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ABSTRACT

The use of an understanding of mechanical properties of tissues for the purposes

of medical diagnosis has been going on since the foundation of the medical field as

a science. In recent decades, medical ultrasound elastography techniques have been

developed and improved and have helped the medical community improve the state

of diagnosis and tracking of various diseases like cancer, and lymphedema. Poroe-

lastography, refers to the extension of ultrasound elastography techniques towards

imaging the mechanical properties of tissues that are modeled as poroelastic.

Currently, the field of poroelastography is stuck, largely due to the complication

in the mathematical models surrounding poroelastic materials. This dissertation

focuses on the investigation of the suitability of a simplified equation involving a

single saturating exponential (i.e. time constant curve) to describe the local time-

dependent strain response of non-homogeneous poroelastic materials placed under

creep compression. A new algorithm of measuring how precisely a non-linear equation

fits a set of data samples from an experiment, the Resimulation of Noise (RoN)

algorithm, was developed and implemented for the time constant curve case. The

RoN algorithm was shown to track the precision of the fit in a more intuitive and

accurate manner than previously used quality of fit metrics.

The RoN algorithm coupled with an in-depth FEM simulation study was con-

ducted to see how well the single exponential time-constant curve fit the localized

strain samples of a simulated prismatic phantom with a cylindrical inclusion under

different permeability and stiffness contrasts. The study showed that, on average,

the single exponential time constant curve was suitable within 10% precision for 90%

of the phantom’s area so long as a mean-mask filter was applied the localized strain
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images before attempting the curve-fit.

Future work in the field of poroelasticity imaging should center around the use

of the single exponential time constant curve. This will require the development of a

full understanding of how poroelastic material parameter contrast affects the contrast

of the measured time constants. Procedures that will help this endeavor: such as

the parallelization of the RoN algorithm as well as the development of novel non-

homogeneous poroelastic phantoms with the aid of 3-d printers are also proposed.
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1. INTRODUCTION

1.1 Purpose

The purpose of this study is to investigate simplification of mathematical mod-

els of time dependent behaviors of strain for non-homogeneous poroelastic materi-

als with the intent of using simplified mathematical models for medical ultrasound

poroelasticiy imaging applications.

1.2 Mathematical modeling of tissue mechanics

Hidden in our understanding of mechanical properties is the fact that mechani-

cal properties are merely parameters in the mathematical model which is chosen to

model the physical behavior of tissues. Mathematical models are a tool by which

we understand the relationships between observable physical phenomena. They are

a balancing act between convenience and veracity. The more complex a model as-

sumed, the higher its potential to unveil further information about the tissue. How-

ever, the complexity creates an added overhead in its difficulty of interpretation.

Currently, the most clinically imaged mechanical property of interest is the tis-

sue’s stiffness when the it is modeled as a linearly elastic (Hookean) solid [38]. In a

hooken solid, the strain experience by the tissue is directly proportional to the stress

following Hooke’s Law (equation 1.1) [69]:

σ = −cε (1.1)

In this equation σ is the stress tensor, ε is the strain tensor and c is a tensor

containing the various coefficients of linear elasticity. What is commonly referred

to as the ”stiffness” of a tissue is an element of the tensor c known as the Young’s

1



modulus and represents the linear coefficient of proportionality between the axial

element of the strain tensor and the stress tensor.

While the model is simple, it has found itself to be very useful as Hookean elas-

tography has a rich variety of clinical applications [20, 27, 77, 59]. However, it should

be mentioned that few tissues, and in fact few materials truly behave as a linearly

elastic solids under any circumstances. The assumption that a material behaves as

a Hookean, homogeneous and isotropic material is generally acceptable so long as

time dependencies are not considered and the stress and strain are both small [69].

In reality, all materials deviate from Hooke’s Law [42]. While the model is extremely

useful, the full potential of mechanically based diagnostic imaging can be untapped

using more complex models. Merely considering non-linear elasticity has shown the

potential of being a useful tool for the diagnosis of cancer [28]. The true potential

of mechanical property based imaging lies in considering time-dependent behavior of

tissues’ response to mechanical excitation.

A viscoelastic material is one that is observed to exhibit both viscous and elastic

characteristics. Viscous materials resist shear flow and strain linearly with time when

a stress is applied. A viscous fluid under shear stress obeys the relationship σ = ηv
dε
dt

with ηv being the viscosity of the fluid. In other words, a viscous materials resists

the change of strain, while an elastic material resists strain.

To a certain extent, all materials, display viscoelastic tendencies [69]. Referring

to ones own empirical observations is sufficient enough as proof to this as when a

force is applied onto any material, the material does not instantly reach a final state

of compression but reaches it over time. Tissues are no exception to this and the

modeling of tissues as viscoelastic is currently revealing itself to be useful despite

the fact that its methods are more complicated than those applicable to non time-

dependent modeling [87, 57, 73, 68].
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Perhaps the model with the highest potential to fully understand tissues is the

poroelastic model [18]. Poroelastic materials are modeled as porous and elastic bipha-

sic materials in which there is a solid linearly elastic matrix or skeleton that is coupled

with a fluid phase (known as interstitial fluid). Frequently, sponges are referenced as

a good example of poroelastic materials. Mechanically speaking, the defining char-

acteristic of poroelastic materials is that the pore fluid pressure contributes to the

total stress in the pores.

While the origins of the study of porous media are in the study of soil mechanics

[79], its study is extremely relevant to tissue mechanics. In principle almost all tissues

should technically be considered as poroelastic because all tissues in multicellular

animals are bathed in interstitial fluid which transports nutrients or waste products.

The flow of this fluid through tissue is a requirement for it to remain healthy. Because

of this the imaging of poroelastic parameters holds a key to powerful diagnostic

imaging because poroelastic materials closely describe tissues.

However, as mentioned earlier, for a mathematical model to more closely describe

observed behavior, it almost always comes at the cost of increased mathematical com-

plexity. While, indeed, current research has shown that there is tremendous potential

in diagnosis by observing the poroelastic properties of tissue [38, 47, 14, 6, 4, 5, 1, 40,

61, 62, 63, 64, 65], the mathematics involved in poroelasticity imaging are consider-

ably complex. Indeed, the field of poroelasticity imaging has considerably stagnated.

The work compiled in this dissertation is a concentrated effort towards simplifying the

mathematics for the purposes of accelerating the development of clinical ultrasound

poroelasticity imaging.
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1.3 Background on ultrasound elastography

As of this writing, Ultrasound elastography comprises a family of well-established

imaging modalities used to, in some way or the other gain an understanding of the

mechanical properties of tissues [72, 84]. Gaining an understanding of underlying

mechanical properties of tissues has been known to be diagnostically relevant for

centuries [84]. All ultrasound elastographic modalities involve the application of a

mechanical stimulus or stress followed by a the measurement of the tissue’s response

to that stimulus. Perhaps the most clinically used ultrasound elastography modalities

used to date are quasistatic strain imaging and shear wave elasticity imaging (SWEI)

[84, 72].

In SWEI the mechanical stimulus is provided by an acoustic radiation force that

creates shear waves that can be detected by acoustic ultrasound [72, 52]. The defor-

mations to this tissue are then measured and are used for mechanical characterization

[52]. A special type of SWEI, supersonic shear imaging (SSI) which is currently avail-

able in the Texas A&M Ultrasound group, directly measures the speed of shear waves

in the mechanical tissues and uses this to directly image mechanical properties of

tissues [78, 19].

Quasistatic strain imaging is perhaps the first of the clinically available forms of

Ultrasound Elastography. Indeed, the term elastography, was first coined for this

imaging modality [54, 53, 80, 81]. Quasistatic strain imaging involves collecting an

ultrasound RF-frame of the tissue to be imaged before compression and then another

one after compression has been completed. Using cross-correlation techniques, the

RF-frames are then compared in order to calculate localized displacements. The

localized strains experienced by the tissue are then calculated by taking the gradient

of the displacement image.

4



The work compiled in this dissertation regards the extension of quasistatic ul-

trasound elastography for the purposes of imaging the poroelastic mechanical prop-

erties. While it is true that SWEI imaging modalities are arguably easier to use

than quasistatic ultrasound elastography, the interpretation of the images produced

requires a presupposition of the mathematical model the tissue is assumed to follow.

Strain measurements, on the other hand, are not tainted by any prior assumptions

on mathematical models.

1.4 Mathematical complications of ultrasound poroelasticity imaging

With quasistatic ultrasound elastography, one has access to only a few measure-

ments: axial strain, lateral strain, effective Poisson’s ratio (EPR) and shear-strain

[54, 39, 37]. This means that the poroelastic parameters of tissues need to be ana-

lyzed with only these four measurements and preferably with only one: axial strain as

its higher resolution provides for better image quality [66]. However, understanding

the poroelastic properties of tissues through observing axial strain is complicated.

Consider the findings in Armstrong et. al [2]. Armstrong showed a theoreti-

cal derivation of the strain vs time behavior of a homogeneous isotropic cylindrical

poroelastic material under creep compression. Under creep compression the strain

vs time behavior is shown in 1.2.

εzz(t) = − F0

Esπa2
[1− (1− ν2s )(1− 2νs)

∞∑
n=1

4

9(1− νs)2β2
n − 8(1 + νs)(1− 2νs)

e−β
2
n
HAkt

a2

(1.2)

As can be observed equation 1.2 involves an infinite number of parameters, how-

ever of special note are the Young’s Modulus of the solid matrix (Es), the Poisson’s

Ratio of the solid matrix (νs) and the permeability of the material (k). It is interest-
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ing to note that equation 1.2 shows that the time dependent strain response of this

material under creep compression is characterized by an infinite sum of saturating

exponentials. Berry et al [4] extended this derivation and found that the localized

strain vs time behavior of a cylindrical tissue follows a similar pattern.

As complicated as equation 1.2 might appear to be, there were assumptions that

were made to symplify its derivation. The derivation was made for a cylindrical and

homogeneous poroelastic material. While the assumption is convenient and useful,

it is worth noting that it voids the necessity for imaging. Medical imaging is presup-

posed on the belief that the area being imaged is non-homogeneous. Despite this,

perhaps the biggest problem with the expression for εzz(t) is that it is too compli-

cated. Attempting to characterize a poroelastic material from its strain response

would require the estimation of an infinite number of parameters. It is clear that,

in order to gain insight on the poroelastic parameters of non-homogeneous tissues, a

simpler strain vs time relationship than shown in equation 1.2 needs to be studied.

1.5 Hypothesized solution and aims

The work compiled in this dissertation aims to see if it is possible to reduce

equation 1.2 to a single saturating exponential as shown in equation 1.3:

εzz(t) = η + (α− η)e−
t
τ (1.3)

where η is known as the equilibrium point (EP) τ is known as the time constant

(TC) and α is the value of εzz(t) when t = 0+. Equation 1.3 is often referred to as a

time constant curve.

