crossover” stage. Then, we perform the evaluation stage using this new

population, and the above steps are performed iteratively until the desired fitness is

obtained. Fig: 1.1 presents a graphical view of GA.

The advantage of GA over other non-population based optimization methods is

that GAs work with a population of solutions instead of a single solution. Therefore,

more than one string is processed simultaneously and used to update other strings

in the population. GAs do not necessarily require any additional information such

as the gradient to help in the search directions, which makes it simple and intuitive.

GAs use probabilistic rules in the search and it sees the system which provides the

fitness value as a black-box. In classical methods, where there is a coupling between

the underlying physics and the search method, there is coping for transition rules,

which assist in the search directions the methods that are not robust. This is unlike

GAs in which the stochasticity and the absence of transition rules make it more

effective and widely usable. Another advantage of Gas is that it is highly scalable and
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Figure 1.1: Genetic algorithms flow chart

parallel executable. In a population, the chromosomes can be executed in parallel,

the crossover, mutation and selection operators can be executed in parallel.

1.3.4.4.1 Binary GA: The following illustration presents the implementation de-

tails of GA, and discus the operations, crossover, mutation, and fitness calculation.

Let us assume two types of input parameters given by G1, and G2. Each of these

input parameters are a gene, and a combination of these form a chromosome. For the

genes with a size of four bits, the size of the chromosome is eight bits. Let C11, and

C12 be two chromosomes selected randomly from the mating pool after the selection
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stage:

C11 = 01101100 (1.6)

C12 = 11100010 (1.7)

Suppose the crossover point is defined as the fifth bit. Then the bits after the fifth

bit in the parent-chromosomes, C11, and C12 are swapped to create two children-

chromosomes, C21, and C22, given by:

C21 = 01101010 (1.8)

C22 = 11100100 (1.9)

The chromosomes, C21, and C22, retain some characteristics of their parent-chromosomes,

C11, and C12, and those will explore the solution space not explored by the parents,

C11, and C12. This operation is called as the “crossover” operation. The mutation

operation is performed, when a specific bit in the chromosome is changed. Suppose

a chromosome C30 is defined as:

C30 = 01101010 (1.10)

has the mutation operation on its fourth bit, resulting in:

C33 = 01111010 (1.11)

where the bit 0 at the fourth position in C30 changes to 1 in C33. Mutation helps in ex-

ploring different regions of the search space and prevents from stagnation. Mutation

plays an important role in species diversity. Mutation gives the children-chromosome
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characteristics that may be very unlike those of its parents-chromosomes, increasing

the overall diversity of the population, and therefore enhancing exploration of the

search space.

To quantify how close a solution is to the specified objectives, a value is calculated

and assigned to each chromosome after it is evaluated and a solution is obtained.

This value is called a “fitness” value. In other words, the fitness of a chromosome

is a function of the variables that form the objective. These variables can have the

objective of maximization, minimization, or proximity to limits. Let us define two

variables, O1 and O2. Suppose the objectives are to maximize O1, and minimize O2.

Let ∆O1 and ∆O2 define the distance of the variables O1 and O2 from the constraint

limits. The fitness function is defined as:

f =
1

∆O1

+
1

∆O2

(1.12)

The fitness function is problem dependent and custom functions are built based on

the design parameters and objectives. The general scheme of the steps involved in

the traditional GA [20] based GOM is presented as follows:

1. Generate an initial population using LHS, S = si, s2, s3...sN , where si is a

chromosome, and N is the population size

2. Apply a local search algorithm Alocal to each chromosome, si, and replace each

si with its local optimum

3. While terminating criteria is not satisfied:

3.1. Select K̂ = k̂1, k̂2, k̂3, ...k̂M distinct subsets of size two as parents.

3.2. For each k̂i, perform a crossover operation. This gives rise to two new

solutions (children).
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3.3. Apply local search algorithm Alocal to each of the K̂ new solutions resulting

in set Ŝ of solutions.

3.4. Choose N survivors from S ∪ Ŝ using a selection strategy.

3.5. If required perform a mutation operation.

4. Return the converged population S, and the best si.

1.3.4.5 Simulated Annealing

Simulated Annealing (SA) [29] is one of the most effective threshold algorithms

used for iterative improvement of search in optimization. In SA, instead of reject-

ing non-useful solutions, these are accepted at a certain probability. Therefore the

algorithms elect to keep a non-useful solution, and hence is able to escape local max-

ima/minima and avoid sub-optimal convergence. SA by itself is a meta-heuristic

optimization method but is not suitable for large search spaces. The name, SA

comes from annealing in metallurgy, which involves heating and cooling of a mate-

rial to increase the size of its crystals and reduce defects. SA is an adaptation of

the Metropolis-Hastings algorithm to generate sample states of a thermodynamic

system. In condensed matter physics, annealing is a thermal process for obtaining

low-energy states of a solid in a heat bath. SA is implemented using the following

basic steps:

1. Start a random initial solution (sold) for a maximization problem.

2. Calculate its cost (f (sold))

3. Generate a random neighboring solution snew with a cost (f (snew))

4. Compare sold with snew,

4.1. if f (snew) ≥ f (sold), move to the new solution and discard sold
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4.2. if f (snew) < f (sold), “may be” move to a new solution based on a proba-

bility,

Pc (snew) = exp
f (snew)− f (sold)

c
, (1.13)

where Pc (snew) is the probability of acceptance of solution snew, and c is

a control parameter.

5. Repeat steps 3 and 4 until an acceptable optimal solution is found based on

some convergence criteria.

The control parameter is analogous to the “temperature parameter” in annealing,

and the method for choosing c is called the “cooling schedule”. For large values of

c, large increases in cost are accepted with high probability. As c decreases, only

smaller increases are accepted. As c approaches 0, no increases are accepted at all. It

means that the algorithm is more likely to accept sort-of-bad jumps than really-bad

jumps, and is more likely to accept them early on, when the temperature is high.
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1.4 Regression

This section presents a detailed description of regression, predictive analysis using

regression, Gaussian processes based regression (GPR) and model prediction error

(MPE).

1.4.1 Introduction to Regression

Regression is a statistical estimate of the relationship between parameters based

on the observations in a practical problem. In particular, when the functional form

is not known, regression builds a surrogate model and helps to determine how a

dependent variable would be affected due to a change in the independent variables.

This surrogate model used as a black box as an effective tool for predictive analysis.

Regression includes several techniques that define a relationship between a depen-

dent variable and one or more independent variables. The simplest form of this

relationship can be thought of as the equation of a line, y = mx+ c, where the slope

m and the y-intercept c are determined from a set of two-dimensional observations

(x, y). Now with a known m and c a prediction for y∗ for any x∗ van be reliably

done at a confidence level. Interpolation, extrapolation, least squares fit, expected

improvement, and spline interpolation are a few standard methods used for predic-

tive modeling. Other regression methods that are much finer than those mentioned

above are Bayesian methods, Multivariate Adaptive Regression Splines (MARS),

Markhov chain Monte Carlo (MCMC) and GPR. In regression, due to the fact that

the surrogate model is obtained from observations, there is an inherent regression

error induced into the system. Intuitively, for an under-predicted model, the more

observations, the less the magnitude of the regression error. The error in predictions

i.e. the deviation of the predictions from the actual value due to regression errors is

called as the MPE.
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1.4.2 Need For Regression

Regression uses only the observations to build a surrogate model which is used

for predictions. Apparently, the surrogate model does not depend on the source of

the observations and therefore it does not care about the physical phenomenon that

determined the values for the dependent parameters. Therefore, it can be used as

a black box and it is significantly fast as compared to the actual physical model.

A standard process used in regression is: firstly use a training set obtained from

the observations to train/supervise the model and build the regression fit, and then

predict the values for the dependent variables based on the test input data.

1.4.3 Gaussian Process Based Regression

In this section a detailed analysis of GPR method with the governing equations

are presented. The complex system can be represented in a simple symbolic func-

tional for:

Y = f(X), (1.14)

where X given by:

X = [x1, x2, ...., xK ], (1.15)

is a vector of K input parameters, and Y given by:

Y = [y1, y2, ...., yL], (1.16)

is a vector of L output parameters. Each output parameter, yi is a function of X,

given by

yi = F (X) + ε, (1.17)
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where ε is a random noise in the observations. In a system where the functional form

(1.14) is not known, and only a set of trial data from known observation is given,

regression models such as GP are used to emulate the functional form and perform

predictions for a set of input test data. The input (X) in the nuclear power system

domain can be thought as of variables such as enrichment, moderator ratio, etc.,

and the output (Y ) parameters are the QOIs such as flux, peaking factors, thermal

efficiency etc. Gaussian process based regression is a powerful tool to emulate the

functional form (1.14).

1.4.3.1 Introduction to Gaussian Processes

A Gaussian process (GP) is a statistical distribution of data throughout some

domain for which any finite linear combination of samples follows a multivariate

Gaussian distribution. The N observations in an arbitrary data set can be imagined

as a single point sampled from some multivariate Gaussian distribution. Therefore,

working backwards, this Gaussian distribution can provide information about the

predictions. Figure.1.2 has some data points (red dots) for independent variable x.

Figure 1.2: Random function with the functional form not known

The function f (x) is not known and the likelihood of the point (blue dot) in the
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function is not known. GP is used to get an estimate of the source of these points in

a confidence level and gives a best estimate of the dependent variable at some new

value x∗ (the blue dot in Figure.1.2). If f (x) is known as linear, then with some

assumptions, a least-squares method could be used to fit the data. Similarly if f (x)

is known to be quadratic, cubic, or any other known form, then standard principles

of model selection could be used as the prediction model. But in the case where there

are no clues about the functional form, GPR comes to picture. Instead of relating

f (x) to any known form, a GP is used to represent it rigorously by allowing observed

data to supervise the learning of the model. With some assumptions, GP helps in

answering the following questions:

• There are some data points, how to rank the likelihood of the functions ?

• What is the expected function i.e. where the function will most likely be ?

• The function might look like any of a set of example functions by sampling

from the posterior distribution.

• Here is a prediction of what the function will evaluate at the test data at a

confidence level.

1.4.3.2 Gaussian Process Based Emulator

The surrogate model built using GPR is called the Gaussian process based emu-

lator (GPMEM)[30]. An observation i related to an underlying function (1.17) with

a Gaussian noise is given by:

yi = f(X) +N
(
0, σ2

n

)
, (1.18)
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where N (0, σ2
n) is the Gaussian noise in the observation with a standard deviation

of σn. For simplicity, the suffix i in yi and xi are dropped. In other words Y is

assumed to have a single parameter y and X has a single parameter x. GP is used

with a basic assumption that x can be represented as a sample from a multivariate

Gaussian distribution, therefore the distribution to prior data over the parameters

is given by:

(y) ∼ N (0, K (x, x)) , (1.19)

where K is the kernel function that creates the covariance matrix, and N is the

normal distribution. A squared exponential form is used for the covariance function

to generate the covariance matrix. This covariance function relates one observation

to another. For any two observations, x̂ and x̄, the covariance function, K (x̂, x̄) is

given by:

k (x̂, x̄) = σ2
f exp

− (x̂− x̄)2

2l2
, (1.20)

where σf is the output variance, and l is the length parameter. σf is a scale factor

that determines the average distance of the function away from its mean. l acts as

a flexibility parameters that controls the “wiggles” in the function. In other words,

extrapolation cannot be trusted l units away from the data. The noise presented in

(1.18) propagates to the covariance function (1.20) and yields:

k (x̂, x̄) = σ2
f exp

− (x̂− x̄)2

2l2
+ σ2

nδ (x̂, x̄) , (1.21)
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where δ (x̂, x̄) is the Kronecker’s delta function. Assuming noiseless data, for N

observations, K forms a N ×N matrix given by:

K =



k (x1, x1) k (x1, x2) ... k (x1, xN)

k (x2, x1) k (x2, x2) ... k (x2, xN)

. . .

. . .

k (xN , x1) k (xN , x2) ... k (xN , xN)


(1.22)

The objective of this exercise is to predict y∗ at an input x∗. An assumption in GP

modeling is that the joint data including x and x∗ can be represented as a sample

from a multivariate Gaussian distribution, therefore the joint posterior distribution

yields:  y
y∗

 ∼ N

0

0

 ,
K K∗T

K∗ K∗∗


 , (1.23)

where

K∗ = [k (x∗, x1) k (x∗, x2) ... k (x∗, xN)] , (1.24)

and

K∗∗ = k (x∗, x∗) . (1.25)

The conditional probability, P (y∗|y) i.e. given y how likely is a certain prediction of

y∗, follows a Gaussian distribution. Therefore by using Bayes’s theorem the posterior

distribution sampled from a Gaussian distribution is given by:

(y∗|y) ∼ N (µ̂, σ̂) , (1.26)
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where µ̂ is the mean of this distribution and is the best estimate is given by:

µ̂ = K∗ ·K−1 · y, (1.27)

and σ̂ is the variance that captures uncertainty in the estimate given by:

σ̂ = K∗∗ −
[
K∗ ·K−1 ·K−1 ·K∗T

]
, (1.28)

The mean µ̂ of the distribution (1.26) can be thought of as the maximum-likelihood

prediction for the output corresponding to the input x∗. In future sections the

observations (x, y) are denoted as trial data because these data are used to supervise

the model. It is important to note that an observation point xi is a vector and

therefore the independent variable, x, is a matrix for most of the realistic physical

problems. The process and all the equations mentioned above are valid for the multi

dimensional case. The prediction points (x∗, y∗) are denoted as test data because

the GPR model is tested at these points.