To test the proposed hypothesis, the following aims needed to be executed:

1. Examine the fit of single exponential time constant curves to local temporal

elastographic data for non-homogeneous poroelastic media.
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(a) Develop a goodness-of-fit measure specialized for non-linear curve-fitting.

(b) Examine the goodness-of-fit of TC curves to local temporal elastographic

data for non-homogeneous media.

2. Investigate the possibility of using single exponential time constant curves to

determine permeability and Young’s Modulus contrasts for non-homogeneous

poroelastic media.

Hidden in this aims is the fact that this work has to tackle a lot of complexities

with regards to Least Square Error estimation non-linear equations which are often

taken for granted [29]. Indeed, the first few chapters of this dissertation deal entirely

on this subject and should have applications well beyond poroelasticity imaging as

the use of non-linear least square error parameter estimation is ubiquitous [86, 44].

As Least Square Error estimation is central to this dissertation, the next chapper

reviews some of the more notable results from my MS work that are necessary for

understanding this work.
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2. REVIEW OF LEAST SQUARE ERROR ESTIMATION*

The work shown in this chapter was developed into my M.S. thesis and was then

published in [51]. Since an understanding of non-linear least square error estimation

is a requirement for the understanding of this dissertation, this chapter is included

as a review of some of the important findings found earlier.

2.1 Introduction

Elastographic imaging of poroelastic and viscoelastic materials has been accom-

plished by generating time-sequenced axial strain elastograms or EPR elastograms

while subjecting the material to a constant axial strain (stress relaxation) or a con-

stant axial stress (creep). Given a set of temporal elastograms obtained from a poroe-

lastic or viscoelastic material, it is possible to generate time constant elastograms,

which provide information about the temporal behavior of the elastographic param-

eter of interest. Time constant elastograms are generated by applying mechanical

models to the experimental elastographic data to estimate the TC of the elasto-

graphic parameter of interest on a pixel-by-pixel basis using curve-fitting techniques

[63, 65, 57].

In general, a large number of theoretical models can be applied to creep or stress

relaxation data to extract tissue poroelastic parameters and related time constants

[70, 24]. However, not all of them may be of practical use in clinical situations. In

the past, poroelastographic data have been interpreted using the model that employs

the Kuei, Lai, and Mow biphasic theory [2] to predict the time-dependent radial or

axial strain in poroelastic materials in unconfined compression [63, 4, 5].

* ©2011 IEEE. Reprinted, with permission, from Nair SP, Yang X, Krouskop TA, Righetti R, 
Performance analysis of a new real-time elastographic time constant estimator, IEEE:Transactions 
in Medical Imaging, Feb 2011
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The application of this model was found to be useful. The application of this

model was found to be useful to develop poroelastographic simulation methods [64, 4]

and also to approximate selected experimental data in vitro [63, 4]. Currently, how-

ever, this model has not been applied directly to elastographic data in vivo, pre-

sumably due to its complexity, the difficulty in reproducing experimental conditions

that are consistent with the assumptions of the model and the inevitable challenges

encountered in describing complex and heterogeneous poroelastic tissues.

Simplicity and efficiency in the calculations, accuracy of approximation and ap-

plicability to a broad field of materials are key parameters that need to be considered

when developing an estimator that may be of use in clinical applications [70]. It is in

this context that the idea to approximate creep or stress relaxation data using simple

exponential polynomials has been evaluated as an attractive alternative [4, 70, 62, 48].

Within the class of exponential functions, models featuring only a single exponential

have been employed to estimate the temporal behavior of both tissues in vitro and

in vivo with some success but not without compromises [63, 57, 61, 73] . Although

these models may not be as fully descriptive as models that employ an infinite sum of

exponentials, their analysis may serve as a foundation for the study of more complex

models [70].

Regardless of the model that is used, elastographic TC imaging usually involves

applying curve fitting methods to noisy elastographic data. The accuracy of the

resulting TC estimates is expected to depend on the curve fitting method employed,

the length of the window of observation, the sampling period used to acquire the elas-

tographic data and the noise level in the elastographic data [3]. A complication that

arises in the application of curve-fitting methods to poroelastography data is that,

in practical cases, the models usually contain multiple parameters that need to be

estimated due to the biphasic nature of the poroelastic tissues [67]. This observation
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poses the problem of having to estimate multiple tissue parameters simultaneously

from a set of noisy data acquired for a limited time interval.

The current literature on poroelastographic techniques is limited to a relatively

small number of publications, which suggest their technical feasibility but do not

comprehensively tackle difficult yet fundamental issues of clinical importance. While

these studies [38, 64, 4] have certainly provided motivation to continue the develop-

ment of poroelastographic methods, they have only started addressing the important

issues of noise limitations inherent to temporal strain estimations (i.e., due to both

temporal tracking and quality of strain estimates), poroelastographic image quality

performance and the role of various practical temporal parameters in the result-

ing poroelastographic images. These important issues need to be investigated in a

systematic manner if poroelastography is to become an established clinical imaging

modality.

Furthermore, current implementations of poroelastography imaging methods are

too slow and not optimized for clinical applications. Current poroelastography meth-

ods in vivo are based on the application of a constant strain compression and conse-

quent generation of EPR elastograms [61] or, alternatively, of axial strain elastograms

[6]. Methods that employ EPR elastograms only, are inherently noisy due to image

quality limitations typical of lateral strain elastography [67]. While it is possible to

use axial strain elastography to estimate the poroelastic behavior of tissues [4, 61],

methods that employ only axial strain elastograms may not be able to determine

if the observed temporal tissue behavior is due to viscoelastic or poroelastic effects

[4, 71, 5]. Thus, EPR elastography should be used in combination with axial strain

elastography to confirm the existence of any changes in tissue compressibility, which

is characteristic of underlying fluid movements.

This chapter presents the results of a performance study of a time constant es-
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timator for clinical elastography applications. The estimator uses the least square

error (LSE) curve-fitting method and the Levenberg-Marquardt (LM) optimization

rule as applied to noisy elastographic data obtained in creep experiments. The im-

age quality performance of the estimator is analyzed in terms of accuracy, precision,

sensitivity, signal to noise ratio (SNR), and speed. The use of this estimator provides

a means to better understand and image the overall temporal behavior of complex

tissue systems, for tissues that are assumed to be either poroelastic or viscoelastic.

2.2 Theoretical background

2.2.1 The least square error problem for single exponential time constant

estimation

Let s be the elastographic parameter of interest. As a first order approximation,

a simple and practical empirical model to describe the temporal mechanical behavior

of s from a set of experimental temporal elastograms is given by [63, 61, 57]:

s(t) = η + (α− η)e−
t
τ (2.1)

where s(t) is the value of the elastographic parameter of interest at time t, α is the

value of s at time t = 0+, η is the equilibrium point (EP) (i.e. s(t→∞)) and τ is the

time constant (TC) of the elastographic parameter of interest. It should be reinforced

that this model is much simpler than some of the models previously encountered in

the literature that present the transient strain response under creep compression as

an infinite sum of exponentials [2, 4]. Under certain assumptions imposed by the

boundary conditions, the model in equation 2.1 may be used to approximate both

the axial strain and the EPR temporal behavior [61]. In the axial strain case, as is

studied in this dissertation, α is expected to be a value close to the applied axial

strain.
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While in a strict sense, α is a term that should also be estimated for proper LSE

estimation, it can be treated as an a priori measurement because the level of noise

affecting the strain estimate at t = 0+ is always significantly smaller than the level of

noise affecting all subsequent points [6, 62]. Historically, elastographic models have

assumed that η could be estimated from the elastogram corresponding to the last

acquired RF frame of the set [70]. This, however, would require acquisition of data

for an infinite time. In addition, both τ and η are material-dependant and thus both

of them should have important diagnostic value [63, 4, 57, 62]. This it is important

to investigate if both τ and η can be estimated with accuracy, sensitivity and SNR

that are acceptable for elastography applications [30, 83].

In practice, it is impossible to acquire s(t) as described in 2.1. It is only possible to

acquiare a series of m noisy samples of s(t) due to the discrete nature of the ultrasonic

acquisition and inevitable noise sources. Thus, a more useful representation of the

model that can be used in the curve fitting expressions that represent the estimated

temporal strain data may be given by:

s(ti) = η + (α− η)e−
ti
τ +Ni(ti) (2.2)

where s(ti) is the strain sample at time ti and Ni(ti) is the noise level at time

ti. Ni(ti) is assumed to come from a zero-mean Gaussian noise distribution (i.e

Ni(ti) ∼ N(0, σ)). Additive white Gaussian noise is a simple and commonly used

noise model [76, 30]. The presence of this noise, however, poses the biggest challenge

for the extraction of τ and η from the samples s(ti). For most of the cases studied, the

noise model is assumed to have a constant SNR equal to 20 dB for all strain samples.

This value is in the range of expected SNR values for elastography applications

[76]. Following the convention usually employed in signal and image processing
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applications and in elastography, the SNR is measured as:

SNR(dB) = 20log(
mean(s(ti))

std(s(ti))
) (2.3)

LSE curve-fitting is a well-known and largely applied method to extract parame-

ters of a mathematical model from a given set of experimental data. In reference to

equation 2.2, the application of LSE curve-fitting techniques aims at at finding the

parameters τ̂ and η̂ that minimize the LSE as shown in equation 2.4:

LSE(τ̂ , η̂) =
m∑
i=1

(s(ti)− (η̂ + (α− η̂)e−
ti
τ ))2 (2.4)

It is worth noting that parameter extraction by means of LSE minimization is

most valid under the condition that the samples’ noise distributions follow indepen-

dent and identical (iid) Gaussian distributions [12]. With respect to our model, a

perhaps more accurate estimate would be obtained by minimization with respect to

a weighted LSE (WLSE) function [43]:

WLSE(τ̂ , η̂) =
m∑
i=1

wi(s(ti)− (η̂ + (α− η̂)e−
ti
τ ))2 (2.5)

where wi represents represent a measure of the weight given to the error at point i.

However, minimization with respect to WLSE requires knowledge of all σi in order

to assign values to wi. Since, in the case of ultrasound elastography, σi is usually

unknown a priori, the entire dissertation makes use only of standard LSE estimation.