Trial data Dtrial is comprised of trial input data (Xtrial) and trial output data

(Ytrial). The objective is to predict test output data Ytest from test input data Xtest.

This is done by recovering the underlying process from noise observed data Dtrial

using the regression model described above. For a system with Ntrial observations
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for trial data, a K ×Ntrial matrix is formed for Xtrial:

Xtrial =



x1,1 x1,2 ... x1,K

x2,1 x2,2 ... x2,K

. . .

. . .

xNtrial,1 xNtrial,2 ... xNtrial,K


, (1.29)

where each row corresponds to a sample for K parameters, and each column corre-

sponds to the Ntrial observations for a specific input parameter. The computational

simulation, which solves the equation, (1.14) is executed with Xtrial to generate:

Ytrial =



y1,1 y1,2 ... y1,L

y2,1 y2,2 ... y2,L

. . .

. . .

yNtrial,1 yNtrial,2 ... yNtrial,L


, (1.30)

where Ytrial is the set of output parameters for the specific set of input parameters,

Xtrial, and L is the number of output variables. Similar matrices are defined for Xtest

and Ytest with the same dimensions K and L respectively.

1.4.3.3 1-D Illustration

Assume an experiment with 1-D data with N = 6 observations for an unknown

function y = f (x). The observations are at:

x = [−0.8,−0.5,−0.1, 0, 0.4, 0.75], (1.31)
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with a noise of σn = 0.25. Data (black stars) and the corresponding error (red bar)

are presented in Figure.1.3. The exercise is to predict the value and error at x∗ = 1.0

given by the blue dot in the figure. With a σf = 1.27 and l = 1.0, equation (1.21)

Figure 1.3: Sample 1-D data for regression
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yields:

K =



1.67 1.54 1.26 1.17 0.78 0.48

1.54 1.67 1.49 1.42 1.07 0.73

1.26 1.49 1.67 1.60 1.42 1.12

1.17 1.42 1.60 1.67 1.49 1.21

0.78 1.07 1.42 1.49 1.67 1.51

0.48 0.73 1.12 1.21 1.51 1.67


(1.32)

Based on (1.25), the value for K∗∗ computed using (1.31) is 1.67. Similarly based

on (1.24), the value forK∗ computed using (1.31) isK∗ = [0.32 0.52 0.88 0.98 1.34 1.56].

Using (1.27) and (1.28) the mean and error in the predictions are given by, y∗ = 0.885

and var (y∗) = 0.179. Assuming noiseless data, if the above procedure is repeated

for various points over the x-axis and multiple samples are drawn, the prior (1.19)

looks like, where the model has randomly drawn three sample functions in the de-

fined range. Similarly multiple samples drawn from the posterior 1.26 look like, In

other words, the posterior (Figure 1.5) implies that the model has actually chosen the

function those pass through the trial data set from a set of random infinite samples

unlike the prior.

It is important to observe how the predicted values look for lots of data points. In-

stead of having error bars for each point, a 95% confidence interval (y∗±1.96
√
var (y∗))

is drawn for the above problem and presented in Fig: 1.6.

1.4.4 Hyper-parameters and Kernel Function in Gaussian Processes

The kernel function in Eq.1.19 takes several forms, and so a judicious decision is

taken to choose the form that fits the current sample data. The following standard

forms are used in the research community:
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Figure 1.4: Three samples drawn for the prior

• Absolute exponential - Ornstein-Uhlenbeck Stochastic Model:

K (x, y) = σd · exp

(
−
√

(x− y)′ · (x− y)

)
(1.33)

• Linear:

K (x, y) = σd · x′ · y (1.34)

• Squared exponential:

K (x, y) = σ2
d · exp

(
−(x− y)′ · (x− y)

2 · l2

)
(1.35)
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Figure 1.5: Three samples drawn for the posterior

• Periodic:

K (x, y) = σ2
d · exp

(
− sin

(
k · π · (x− y)′ · (x− y)

))
(1.36)

The applications of the kernel function depend on the nature of training data. The

variables σd, k, l are called hyper-parameters. A rigorous sensitivity study is per-

formed to determine the best value for these hyper parameters. Before building the

GPM, a choice for the kernel functions and the hyper-parameters is done based on

cross-validation, and the final choice is used to fit the data and perform predictions.
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Figure 1.6: Prediction mean with confidence interval

1.5 Objectives and Tasks

The objective of this work is to develop and demonstrate an iterative optimization

method using genetic algorithms and Gaussian process based regression for nuclear

engineering applications using two reactor design problems as illustrative examples.

The objective splits into two sub-objectives: Firstly to maximize or minimize the

following group of functions:

F
(
X̂
)

= f1

(
X̂
)
∧ f2

(
X̂
)
∧ f3

(
X̂
)
...fO

(
X̂
)

(1.37)
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where X̂ is a vector of input parameters, O is the number of optimization objectives,

fo

(
X̂
)

is an objective function based on the QOIs for an objective o. Operations

are made for each of the individual functions. The function, fo

(
X̂
)

can be a maxi-

mization or a minimization function. A standard method where the objective space

is strictly convex is used for the weighted approach. The weighted approach presents

the optimization problem in an intuitive and understandable form. In the weighted

form the optimization problem is presented as a single function optimizer:

F
(
X̂
)

=
O∑
o=1

fo

(
X̂
)
· wo (1.38)

where the individual optimization functions, fo

(
X̂
)

are converted to a consistent

maximization or a minimization function. In the current formulation
∑O

o=1wo = 1.

The nuclear reactor problem specification that defines the variables X̂, and fo

(
X̂
)

is

presented in the next section. Secondly, characterization and definition of a nuclear

reactor power system based on GCFBR design and a variant of the AP1000 design

are presented, followed with a successful implementation of IHGOM on the GCFBR

and AP1000 problems. Criticality, flux, and depletion calculations are performed

using Serpent2 [31], HYBGASA using Java, and GPMEM using R. The detailed

tasks in the design, development, analysis and validation of IHGOM include:

• Characterization of a GCFBR reactor power system and an AP1000 design as

a complex system.

• Define a detailed set of optimization design parameters and objectives in the

GCFBR reactor power system.

• Development of the iterative HYBGASA GOM method.
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• Development of GPMEM regression system.

• Analysis of feasibility of IHGOM by testing if the iterative approach helps in

reducing regression errors and is able to determine a near optimal solution.

• Compare the optimal solution obtained using the proposed method to a brute-

force search. The comparison is made based on accuracy and speed, where

speed is determined based on the number of actual executions of the complex

system.

• Sensitivity studies are preformed to search for the best parameters for the

iterative method.

1.6 Tools

Data analysis is done using Excel and R. The GPMEM models and validation

methods are developed using R, Python and matlab. The optimization methods are

developed and implemented in Java.
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2. NOVEL OPTIMIZATION METHOD

This chapter presents the development details of the iterative method introduced

in the previous section. This chapter includes the description of the MPE, fitness

function, stopping criteria for GA, ε constraint method implementation, real GA

operators implementation, choice of kernel and hyper-parameters in the emulator,

and a detailed step by step approach of the problem execution.

2.1 Hybrid Optimization Method

Local search (Alocal) is used to determine the optimal solution in the neighborhood

of a solution. “1-Flip neighborhood” is a popular local search method used with GA.

In the “1-Flip neighborhood” method,

• Each bit in the chromosome (si) is flipped to obtain a new solution (ŝi), and

the fitness is calculated.

• If the fitness of ŝi is better than the fitness of si, discard si, and ŝi becomes si.

However, “1-Flip neighborhood” is not an effective local search method. Fitter solu-

tions are sometimes ignored because, a solution could be non optimal locally but after

operations like crossover and mutations, could emerge as a global optimal solution.

Therefore instead of just discarding a chromosome with a lower fitness, a possible

solution is to keep it alive with a non-zero probability. Therefore, the implementa-

tion of simulated annealing (SA) based concept along with “1-Flip neighborhood” as

part of the local search comes into consideration. In SA, every neighboring solution

is chosen with a positive probability. If ŝi is a neighbor of si, the probability of
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accepting ŝi, P (ck) is given by,

P (ck) =

 1 : f (ŝi) >= f (si)

exp
(
f(si)−f(ŝi)

ck

)
: f (ŝi) < f (si)

(2.1)

where f() is the fitness, and ck is the control parameter. If ck is large, large changes

in fitness are accepted with high probability. Similarly, when ck is small, only smaller

changes are accepted, and gradually as ck approaches 0, no changes are accepted .

This method of the implementation of a an hybrid GA and SA is called as the global

optimization method (GOM).

2.2 Coupled GOM and GPM

GOM operates on the system as a black box with the goal of optimizing a set

of design parameters to met a set of objectives. In the current implementation

the system is a regression model instead of the actual physics based model. The

regression model is built using a Gaussian processes based method (GPM). The

input set from the chromosomes generated from the GA is fed into the GPM which,

predicts the values for the QOIs. The GPM being a surrogate model has an inherent

model error associated with every predicted QOI. This model error is called as the

Model Prediction Error (MPE). The MPE has the inherent characteristics of being

dependent on the size of the samples used to build the GPM. Therefore an iterative

approach is implemented wherein the GPM is reconstructed by adding new samples

iteratively to reduce the MPE. In this method the execution starts with the GPM

built using samples from the whole design space, GA is executed on this GPM to

obtain a pareto optimal solution, then new samples are generated at the vicinity of

the optimal solution and the GPM is reconstructed with the new samples added to

the old samples, then GA is executed on the new GPM and this process operates
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iteratively till an acceptable level of MPE is reached. Let Ninitial is the initial sample

size used to train the GPM, NY is the number of outer iterations, and Nre−train is the

number of new samples generated after each outer iteration, the number of samples

used every outer iteration to re-train the GPM is given by,

Nouter,j = Ninitial + (Nre−train · j) , (2.2)

where j is the outer iteration and Nouter,0 = Ninitial. A good value for Nre−train is,

Nre−train =
Ninitial

2
. (2.3)

The multi-dimensional design space used in generating sampled using LHS is reduced

by a re-sampling rate, Ξ = 50% after every outer iteration.

2.3 Multi-objective Optimization Development and Implementation

The global optimization problem presented in Eq.1.38 is given as,

min
X∈Rn

F (X) (2.4a)

constraints G(X) (2.4b)

xi,low ≤ xi ≤ xi,high (2.4c)

where F (X) is a vector of objective functions, G(X) is a vector of constraint func-

tions, and X is a vector of input design parameters xNvar . In a multi-objective

domain F (X) is not a single function, rather a group of functions. And assuming
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that the constraints are a group of functions, (2.4) in an expanded form is given by,

F (X) = {f1 (x) , f2 (x) , ....., fO (x)} (2.5a)

G (X) = {g1 (x) , g2 (x) , ....., gC (x)}X = {x1, x2, ..., xNvar} (2.5b)

where fo (x) is an objective function, gc(x) is a constraint function, O is the number

of objectives, C is the number of constraints, xi,low is the lower limit for xi, xi,high is

the upper limit for xi, and Nvar is the number of design parameters. From (2.4) and

(2.5), it is observed that minimization/maximization operator is applied on a group

of objective functions, hence there is no possibility of obtaining a single optimal

solutions, rather a group of equally optimal solutions called as the pareto optimality

set. In a practical domain, qualitative judgment is used to determine the best among

all the pareto optimal solutions. In the current work we desire to obtain atleast a

single pareto optimal solution.

Fitness function (FF) is the measure of the proximity of the feasible solution to

the pareto optimal solution. FF is the quantifiable scalar parameter that is used

by GA to determine input sets in each generation. Determination of the fitness in

a single objective function is straightforward i.e. if it is a maximization function,

then the chromosome having a higher fitness value is more desired as compare to

a chromosome with a lower fitness value. However, fitness function in a multi-

objective system is complex and needs special treatment. The most generic solution

is to convert a multi-objective function to a single objective function and use this as

a fitness function. And, a very standard approach is the weighted approach where a

weighted sum of all the objectives is constructed. Assuming a minimization objective
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function the optimization problem as a weighted sum is represented as,

min
X∈Rn

F
(
X̂
)

=
O∑
o=1

fo

(
X̂
)
· wo (2.6)

where X̂ is a vector of input parameters, O is the number of optimization objectives,

fo

(
X̂
)

is an objective function based on the QOIs, and wo is a positive weight for

an objective o. In the current formulation s
∑O

o=1wo = 1. This method converts the

multiple objective functions, fo

(
X̂
)

to a single objective function, F
(
X̂
)

. Every

combination of this weighing factors generates a different pareto optimal solution.

However this method has the following concerns,

• Determination of the weighting coefficients, wo. In practical applications, qual-

itative judgement is used to determine the coefficients.

• The method assumes that the objective function space is convex. Therefore the

problems where the shape of the objective space is not known the assumption

of convexity is not accurate.

To avoid the complexities of the weighted approach in solving problems having non-

convex objective space, the ε-constraint [32, 33] method is used.