Once the LSE problem is formulated, the challenge then becomes implementing

an optimization rule to estimate τ and η. This optimization was implemented using

the Levenberg-Marquardt optimization rule.
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2.2.2 Levenberg-Marquardt optimization for single exponential time constant LSE

estimation

The Levenberg-Marquardt (LM) optimization algorithm is an iterative algorithm

based on gradient descent and the Newton method for finding equation roots, which

is especially suited for LSE estimation [58]. Minimization with respect to equation

the LSE as in equation 2.4 is equivalent to minimization with respect to:

E(τ̂ , η̂) =
1

2

m∑
i=1

r2i (τ̂ , η̂)) (2.6)

where ri(τ̂ , η̂) is itself defined by equation 2.7.

ri(τ̂ , η̂) = s(ti)− (η̂ + (α− η̂)e−
ti
τ (2.7)

The parameters τ̂ and η̂ can be be vectorized as x = [τ̂ , η̂]T . The LM optimization

follows an update rule of the form [58]:

xk+1 = xk − (H + λḋiag(diag(H)))−1∇E(xk) (2.8)

where xk = [τ̂k, η̂k]
T is the current guess, H is the Hessian of E(xk), diag(diag(H))

denotes a diagonal matrix whose nonzero elements are the diagonal elements of ma-

trix H, ∇E(xk) is the gradient of E(xk), and λ is a constantly changing step size. In

practice, λ is picked at each step using the following algorithm:

1. update xk as indicated in equation 2.8

2. if E(xk+1) > E(xk) then reject xk+1, retract to xk and increase λ by a factor

of 10. Otherwise, accept xk+1 and decrease λ by a factor of 10.

14



2.3 Simulation procedure

A simulation study was performed to assess accuracy, precision, sensitivity, speed

and SNR of the proposed LM algorithm as a function of the true strain TC and

equilibrium points. due to the importance of the noise model on the estimation

process, selected simulations were repeated for different values of the noise SNR.

All simulations were performed in MATLAB. The simulations were performed by

creating a series of temporal strain curves following 2.1 with known theoretical τ

and η parameters. The maximum sampling rate was fixed at 2 samples per second.

Such sampling rates are usually possible in practical elastography systems, which

achieve typical frame rates of several frames per second [88]. It should be noted that

low sampling rates adversely affect the estimator’s performance, especially in the case

of lower τ values. This implies that the sampling rate needs to be adjusted according

to the true τ values as expected from the Shannon-Nyquist sampling theorem. Figure

2.1 shows an example simulation. In this figure, the dashed line represents the actual

time constant curve as in equation 2.1 when τ = 150s and η = 0.1, the dots show

the noisy samples s(ti) as in equation 2.2 and the solid line shows the estimated time

constant curve when the noisy samples are input into the LSE LM estimator.

2.3.1 Evaluation of accuracy and precision

Accuracy and precision were measured in terms of percent deviation (i.e. percent

bias) and percent spread, respectively [3, 35]. For a given set of n trial estimates

τ̂i, 1 ≤ i ≤ n performed on a set of noisy samples from a TC curve of known τ ,

the accuracy is quantified as a function of the percent bias as in equation 2.9. The

precision is quantified in terms of the percent spread as in equation 2.10.

percent bias(%) =
|mean(τ̂i)− τ |

τ
× 100 (2.9)
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Figure 2.1: Example of a simulation trial using noisy samples and a corresponding
estimated curve obtained using the LM LSE estimator when the actual τ = 150s
and η = 0.1.

percent spread(%) =
std(τ̂i)

τ
× 100 (2.10)

In equation 2.9 std refers to the standard deviation.

Accuracy and precision were tested for true τ values in the range of 1− 800s and

for true η values in the range of 0.01− 0.05. While in the actual study two windows

of observation were considered [51], for the purposes of summary, only the results of

when the window of observation was 600s are shown. For the statistical analysis, 50

trials were run for each pair of true TC and equilibrium point values.

2.4 Results

2.4.1 Accuracy and precision

Figures 2.2 and 2.3 show the percent bias and percent spread, respectively, of the

LM optimized LSE estimator for the simulation study described. These figures show

that percent bias for a given window of observation is dependent on the underlying

τ and in many cases is below 1%. A similar dependency to τ is observed for the

percent spread but in most cases shows a percent spread of less than 5%.
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Figure 2.2: LM LSE estimator percent bias as a function of the true time constant
and equilibrium point when the window of observation is 600s

Figure 2.3: LM LSE estimator percent spread as a function of the true time constant
and equilibrium point when the window of observation is 600s
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The figures show an observed deterioration in the precision and accuracy of the

estimator for very low values of τ . This can be explained by observing the fact

that as τ decreases the bandwidth of the time constant signal shown in equation

2.1 increases. As predicted by the Shannon-Nyquist theorem, this would require a

higher sampling frequency for s(ti).

2.5 Discussion and conclusion

This chapter showed a thorough review and description of LSE estimation as

applied to single exponential time constant curve fitting. Throughout the rest of

this dissertation this LM optimized LSE estimator is analyzed thoroughly and used.

While indeed other optimization schemes are readily available in the literature [9],

the LM optimization was chosen because it is well suited for the LSE optimization

problem [58]. Because they are so important throughout the rest of the work, many

of the equations and findings shown in this chapter will be restated in subsequent

chapters.

As mentioned earlier, the majority of this work was actually done during my M.S.

and further details can be found in my M.S. thesis [48]. These findings were then

formalized into a peer-reviewed journal publication [51]. These findings showed that

the LM LSE estimator is substantially accurate and precise. Admittedly, that last

statement is a blanketed one as the findings also showed that the performance of

the LSE estimator is dependent on the underlying time constant, τ as well as the

window of observation and the sampling frequency of the strain samples.

This dissertation is about addressing the suitability of describing the localized

axial strain response of poroelastic media under creep compression as a single expo-

nential time constant equation as shown in equation 2.1. This cannot be done without

fully understanding the LM LSE performance dependencies mentioned earlier. These
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dependencies needed to be studied and the next chapter of this dissertation deals

with exactly that.
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3. EFFECT OF TEMPORAL ACQUISITION PARAMETERS ON IMAGE

QUALITY OF STRAIN TIME CONSTANT ELASTOGRAPHY

The work shown in this chapter was developed in conjunction with Joshua Vargh-

ese and Anuj Chaudhry. Indeed, a sizable portion of this work was developed into

Joshua Varghese’s M.S. thesis [82]. The early years of my PhD work were dedicated

towards extending and formalizing the results shown in his thesis and were then

published into a peer-reviewed journal publication [50].

3.1 Introduction

Ultrasound elastography is a well-established non-invasive imaging modality, which

can be used to complement sonography and detect a variety of pathologies in soft

tissues [53, 32, 80] These include tumors in the breast and prostate, thyroid nodules,

and skin lesions [53, 32, 80, 31, 26]. In addition to widespread quasi-static elas-

tography techniques, different tissue elasticity imaging methods such as shear wave

imaging have been more recently deployed, which can be used in a number of clinical

applications ranging from examination of solid breast masses to the detection of liver

fibrosis and cervical lymph nodes [22, 23, 7].

While quasi-static elastography methods are currently the most commonly used in

clinical applications, in the past few years, additional elastographic techniques have

been developed to image the temporal behavior of materials under mechanical loads

or stresses [38, 64]. Among these techniques are viscoeleasticity imaging and poroe-

lastography, which have shown potential for in vivo non-invasive diagnosis of breast

cancers [57] as well as diagnosis and staging of lymphedema [6, 65]. Viscoelasticity

imaging uses elastographic methods to estimate the time-dependent behavior of the

axial strains in materials that can be modeled as viscoelastic [45, 68]. Viscoelastic
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properties of tissues have been proven to help in the differentiation between malig-

nant and benign tumors [73]. Poroelasticity imaging uses elastographic techniques

for imaging the temporal behavior of materials that can be modeled as sponges,

that is, consisting of a solid skeleton, or matrix, filled with fluid [2, 4, 61]. In both

viscoelastic and poroelastic models of tissues under stress relaxation or creep tests,

the strain time constants (TCs) are indicative of the underlying tissue mechanical

properties [2, 18, 51]. Consequently, in the past few years, several algorithms have

been proposed that deal with the estimation of the local TC from sets of temporal

strain data [4, 65, 51, 1].

Previous studies have shown that elastographic TC imaging may be useful for

real-time clinical applications [57, 6, 65]. These applications include the characteriza-

tion of non-palpable breast lesions, [22], the tracking of changes in tissue mechanical

properties with lymphedema [6], and the determination of the presence of patholo-

gies based on non-uniformities in tissues [61]. However, the clinical applicability of

these techniques is sometimes challenged by the long time required for the acquisition

of raw ultrasonic data necessary to generate the TC elastogram [51]. Minimization

of this time would be beneficial in clinical applications and for real-time diagnostic

imaging. Furthermore, previous work has suggested that the relationship between

the acquisition time (of the raw ultrasonic temporal data) and the quality of the

resulting elastographic TC estimates depends on the level of noise present in the ac-

quired strain-versus-time curves and also on the elastographic TC for the theoretical,

noiseless strain-versus-time curve typical of the sample being tested [51]. A further

investigation of this relationship could significantly improve our basic understanding

of elastographic TC methods.

While studies that deal with elastographic TC estimation (both for viscoelastic

and poroelastic tissue models) are retrievable in the literature, the minimum data ac-
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quisition requirements necessary to make accurate and reliable strain TC estimations

are yet unclear. This problem is challenging as strain TC estimations are typically

acquired through least square error (LSE) minimization, which needs careful consid-

eration of sampling requirements that have not yet been fully studied.

This work aims at exploring the data acquisition requirements necessary to make

accurate and reliable elastographic TC estimations. More specifically, the effects of

window of observation (WoO), acquisition rate, and input noise on TC estimation

were studied. With the results of this study, the relationship between the WoO

necessary for accurate strain TC estimations and the underlying theoretical TC will

be elucidated. The study also investigates the possibility of obtaining accurate TC

estimates when using acquisition times significantly smaller than the underlying the-

oretical TC. This result could have important implications for clinical applications of

temporal elastographic techniques. Finally, the effects of input noise and acquisition

rate on the accuracy of the resulting strain TC estimates is studied. While the results

of the study shown in this chapter specifically refer to ultrasound TC elastography,

the findings reported here may be useful for general studies aiming at estimating the

temporal mechanical behavior of tissues.

3.2 Methods

3.2.1 Model used for the study

When a viscoelastic or poroelastic tissue is subjected to a constant force or dis-

placement, the strain experienced by the tissue changes with time. The TCs asso-

ciated with the strain temporal data can be estimated using a number of models,

which include exponential polynomials [2, 70, 74].