2.4 Epsilon Constraint Method

The ε-constraint method is an effective method used in the optimization of multi-

objective systems where the functional form of the relationship between the QOIs

and the design parameters is not known. In the ε-constraint method, the multi-

objective problem is reformulated into a single objective function, by using one of

the objectives as the objective function, and the rest of the objectives as a grid

based constraints. Different pareto-optimal solutions can be determined by changing

the grid size. Assuming that there are three objectives given by, O1, O2, and O3,
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the ε constraint method for the maximization/minimization of O1 with the other two

objectives, O2 and O3 used as constraints is presented in Fig: 2.1, The brown shaded

Figure 2.1: ε constraint method illustration. This is a hand sketch to illustrate the
method.

region is the objective space nd the green grid lines represent the ε grids. Therefore

the fitness function now depends only on O1 in every grid. In simple terms, the

global search is converted into several local searches to increase efficiency. In the ε

constraint method the optimization problem, Eq.2.4 is reformulated as,

F (X) = fo (x) (2.7a)

G (X) = {g1 (x) , g2 (x) , ....., gC (x)} (2.7b)

εk,i,left ≤ fi (x) ≥ εk,i,right, i = 1...O, i 6= o (2.7c)
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K∑
0

k ∈ Ωo (2.7d)

X = {x1, x2, ..., xNvar} (2.7e)

where k is the ε bin, K is the total number of ε bins. The minimization function

2.5a is now treated as,

min
X∈Rn

F (X) = min
X∈Rn

Fk(X), k = 1.....K (2.8)

The objective is to maximize or minimize (F (X)) i.e. Eq.2.4. Using the ε constraint

method, the multi-objective function (2.5a) is solved as a single objective function,

(2.7a). (2.7b) are the actual constraints and (2.7c) are the new additional constraints.

A simple illustration of the ε constraint based optimization method is presented as

follows. Assume, there are three design variables: A,B and C. A multi objective

demonstration problem is assumed as,

1. Maximize A

2. Minimize B

3. Maximize C

The epsilon method is demonstrated in the following steps,

1. Start with the optimization objective of maximizing A. Create several discrete

spaces in B and C.

2. In each discrete space in B and C determine the maximum value for A. In the

current case, the discrete space is 2-dimensional boxes.

3. Let Amax is the maximum value for A after searching all discrete B and C

intervals.
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4. Now set A=Amax and perform the following steps,

(a) The objective is to minimize B. Create discrete intervals for C. This forms

a vector with intervals of C.

(b) For each interval of C, and with A=Amax, determine the minimum value

for B.

(c) Let Bmin is the minimum value for B after several searches for all the

intervals of C with A=Amax

i. Now with A=Amax, B=Bmin, search for the maximum value for C i.e.

Cmax

The optimum values are Amax, Bmin and Cmax. The italicized text in the above steps

are single objective optimization problems. It is observed that in the ε-constraint

method, a multi objective problem for A,B and C is converted into an iterative single-

objective problem i.e. each of the objectives in the multi-objective case is treated

separately as multiple single-objective cases. Different Pareto optimal solutions are

obtained by changing the sequence of the objectives in the iterations.

2.5 GA Operators

In practical physics based problems when the design parameters are continuous

the real valued GA is implemented. The implementation of real valued GA is similar

to the binary GA with the primary difference being the fact that variables are no

longer represented by bits of zeros and ones, but instead by floating point numbers.

Real valued GA requires less storage as compared to binary GA because to obtain

a desired precision in the real numbers using bits, the chromosome size needs to be

significantly large. Due to not having decoding and encoding steps, the real valued

GA is faster than binary GA. Real valued GA follows the same heuristics operations
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however, there is a significant difference in the implementation of the operators. The

operators are implemented in the following way,

2.5.1 Variables

In real valued GA, the chromosome is defined as an array of variable values of

the design parameters. If there are Nvar design parameters, the chromosome is used

as an array of size, Nvar.

chromosome = [p1, p2, p3, ....., pNvar ] (2.9)

where pi is the design parameter of index i. The fitness function can be defined as,

F = f (chromosome) = f (p1, p2, p3, ....., pNvar) (2.10)

Fig: 2.2, presents an approach sequence flowchart of real valued GA.

2.5.2 Initial Population

The initial population is generated using the LHS method for all the design

parameters and the chromosomes in the variable value range. The random number

generator, generates a random floating point number between 0 and 1.0. The input

design parameter is therefore scaled to its range using the following equation,

p = plow + rand() · (phigh − plow) (2.11)

The initial population gives rise to NpopXNvar matrix with random numbers in them.

LHS sampling plays a very important role in generating this widely distributed sam-

ples.
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Figure 2.2: A macroscopic view of the import components in genetic algorithms

2.5.3 Selection

The selection methods in real valued GA are similar to those used in binary GA.

The roulette wheel selection method is employed to select the parent chromosomes

for crossover and mutation. First, each of the chromosome is associated with a prob-

ability based on its rank and then a roulette wheel is built based on the probabilities.

Then a random number is generated and the corresponding chromosome from the

roulette wheel is selected.

2.5.4 Crossover

Crossover on the parents selected in a binary GA is straight forward, but it is

not so intuitive when it comes to real valued GA. It is desired to have a crossover
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operator such that it searches for off-springs based on the distance between the par-

ent solutions. A popular method, “simulated binary crossover” (SBX)[32] is widely

accepted in the optimization community. In the SBX method, two parent solutions

create two off-springs. Let, x1,p
i , x2,p

i are the parent chromosomes of design parame-

ter, i, the SBX method generates the off-springs x1,o
i , x2,o

i . A spread factor, βi defined

as,

βi =

∣∣∣∣x2,o
i − x

1,o
i

x2,p
i − x

1,p
i

∣∣∣∣ (2.12)

is the ratio between the absolute values of the difference between the parents and

the difference between the off-springs. The factor, βi is obtained from a specified

probability distribution function such that the area under the probability curve from

0 to βi is equal to a random number ui. The probability distribution is given as,

P (βi) =


0.5 (η + 1) βi, if βi ≤ 1;.

0.5 (η + 1) 1

βη+2
i

, otherwise.

(2.13)

where η is a tuning parameter. A large value for η gives a higher probability for

creating near-parent solutions and a small value for η allows distant solutions to

be created as off-springs. Equating the area under the probability curve to ui, the

ordinate of the function βq,i yields,

βq,i =


(2ui)

1
η+1 , if ui ≤ 0.5;.(

1
2(1−ui)

) 1
η+1

, otherwise.

(2.14)

Based on the values of βq,i, the off-springs are generated as,

x1,o
i = 0.5

[
(1 + βq,i)x

1,p
i + (1− βq,i)x2,p

i

]
(2.15)
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x2,o
i = 0.5

[
(1− βq,i)x1,p

i + (1 + βq,i)x
2,p
i

]
. (2.16)

Practically, a value for η is chosen, a random number for ui is generated, βq,i is

calculated using 2.14, and then the off-springs are calculated using 2.15. Fig: 2.3

presents the distribution for the offsprings based on two values for η. The plot shows

the distribution based on two values for η (Figure obtained from ([32])) Fig: 2.4

Figure 2.3: The probability distribution function for creating offspring using the SBX
method. Parents are at x-location ”2” and ”5”

presents the distribution with respect to the distance between the parents. The SBX

method is useful because the difference between the off-springs is proportion to the

parent solutions, and near parent solutions are more likely to be chosen as off-springs

as compared to distant solutions.
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Figure 2.4: The probability distribution function with two different set of parents
for η = 2. Left: the parents are at 2 and 5, Right: the parents are closer at 2.0 and
2.5. (Figure obtained from [32])

2.5.5 Mutation

In real valued-GA the mutation operator is straightforward and generates a ran-

dom number in the value range for a specific parameter in a specific chromosome

in the population.Mutation is operated on the non-elite members of the population.

The total number of mutations to be performed after cross-over operation is given

by,

Nmut = Nvar ∗Nchromo ∗ νmut (2.17)

where Nmut is the number of mutations in the population, Nvar is the number of

design parameters, Nchromo is the number of chromosomes in the population, and

νmut is the mutation rate. A higher mutation rate ensures a higher diversity in the

search, however it makes the convergence slow. In contrast, a lower mutation rate

reduces the diversity in search.
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2.6 Stopping Criteria for GA

The optimum solution of the problem is not known and therefore the search can

go on for an infinite amount of time which is practically not feasible. Therefore, a

standard approach is to analyze the solution after every generation and develop a

stopping criteria based on the fittest value in that generation, the variance in data

in the population and the change in the fittest value with generation. All the three

conditions have to be met to conclude GA iterations and accept the resulting solution

as the desired pareto optimal solution. The three parameters are,

2.6.1 impFittest (τIF )

This variable keeps track of the improvement in the best fitness in a generation.

At the end of each generation the change in the fittest fitness value i.e.τIF is calcu-

lated. During the initial generations, τIF carries a larger number which decrease with

generations, and as the iterations are closer to achieving the optimal solution, τIF

reduces considerably. The iterations are continued till τIF reaches an user defined

threshold. If this is the only stopping criteria for a minimization problem, then the

iterations are stopped when,

τIF < thIF . (2.18)

2.6.2 maxRelDistance (τMRD)

This variable keeps track of the maximum distance between each chromosome

and the fittest chromosome. If fi is the fitness of chromosome i and fbest is the

fitness of the best chromosome,

τMRD =
max (|fi − fbest|)

fi
, i = 1...Nchromo (2.19)
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2.6.3 relDiff (τrelDiff)

Relative difference between fi and fbest is given by,

τrelDiff =
|fmean − fbest|

fbest
, (2.20)

and the stopping criteria is that, a generation should have a τrelDiff < d, where

drelDiff are tuning parameters.

2.7 Model Prediction Error Estimation

There are several ways to quantify MPE. Since the actual value for the indepen-

dent variable for the test data is not available a direct residual or a difference is not

possible to compute and if possible would not make sense. Therefore there are stan-

dard methods used to actually quantify MPE based on the available observations

and the predictions. Following MPE methods are used in this work to understand

and quantify the quality of the predictions,

• K-Fold cross validation: In the K-fold cross validation method, the inputted

data set of size N is split into K folds of N
K

samples in each fold. In other words,

K experiments are performed with each experiment has Nc samples comprising

of the K− 1 folds is used as the training set and Nv samples comprising of one

fold is used as the test set, and N = Nv +Nc. The Nc data points are used to

fit the model and Nv data points are used to quantify the predictive ability of

the model. Predictions are done for all the Nv data points and then these are

compared with the actual Nv observations and a root mean square (RMS) of

the model error is determined. This RMS of error is used as the MPE in the

current problem.

The determination of the value for K is an important trade-off between accu-
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racy and speed. With a large number of folds, the bias of the error will be

small, however the variance of the error would be large and the computation

time is significantly large. However, with a small number of folds the number

of validation experiments are reduced, hence the computation time is reduces,

but the error in estimation is large. Therefore, there is a trade-off between

speed and accuracy. Apparently, in very large data sets, upto 10-Fold CV is

acceptable, but for sparse datasets and to be conservative the N-Fold cross-

validation is employed. The N-Fold cross-validation is called as the Leave one

out cross validation (LOOCV).

• Leave One Out Cross Validation (LOOCV): LOOCV is a special case of the K-

Fold cross validation method. In the LOOCV case, K = N or in other words,

Nv = 1. In the LOOCV method each sample from the data set is “left out”,

the regression model is trained using the rest of the samples, and then this

“left out” sample is tested against the model. This is the most conservative

approach, but is the most accurate error predictor. A root mean square of all

the errors are calculated to be used as the final MPE for the model with the

specified training data set.

2.8 Selection of Kernel Functions and Hyper-parameters

The choice of the kernel function and the optimum value for the hyper parameters

is important for the accuracy in the predictions from the GPM. A grid based cross-

validation (GridCV) method is employed to make the choice for the kernel functions

and the hyper-parameters. In the GridCV method, a grid based on several different

options and values for the hyper parameters is developed and for each entry in the

grid, the surrogate model is built and cross-validation is performed on the training

set. Cross-validation results in the MPE based on the RMS values of the error due
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to each prediction in the cross-validation steps. Based on the MPE for values for

each of the elements in the grid the final kernel function and the values for the

hyper-parameters. Following grid is formed that determines the MPE for several

combinations among the equations presented in Section:1.4.4. All the four options

with several values for the hyper parameters, σd have been used. The search is

performed and the best kernel function and hyper-parameter obtained is used for

a specific QOI in a particular outer iteration. It is to be noted that the search

performed after every outer iteration because the training set used to fir th model is

updated at the beginning of every outer iteration. Each QOI has its own relationship

with the design parameters, therefore the search is performed separately for each

QOI.

2.9 Regression with Adaptive Feature Set

Regression with Adaptive Feature Set (RAFS) is the applicable to problems where

the predictors are dependent on time. This is different from forecasting due to the

fact that in RAFS the feature set is updated while in forecasting, the same feature

set is used for predictions but with updated temporal data. RAFS is applicable in

reactor design problems where the QOIs are dependent on the burn steps. In these

type of problems there are the “base ” predictors and “burn” dependent predictors.

The prediction model for QOI’s in the first burn step use the “base ” predictors only.

In the prediction model for the QOI in the second burn step the predictor set consists

of the “base” predictors as well as the QOI of the first burn step. Similarly, in the

prediction model for the QOI in the third burn step the predictor set consists of the

“base” predictors as well as the QOI of the first and the second burn steps. Therefor

the predictor set is updated after every burn step. This method is implemented in

GPM predictive model for the MAP1000 demonstration problem. The RAFS method
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is explained as, A predictive model with P predictor variables and D dependent

variables is defined as,

yd = F (xP ) (2.21a)

0 < d ≤ D (2.21b)

0 < p ≤ P (2.21c)

where dand p are indices for the individual predictor and dependent variables. Using

the RAFS method the predictive model for the first dependent variable y1 is,

y1 = F (x1, x2, x3....xP ) . (2.22)

The second dependent variable y2 is,

y2 = F (x1, x2, x3....xP , y1) . (2.23)

Similarly, the third dependent variable y3 is,

y3 = F (x1, x2, x3....xP , y1, y2) . (2.24)

And, the predictive model for the last dependent variable yD is,

yD = F (x1, x2, x3....xP , y1, y2....yD−1) . (2.25)

This shows that the training model for yD not only gets contributions from xi but also

gets contribution from other preceding dependent variables, yi...yD−1. This feature

is the novelty in the way the predictive model is built.
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2.10 Solution Flow

A schematic sketch of the research flow is presented in Fig: 2.5. The inner

loop uses HYBGASA to perform a global optimization of the input parameters,

and determines a neighborhood of the optimum space based on a defined set of

objectives. The outer loop performs a reduction of regression errors in the predictions

by updating the trial input set used to build the GPMEM. The initial trial input

Figure 2.5: Research flow (Black: Outer loop, Green: Inner loop)

set (INTRIALINP) is obtained using the Latin hypercube sampling (LHS) method

[34], [35]. During each iteration of the outer loop the trial set is updated with new
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data from the neighborhood of the near optimal solution. The emulator is re-trained

using the updated trial-set. The inner loop performs HYBGASA using predictions

from the GPMEM to determine the near optimal neighborhood. The solution flow

can be summarized in the following steps,

1. Obtain the initial trial data by executing the complex system with a set of

random samples developed using LHS.

2. Perform sensitivity studies to determine an ideal value for ε.

3. perform cross-validation and determine an optimized set of hyper-parameters

in the Gaussian process based regression.

4. Build the emulator.

5. Start the epsilon loop and determine ε constraint bins.

6. Start with a bin from the ε grid,

7. Start GA and perform optimization to determine an optimal solution in the ε

grid.

8. Perform Step-8 for all the elements in the ε grid. Once all the grids are ex-

hausted,

9. Re-sample at the vicinity of the optimal solution and go back to Step-2.

10. Converge the outer iteration
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3. METHOD DEMONSTRATION

This chapter presents a detailed description of results and analysis of the op-

timization problems solved using the methods developed in this dissertation. The

section begins with a description and demonstration of the optimization method’s

capability on the Ackley’s test problem. Next, descriptions of the sample systems

are presented, including the parameters and the objectives of the optimization prob-

lem. Following the description is, a detailed presentation and an analysis of the

results. At the end of each demonstration, a discussion on the novelty of the method

is included, based on speed, accuracy and optimality. In a macroscopic view, the

following analysis is made for the sample problems:

• Speed: The speed is determined by a comparison of the execution times of

the converged iterative method and a brute force search when determining the

optimum values for the design parameters. A comparison between local re-

sampling and global re-sampling is done to analyze the speed in the reduction

of MPE due to the outer iterations.

• Accuracy: Accuracy of the iterative method is determined by comparing the

solutions with the solution obtained from the actual experiment or the system

if it is a simulation.

• Search efficiency: Search efficiency is analyzed by comparing the optimum so-

lution obtained using the iterative method and the best solution obtained using

brute force search. The proximity of the obtained solution to the objectives

and the constraints are analyzed. The Ackley benchmark test is employed to

determine the search capability of the HYBGASA method.
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• Sensitivity study: Sensitivity study analysis used to determine the values for

the hyper parameters in GA and GPM.

The problems are designed to demonstrate the proposed optimization method. The

problems are multi-objective problems with a blend of individual maximization, min-

imization and limit single objective functions. Some of the design parameters, QOIs

and objective functions might not be applicable in the physical world, however in

the current demonstration those are necessary to validate the proposed method.

3.1 Ackley Test Problem

The Ackley function [36, 37, 38] is widely used in testing and benchmarking

optimization algorithms. It is a single optimization test function and is characterized

by having several local minima and a single global minima.

3.1.1 Problem Description

The function is given by,

f(X) = −a ·exp

−b ·
√√√√1

d
·

P∑
p=1

x2
p

−exp

(
1

d
·

P∑
p=1

cos(c · xp)

)
+a+exp(1) (3.1a)

−5.0 ≤ xp ≤ 5.0 (3.1b)

minimum at f(0, · · · , 0) = 0 (3.1c)

where P is the number of design parameters, a,b and c are constants, X is the input

values. For P = 2, X is a 2-dimensional matrix. The global minima is at X = 0

i.e. f (0) = 0. The objective is to determine the global minima using the developed

optimization method. Fig: 3.1 is the solution for the Ackley function 3.1 with the

following values for the parameters, Table: 3.2 presents the parameters used in the

GA optimization search.
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Figure 3.1: Ackley test problem solution

Parameter Value
P 2
a 20.0
b 0.2
c 2.0π

Table 3.1: Ackley test parameters

3.1.2 Results

GA is used to determine the global minima. Fig: 3.2 is the solution for the Ackley

function 3.1 converging towards a global minima. The image at the top presents the

best chromosome in each generation and how the input values converge towards the
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Parameter Values
GA Number of chromosomes 200

η 0.05
νmut 0.5
ck 0.25

Table 3.2: Ackley optimization parameters

optimal input. The image at the bottom of the figure shows the solution of Ackley

function for the best chromosome in each generation. The figure shows the conver-

gence for the Ackley’s function towards the global minima. The numbers shows the

convergence towards machine precision. Fig: 3.3 is the distribution of chromosomes

in the first and the last generation. In the first generation the search is random and

the chromosomes are randomly distributed in the space. As the search moves to-

wards convergence the randomness in the chromosomes is gone. This is evident from

the bottom figure that represents the chromosome distribution in the last genera-

tion. The search capability of HYBGASA in single objective optimization problems

is demonstrated. In the developed ε-constraint method all the single-objective prob-

lems are solved using HYBGASA. The objective of this exercise is to determine the

global minima in the presence of several local minima. The method has been very

effective in searching for the global minima at a significant speed.
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Figure 3.2: Ackley optimization search versus generation. Top: Input for the best
chromosome, Bottom: Solution for the Ackley function for the best chromosome

3.2 Asymmetric 2-D Test Problem

An asymmetric 2-D problem is used to test the search efficiency of the optimiza-

tion method. Along with the Ackley’s problem, the asymmetric 2-D problem form

an effective test and benchmarking tool for search algorithms. The objective is to

search for the global maxima and minima on a surface.
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Figure 3.3: Top: Chromosome distribution in the first generation, Bottom: Chro-
mosome distribution in the last generation.

3.2.1 Problem Description

The function is an additive function comprising of exponential and sine functions.

The function is given by:

f (x) = 1.3356[1.5 (1− x̂1) +

exp (2x̂1 − 1) sin
((

3π (x̂1 − 0.6)2))+

exp (3x̂2 − 1.5) sin
((

4π (x̂1 − 0.9)2))], (3.2)

x1,2 ∈ (−5.0, 5.0) , (3.3a)

x̂1,2 =
x1,2

10
+ 0.5, (3.3b)
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where x1,2 are the input variable and f (x) is the surface. Fig: 3.4 presents a discrete

representation of the surface using 1000 discrete meshes in the input parameters.

Figure 3.4: Asymmetric 2D problem surface (1000 mesh size).

3.2.2 Results-Maxima

The global maxima is determined using the optimizer, and a discrete search is

done using a mesh of size 4000. The optimizer and discrete solutions are compared

to an analytical solution by computing the relative error. Table: 3.4 presents the

parameters used in the GA optimization search. THE GA solution and convergence

is presented in Fig: 3.5
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Solution Type x1 x2 f(x) f(x) rel error
Our method 5.0 9.0657E − 01 5.2589 5.5145E − 11
Discrete 5.0 9.0648E − 01 5.2589 4.6588E − 10
Analytic 5.0 9.0655E − 01 5.2589

Table 3.3: Solution for the maxima of a-symmetric 2d test problem

Parameter Values
GA Number of chromosomes 200

Number of generations 10
η 0.05
νmut 0.5
ck 0.25

Table 3.4: Asymmetric 2d test problem optimization parameters

3.2.2.1 Discussion

The GA search with 10 generation and 200 chromosomes in each generation,

amounting to 2000 execution of the function has performed better that the brute-

force search of 4000 discrete operations. The tuning parameters applied to the Ack-

ley’s problem has been used in this exercise.

3.2.3 Results-Minima

The global minima is determined using the optimizer. The solution is compared

to a discrete solution obtained using a mesh size of 4000. Table: 3.6 presents the

Solution Type x1 x2 f(x)
Our method 1.55338 −1.99490 2.30473E − 02
Discrete 1.55414 −1.99424 2.30476E − 02

Table 3.5: Solution for the global minima of a-symmetric 2d test problem
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Figure 3.5: Top: convergence of x, bottom: convergence of f(x)

parameters used in the GA optimization search. THE GA solution and convergence

Parameter Values
GA Number of chromosomes 200

Number of generations 10
η 0.05
νmut 0.5
ck 0.25

Table 3.6: Asymmetric 2d test problem (minima) optimization parameters

is presented in Fig: 3.6
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Figure 3.6: Top: convergence of x, bottom: convergence of f(x)

3.2.3.1 Discussion

The GA search with 10 generation and 200 chromosomes in each generation,

amounting to 2000 execution of the function has performed better that the brute-

force search of 4000 discrete operations. The tuning parameters applied to the Ack-

ley’s problem has been used in this exercise.

The objective of this exercise is to determine the global maxima and miniima in

the presence of several local peaks. The method has been very effective in searching

for the global maxima and minima at a significant speed.

61



3.3 Gas Cooled Fast Breeder Reactor Optimization

In this section, a detailed description of the reactor design including the neu-

tronics and thermal-hydraulics aspects is presented. The Gas Cooled Fast Breeder

Reactor (GCFBR) is a Helium cooled, fast breeder reactor. The fuel for this reactor

is comprised of thorium, and the blanket is made of used LWR fuel. The objective

of this problem is to determine an optimum set of values that would allow the core

design to obtain criticality and minimize the peaking factors, with an acceptable

pressure drop and coolant temperature in the core. The constraints are defined such

that the reactor remains critical, and the pressure drop and the peaking factors are

within limits. The first step described below is to develop a reactor model with

thermo-fluid analysis and an energy transfer module to simulate a complex system.

Then, the proposed method is implemented for the optimization problem for the

system. This section concludes with a description and analysis of the results.

3.3.1 System Definition

The following physics based modules have been determined to perform the anal-

ysis required for the research. The first module, employed is the fuel pin cell module

that determines the infinite neutron multiplication factor, KINF (KINF) based on

the radius (RADIUS), as well as the isotopic enrichment (ENRICH) of the fuel el-

ement. Therefore, the input parameters defined in this module are RADIUS, and

ENRICH, and the output parameter is the KINF. Included in this module, is the

design of the whole core of the reactor. The output parameters in this module are

the radial peaking factor (RADPF), and neutron multiplication factor, KEFF. This

module has the same input parameters as defined in the first module. The second

module, is a basic thermal-hydraulics and heat transfer module, where a hot channel

analysis is performed to analyze the heat transfer across the fuel pin cell i.e. the flow
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of heat from the fuel pin to the coolant. The input parameters includes the: coolant

temperature at the core inlet (TIN), the coolant mass flow rate (W) to determine

the core outlet temperature, Tout (TOUT), the maximum fuel temperature (TMAX),

and the pressure drop (DELTAP) across the flow channel. In this module the in-

put parameters are, TIN, W, and ENRICH, and the output parameters are TOUT

and DELTAP. The third module is the energy transfer module; it performs a basic

Brayton’s cycle calculation to determine EFF. The input parameters defined in this

module are TOUT and TIN, and the out parameter is EFF. A detailed description

of all of the parameters are presented in [39].

3.3.1.1 Reactor Design

This section presents a description of the fuel pin cell, fuel, blanket assembly and

full core. The fuel pin cell, assembly, and the whole core are presented in Fig: 3.7, Fig:

3.8, and Fig: 3.9 respectively. A single fuel pin cell analysis with specular reflective

Figure 3.7: Single fuel pin cell with specular reflective boundary conditions.
Reprinted with permission from [39].

conditions for all external boundaries is conducted to determine the behavior of the
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Figure 3.8: GCFBR Assembly. Reprinted with permission from [39].

Figure 3.9: Axial and radial view of the whole core.

parameters: infinite neutron multiplication factor of the fuel pin cell configuration,

k∞. To obtain a controlled nuclear fission chain reaction with breeding capability

the following objectives need to be met: higher value for k∞ > 1. The parameters

analyzed in the fuel pin cell module are, the radius of the fuel pin in the fuel element

(rf ), and the enrichment of U-233 in Th-U fuel ([39]). It is to be noted that, k∞ > 1

depends on the p
D

ratio. In this case a constant value for the pitch is used, hence,

the diameter varies due to varying p
D

ratio. Fig: 3.7 shows a graphical view of the
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single fuel pin cell used for the analysis.