The study shown in this chapter deals with a simplified single-exponential model

suitable for strain temporal tracking in viscoelastic, and under simplified conditions,
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in poroelastic material. Based on this model and in the presence of noise, the tem-

poral behavior of strain experienced by a material under compression may be ap-

proximated as shown in equation 3.1.

s(ti) = η + (α− η)e−
ti
τ +Ni(ti), t > 0 (3.1)

In this equation s(ti) is a strain sample at time ti, η is the equilibrium strain at

time t = ∞, α is the initial strain at time t = 0+, τ is the theoretical strain time

constant (TC), and Ni(ti) is random noise. In equation 3.1, the noise at each sample

point Ni(ti) is assumed to come from a zero-mean Gaussian noise distribution. In

viscoelastic materials, α = 0. In this study, we use this model with the assumption

of a constant signal-to-noise ratio (SNR) for the entire duration of the signal.

The two parameters of interest in this model that are typically unknown are

the TC, τ and the equilibrium point (EP) strain value, η. Extraction of these two

parameters from a given set of noisy data is typically performed using curve-fitting

methods. This chapter focuses on the time requirements for accurate and reliable

estimation of τ . Similar considerations can also be applied to η.

3.2.2 Simulations

The simulations followed the model given by equation 3.1. Each simulated curve

corresponded to a given value of the strain TC τ while setting the values of α and η

at 0.0001 and 0.25, respectively, as used in previous work [51]. The values of τ used

in this study varied within the range 5s and 300s, in increments of 5s. Table 3.1

shows a table describing the cases studied. These values may be representative of the

TCs expected in some tissues and tissue-mimicking materials [64, 57, 6]. However,

the results of this study can be easily extended to values of TCs outside the range,

if needed. The amount of additive noise on the strain estimates was also varied
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within the range specified in table 3.1 and as explained below. Fifty independent

realizations were considered for each analyzed case.

Table 3.1: Input parameters used for the simulation study

Minimum
TC

Maximum
TC

SNR (dB)
Acquisition
Rate (Hz)

Largest Window
of observation
(% TC)

5 300 10 100 250
5 300 15 100 250
5 300 20 100 250
5 300 25 100 250
5 300 30 100 250
5 300 30 20 250
5 300 30 2 250

3.2.3 Statistical analysis

As a measure of the quality of the estimator, the following image quality factors

were computed. The mean absolute error (MAE) for the estimator was computed

for a series of 50 estimates as in equation 3.2.

MeanAbsoluteError(%) = mean(
|τ̂i − τ |
τ

)× 100 (3.2)

In this equation τ̂i is the series of 50 estimates acquired from the estimator and

τ is the underlying theoretical strain TC. The MAE differs from the previously used

measure of percent bias from [51]. While the bias is a measure that is strictly related

to the estimator’s accuracy, the MAE is a quality factor that is affected by both

the accuracy and the precision of the estimator - the lower the MAE, the better the

quality of the estimator.
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For a given τ , a threshold window of observation (TWO) is defined as the shortest

window of observation such that the MAE would be less than or equal 10% so as

to guarantee a certain level of quality. The level of quality required is dependent

on the application for which TC imaging is being used and, in this case, was chosen

arbitrarily. However, the choice of an MAE ≤ 10% is consistent with a previously

executed study on breast cancer imaging found in the literature [57]. While, in

general, the actual values of the TWO may be different if a different threshold is

chosen, its functionality and the overall qualitative analysis reported below do not

depend on the chosen threshold. The TWO can be expressed in seconds or as a

percentage of the theoretical TC as in equation 3.3.

TWO(%TC) =
total acquisition time

τ
× 100 (3.3)

Measuring the TWO in seconds is useful because it gives a simple and potentially

practical estimate of the time necessary to accurately estimate a strain TC under a

specific set of acquisition parameters. Measuring the TWO in terms of percentage

of the theoretical TC is useful for theoretical analysis even though, in practice, the

underlying TC of a material is often unknown. The usefulness of this theoretical

analysis comes from the fact that it is well understood that the range of TCs that

can be expected for a given tissue are application dependent and can be studied in

the future.

To determine the TWO corresponding to a given TC, the MAE was computed for

each simulated curve while the WoO was varied in increments of 1% of the underlying

theoretical TC. The last analyzed WoO corresponded to 250% of the TC. This value

was found to be sufficient for the analysis in all cases.

The effect on the TWO by other acquisition parameters, such as acquisition rate

25



and input SNR, was also analyzed by running multiple simulations with varying

acquisition rates and input SNR over the same range of TCs (see Table 3.1).

The final parameter considered for the statistical analysis was the output SNR

of the TC estimator which can be calculated as in equation 3.4.

SNR = 20log10(
mean(τ̂i)

std( ˆtaui)
) (3.4)

3.2.4 Experiments

Simulation data typically provide upper bound performance assessment because

they cannot take into consideration all possible factors that may influence experi-

mental results. Therefore, a set of experiments with the goal of corroborating the

simulation results in specific testing conditions was performed. The set of experi-

ments was performed using a phantom material previously used for elastographic TC

experiments [51, 85]. The sample was placed in a water tank and compressed from

the top using an apparatus that applied a constant compressive force to the sample.

Ultrasound radio frequency (RF) data were acquired using a 38mm real-time linear

array scanner Sonix RB(Ultrasonix, Richmond, British Colombia, Canada) that has

128 elements, a bandwidth between 5 and 14 MHz, a center frequency of 6.6MHz,

50% fractional bandwidth at −6dB, sampling frequency of 40MHz and 1mm beam

width at the focus. The data were acquired for 600s at an average frame rate of 1

frame/s while the sample was subjected to creep compression. This choice of WoO

and frame rate was dictated by memory limitations of the buffer in the ultrasound

system available at the time in the TAMU ultrasound lab. It has been proven to be

sufficient for accurate strain TC measurements in the type of phantom used for this

study [51]. Temporal axial strain elastograms were generated from the time-series

of RF data using cross-correlation techniques, and axial strain TC elastograms were
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generated from the temporal axial strain elastograms using an LM LSE minimization

algorithm [51].

The effect of the WoO on the experimental strain TC estimation was evaluated

in the following manner. First, a base axial strain TC elastogram of the phantom

being tested was obtained using all temporal data (0− 800s). To analyze the effect

of WoO reduction, the WoO was reduced by truncating the temporal data. For each

WoO analyzed, a new axial strain TC elastogram was computed. The MAE was

evaluated as specified in equation 3.2, with τ̂i estimated from the new axial axial

strain TC elastogram and τ set equal to the mean axial strain TC estimated from

the elastogram corresponding to the largest WoO. Although this value may not be

strictly equal to the true underlying axial strain TC, a previous study has shown that

it is close to the true underlying average strain TC (measured through mechanical

testing) within ±10% [64, 51]. The experimental data were statistically compared

with corresponding simulations.

3.3 Results

3.3.1 Simulation results

Figure 3.1 shows the MAE for the strain TC estimator as a function of the WoO

for five different values of underlying theoretical strain TC. Statistical analysis of

the simulation data reported in figure 3.1 is between 15% to 20% of the theoretical

TC for most TC curves analyzed in this study. This threshold is significantly higher

for the 5s TC (presumably due to the fact that, for these small TC values, the

estimator does not have a sufficient number of data points to produce an error-less

TC estimate).

Figures 3.2 and 3.3 show the effect of input strain SNR on the TWO for TCs

ranging between 5s and 300s. As the input noise increases, the estimator requires a
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Figure 3.1: MAE for the TC estimator as a function of the WoO for different time
constants when the strain SNR = 20dB and the strain sampling frequency is 100Hz

longer TWO to compute more correct TC estimates, especially for small TC values.

Clearly, strain input noise plays a significant role in the performance of the TC

estimator.

Figures 3.4 and 3.5 show the effect of acquisition rate on the TWO for TCs ranging

between 5s and 300s. These figures suggest that the acquisition rate can have a

significant impact on the amount of time necessary that allows high performance TC

estimation. Note that Figures 3.3 and 3.5 give a direct relationship between the total

acquisition time required for quality TC estimation and the underlying theoretical

TC. These results suggest that there is a linear relationship between the TWO and

the underlying theoretical TC. The linear regression fits of the data in these two

figures reveal coefficients of determinations R2 consistently greater than 0.9. The

slope of the line describing this relationship depends not only on the input SNR but

also on the acquisition rate being used.
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Figure 3.2: TWO expressed as a percentage of the underlying theoretical TC for
different values of input strain SNR at a 100Hz strain sampling frequency

Figure 3.3: TWO expressed in seconds for different values of input strain SNR at a
100Hz strain sampling frequency
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Figure 3.4: TWO expressed as a percentage of the underlying theoretical as a function
of the theoretical TC for different acquisition rates when the strain SNR = 30dB.

Figure 3.5: TWO expressed in seconds as a function of the theoretical TC for different
acquisition rates when the strain SNR = 30dB.
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Figure 3.6: Expected output SNR of the TC estimator as a function of the theoretical
TC when the input strain SNR = 10dB and the strain sampling rate is 100Hz

Figures 3.6, 3.7 and 3.8 show the expected output SNR of the TC estimator as

a function of TC for an input strain SNR of 10dB, 20dB, and 30dB respectively.

In each of these figures, the output SNR obtained when using a WoO equal to the

TWO is compared with the output SNR for a WoO equal to 100% of the theoretical

TC. As it can be observed from these graphs, the output SNR of the TC estimator

obtained when using a WoO equal to 100% of the theoretical TC can be significantly

higher than the output SNR obtained when using the TWO. However, use of the

TWO guarantees at least a certain level of output SNR, regardless of the input SNR

- in our case, approximately 20dB. This specific value is a result of the way the

TWO was defined in this study. This result is consistent with previous findings [51].

Figure 3.9 shows the expected output SNR of the TC estimator as a function

of the sampling period in logarithmic scale for three values of input strain SNR.

For these simulations, the underlying theoretical strain TC was fixed at 100 s and
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Figure 3.7: Expected output SNR of the TC estimator as a function of the theoretical
TC when the input strain SNR = 20dB and the strain sampling rate is 100Hz

Figure 3.8: Expected output SNR of the TC estimator as a function of the theoretical
TC when the input strain SNR = 30dB and the strain sampling rate is 100Hz
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Figure 3.9: Expected output SNR of the TC estimator as a function of the sampling
period for different input strain SNRs. The theoretical TC = 100s and WoO is fixed
at 100s.

the WoO at 100 s. This figure shows that the TC SNR decreases exponentially

as the sampling period increases. Note that, provided that the sampling period is

sufficiently short, the output SNR of the TC estimator is in general higher than the

input strain SNR. These output SNR results can be intuitively explained by the fact

that the LSE curve-fitting estimation behaves as a filter on the strain samples as it

was also observed in an earlier study [51].