For the whole core analysis, the configuration of the core of an existing gas cooled

fast breeder reactor design [39] is used. However, for simplicity, the control rods,

and the axial blankets have been ignored in the design. A detailed description of

other components are presented in the paper [39]. The core consists of an array of

hexagonal assemblies wherein, an assembly consists of an array of fuel elements in

a hexagonal lattice. The assemblies with the fuel elements having fissile material

are called as the “fuel” assemblies, and those with fertile material are called as the

“blanket” assemblies. The fuel assemblies have fuel elements having a mixture of Th-

232 and U-233. The blanket assemblies have light water reactor used fuel. The core

consists of internal and external blanket assemblies. The parameters analyzed in this

module are: effective neutron multiplication factor, keff , radial power peaking factor

of the core, FPF,rad, and axial power peaking factor of the core FPF,ax. The total mass

of the fuel (fissile+fertile) material is kept constant. Therefore, when the radius of

the fuel element is varied, the height of the core (LFC) is affected, and due to having

a constant density, the total mass of the fuel remains constant. For a safe operation

in terms of preventing meltdown of the fuel rod, peaking factors play an important

role. The peaking factor is the ratio between maximum local energy depositions to

the average energy deposition in the reactor core. It is assumed that the external

blanket is not part of the reactor core while calculating the radial peaking factors. In

the whole core analysis a constant value for the, power, and positioning of blankets

is assumed. Fig: 3.9 presents a radial and an axial view of the whole core. The flux

spectrum is given by Fig: 3.10, Following table presents a summary of the design

characteristics of the reactor model,
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Figure 3.10: Energy spectrum in GCFBR. Reprinted with permission from [39].

Parameter Value Units
Number of pins per blanket assembly 61
Number of pins per fuel assembly 217
Reactor power 445 MWth

Mass of initial content of fissile material 2008 kg
Height of core 2.3 m
Outer radius of core 2.6 m

Table 3.7: GCFBR design summary.

3.3.1.2 Thermal Hydraulics

A standard analysis of the transfer of heat across the fuel gap, cladding and bulk

coolant is performed for the core. Since the primary focus is the implementation of

GA in the multiple module domain coupled with the regression analysis, a rigorous

thermal hydraulics and energy transfer analysis has not been performed. For com-

pleteness, a simplified model is implemented. In a single phase coolant heat transfer
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domain, the pressure drop across the length of the active core is the sum of the

pressure drop due to friction, form, and elevation is given by,

∆P = ∆Pfriction + ∆Pform + ∆Pelevation. (3.4)

For simplicity we assume that the total pressure drop is only due to friction, hence,

∆Pform = 0, and ∆Pelevation = 0. Therefore, the primary loop pressure drop (∆P )

is given by a simplified equation,

∆P =

(
ρFC · V 2

FC

2

)
·
[
fDarcy−Weisbac ·

LFC
DFC

]
, (3.5)

where

VFC =
W

NFC · ρFC · AFC
, (3.6)

where ρFC is the density of the coolant, VFC is the velocity of the coolant, fDarcy−Weisbac

is the Darcy-Weisbach constant can be estimated as 0.016, DFC is the diameter of

the fuel element, NFC is the number of fuel elements, and AFC is the flow area of

the coolant. The temperature of the coolant at core outlet (Tout) is given by,

Tout = Tin +
Q

W · Cp
, (3.7)

where Q is the total thermal power of the reactor core, and Cp is the specific heat

capacity of the coolant. The pumping power of coolant (Ppump) is given by,

Ppump =
∆P · AFC · VFC

ηpump
, (3.8)

where ηpump is the pump efficiency. For a safe operation, and to ensure fuel material

structural integrity, it is important to compute the maximum radial, and axial fuel
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temperature. There is a temperature variation radially on the fuel element due to the

presence of heterogeneous components: fuel, gap, and clad. The governing equations

are,

∆Tb =
q′peak

2 · π · LFC · (rF + tG + tC)
, (3.9a)

∆TC =
q′peak

2 · πkC
· ln
(
rF + tG + tC
rF + tG

)
, (3.9b)

∆TG =
q′peak

2 · πkG
· ln
(
rF + tG
rF

)
, (3.9c)

∆TF =
q′peak

2 · πkF
, (3.9d)

where ∆TF is the temperature drop across the fuel, ∆TG is the temperature drop

across the gap, ∆TC is the temperature drop across the cladding, ∆Tb is the tem-

perature drop across the bulk coolant, q′peak is the peak linear heat generation rate

i.e. linear heat generation rate multiplied by the radial and axial peaking factors, kC

is the thermal conductivity coefficient of the cladding, kG is the thermal conductiv-

ity coefficient of the gap, and kF is the thermal conductivity coefficient of the fuel.

The objectives are to maintain a peak fuel temperature and ∆P within structural

integrity limits. The parameters to optimize are Tin, and W .

3.3.1.3 Energy Conversion

A Brayton cycle is used to analyze energy conversion of Helium. Efficiency of

energy conversion from heat to electricity is important from the economics point of

view. A higher efficiency is desired. For simplicity, a simple variant of the Brayton

cycle with no regeneration, and reheating is implemented. The optimum pressure

ratio (rp,opt) is given by,

rp,opt =

(
T3

T1

) γ
γ−1

, (3.10)
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where T1 is the temperature of coolant at core inlet, T3 is the temperature of coolant

at core outlet, and γ is the heat capacity ratio. The amount of work done by the

turbine per unit mass flow rate of the coolant (ẆT ) is given by,

ẆT = ηT · Cp · T3 ·

[
1− 1

rp
γ−1
γ

]
, (3.11)

where ηT is the turbine efficiency, and Cp is the specific heat capacity of the coolant.

The amount of work done by the compressor per unit mass flow rate of the coolant

(ẆCP ) is given by,

ẆCP =
Cp · T1

ηCP

[
rp

γ−1
γ − 1

]
, (3.12)

where ηCP is the compressor efficiency. Therefore, the maximum amount of work

done (Ẇmax) is given by,

Ẇmax = Cp · T1

[
T3

T1

− rp
γ−1
γ

]
. (3.13)

Thermal efficiency (ηeff ) is given by,

ηeff =
ẆT − ẆCP

Ẇmax

. (3.14)

The model of a gas cooled fast breeder reactor (GCFBR) design [39] is used to

evaluate the IHGOM. The objective is to optimize a set of parameters in the GCFBR

design. The illustrative reactor power system model consists of the following physics

based components: heterogeneous neutronics model for criticality, flux, and depletion

calculations, basic thermal hydraulics model for heat transfer calculations, and a

simple balance-of-plant model for Brayton’s cycle calculations. The input parameters

given by X̂ in (1.38) is a vector of the following design parameters: radius of the
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fuel element, rF (RADIUS), enrichment of U-233 in (U − Th)O2 fuel (ENRICH),

temperature of the coolant at core inlet, Tin (TIN), and flow rate of the coolant, W

(W). The global objective function F
(
X̂
)

is a combination of individual objective

functions, fo

(
X̂
)

that maximizes or minimizes a set of QOIs.

3.3.2 Optimization Problem

This section, presents the design parameters, objectives and constraints used in

the optimization problem. Table: 3.8 presents the list of the individual objective

functions fo (X) and the corresponding QOIs. In this problem, the number of ob-

jectives (O) is six. The objectives are determined such that the reactor stays critical

and maintains: a flat power profile, a higher pressure drop in limits, and a high

thermal efficiency. There are some of the input samples tracked and discarded due

Label QOI Objective Units
f1 (X) k∞ Maximize k∞
f2 (X) keff keff in limits
f3 (X) FPF,rad Minimize FPF,rad

f4 (X) Tout Tout in limits ◦C
f5 (X) ∆P ∆P in limits Pa
f6 (X) ηeff Maximize ηeff

Table 3.8: Optimization objective functions.

to the nature of the behavior of the physics model e.g. an input sample that makes

the reactor sub-critical is discarded from the GA search. A standard approach is

to penalize the fitness function, when the search encounters these samples. This

is done using constraint functions. Table: 3.9 presents the constraints used in the

optimization execution. The penalty is imposed by setting the fitness value to be

zero. Table: 3.10 presents the list of the design parameters used in the optimization
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Parameter Range Units
F (X) = 0 k∞ < 1.0
F (X) = 0 keff < 1.0
F (X) = 0 Tout > 600.0 ◦C
F (X) = 0 ∆P > 100.0 Pa

Table 3.9: Constraints in GCFBR optimization

process,

Parameter Range Units
rF 0.2→ 0.33 cm
En 14→ 20 wt %
Tin 50→ 200 ◦C

W 20→ 100 kgs
sec

Table 3.10: Input value ranges for the design parameters.

3.3.3 Epsilon Constraint Steps

The ε constraint steps consists of several single-obejctive optimization sequences

with varied constraints. The steps for the GCFBR problem based on the objectives

3.8 are:

1. Maximize k∞ by determining the local maximum at several ε intervals of other

objectives (f2...f6) used as constraints. The maximum value for k∞ is called

as k∞,max.

2. With k∞ = k∞,max, maximize keff upto a limit by determining the local maxi-

mum at several ε intervals of other objectives (f3...f6) used as constraints. The

maximum value for keff is called as keff,max.
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3. With k∞ = k∞,max, keff = keff,max, minimize FPF,rad by determining the lo-

cal minimum at several ε intervals of other objectives (f4, f5, f6) used as con-

straints. The minimum value for FPF,rad is called as FPF,rad,min.

4. With k∞ = k∞,max, keff = keff,max, FPF,rad = FPF,rad,min, maximize Tout upto a

limit by determining the local maximum at several ε intervals of other objectives

(f5, f6) used as constraints. The maximum value for Tout is called as Tout,max.

5. With k∞ = k∞,max, keff = keff,max, FPF,rad = FPF,rad,min and Tout = Tout,max,

maximize ∆P upto a limit by determining the local maximum at several ε

intervals of f6 used as constraints. The maximum value for ∆P is called as

∆Pmax.

6. With k∞ = k∞,max, keff = keff,max, FPF,rad = FPF,rad,min,Tout = Tout,max and

∆P = ∆Pmax, maximize ηeff .

3.3.4 Iterative Method Parameters

Table: 3.11 presents the values used in the HYBGASA implementation and ex-

ecution. The parameters include the kernel functions, tuning parameters in GA, ε

constraint parameters and GPM hyper parameters. The constraint limits for the

QOIs in the objective functions for the ε constraint method is presented in Table:

3.12.
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Parameter Values
GA Number of chromosomes 200

η 0.05
νmut 0.5
ck 0.25
τIF 1.0E-04
τrelDiff 1.0E-02
τNBest 10

ε constraint intervals 11

Outer
Ninitial 80
Nre−train 40
retrain space 0.5
convergence threshold 1.0E-06

Table 3.11: Optimization parameters

Parameter Range Units
k∞ 1.0− 1.5
keff 1.006− 1.014
FPF,rad 1.0− 2.0
Tmax 400.0− 600.0 ◦C
∆P 60.0− 100.0 Pa
ηeff 40.0− 60.0 %

Table 3.12: Constraint limits in the ε constraint implementation

3.3.5 Results

3.3.5.1 Parameter Search and Sensitivity Studies

The first step involves an extensive search for the values of the parameters used

in the regression model and the ε-constraint method. Search studies have been done

to determine the following parameters/functions,

1. Kernel function for GPM

2. GPM hyper-parameters
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3. ε intervals

3.3.5.2 GPM Kernel Function and Hyper Parameter Search

A grid based search is performed to determine the kernel function and the hyper

parameter that performs the best prediction for a QOI in every outer iteration.

The grid search is given in Table: 3.13, Based on the combinations of the above

Kernel Function θd grid
Absolute exponential 0.05-1.0 (Intervals-0.05)
Squared exponential 0.05-1.0 (Intervals-0.05)
Cubic 0.05-1.0 (Intervals-0.05)
Linear 0.05-1.0 (Intervals-0.05)

Table 3.13: Kernel function and hyper-parameter search grid

grid a search is performed and the results of the search at the end of the first outer

iteration is given in Fig: 3.11, The first 20 points on the x-axis represent the “absolute

exponential”, the second 20 points represent the “squared exponential”, the third 20

represent “cubic” and the last 20 represent the “linear” kernel function. For each

function, a set of twenty values for θd is analyzed, and the MPE for each of these are

shown on the y-axis. θd ranges from 0.05 to 1.0 with an interval of 0.05. The colored

lines represent a the QOIs. It is evident that different QOIs have their own choice of

the kernel function that gives the best predictions. It is assumed that the MPE in the

predictions from the GPMEM built using a function and θd is directly proportional

to the quality of the predictions i.e. a function-θd pair that prouces the least MPE

is the best prediction model. For QOI-1, “squared exponential” kernel performs the

best as compared to other kernel functions, while for QOI-3, “cubic” has the best

predictions. The next step is to determine the exact value of θd that gives the best
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Figure 3.11: Test prediction error versus kernel function and hyper parameter for
the QOIs at the beginning of the first outer iteration

predictions for a QOI. The choice of θd along with the best kernel function for each

QOI in outer iteration-1 is given in Fig: 3.12 and Table: 3.14. Each of the sub-plots

Outer Iteration QOI Kernel Function θd
1 1 Squared exponential 0.8

2 Squared exponential 0.8
3 Cubic 0.6
4 Squared exponential 0.15
5 Cubic 0.5
6 Squared exponential 0.65

Table 3.14: Kernel function and hyper-parameter results

in Fig: 3.12 represents the best performing kernel function for each of the QOIs.
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The color of the subplots are consistent with the color of that specific QOI in Fig:

3.11. It is to be noted that the kernel functions and the hyper parameter depends on

the training data, and therefore the choice is made at the beginning of every outer

iteration. From the analysis of the outer iterations it is observed that the choice of

Figure 3.12: Kernel function and hyper parameter versus test prediction error for a
set of QOIs at the beginning of first outer iteration. The θd plots correspond to the
best performing kernel function for each of the QOIs.

the kernel function that gives the best prediction for a specific QOI does not depend

on the outer iteration, however, the choice of θd depends on the outer iterations.
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This can be inferred from the fact that the regression surface is significantly affected

because of re-training the model. The results for other outer iterations are shown in

the Appendix.

3.3.5.3 The ε Intervals

A sensitivity study is performed by changing the number of ε intervals and inves-

tigating the change in the fitness values. The sensitivity study is performed during

the beginning of every outer iteration when the training sample size is updated. A

threshold value of 1.0E−04 is used to determine the number of intervals i.e. the num-

ber of intervals corresponding to a relative change in the fitness value of ≤ threshold

is the final number of intervals in that outer iteration. From Fig: 3.13 the number

Figure 3.13: Fitness value vs ε intervals for the first outer iteration

of intervals is chosen as 5. It is not known whether the defined system has a convex

objective space or not, therefore the ε sensitivity study helps to investigate if there

is concavity in the space. A convergence of the fitness value to a saturated point
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with the change in ε intervals indicate that the concavities have been taken care of

in the intervals. Figures 3.14 and 3.14 show the convergence to a solution along the

Figure 3.14: Convergence to solution for the epsilon intervals, Objective:1

epsilon intervals.
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Figure 3.15: Convergence to solution for the epsilon intervals, Objective:4

3.3.5.4 Genetic Algorithms

The convergence of the design parameters during outer iteration:9 (last iteration)

for the first objective is shown in Fig: 3.16. The best solution out of all the chro-
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mosomes in a particular generation is saved and its search direction across several

generations is presented. It is difficult to present all the objectives and their con-

vergence based on the generations for all the epsilon intervals, therefore the problem

is run with a single epsilon interval and the convergence criteria is presented. Figs:

Figure 3.16: Values for the design parameters versus generations in outer iteration:9
for Objective:1

3.17 - 3.22 shows the convergence of each of the QOIs during the outer iteration:9

with a single epsilon interval. The stopping criteria and the search towards

80



Figure 3.17: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:1

GA convergence in the last outer iteration is presented. Fig: 3.23 shows the conver-

gence of the mean and the best solution of all the chromosomes in each generation

is presented. Upon convergence of GA, the solution of all the chromosomes move
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Figure 3.18: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:2

82



Figure 3.19: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:3
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Figure 3.20: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:4

84



Figure 3.21: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:5
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Figure 3.22: Convergence of GA for the QOIs in the last outer iteration with one
epsilon interval for Objective:6
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towards the optimal solution, and therefore the mean approaches a saturated value.

One of the stopping criteria is to track the generations when the relative difference

goes below 0.01. The improvement in fitness and the convergence of the best fitness

Figure 3.23: Stopping criteria (relative difference between mean and best fitness)
and convergence of GA for first outer iteration

is considered as a stopping criteria along with the relative difference criteria. Fig:

3.24 shows the best fitness obtained with generation and the improvement in fitness.

There is not significant relationship between an outer iteration and the number of

GA generation in that outer iteration.
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Figure 3.24: Stopping criteria (best fitness and improvement in fitness) and conver-
gence of GA for Outer iteration : 1

3.3.5.5 Outer Iterations

The IHGOM method converged after nine iterations. With an initial sample set

of 80, and re-sampling with 40 samples, nine outer iterations involved an execution

of a total of 400 samples. Table: 3.15 shows the Pareto optimal values for the

design parameters at the end of the convergence of the outer iterations. Table: 3.16

shows the converged values for the QOIs after the end of all the outer iterations.

This table contains the actual values and the relative error in predictions obtained

from the execution of the actual system. Fig: 3.25 shows the relative error between
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Parameter Values
R 2.01957E − 01
En 1.6121E + 01
Tin 1.6482E + 02
W 5.7486E + 01

Table 3.15: A Pareto optimal solution after the convergence of the outer iterations

Parameter QOI Predictions QOI Actual val-
ues

εpredErr

QOI − 1 1.436321339 1.436371535 3.4946E − 05
QOI − 2 1.013832 1.013966188 1.3223E − 04
QOI − 3 1.227564 1.226349769 9.9017E − 04
QOI − 4 596.8746976 596.5838688 4.8760E − 04
QOI − 5 97.68926 97.71031716 2.1551E − 04
QOI − 6 59.2959929 59.86035672 3.8018E − 04

Table 3.16: A Pareto optimal solution - QOIs after the convergence of the outer
iterations

the predicted value and the actual value of the Pareto optimal solution obtained

after the convergence of the outer iterations is also shown. The outer iterations

are converged after the MPE error becomes less than 1.0E − 05. This does not

mean that the relative error between predicted and actual value is also less than

1.0E − 05. However, the MPE error and εrelDiff follow the outer iteration together.

Fig: 3.26 shows the comparison between the iterative search method and the brute

force search for an optimum solution. In the brute force search, the design space is

sampled normally using the LHS method. A weighted approach with all the QOIs

having equal weights are used to calculate the fitness and compare with the solution

obtained from the iterative method. In the figure, the horizontal red line is the fitness

of the solution obtained from the iterative method, and the blue bars represent fitness

from the solutions obtained using brute force search. It is evident that the iterative
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Figure 3.25: Relative error in the QOIs between predicted values versus actual values

convergence had a total of 400 executions of the simulation and the results are better

than 3200 brute force executions. This is the speed generated due to the proposed

method. Table: 3.17 and Fig: 3.27 show the convergence of the outer iteration for

Figure 3.26: Comparison between iterative method and brute force search
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QOI-1. The table and the figure compare the test MPE reduction between local re-

sampling and global re-sampling. This shows that local re-sampling is more effective

as compared to global re-sampling in re-training the GPM for predictions. Fig: 3.28

Outer iteration Local re-
sampling

Global re-
sampling

1 1.0000E + 00 1.0000E + 00
2 1.1554E − 01 4.3159E − 01
3 3.3667E − 03 1.8507E − 01
4 1.7903E − 03 1.2234E − 01
5 1.3037E − 03 9.3376E − 02
6 1.9215E − 04 7.2860E − 02
7 1.2937E − 04 6.3565E − 02
8 4.4935E − 06 2.0145E − 02
9 1.4935E − 07 5.3951E − 02

Table 3.17: Test predictions error in local re-sampling and global re-sampling versus
outer iteration for QOI-1

shows the re-sampling space of the design parameters versus outer iteration. With

the outer iteration, the difference between the lower and the upper bounds for all

the design parameters decreases.

3.3.5.6 Discussion

The novelty of the method is described in the following discussion,

3.3.5.6.1 Speed: A Pareto optimal solution is obtained in 400 executions of the

system as compared to 3200 brute force executions. This shows that the developed

method would reach to a Pareto optimal solution with a significantly lower number

of executions of the system. The comparison between local re-sampling and global

re-sampling (Fig: 3.27) shows that our method which used local re-sampling reduces
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Figure 3.27: Test predictions error in local re-sampling and global re-sampling versus
outer iteration for QOI-1

the MPE at a significant speed as compared to the traditional global re-sampling

process.

3.3.5.6.2 Accuracy: The accuracy of the method is demonstrated based on the

accuracy of the predictions at the end of the outer iterations. The accuracy is

measured in terms of the prediction error i.e. how far the predictions for the QOIs

are from the values obtained from the experiment/simulation. This is shown in

Table: 3.16 and Fig: 3.25.

3.3.5.6.3 Search Efficiency: The optimization capability of the developed method

is shown by comparing the solution obtained for the QOIs (Table: 3.16) and the

optimization objectives and the constraints, Table: 3.8 and Table: 3.9. Comparing

to the objectives and the constraints of the problem,

• As desired based on the objective functions, a higher value for k∞ of 1.436321339

is obtained.
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Figure 3.28: The design parameter bounds versus outer iteration

• A value for keff calculated by the system is 1.017031837 which is closer to 1.01

is obtained.

• A considerably acceptable value for the radial peaking factor, 1.251211832 is

obtained.

• The objectives and the constraints desired the value for Tout to be maximum

and close to 600, and the value for Tout obtained by the developed method is

592.5046976.

• The objectives and the constraints desired the value for ∆P to be maximum

and close to 100, and the value for ∆P obtained by the developed method is

94.6638719.
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• A desired maximum value of 56.82436929 is obtained for the thermal efficiency.

The objectives related to the criticality, radial peaking factor, temperature of coolant

at the core outlet, pressure drop across the core, and the thermal efficiency have

been met subject to the defined constraints and the limits of the design parameters.

The optimal solution for the problem is not known, therefore it is not possible to

say that the optimal solution has been determined. However, a qualitative approach

towards the optimality of the solution show that a good solution based on the defined

objectives and the constraints are obtained. The search efficiency has been measured

in terms of how efficient is the obtained optimal solution based on the objectives

and the constraints. in the above comparison, a discussion on the proximity of the

solution QOIs to the objectives is presented.
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3.4 Pressurized Water Reactor Neutronics Optimization

This section presents the design specification, design parameters, objectives, and

constraints in the optimization of the neutronics aspects of a pressurized water re-

actor model (PWR). The model is similar to the AP1000 reactor model developed

by Westinghouse [60]. The design is developed from the specifications submitted to

the Nuclear Regulatory Commission. Henceforth the reactor will be referred to as

the Modified AP1000 model (MAP1000). For simplicity, the reactor model does not

have control rods. The objective is to determine the optimum values for the fuel

enrichment, and power in order to obtain a sustainable and safe design for the core.

Sustainability is measured in terms of the burn up, and safety is measured in terms

of the peaking factor and the criticality at the beginning of core life. The tasks are

to start with the base model presented in literature, and search for a better Pareto

optimal solution based on the priority of the objectives. Following the optimization

search, a couple of solutions have been identified that have a better set of parameters

compared to the base model. It is to be noted that a rigorous optimization search

can be performed by tuning the optimization parameters and designing the objec-

tives and constraints in a more realistic manner. This rigorous search is beyond the

scope of this dissertation, however the examples presented here are an illustration

that the developed optimization method has the capability to search for a better

solution provided the objectives and the constraints are realistically defined.

3.4.1 System Definition

The definition of the system for the base model is presented in this section.
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3.4.1.1 Reactor Design

MAP1000 is a pressurized water reactor fueled with UO2 pellets, moderated and

cooled with light water. The UO2 pellets are enriched with U235. Most of the fission

interactions in this reactor are initiated by the neutrons having an energy in the

thermal range. The following table presents a summary of the design characteristics

of the reactor model.

Parameter Value Units
Number of fuel pins per assembly 152, 176, 192, 220, 236, 264
Number of assemblies 157
Reactor power (nominal) 3400 MWth

Burn up 23.01 MWd
kg

Height of core 42.6 m
Outer radius of core 2.6 m
Enrichment of F1 2.35 atmpct
Enrichment of F2 3.4 atmpct
Enrichment of F3 4.45 atmpct
Density of moderator 0.72 gm

cm3

Density of integral BA 5.42 gm
cm3

Density of discrete BA 7.94 gm
cm3

Table 3.18: MAP1000 design summary.

3.4.1.2 Pincell

At the pincell level, the reactor consists of fuel and water hole pincells. The fuel

pincell is composed of UO2 fuel surrounded by clad. There is a helium gap separating

the fuel and the clad. rf is the radius of the fuel, tg is the thickness of the gap, and

tc is the thickness of the clad. Some of the fuel rods have an integrated burnable

absorber material based coating (INTBA). There are a set of burnable absorber
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pins with discrete burnable poison material with SS304. These are called the discrete

burnable absorbers (DISCBA). The fuel pincell is shown in Fig: 3.29.

Figure 3.29: MAP1000 fuel pin cell.

The water hole pincell consisted of a water hole surrounded by clad. The water

hole is shown in Figs.3.30,3.31. Based on the existing AP1000 model, three types

Figure 3.30: MAP1000 water hole pin cell.
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Figure 3.31: MAP1000 fuel and water hole pincell.

of fuel based on the isotopic enrichment of U235 have been used in the core. The

fuel types have been defined as F1, F2, and F3.

3.4.1.3 Assembly

The PWR assembly consists of a 17× 17 lattice of fuel and water hole pin cells.

A fuel assembly is presented in Fig: 3.32. The fuel assemblies at the center are

surrounded by water assemblies. Water assemblies are similar to fuel assemblies in

terms of the assembly dimension and contain only water. Water assemblies serve as

a reflector as well as a moderator.

3.4.1.4 Whole Core

The full core is a square lattice comprised of fuel and water assemblies. The

reactor model is designed to generate a power P . The radial view of the full core is

shown in Fig: 3.33, and the axial view is presented in Fig: 3.34. The burnp versus

criticality plot for the base model is shown in Fig: 3.35.
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Figure 3.32: MAP1000 fuel assembly.

3.4.2 Optimization Problem Definition

3.4.2.1 Input Design Parameters

A sensitivity study is performed to determine the set of design parameters for the

optimization of the core. Based on the sensitivity study, a number of factors have

been identified as the input design parameters for the core optimization problem.

These parameters are listed in Table: 3.19.

3.4.2.2 Quantities of Interest

For a depletion calculation with B burn steps and a burn step of b (0 ≥ b ≤ B ),

the QOI for the figure of merit (FOM) are defined as follows,

99



Figure 3.33: MAP1000 full core radial view.