3.3.2 Experimental results

Figure 3.10 (top) shows an experimental axial strain TC elastogram obtained

form the poroelastic phantom subjected to creep compression. The axial strain TC

elastogram was computed using all acquired temporal data (0 - 600s) and was used

as reference for the MAE computation. The top figure shows a selected area where

the mean axial strain TC = 142s± 24s and the elastographic SNR = 14.38dB. The
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Figure 3.10: Experimental axial strain TC elastograms obtained from a phantom
under creep compression

series of images at the bottom of figure 3.10 represent axial strain TC elastograms

(of the selected area) obtained using reduced WoOs.

In figure 3.10 the use of shorter WoOs generally leads to an underestimation

of the axial strain TC. This is intuitive, as higher TC curves display more unique

information at higher times. This unique information is lost when a lower WoO is

chosen. Thus, a higher TC curve may behave as a lower TC curve within a relatively

short WoO, and the high TC values may be incorrectly estimated as low TC values

because there is simply insufficient time for the curve to manifest its real TC. This

may result in more uniform TC images with overall underestimated TC values. This

could explain why the output SNR of the experimental TC elastograms does not

seem to be visibly deteriorated (and, in fact, seems to improve) by the use of a

reduced WoO. Thus, it is evident that observation of a TC image’s SNR may not

constitute a reliable measure of TC estimation correctness.
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Figure 3.11: Experimental MAE and predicted MAE as a function of WoO

Figure 3.11 shows the MAE obtained from the experimental data (blue line). For

comparison, the MAE obtained using the corresponding simulation data is also re-

ported (red line). Analysis of the experimental results shows a statistical equivalence

between the experimental MAE and the MAE predicted by the simulations. Thus,

the simulation results may be used as upper bound guidance for the prediction of

the acquisition parameters to be used in a given TC estimation experiment. How-

ever, Figure 3.11 can be acquired in experiments at about 1.5 to 2 times the WoO

that is predicted in simulations. This factor may be higher if dealing with very low

elastographic SNR or may be lower for very high acquisition frame rates.

3.4 Discussion

This chapter investigated the effects of temporal acquisition parameters on elasto-

graphic TC estimation. Using a simulation model, it shows that the error associated

with estimating a strain TC depends on the temporal WoO used. The simulation
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results reported in this chapter show that both the input strain SNR and the acqui-

sition rate may have a significant impact on the window of acquisition for error-less

TC estimations. Consequently, the quality of the resulting TC estimates may be

directly related to the relative weights of these two parameters. For example, it

may be possible to obtain TC estimates with a predefined level of quality even with

relatively short WoO (compared with the underlying TC) provided sufficiently high

acquisition rates. This is an important observation, which may have implications

not only for current ultrasound elastographic techniques but also for other imaging

modalities dealing with exponential TC estimation. For example, the development

of ultrafast magnetic resonance (MR) elastography systems may prove to be benefi-

cial for studies aiming at imagin time-dependent phenomena in tissue [11]. However,

increased acquisition rates affect the TWO (and consequently the quality of the TC

estimation) only up to a certain point. For example, figures 3.4 and 3.5 do not

show any statistcally significant reduction the TWO by increasing the acquisition

rate from 100Hz to 200Hz. Similarly, increased input strain SNR values result in

shorter required TWOs. As for the acquisition rate case, the results obtained with

different input strain SNR values (Figures 3.2 and 3.3) seem to suggest that the effect

of this parameter on the required WoO exhibit an asymptotic behavior. Thus, the

use of high-quality strain estimators is suggested in real-time, clinical applications.

On the contrary, when dealing with inherently noisy estimator, such as those that

require lateral strain estimation [38, 61], it may be necessary to use higher WoOs to

guarantee at least a certain level of output SNR.

The results of this study also suggest the presence of a linear relationship between

the WoO necessary for error-less TC estimation and the underlying theoretical TC.

This result might be useful to predict the required data acquisition parameters in a

given clinical application. Ideally, the findings of this study could be translated into
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a simple tool that could be used by a physician or ultrasound technician to quickly

and automatically determine the window of acquisition of ultrasound data in a given

clinical elastography application. Creation of a database with the expected strain

TCs corresponding to various tissues, such as tumors, muscles, and other soft tissues,

would be the first step towards this goal.

This chapter also presented a pilot experimental study, which shows the begin-

nings of an experimental methodology that my be used in the future to fully statisti-

cally corroborate the simulation analysis presented. The limited experimental results

reported in this study suggest that simulation data may be used as an upper predic-

tor bound of the acquisition parameters for strain TC estimation, possibly providing

useful and practical guidance in the design of TC elastography experiments [53, 76].

The use of extended WoOs may pose severe limitations on the applicability of

elastographic TC techniques in clinical settings. While the use of long WoOs is often

benefitial for the quality of the resulting TC elastograms, in clinical applications,

it might be possible to reduce the acquisition window and still maintain the same

level of image quality by increasing the acquisition rate. Typical ultrasound systems

have a limited buffer for acquiring samples. In addition, physics imposes limitation

on the highest rate that can be used to acquire ultrasonic data, which depends

on the depth of the tissue being imaged. This limitation may not exist in other

imaging modalities. This study shows that until the limits imposed by physics and

data buffer are reached, quality elastographic TC estimation becomes a matter of

properly tuning the acquisition rate and the WoO to the range of the TCs expected

from the tissue being investigated.

The work presented in this chapter might be a starting point for the development

of a more general theoretical framework describing the SNR for strain TC imaging as

a function of sampling frequency, WoO, underlying TC, and input strain SNR. This
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article has shown that the solution of such a sampling problem is challenging as it

requires in-depth exploration of non-linear LSE parameter estimation. While, indeed,

LSE parameter estimation is itself easily implementable, as there are several software

packages that are readily available, its theoretical intricacies and complications are

often erroneously overlooked.

While the scope of this work was limited to the study of the effects of selected

acquisition parameters on strain TC estimation, the findings of this work may be

more generally applicable to the estimation of other time-dependent elastographic

parameters and also for elastographic techniques other than ultrasound elastography,

such as MR elastography. Even more generally, the results shown in this work may

be valuable for studies outside the field of elastography that involve exponential TC

estimation.

3.5 Conclusion

This chapter investigated the temporal acquisition parameters on strain TC esti-

mation. The study shows that the total acquisition time necessary for error-less TC

estimates depends on the underlying TC values. The results also show that error-less

estimates of the strain TC could be achieved with WoO significantly shorter than the

underlying theoretical TC provided fast acquisition rates. These results may have

practical implication in studies that aim at imaging the temporal behavior of tissues.

It should be noted that this study also brings up an interesting doubt. The

experimental study shows that despite the fact that the TC estimator was more

incorrect when the experimental window of observation decreased, that the image

SNR increased. In medical imaging, judgment on the correctness of the image is

often based on how noisy or visually appealing the image appears to be. However,

the study shows that this is perhaps incorrect.
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Now that a full understanding of the sampling requirements of the TC estimator

has been acquired, it’s important to develop a measurement of how well the curve

estimated by the LM LSE method fits a given set of data. The next chapter of this

dissertation tackles that problem.
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4. RESIMULATION OF NOISE: A PRECISION ESTIMATOR FOR LEAST

SQUARE ERROR CURVE-FITTING TESTED FOR AXIAL STRAIN TIME 

CONSTANT IMAGING*

Devising a measurement of how reliably a TC curve fits a set of temporal strain

data is one of the key elements of this dissertation. About 2 years were spent devising

and formalizing an algorithm that could show an easily understandable measurement

of reliability. While the algorithm was only tested and implemented for single expo-

nential time constant curve-fitting, it is likely that it can be used for all non-linear

least square error curve-fitting. The work shown in this chapter was published as a

peer-reviewed journal article [49], which as of this writing, received the best praise

from reviewers in my career.

4.1 Introduction

Ultrasound elastography is a well-established non-invasive imaging modality, which

can be used to complement ultrasound B-mode imaging to aid in the diagnosis and

staging of various diseases and pathologies in soft tissues [53, 32, 80, 81]. Elastog-

raphy images the local strains that tissues undergo when placed under a mechanical

stress or load resulting in what are referred to as ’strain elastograms’. Axial strain

elastograms are images of the strain tensor component along the axis of insonifica-

tion [51]. These have been shown to be highly correlated with changes in the tissue

stiffness distribution when the tissue is assumed to behave as a linearly elastic solid

[75].

Most clinical elastography methods implement a quasi-static stress to image time

*© Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP Pub-
lishing. All rights reserved.

40



independent strain behavior of tissues. However, in the past several years, novel

emerging elastographic techniques have been proposed that may allow imaging ad-

ditional mechanical properties of tissues related to the tissue’s temporal behavior.

Several mathematical models and imaging techniques have been used to study the

time dependent behavior of tissues under mechanical loads.

Poroelastography refers to the application of elastography techniques for imaging

the temporal behaviour of materials that can be modeled as poroelastic media, due

to their relative high fluid content and mobility [38, 63, 64, 4, 5, 56]. A poroelastic

material is typically modeled as consisting of a solid matrix filled with a fluid [2,

4, 5, 61]. Similarly, viscoelasticity imaging refers to the application of elastography

techniques for imaging the temporal behavior of materials that can be modeled as

viscoelastic media [68, 45, 74]. A viscoelastic material can be modeled as a spring

and dashpot system. Viscoelastic properties of tissues have been shown to correlate

well with pathological changes in stroma and connective tissues [73].

These novel temporal elastographic modalities have led to the creation of sev-

eral types of elastograms that may provide new information about the behavior of

tissues. Among these are the effective Poisson’s ratio (EPR) elastogram, the poroe-

lastogram, the time constant (TC) elastogram, the axial strain equilibrium point

(EP) elastogram, and the EPR TC elastogram. For clarification, it’s worth mention-

ing that for both poroelastic and viscoelastic media, the strain response due to creep

compression and stress relaxation follow an exponential saturating pattern with a

time constant and equilibrium point similar to the step response of an RC circuit

[51]. Axial strain TC and EP elastograms are images of the time constants and

equilibrium points calculated pixel by pixel from a collection of axial axial strain

elastograms [51]. Technical details on TC and EP elastograms as well as EPR elas-

tograms can be found in previously published work [38, 61, 51, 50, 14]. Several

41



of these elastograms are generated by using Least Square Error (LSE) parameter

estimation with a root-finding algorithm such as the Levenberg-Marquardt (LM)

method. The global objective of this chapter is to provide a measure of reliability

for the estimated parameters.

LSE estimation can be applied for both viscoelastic and poroelastic tissues [61,

51, 1, 50, 14]. In the viscoelastic case, the TC is a function of both the stiffness and

viscosity of the tissue. In the poroelastic case, the TC is a function of the stiffness

and permeability of the solid matrix and the viscosity of the fluid matrix [2, 14]. Nair

et al [51] presented and analyzed a real-time Levenberg-Marquardt (LM) optimized

least square error (LSE) based estimator implemented on a graphics processing unit

(GPU). In [50] that analysis was extended to present an assessment of LM and EP

estimation correctness that can be expected for a given strain signal to noise ratio

(SNR), strain sampling rate, and strain window of observation.

Several works have dealt with elastographic TC estimations, some even proposing

the use of TC estimation for diagnostic purposes [51, 50, 57]. Nair et al [51, 50]

have referenced the need for an easily understandable measure of reliability of TC

and EP estimates. The literature surveyed so far has made no serious effort to

tackle the problem of estimate reliability measurement. Available literature has

done extensive studies which suggest that the quality of strain TC estimates can be

assessed by observing image quality measures - like image SNR and CNR- of the

resulting TC and EP images. However, these image quality measures can result in a

false assessment of estimated quality. In clinical situations, a measure of estimated

reliability would be of utmost importance as the images used for immediate diagnosis

may seem usable and yet be completely incorrect.

In LSE estimation, a typical measure of reliability that is used is the correlation

coefficient (CorrCoef) between experimental data points available and the resulting
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estimated curve [29]. This CorrCoef between two populations is the covariance

between the populations divided by the product of each population’s standard devi-

ation. This measure is suitable when the data points are fit to a linear model, as the

CorrCoef provides a measure of the linearity of the relationship between two sets of

data. When the model fitted to is not linear - as is the case with strain TC imaging

as well as in other imaging modalities [46]- the CorrCoef can provide a measure of

overlap between the estimated curve and the data points being fitted as a complete

overlap will result in CorrCoef =1. However, it does not address failures of reliability

that can come from data sampling conditions which have been found to be crucial

for correct TC estimation [50].

Specifically, the work in this chapter analyzes a novel technique for estimating

the precision of LSE estimates called Resimulation of Noise (RoN) and tests it for

the estimation of axial strain TC estimates. This algorithm presents a reliability

measure for both TC estimates in terms of the spread of these estimates, under the

same data acquisition conditions. The RoN algorithm presents this in an easy to un-

derstand ±Error format. While the RoN algorithm was implemented specifically for

ultrasound elastographic TC and EP estimation, the algorithm can be easily modi-

fied and made useful for other imaging and parameter estimation beyond ultrasound

and imaging applications.

4.2 Theoretical background

4.2.1 Least square error parameter estimation and the general RoN algorithm

Least Square Error (LSE) parameter estimation of time dependent phenomena

aims to fit a series of n samples in time, s(ti), that have been affected by additive

Gaussian noise, to a model (function), f(X, t), where X is the set of parameters for

function f . LSE estimation is well-suited for ultrasound elastography applications

43



as the noise affecting strain measurements is often modeled as Gaussian [14, 83].

LSE finds the best fit by finding X̂ that minimizes the square error (SE) between

s(ti) and f(X, t). The square error is defined by Equation 4.1

SE(X̂) =
n∑
i=1

(s(ti)− f(X̂, ti))
2 (4.1)

Resimulation of noise creates a series of noisy samples from the original samples

and the estimated curve with the following resimulation algorithm:

1. From the original s(ti), estimate parameters X̂ using LSE LM.

2. For each s(ti) calculate d2(ti) = (s(ti)− f(X̂, ti))
2.

3. Simulate a series s̃j(ti) = f(X̂, ti) + N(0, d(ti)) for 1 ≤ j ≤ r where r is

the desired number of resimulation trials and N(0, d(ti)) is a sampling from

Gaussian random variable that is zero-mean and with standard deviation d(ti).

4. For each series s̃j(ti) estimate (X̃j) using LSE LM

5. Calculate σX̃ = stddev(X̃j)

The resimulation of noise algorithm artificially creates a series of ’resamplings’ of

s(ti). Typically, it would be preferable to resample s(ti) by performing a retrial of

an experiment under the exact same conditions, but this can often be impossible.

However, assuming an n number of experiment trials were indeed possible, each

providing an estimate X̂k, then a good measure of reliability given a particular level

of noise would be to find the standard deviations σX̂ = stddev(X̂k). σX̂ would give a

measure of how much variability can be expected in the estimate. The RoN method

tries to simulate the process of creating several experiment trials. Ideally, for the

resimulation method σX̃ ≈ σX̂ .
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4.2.2 Least square error and RoN for temporal elastography

For poroelasticity and viscoelasticity TC imaging, a common and useful simplified

approximation of the temporal behavior of an elastographic parameter of interest s

is given by Equation 4.2 [51, 57, 2, 61, 50]

s(t) = η + (α− η)e−
t
τ (4.2)

where s(t) is the value of the elastographic parameter of interest at time t, α is the

value of s at time t = 0+ (i.e., immediately after the application of the excitation), η

is the equilibrium point (E.P) (i.e. s(t), at t =∞) of the elastographic parameter of

interest and τ is the time constant (TC) of the elastographic parameter of interest.

Thus, the acquirable noisy samples of the strain s, denoted s(ti), are given by

Equation 4.3 [51, 50].

s(ti) = η + (α− η)e−
ti
τ +Ni(ti), 1 ≤ i ≤ m (4.3)

where s(ti) is the sample at time ti and Ni(ti) is the noise level at time ti. In this

mathematical model each Ni(ti) is assumed to come from a zero-mean Gaussian noise

distribution (i.e., Ni(ti) ∼ N(0, σi)) [51, 30, 76]. Because in elastography applications

t1 ≈ 0 and the noise level in s(t1) is low α does not need to be estimated using the

LSE method and can instead be estimated as α ≈ s(t1) [51]. Therefore, the LSE

equation becomes:

LSE(τ̂ , η̂) =
n∑
i=1

(s(ti)− (η̂ + (α− η̂)e−
−ti
τ̂ ))2 (4.4)

This chapter will test the RoN LSE estimate precision estimator for the time

constant model shown in Equation 4.2, specifically for s being the axial strain. For
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clarity, the RoN algorithm is specified for the axial strain TC case as follows:

1. From the original s(ti), estimate (τ̂ , η̂) using LSE LM.

2. For each s(ti) calculate d2(ti) = (s(ti)− (η̂ + (α− η̂)e−
ti
τ̂ ))2.

3. Simulate a series s̃j(ti) = η̂ + (α − η̂)e−
ti
τ̂ + N(0, d(ti)) for 1 ≤ j ≤ r where r

is the desired number of resimulation trials.

4. For a particular series s̃j(ti) estimate (τ̃j, η̃j) using LSE LM

5. Calculate στ̃ = stddev(τ̃j) and ση̃ = stddev(η̃j)

4.3 Methods

4.3.1 Noise model

The noise model used during simulations is additive Gaussian distribution noise

with a constant elastogram SNR. This noise model has been used previously and is

consistent with the nature of temporal elastography experiments [51]. SNR for a

strain sample s(ti) curve, is calculated as SNR(dB) = 20×logmean(s(ti))/stddev(s(ti)).

4.3.2 1D simulations

Simulations were carried out to test the veracity of the statement: στ̃ ≈ στ̂ .

ση̂ ≈ ση̃ was tested but its results are not shown because prior work has shown

that η̂ estimates are already very reliable, thereby making its analysis uninteresting

[50]. All simulations created noisy sampled TC curves as per Equation 4.3 with time

samples ranging from 1 s to 600 s and sampled every second. The strain SNRs for

this study ranged from 10 dB to 15 dB at increments of 1 dB. The algorithm was

tested for sufficiently sampled conditions, where the time constants, τ , were within

the range of good LSE estimation for the 1 s strain sampling rate and 600 s window
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of observation and also for insufficiently conditions, where the time constants were

too high to provide a good estimate.

4.3.2.1 Insufficiently sampled and sufficiently sampled conditions

The effectiveness of the LM LSE algorithm for different input strain SNRs, η,

and τ has been previously studied and it was shown that the required window of

observation (WoO) for near error-less TC estimation is monotonically increasing

with respect to τ [50]. The required window of observation was referred to as the

threshold window of observation (TWO). To test the resimulation of noise algorithm,

two families of cases were studied: one in which the WoO was larger than the TWO

(i.e. sufficiently sampled) and another in which the WoO is smaller than the required

TWO (i.e. insufficiently sampled) as found in [50]. Since the simulated noisy TC

curves are sampled until a time t = 600 s, WoO = 600 s. This is an adequate WoO for

TCs less than 1200 s [50]. In order to test how the resimulation of noise algorithm

worked for sufficiently sampled conditions, axial strain time constant curves were

created with τ within the range of 200 s to 700 s at increments of 50 s and η ranging

from 0.05 to 0.15 at increments of 0.01. For insufficiently sampled conditions, axial

strain time constant curves were created with τ in the range of 7000 s to 13000 s at

increments of 1000 s, and again with η ranging from 0.05 to 0.15 at increments of

0.01.

4.3.2.2 Simulation procedure

For both sufficiently sampled and insufficiently sampled conditions, the RoN

spread estimator was compared to the spread of the LM LSE time constant esti-

mator. For a given underlying τ and η, this was done by first creating a theoretical

time constant curve s(t), as in Equation 4.2 with time constant τ and η. To calculate

the spread of the LM LSE estimator, 100 independent noisy time constant curves
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sk(ti), as in Equation 4.3, were created with k ranging from 1 to 100. The noise

added to these samples followed the constant SNR with respect to the noise model

mentioned in subsection 4.3.1. Each series sk(ti) was then input to the LM LSE

estimator, each yielding an estimate τ̂k. The 100 estimates were used to calculate στ̂ .

The first series, s1(ti) was input into the resimulation of noise algorithm to generate

the spread estimate, στ̃ . For the purpose of analysis, the percent spread was used

and evaluated as:

%στ̂ = %spread(τ̂) = 100× στ̂/τ (4.5)

%στ̃ = %spread(τ̃) = 100× στ̃/τ (4.6)

To study the performance of the RoN method as the number of resimulation trials

changes, a case where τ = 300s and η = 0.1 with strain samples ranging from 1s to

600s taken every second was chosen. The RoN algorithm performance was observed

for ranges of r = 10 to r = 100 at increments of 10. For each, r, 100 trials were

executed.

4.3.2.3 Experiments

To show the feasibility of using the RoN method in actual data, an experiment

using tofu, a phantom material previously used for elastographic TC experiments

[51] was performed. The sample was placed in a water tank, and compressed from

the top using an apparatus that applied a constant compressive force to the sample

(to perform a creep test). Ultrasound RF data were acquired using a commercially

available linear array scanner Sonix RP (Ultrasonix, Richmond, BC, Canada) that

has 128 elements, is 38 mm wide, has a bandwidth between 5-14 MHz, a center
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frequency of 6.6 MHz, 50% fractional bandwidth at -6 dB, sampling frequency of

40 MHz, and 1 mm beam-width at the focus. The data were acquired for 584 s

at an average frame rate of 1 frame/sec while the sample was subjected to creep

compression. This choice of window of observation and frame rate was dictated by

memory limitations of the buffer in our ultrasound system but has been proven to

be sufficient for accurate strain TC measurements in the type of phantom used for

this study [51, 50]. Temporal axial strain elastograms were generated from the time-

series of RF data using cross-correlation techniques, and axial strain TC elastograms

were generated considering data from time = 0 to time = WoO. The WoO that were

considered were WoO = {584, 484, 384, 284, 182, 84} s.