• Criticality at the beginning of life (BOL KEff): keff,BOL = keff,0

• Radial peaking factor at the beginning of life : FPF,rad,BOL

• Burn-up of the reactor model : BU

3.4.2.3 Objectives and Constraint Functions

The following is a list of the objective functions:

1. Minimize peaking factors (radial): The radial peaking factor at the beginning
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Figure 3.34: MAP1000 full core axial view.

of life is calculated and the objective is to minimize it. The objective function

can be defined as:

f1 (X) = minimizeFPF,rad,BOL. (3.15)

2. Criticality at beginning of life should be close to 1.01: The objective is to have

the criticality at the beginning of life of the reactor core close to 1.01:

f2 (X) = keff,BOL ≈ 1.01 (3.16)
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Figure 3.35: BU vs Criticality - MAP1000 base model.

Label Description Range Units
U235F1 Isotopic enrichment of F1 2.15− 2.55 atom pct
U235F2 Isotopic enrichment of F2 3.4− 3.6 atom pct
U235F3 Isotopic enrichment of F3 4.25− 4.65 atom pct
P Reactor power 3000− 3800 MW

Table 3.19: Optimization design parameters.

3. Maximize burn up: The objective is to maximize the burn up:

f5 (X) = maximizeBU. (3.17)

Label QOI Objective Units
f1 (X) keff,BOL keff,BOL = 1.01
f2 (X) FPF,rad Minimize FPF,rad

f3 (X) BU Maximize burn-up

Table 3.20: Optimization objective functions.
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Parameter Range
F (X) = 0 keff,BOL < 1.0
F (X) = 0 FPF,rad,b > 2.5
F (X) = 0 BU = 0

Table 3.21: Constraints in PWR optimization

In the ε-constraint method, the order of the implementation of the above said objec-

tives determines the importance of that objective with respect to other objectives.

E.g. if the order of implementation is f1 (X) , f1 (X) , f3 (X), then the importance

is ordered as f2 (X) > f1 (X) > f3 (X). This importance affects the Pareto optimal

solution. In this work, the order of implementation of the objectives is changed and

two Pareto optimal solutions are obtained. Table: 3.21 presents the constraints used

in the optimization execution. The penalty is imposed by setting the fitness value

to be zero.

3.4.3 Iterative Method Parameters

Table: 3.22 presents the values used in the HYBGASA implementation and ex-

ecution. The parameters include the kernel functions, tuning parameters in GA, ε

constraint parameters and GPM hyper parameters.

The ε constraint method is implemented by using the following constraint limits

for the QOIs in the objective functions:

3.4.4 Results

3.4.4.1 Pareto Optimal Solutions and Comparison

Table: 3.24 summarizes the comparison between the base solution and a couple

of Pareto optimal solutions. Solution-1 is obtained by performing optimization with

the order FPF,rad,kEff,BOL,BU . Solution-2 is obtained by performing optimization
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Parameter Values
GA Number of chromosomes 200

η 0.05
νmut 0.5
ck 0.25
τIF 1.0E-04
τrelDiff 1.0E-02
τNBest 10

ε constraint intervals 11

Outer
Ninitial 80
Nre−train 40
retrain space 0.5
convergence threshold 1.0E-06

Table 3.22: Iterative method parameters

Parameter Range
FPF,rad 1.0− 2.5
keff,BOL 1.006− 1.012
BU 18.0− 30.0

Table 3.23: Constraint limits in the ε constraint implementation

with the order BU ,FPF,rad,kEff,BOL.

Parameter Base Design Solution-1 Solution-2 Units
EnF1 2.35 2.38 2.52 atmpct
EnF2 3.4 3.51 3.59 atmpct
EnF3 4.45 4.48 4.60 atmpct
P 3400 3138.02 3402.38 MW
kEff 1.157 1.150 1.161
FPF,rad 1.982 1.829 2.035

BU 23.01 22.65 23.39 MWd
kg

Table 3.24: Comparison of obtained solutions vs base solution.
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3.4.4.1.1 Solution-1: The solution has a better peaking factor, and initial critical-

ity as compared to the base solution, but there is a reduction in the burn-up. In

terms of the order of the execution of the objective function, the burnup has the least

priority. The obtained solution has the enrichments very close to the base model but

at a lower power level. This reduction in power can be reflected from a reduction in

burnup. The optimization search follows the physics of the behavior of neutrons.

3.4.4.1.2 Solution-2: The solution has a better burnup but compromised on the

initial criticality and the peaking factor. In terms of the order of the execution

of the objective function, the initial criticality had the least priority. Due to the

peaking factor having a higher priority as compared to the criticality, the peaking

factors between the solution and the base solution are pretty close to each other.

There were a couple of other solutions with a higher burnup but those were rejected

because of their proximity to criticality and the peaking factor. It can be observed

that the enrichments are very close to the upper bound of the design parameters,

this means that the criticality and the peaking factors get affected from a physics

point of view.

3.4.4.2 Sensitivity Studies and Parameter Search

The first step involves an extensive search for the values of the parameters used

in the regression model and the ε-constraint method. Search studies have been done

to determine the following parameters/functions:

1. Kernel function for GPM

2. GPM hyper-parameters

3. ε intervals
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3.4.4.3 GPM Kernel Function and Hyper Parameter Search

A grid based search is performed to determine the kernel function and the hyper

parameter that performs the best prediction for a QOI in every outer iteration.

The grid search is given in Table: 3.25: Based on the combinations of the above

Kernel Function θd grid
Absolute exponential 0.05-1.0 (Intervals-0.05)
Squared exponential 0.05-1.0 (Intervals-0.05)
Cubic 0.05-1.0 (Intervals-0.05)
Linear 0.05-1.0 (Intervals-0.05)

Table 3.25: Kernel function and hyper-parameter search grid for the MAP1000 prob-
lem

grid, a search is performed and the results of the search at the end of the first outer

iteration is given in Fig: 3.36: The first 20 points on the x-axis represent the “absolute

exponential”, next 20 points represent the “squared exponential”, the following 20

represent “cubic” and the last 20 represent the “linear” kernel function. For each

function, a set of twenty values for θd is analyzed, and the MPE for each of these are

shown on the y-axis. θd ranges from 0.05 to 1.0 with an interval of 0.05. The colored

lines represent a the QOIs. It is evident that different QOIs have their own choice of

the kernel function that gives the best predictions. It is assumed that the MPE in the

predictions from the GPMEM built using a function and θd is directly proportional

to the quality of the predictions i.e. a function-θd pair that produces the least MPE

is the best prediction model. For QOI-1, “squared exponential” kernel performs the

best as compared to other kernel functions, while for QOI-3, “cubic” has the best

predictions. The next step is to determine the exact value of θd that gives the best
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Figure 3.36: Test prediction error versus kernel function and hyper parameter for
the QOIs at the beginning of the first outer iteration Top: QOI-1,2 Bottom: QOI-3
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predictions for a QOI. The choice of θd along with the best kernel function for four

QOIs in outer iteration-1 is given in Fig: 3.37 and Table: 3.26. Each of the sub-plots

Outer Iteration QOI Kernel Function θd
1 1 Cubic 0.85

2 Linear 0.35
3 Linear 0.5

Table 3.26: Kernel function and hyper-parameter results

in Fig: 3.37 represent the best performing kernel function for each of the QOIs. The

color of the subplots are consistent with the color of that specific QOI in Fig: 3.36.

It should also be noted that the kernel functions and the hyper parameter depends

on the training data, and therefore the choice is made at the beginning of every outer

iteration. From the analysis of other outer iterations it is observed that the choice of

the kernel function that gives the best prediction for a specific QOI does not depend

on the outer iteration. Rather, the choice of θd depends on the outer iterations.

This can be inferred from the fact that the regression surface is significantly affected

because of re-training the model. The results for other outer iterations are shown in

the Appendix.

3.4.4.4 ε Intervals

A sensitivity study is performed by changing the number of ε intervals and inves-

tigating the change in the fitness values. The sensitivity study is performed during

the beginning of every outer iteration when the training sample size is updated. A

threshold value of 1.0E − 06 is used to determine the number of intervals i.e. the

number of intervals corresponding to a relative change in the fitness value that is less

than or equal to the threshold is the final number of intervals in that outer iteration.

108



Figure 3.37: Kernel function and hyper parameter versus test prediction error for a
set of QOIs at the beginning of first outer iteration. The θd plots correspond to the
best performing kernel function for each of the QOIs.

From Fig: 3.38 the number of intervals is chosen as 5. It is not known whether the

Figure 3.38: ε intervals versus fitness - Outer iteration - 1
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defined system has a convex objective space or not, therefore the ε sensitivity study

helps to investigate if there is concavity in the space. A convergence of the fitness

value to a saturated point with the change in ε intervals indicate that the concavities

have been taken care of in the intervals. With the number of intervals at 5, the

iterations for each of the objectives in defined as:

• Objective-1: GA is performed to optimize objective:1 with other objectives

as constraints. There are a total of 25 epsilon intervals in which the single

objectives optimization is performed.

• Objective-2: GA is performed to optimize objective:2 with other objectives

as constraints. There are a total of 5 epsilon intervals in which the single

objectives optimization is performed.

• Objective-3: GA is performed to optimize objective:3.

3.4.4.5 Genetic Algorithms

Figs: 3.39 - 3.40 show the convergence of the first four QOIs during the last

outer with a single epsilon interval. The QOIs are BU , keff,EOL, and FPF . This

is for solution-1 where the priority is the peaking factor. The best solution out of

all the chromosomes in a particular generation is saved and its value across several

generations is presented. The stopping criteria and search direction towards GA

convergence in the last outer iteration is presented. The convergence of the mean and

the best solution of all the chromosomes in each generation is used in the determining

the right time to stop GA. Upon convergence of the GA, the solution of all the

chromosomes move towards the optimal solution, and therefore the mean traverses

towards a saturated value. One of the stopping criteria is to track the generations

when the relative difference goes below 0.01. The improvement in fitness and the
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Figure 3.39: Convergence of GA for three QOIs in the last outer iteration for a single
epsilon interval, Objective:1

direction of the best fitness is considered to be a stopping criteria along with the

relative difference criteria. There is not a significant relationship between an outer

iteration and the number of GA generation in that outer iteration.

3.4.4.6 Outer Iterations

The IHGOM method for Solution:1 converged after 8 iterations. With an initial

sample set of 80, and re-sampling with 40 samples, eight outer iterations involved

an execution of a total of 360 samples. Table: 3.27 shows the Pareto optimal values

for the design parameters at the end of the convergence of the outer iterations for

Solution:1. Table: 3.28 shows the converged values for the QOIs after the end of all
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Figure 3.40: Convergence of GA for three QOIs in the last outer iteration for a single
epsilon interval, Objective:2

Parameter Values
U235F1 3.3807 + 00
U235F2 3.5123E + 00
U235F3 4.4843E + 00
P 3.1380 + 03

Table 3.27: A Pareto optimal solution after the convergence of the outer iterations,
Solution:1

the outer iterations. This table contains the actual values and the relative error in

predictions obtained from the execution of the actual system.

The IHGOM method for Solution:2 converged after 10 iterations. With an initial
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Figure 3.41: Convergence of GA for three QOIs in the last outer iteration for a single
epsilon interval,Objective:3

Parameter QOI Predictions QOI Actual val-
ues

εpredErr

FPF,rad 1.8923E + 00 1.8924E + 00 2.1137E − 05
keff,BOL 1.1511E + 00 1.1503E + 00 7.1285E − 04
BU 2.2637E + 01 2.2654E + 01 5.3819E − 04

Table 3.28: A Pareto optimal solution - QOIs after the convergence of the outer
iterations - Solution:1

sample set of 80, and re-sampling with 40 samples, eight outer iterations involved

an execution of a total of 440 samples. Table: 3.29 shows the Pareto optimal values

for the design parameters at the end of the convergence of the outer iterations for
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Solution:2. Table: 3.30 shows the converged values for the QOIs after the end of all

Parameter Values
U235F1 2.5208 + 00
U235F2 3.5987E + 00
U235F3 4.6024E + 00
P 3.4023 + 03

Table 3.29: A Pareto optimal solution after the convergence of the outer iterations,
Solution:2

the outer iterations. This table contains the actual values and the relative error in

predictions obtained from the execution of the actual system.

Parameter QOI Predictions QOI Actual val-
ues

εpredErr

FPF,rad 2.0358E + 00 2.0366E + 00 4.1261E − 04
keff,BOL 1.1615E + 00 1.1614E + 00 6.0267E − 05
BU 2.3387E + 01 2.3375E + 01 4.9601E − 04

Table 3.30: A Pareto optimal solution - QOIs after the convergence of the outer
iterations - Solution:2

Fig: 3.42 show the convergence of the outer iteration for QOI-1. The table and

the figure compare the test MPE reduction between local re-sampling and global re-

sampling. This shows that local re-sampling is more effective as compared to global

re-sampling in re-training the GPM for predictions. Fig: 3.43 shows the re-sampling

space of the design parameters versus outer iteration. With the outer iteration, the

difference between the lower and the upper bounds for all the design parameters

decreases.