For each WoO, three reliability measures were compared for the TC images for

each WoO: the SNR of the TC image, the CorrCoef of the estimated TCs of the

image, and the estimate of the percent precision of the TC estimates using the RoN

method. Intuitively, and also as mentioned in [50], a higher WoO should lead to

more reliable TC estimates.

4.4 Results

4.4.1 Simulation results

The results reported here are presented in terms of the average of the percent

spreads as shown in Equations 4.5 and 4.6 of all τ and η tested for a particular level

of SNR. The average of the the percent spreads %στ̂ , %στ̃ , shall be denoted %̄στ̂ and

%̄στ̃ respectively.

4.4.1.1 Correctness in sufficiently sampled conditions

Figures 4.1, 4.2 and 4.3, show an analysis of the RoN algorithm for sufficiently

sampled conditions as described in section 4.3.2.1. Figure 4.1 shows this analysis

when the RoN algorithm has been set for 100 iterations, r = 100. Figure 4.2 shows
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Figure 4.1: %̄στ̂ and %̄στ̃ in sufficiently sampled conditions with RoN iterations
r = 100.

the average estimated percent spread using the RoN method compared to the LM

percent spread for this scenario and shows a near one-to-one relationship between the

RoN estimated precision and the precision of the LM algorithm. Figure 4.3 shows the

average correlation coefficient of the estimated TC curves using LM and the original

noisy curve.

4.4.1.2 Correctness in insufficiently sampled conditions

Figures 4.4, 4.5, and 4.6, show an analysis of the RoN algorithm under insuf-

ficiently sampled conditions as described in section 4.3.2.1. Figure 4.4 shows this

analysis when the RoN algorithm has been set for r = 100 resimulation trials. Fig-

ure 4.5 shows the average estimated percent spread using the RoN method compared

to the LM percent spread for this scenario and shows a near one-to-one relationship
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Figure 4.2: %̄στ̂ as a function of %̄στ̃ in sufficiently sampled conditions.
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Figure 4.3: Average correlation coeefficient for LM estimates in sufficiently sampled
conditions.
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Figure 4.4: %̄στ̂ and %̄στ̃ in insufficiently sampled conditions with RoN iterations
r = 100.

between the RoN estimated precision and the precision of the LM algorithm. These

figures show that the percent spread for the insufficiently sampled conditions is in the

order of 1014. The mismatch in results between Figures 4.1 and 4.4 and Figures 4.2

and 4.5 is consistent with the results in [50], which shows that under insufficiently

sampled conditions, the TC estimate is subject to high error. Figure 4.6 shows the

average correlation coefficient of the estimated TC curves using LM and the orig-

inal noisy curve. As it can be seen, Figure 4.6 shows a near identical pattern to

the results shown on Figure 4.3 despite the fact that prior studies have shown that

estimate quality should be poor [50]. This indicates that CorrCoeff may not be a

useful measure of estimate reliability.

52



2.5 3 3.5 4 4.5 5 5.5 6 6.5

x 10
14

2.5

3

3.5

4

4.5

5

5.5

6
x 10

14

LM percent precision (%)

R
o

N
 e

s
ti
m

a
te

d
 p

e
rc

e
n

t 
p

re
c
is

io
n

 (
%

)

 

 

Average estimated precision of RoN vs
LM estimator precision

Linear regresion fit,
y = 0.82x + 6.2e+013
CorrCoef = 0.99

Figure 4.5: %̄στ̂ as a function of %̄στ̃ in insufficiently sampled conditions.
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Figure 4.6: Average correlation coeefficient for LM estimates in insufficiently sampled
conditions.
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Figure 4.7: Progression of RoN precision estimator performance with respect to the
number of resimulation trials r when strain SNR = 15, τ = 300 and η = 0.1

4.4.1.3 Effects of number of resimulation trials on RoN performance

Figure 4.7 shows the results of of the RoN method performance dependence on r.

As it can be seen, the average estimated percent spread is not statistically different

as r changes. However the standard deviation of the percent spread estimates shows

a decreasing tendency with respect to r in this case. The standard deviation of στ̃

is 1.4% in the case of r = 10 and decreases to 0.77% in the case of r = 100. This

result shows that r has little bearing on the accuracy of στ̃ , however more precise στ̃

estimates can be achieved with higher r, at the cost of increased processing time.

4.4.2 Experimental results

Figure 4.8 shows the τ image estimated using the LM method for WoO = 584 s,

484 s, 384 s, 284 s, 182 s, and 84 s. These figures show that the LM estimator, on
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average produces a lower estimate for τ as the WoO decreases, which is consistent

in the findings in [50]. Since most of the pixels of Figure 4.8(a) show TCs less

than 150 s, this also means that all the WoOs considered are appropriate for TC

estimation [50]. Figure 4.9 shows the SNR of the resulting τ images as WoO varies.

The SNR does not monotonically increase or decrease as WoO increases. However,

the figure shows that the difference between the maximum and minimum observed

SNR is less than 1.5 dB. Figure 4.10 shows the average and standard deviation of

the correlation coefficient of the estimates in these images. The average correlation

coefficient shows a paradoxical decrease, but it does not decrease in a significant

manner as the dynamic range of the averages shown in Figure 4.10 is less than 0.01

and also because the standard deviations (shown as errorbars) show overlaps in data

between most point pairs of the graph. Also, the difference between the maximum

and minimum average correlation coefficient is less than 0.015. Figure 4.11 shows

estimated percent spread of τ estimates using the RoN method when r = 100. This

figure shows that the percent spread of τ decreases as WoO increases in a significant

manner (as the errobars do not overlap) until WoO = 284 s and shows that τ estimate

reliability increases with respect to WoO. This result is consistent with previously

published work [50] and is expected based on the nature of TC imaging, as the

larger the WoO the signal has more time to manifest its properties.

4.5 Discussion

This chapter proposed, implemented, and analyzed a simple resimulation of noise

time constant precision estimator for τ LSE estimates. Using 1-d simulations it

showed that, using only one series of strain vs. time samples, the RoN algorithm

can correctly track the spread of τ estimates. This estimated spread approximates

the spread that the LM LSE estimator would display if it had several independent
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Figure 4.8: Estimated τ image in the region of interest at Different WoO.
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Figure 4.9: SNR of observed τ estimates vs WoO in the region of interest.
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Figure 4.11: Average estimated percent spread vs WoO in the region of interest.

series of strain vs. time samples at a given SNR, τ , and η as shown in Figures 4.1,

4.4. However, as shown in both these figures, the spread of the precision estimates

calculated using the RoN method is higher than the observable spread of the LM

method. This increase in the spread of spreads should be expected, as the RoN

method simply creates new samples to be fitted using the LM method itself. Figures

4.2 and 4.5 show that on average στ̃ and στ̂ have a very strong linear relationship

with a near 1 slope and near 1 correlation coefficient. In clinical scenarios, multiple

experiments cannot be performed. Thus, the availability of the proposed method

may provide a quick and reliable measure of the quality of the TC estimates.

Figures 4.3 and 4.6 show that the standardly used correlation coefficient estimate

reliability is inadequate as both the sufficiently and insufficiently sampled cases show

the same CorrCoeff values. This happens despite the fact that the LM estimator’s
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percent precision is on average less than 20% in the sufficiently sampled case and

is in the order of 1014 in the insufficiently sampled case for all strain SNRs tested.

Based on this investigation, the correlation coefficient provides an incorrect sense of

estimator reliability. Similarly, a quality estimate based only on an image quality

factor, such as the SNR, may also be misleading.

Figures 4.9 and 4.10 confirm the inappropriateness of using the correlation coeffi-

cient of estimates and visual appeal of resulting images as viable reliability measures.

Previous findings [50] show that TC and EP estimate reliability should increase, the

bigger the window of observation provided for data collection. However, these figures

show that the correlation coefficient and observed SNR of TC images can give incor-

rect impressions about estimate reliability. Figure 4.11 shows that the RoN method

can correctly track estimate reliability. This finding shows that the RoN method

provides a more powerful measure of reliability than methods previously proposed

for TC imaging.

Figure 4.7 shows that the RoN τ precision estimator, on average, accurately

estimates the LM estimator’s precision despite using only r = 10 resimulation trials.

However, the decrease in the standard deviation of the the precision estimates shows

that an increase in r will produce more precise precision estimates. This is an

important observation which can cut down processing time when a quick, qualitative

precision estimate is required.

The analysis of RoN shown in this work centers around its use for improving

LSE estimation for poroelasticity and viscoelasticity imaging because it is a main

topic of interest for this dissertation. However, it should be restated that the RoN

method is meant to improve non-linear LSE estimation in general, and its use has the

potential to impact fields outside of poroelasticity and viscoelasticity imaging or even

ultrasound imaging itself. A full, in-depth analysis of the RoN method for general

59



use is outside the scope of this article but hopefully, the community will adapt the

general structure of the RoN method for their specific use and further investigate its

correctness.

Runtime considerations for the RoN algorithm were not analyzed in this paper

because the runtime is mostly dependent on the number of RoN trials, r and the

runtime of the LM LSE algorithm itself. Essentially, the RoN algorithm calls the

LM LSE algorithm r times. The LM LSE algorithm, itself has been parallelized

and implemented using a Graphics Processing Unit (GPU) successfully in [51] and

is a real time algorithm. Since the RoN algorithm can be described as a series of

independent processes, it is highly parallelizeable. The implementation and further

refinement of the RoN algorithm for use with GPUs is left for future work. Its current

runtime does not jeopardize its useability as a clinical tool.

It should be noted that complete experimental validation of the RoN method

for poroelastic axial strain time constant imaging is currently a very challenging

problem and should be tackled in future work. While, in this work, the preliminary

experimental study shows that the RoN method does track the decrease in estimate

reliability due to decreased sampling, experimentally examining if the RoN generated

TC precision estimates closely follows the actual precision of TC estimates is not

currently possible. The main reason for this is that there are currently no existing

controlled poroelastic ultrasound phantoms with which repeatable experiments are

possible.

4.6 Conclusion

This chapter implemented and analyzed the RoN precision estimator or least

square error estimation. The precision estimator was tested for ultrasound axial

strain time constant estimation. This testing showed that the RoN precision estima-
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tor accurately estimates LSE estimator precision.