114



Figure 3.42: Test predictions error in local re-sampling and global re-sampling versus
outer iteration for QOI-1

Figure 3.43: The design parameter bounds versus outer iteration

3.4.4.7 Discussion

The novelty of the method is described in the following discussion,

3.4.4.7.1 Speed: The comparison between local re-sampling and global re-sampling

(Fig: 3.42) shows that the method which used local re-sampling reduces the MPE

at a significant speed as compared to the traditional global re-sampling process.
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3.4.4.7.2 Accuracy: The accuracy of the method is demonstrated based on the

accuracy of the predictions at the end of the outer iterations. The accuracy is

measured in terms of the prediction error i.e. how far the predictions for the QOIs

are from the values obtained from the experiment/simulation. This is shown in

Table: 3.28, 3.30.

3.4.4.7.3 Search Efficiency: The optimization capability of the developed method

is shown by comparing the solution obtained for the QOIs (Table: 3.28, 3.30) and the

optimization objectives and the constraints, as presented in Table: 3.20 and Table:

3.21. Comparing the results to the base solution we see that the order of execution

og the objectives affect the Pareto optimal solution. All of the objectives and the

constraints for the problem are satisfied and the values for the design parameters are

within the limits. The discussion follows the same argument presented in the GCFBR

problem. The optimal solution for the problem is not known, and therefore it is not

possible to say that the optimal solution has been determined. However, a qualitative

approach towards the optimality of the solution show that a good solution based on

the defined objectives and the constraints are obtained. The search efficiency has

been measured in terms of how efficient the obtained optimal solution is based on

the objectives and the constraints. In the above comparison, a discussion on the

proximity of the solution QOIs to the objectives is presented. The sustainability

objective is met by the determination of a higher value for the burn-up. The safety

objectives are met by the determination of a lower value for the peaking factors.
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4. CONCLUSIONS AND PROSPECTIVE APPLICATIONS

This chapter presents the summary, conclusions, future work and prospective

applications of the method developed in this work.

4.1 Summary and Conclusions

A novel optimization method (IHGOM) has been developed and its applications

in reactor design has been demonstrated. IHGOM is a black-box method that is

applicable to any complex system. The method is implemented in a modular way

such that any optimization problem of a complex system is solved by defining a set of

design parameters, QOIs, objectives and constraint functions. Ackley’s function and

an asymmetrical 2-D test problem are used to test the search capability of IHGOM.

Two demonstration systems have been characterized and the application of IHGOM

in solving optimization problems defined on those systems has been demonstrated.

The demonstration problems with several assumptions and simplifications, are a

representative form of the actual physical problem and have been developed to show

the effectiveness of the iterative optimization method. The objective functions for

the demonstration problems have been developed such that they have a mixture of

maximization and minimization individual objectives with the task to search for a

Pareto optimal solution. The shape of the objective space, whether it is convex or

concave is not known, therefore ε constraint method has been implemented instead

of the standard weighted approach in GA.

The effectiveness of the IHGOM in terms of speed, accuracy, and search efficiency

has been presented. In fact, the optimal solution for the demonstration problems

are not known, therefore a qualitative approach by analyzing the proximity of the

values for the QOIs to the objectives and the constraints is used to understand the
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search efficiency and optimality of the solutions. The method has been successful in

the determination of a couple of Pareto optimal solutions starting from a base model

of an AP1000 reactor design. Based on the order of execution of the objectives

i.e. the priority of the objectives, the Pareto optimal solutions were generated and

their proximity for the base solution has been analyzed. The method has been

successful in solving the Ackley’s test function and the asymmetrical 2-D test function

in determining the global optima in a space with having several local optima regions,

which is an indication that the search functionality is effective.

This work lacks an extensive sensitivity study and parameter search which opens

doors for future work. The definition of design parameters, their bounds, objectives

and the constraints play an important role in the search. Particularly, due to the

fact that the optimizer has no information about the underlying physics, the above

parameters direct the search and define how the design parameter bounds are af-

fected. In this iterative approach the design parameter bounds play a significant role

in determining the speed of the search. Figures and analysis on the differences in lo-

cal resampling versus global resampling provide sufficient evidence that the changes

in bounds affect the speed in the search. The developed method shows a novel

approach towards optimization and has the potential to be implemented in several

other domains.

4.2 Future Work

The current work has opened new avenues in the development of a fast and

accurate method for optimization of complex systems. Future work include a set of

suggestions that can improve the efficiency of the developed method.
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4.2.1 Sensitivity Studies of GA Parameters

The HYBGASA model has several tuning parameters that affect the accuracy

of the optimization search in terms of search efficiency and the convergence speed.

In particular, analysis of operators like cross over and mutation, selection of the

number of chromosomes, and a robust stopping criteria for convergence are a subset

of tuning parameters in GA. The type of selection method, crossover and mutation

in GA plays a significant role in the search efficiency. A sensitivity study to analyze

the effect of these operators is important in choosing the same for the demonstration

problems.

4.2.2 Adaptive and Smart Parameter Search for GPM

The kernel function is important in the prediction ability of the regression model

based on the Gaussian Processes. The choice of the kernel function and the hyper

parameters in the kernel function play a significant role in the regression models.

Adaptive methods have been used to search for the optimum hyper parameter for

every regression model. Similarly, learning based methods can be implemented to

adaptively update the values for the hyper parameters based on the size of training

data and the size of the feature set. Research has been done in the development of

customized kernel functions [40, 41], but the customization is usually based on the

underlying physics. Therefore, a generalized approach is very difficult to build.

The GPM Kernel function sensitivity search can provide information about the

behavior of the dependent variable. E.g. if the kernel function chosen adaptively

is a an exponential kernel, then the underlying function can be thought of a s a

smooth function. This information can be re-used in reducing the complexity of the

regression model leading to an increase in speed.

119



4.2.3 Derivatives in the Regression Model

Implementation of the local derivatives of the observation in the learning model

increases the prediction accuracy of the regression model. The implementation fol-

lows the underlying idea that the derivative of a Gaussian process is a Gaussian

process. With reference to [42], the covariances between function values and deriva-

tives and between derivatives are given by:

K =

∣∣∣∣∣∣∣
Kff KfD

KDf KDD

∣∣∣∣∣∣∣ , (4.1)

where Kff is the covariance between the parameters, Kfd is the covariance between

parameters and derivatives, and Kdd is the covariance between derivatives given by:

Kij
ff = Cov (fi, fj) = k (xi, xj) (4.2a)

Kijd
fD = Cov

(
fi,

∂fj
∂xd

)
=
∂k (xi, xj)

∂xd
(4.2b)

Kijde
DD = Cov

(
∂fj
∂xd

,
∂fj
∂xe

)
=
∂2k (xi, xj)

∂xd∂xe
. (4.2c)

The joint covariance matrix for the functions and the derivatives in an expanded

form are given by:

K̂ =



Kff

[
K1
fD K2

fD .. KK
fD

]


K1
fD

K1
fD

..

KK
fD





K1,1
DD K1,2

DD .. K1,K
DD

K2,1
DD K2,2

DD .. K2,K
DD

.. .. .. ..

KK,1
DD KK,2

DD .. KK,K
DD




(4.3)
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where K is the dimension of the input parameters. The output parameters vector is

updated to add the dervatives of the observations as,

F̂ =

[
F

∂f (X)

∂x1

∂f (X)

∂x2

.....
∂f (X)

∂xL

]T
, (4.4)

where ∂f(X)
∂x1

is the local derivative obtained using acceleration methods, if yi is an

output parameter represented in a different form than F (X). The values for these

derivatives of the observations are obtained from standard acceleration methods that

build local derivatives. A comparison between several local derivative methods and

their effects on the prediction ability of GPMs is a significant contribution to the

research community.

4.2.4 Sensitivity Studies of the Parameters in the Outer Iteration

Initial sample size, re-sample size and re-sampling rate play a significant role in

the speed, convergence and the accuracy of the outer iterations. These parameters

affect the fitness of the regression model. In the modeling of the surrogate models

there is always a fear of the regression model being under-fit or over-fit. Under-fit or

over-fit models tend to increase the error in the predictions. Therefore, for the most

accurate predictions, the regression model needs to be a “good” fit. A sensitivity

study to analyze the effect of these parameters on the fitness of the regression model

is necessary for a good predictive model.

4.2.5 Regression Methods

Comparison of the performance of several other regression methods such as Ridge,

Lasso, Markhov Chain Monte Carlo (MCMC), logistic, random forests, decision trees

etc.. as compared to GPM is important in the development of a more accurate,

robust and faster predictive model. The regression methods are dependent on the
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feature size, data size and the underlying physics of the data. A rigorous approach in

choosing the regression method and the corresponding hyper-parameters will affect

the scalability of the developed method.

4.2.6 Uncertainty Propagation in Heuristics Based Optimization Methods

Real-time physical applications have uncertainties in the experimental data. Any

optimization problem based on the experimental data is affected by the uncertainties

in the search for the optimum design space. The method of the propagation and

the uncertainties across generations in heuristics methods such as GA has not been

explored yet.

4.3 Prospective Applications

The iterative optimization method developed in this research has prospective

applications in a number of research areas. A few of the prospective application

areas identified during the course of the work are described in this section.

4.3.1 Fuel Loading and Shuffling Optimization

The optimization method is applicable in fuel selection, loading position and

shuffling strategy in nuclear reactors. Selection of fuel, particularly used fuel from

storage casks and/or fresh fuel elements involves a multi parameter search based on

multiple objectives. Researchers have used GA and SA in fuel loading and shuffling

optimization in PWRs [43, 44, 6, 6, 45]. A coupled approach presented in this

dissertation is yet to be used by the optimization research community. A presented

in this work, the coupled approach has the capability to search for a Pareto optimal

solution at a significant speed.
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4.3.2 Position of Control Rods and Other Burnable Absorbers

The position of the control rods (CR) in the design of nuclear reactors depend on

the local flux, excess reactivity, peaking factors, desired core lifetime, etc.. Therefore

the location of CRs and the amount of burnable absorbers is an optimization design

problem. The objective space is dependent on the desired burn up, power, safety

margin, and fuel inventory.

4.3.3 Fuel Cycle Analysis and Fuel Economy

The relation between fuel economy and reactor power is a multi-design-multi-

objective optimization problem. Several machine learning based optimization meth-

ods have been explored in the fuel cycle optimization of AP1000 reactors [46, 47]

by Westinghouse. However, there is a need in the design and modeling of a ro-

bust mult-objective optimization method that couples physics based modules such

as neutronics and thermal-hydraulics with fuel cycle and economics.

4.3.4 Position of Detectors for Spectrum Reconstruction

Machine learning methods are applicable in determining the positioning of the

detectors in the reconstruction of flux for safety and operation purposes. During the

operation of a nuclear reactor, there is a shift in the peaking factors based on the

control elements (control rods and burnable absorbers) and fuel burnup. This is a

predictive behavior and a regression model that can be fit to emulate the behavior.

A basic demonstration has been presented in this dissertation. There is a need for

a robust model development with several design parameters and QOIs applicable to

the real physical problems. This predictive model can be used to determine the ideal

locations for detectors for spectrum reconstruction.
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4.3.5 Prediction and Forecasting of Experiments in Test Reactors

Irradiation experiments in test reactors are expensive and a predictive forecast-

ing model helps in cost-savings for experiments. A learning based experiment design

and cycle length predictions help in the implementation of efficient experiments that

solve the purpose of the irradiation and save fuel. A prospective application has been

identified in the fuel selection and loading patterns for the Idaho National Laboratory

(INL) Advanced Test Reactor (ATR) [48] . The ATR at the INL is a pressurized,

light-water moderated and cooled, beryllium-reflected, highly enriched uranium fu-

eled reactor with a maximum operating power of 250 MWth. The following Core

Physics Analysis (CPA) heuristic outputs would be used to evaluate a QOI for a

randomly sampled set of fuel element loadings:

• Estimated critical position

• Estimated lobe-power split

• Estimated radial and axial power peaking factors

• Estimated fission density at the end-of-cycle (EOC)

A subset of design parameters are used as inputs to the above heuristics:

• Predicted cycle length

• Reactivity worth for each capsule

• Number and position of recycle fuel elements to be identified and used from

the CANAL

• Number and position of the fresh fuel elements in the reactor core
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The above inputs dictate the U235 and B10 loading of each fuel element and by

extension each lobe. The estimated heuristic outputs will be based on a surrogate or

empirical model of the ATR. This surrogate model is built as a standard database,

prior to implementation of the Total Heuristic Evaluator Critical Process Trans-

former (THECPT code) to increase the ATR fuel efficiency.

4.3.6 Prediction of the Source of Radioactive Material in Nuclear Forensics

The possibility of weapons-grade Plutonium in foreign nuclear fuel cycle reac-

tors is a global security concern. One of the challenges associated with this is the

identification of the source should the illicit transfer of weapons-grade plutonium be

interdicted. The source includes the originating country, fuel cycle reactor and irra-

diation history. Predictions of the source is a multi-parameter regression problem.

A logical set of tasks involves:

1. Design and development of a set of experiments and simulations to develop the

training data set.

2. Build a regression based predictive model based on the training data set.

3. Isotope separation and identification of radioactive nuclides from the inter-

dicted material.

4. Predict the source of the interdicted material from the predictive model devel-

oped in Step:2.

4.3.7 Composite Fuel Optimization

In the development of proliferation resistant and sustainable fuels, “composite

fuel” [49, 50] have played an important role. Composite fuels (CF) consist of matrix

and multiple seed materials, for example metallic U alloys and mixed oxide (MOX)
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mixed at microscopic level. The objectives are to increase fuel resource utilization

by extending fuel burnup while simultaneously satisfying core safety requirements

and non-proliferation standards. The sizes of the microscopic elements along with

the composition pose a muli-objective optimization problem.
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