Indeed, the RoN estimator tracks how robustly the estimated curve fits the data.

How well an equation fits a given set of data samples can be defined by how drastically

the estimate changes with other data samples of similar level of mismatch. The

devising of this reliability measurement in place, and the sampling requirements for

TC estimation known, it is now possible to consider how well the single exponential

time constant curve fits the axial strain data of non-homogeneous cases. With this

preparation work done and understood, the next chapter of this dissertation discusses

that problem.
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5. SINGLE EXPONENTIAL TIME CONSTANT MODEL HAS THE

POTENTIAL TO BE USED FOR NON-HOMOGENEOUS

POROELASTICITY IMAGING

This chapter shows the culmination of the several years of preparation dedi-

cated towards the simplification of mathematical modeling for poroelasticity imag-

ing. Nearly 2 years of work were spent fine-tuning simulations to show that under

certain conditions single exponential time constant imaging can serve as a potential

imaging tool to image the poroelastic properties of tissues. As of this writing, the

work shown in this chapter is being prepared as a manuscript for submission to a

peer reviewed journal (likely Ultrasound in Medicine and Biology).

5.1 Introduction

In the past two decades technologies have been developed that allow physicians

to acquire images that provide information on the mechanical properties of tissues

[72, 55, 84]. Initially, ultrasound elastography concentrated itself on using quasi-

static techniques that image the local strains in a tissue put under a compressive

force ([54, 80, 83]). These methods generate images which, coupled with B-mode

images, can help a physician’s ability to diagnose underlying diseases and pathologies

([77, 80, 89, 25]).

Hidden in our understanding of mechanical properties is the fact that mechanical

properties are merely parameters in the mathematical model which is chosen to model

the physical behavior of tissues. In current clinical applications, the mechanical

property of highest interest is the tissue’s stiffness when the tissue is assumed to

follow a Hookean behavior. In a Hookean tissue, the strain response to mechanical

compression is completely linear with respect to the applied force and agnostic to
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time ([72, 55, 84]). While the Hookean model has shown itself to be useful, over

the past decade, literature has risen that suggests that further development of non-

Hookean elastography will produce new and powerful diagnostic imaging modalities

([28, 36, 45, 57, 68, 73, 74, 87, 67, 65, 61, 38, 16]).

Among the non-Hookean elastography modalities, poroelastography refers to the

application of elastography techniques for imaging the temporal behavior of materials

that can be modeled as poroelastic media, due to their relative high fluid content

and mobility ([38, 63, 64, 4, 5, 56, 2]). A poroelastic media is typically modeled

as consisting of a solid matrix filled with a fluid ([61, 68]). While the origins of

the study of porous media are in the study of soil mechanics ([79]), the interest

in its investigation for the purposes of modeling tissues is clear as all tissues in

multicellular animals are bathed in interstitial fluid and its flow is critical to tissue

survival. For example, an understanding of underlying tissue poroelastic properties

has already shown the potential for improvements in the diagnosis of certain cancers

and lymphedema staging and tracking([47, 61, 6].

However, despite its potential for deep understanding of tissues, the mathemat-

ical complexity of the poroelastic models are perhaps the single-most impediment

towards its clinical use in medical imaging. Even in the simplest case, of a homoge-

neous cylindrical material under creep compression, the time dependent mechanical

response of the tissue is defined by an infinite sum of saturating exponentials ([2, 4].

To further complicate matters, all medical imaging is intrinsically premised on the

fact that the region to be imaged is non-homogeneous. To the best of the authors’

knowledge, no closed form expression exists that describes the time-dependent be-

havior of poroelastic materials with tumors to compressive forces.

Frequently, when the development of a closed form solution to a differential equa-

tion is difficult to find, the finite element method (FEM) is employed to find a nu-
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merical solution to the problem ([60]). Advances in FEM have allowed its use in

the study of poroelasticity imaging ([14]). In the past few years, there have been

advances in parameter estimation that have developed a Least Square Error (LSE)

based parameter estimator for single exponential time constant curves ([51]) and

characterized its sampling requirements ([50]). Additionally, a method with which a

sensible measurement of how well the single exponential time constant function fits

the strain vs time relationship of a tissue have been developed ([49]. The purpose

of this work is to combine these numerical techniques to explore how well a simple

mathematical relationship involving a single saturating exponential function can fit

the strain vs time behavior of non-homogeneous poroelastic properties.

5.2 Methods

5.2.1 Proposed equation

The single exponential time constant (TC) equation proposed to describe the

local strain vs time behavior in a non-homogeneous poroelastic tissue is shown in

equation 5.1.

s(t) = η + (α− η)e−
t
τ (5.1)

where η is known as the equilibrium point (EP), α is the strain at time t = 0+ and τ

is the time constant (TC). LSE parameter estimation as well as methods to measure

estimate reliability have been studied deeply and shown in previous literature [51,

50, 49]. It is worth nothing that equations similar to this have been used to describe

the strain vs time behavior of viscoelastic materials under creep compression ([57]).

Figure 5.1 shows plots of example strain vs time curves following equation 1.3 with

the same equilibrium point and initial value but different time constants. Equation

5.1 is an assumed simplification based on the findings in [2] which derived that the
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Figure 5.1: Example single exponential TC curves where the initial value is 0.01 and
the equilibrium value is 0.15

strain response with respect to time of a homogeneous cylindrical poroelastic material

under creep compression is described by an infinite sum of saturating exponentials.

5.2.2 Evaluation of equation suitability

In order to evaluate how suitably the single exponenential equation shown in

Equation 5.1 describes the strain vs. time behaviour of a non-homogeneous poroe-

lastic phantom an FEM study was realized.

A non-homogeneous poroelastic phantom placed under creep compression was

simulated. The phantom’s axial strain response was observed from time t = 0 until

time t = 500s in steps of 0.5s. This sampling sequence was chosen following the

findings in [50] in order to assure that inadequacies in sampling do not interfere with

the quality of the LSE parameters estimation.

From the series of strain images, TC and EP images were generated by applying

a Levenberg-Marquardt optimized TC estimator on a pixel-by-pixel basis. The TC

estimator was developed in-house and the image generation process is described in

depth in [51]. In order to measure how well the single exponential TC curve fit
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the time-series of strain samples of each pixel, the reliability of the time-constant

estimates was measured using the resimulation of noise (RoN) method as described

in [49].

Finally, prior in-house research had hinted at the possibility that applying local-

ized mean mask filters on each of the 1000 strain images required to create a TC

image might improve the suitability of the single exponential TC equation. In order

to study the effects mean-filtering would have on the measured reliability of mean

mask-filters of different sizes were applied to the strain images and their effects on

the measured reliability was studied. 2x2, 3x3, 4x4, 5x5, 6x6, and 7x7 square mean

mask-filters were studied.

5.2.3 Resimulation of noise reliability measurement study

The findings in [49] showed that the resimulation of noise method was a method

that could show the precision with which equation 1.3 fit a series of strain samples

for a particular time constant and equilibrium point estimate. In this study, the

percent estimated spread of time constant and equilibrium point estimates as their

percent is referred to as their reliability and is shown in the following equations:

percent reliability η = 100× ση̃
η̂

(5.2)

percent reliability τ = 100× στ̃
τ̂

(5.3)

where ση̃ and στ̃ denote the estimated precision for the equilibrium point and time

constant found by the RoN time constant precision estimator and τ̂ and η̂ denote

the time constant and equliubrium point estimates found by the LSE estimator. It

is important to observe that lower percent reliability measurement actually denote a

more favorable fit.
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Figure 5.2: Description of cross-sectional area of simulated phantom

As has been shown in [49], this measurement of reliability has a tendency to flag

bad fits by returning very large outlier values for the percent reliability. In order

to see how reliable equation 1.3 fits the strain data of each pixel in a time constant

image, the number of pixels in a time constant image that are considered acceptable

is counted. An estimate is considered ”acceptable” if its percent reliability is below

a threshold.

5.2.4 Simulated phantom

For medical imaging, two non-homogeneous geometries of importance are the bi-

layer scenario, which is relevant for lymphedema tracking, and the inclusion scenario,

which is relevant to tumor imaging and potential cancer screening. This chapter fo-

cuses entirely on the inclusion scenario. To simulate a tissue with a tumor, a Finite

Element Model phantom was simulated in the exact manner as described by [14].

The tissue is simulated as a rectangular prism with a cylindrical inclusion, both of

infinite length. Figure 5.2 shows a description of the cross-section of this simulated

phantom.

The software used to execute the FEM simulations was made in-house using
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Figure 5.3: Average percent acceptable number of Time Constant estimates when
the threshold is set to 5 percent

methods described by [60]. The only parameters that were controlled for the study

were the Poisson’s Ratio of the solid matrix (µs), the Young’s Modulus of the solid

matrix (Es) and the permeability. For all simulated phantoms, both the inclusion’s

and the background’s Poisson’s Ratio was set to 0.25. A total of 25 parameter

contrast cases were studied. Contrast combinations in both k and µs were studied.

5.3 Results

5.3.1 Effects of spatial averaging on estimated reliability

Figures 5.3, 5.4, 5.5 show a study of how the size of the mean filter applied

to the strains affects the average number of acceptable pixels in the inclusion and

the background when the threshold of acceptability is set to 5%, 10%, and 15%

respectively. These figures show that the reliability of TC estimation is consistently

non-decreasing as the mean filter window-size increases. In figure 5.3, when the

definition of acceptability is strictest, the effects of filtering appear most dramatic.

The figure shows that when no filter is applied, less than 40% of all pixels in the

inclusion are considered acceptable, but when a 7x7 mean filter is applied, more than

90% of pixels in the inclusion are acceptable.
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Figure 5.4: Average percent acceptable number of Time Constant estimates when
the threshold is set to 10 percent

Figure 5.5: Average percent acceptable number of Time Constant estimates when
the threshold is set to 15 percent
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Figure 5.6: Average percent acceptable number of Equilibrium Point estimates when
the threshold is set to 1 percent

Figures 5.6, 5.7, 5.8 show a study of how the size of the mean filter applied to

the strains affects the average number of acceptable pixels in the inclusion and the

background when the threshold of acceptability is set to 1%, 3%, and 5% respectively.

As is the case with Figures 5.3, 5.4, and 5.5, these figures show that applying a mean

averaging filter on the strains improves the reliability of the equilibrium point fit.

These figures show that the estimation of the equilibrium point is more robust than

time constant estimation. As shown in figure 5.6, even in the strictest definition of

acceptability, over 90% of all pixels in the inclusion and background are considered

acceptable when no filter is applied on the strains. The superior robustness of the

equilibrium point estimates is consistent with the findings in [51, 50].

5.3.2 Effect of Es and k on time constant estimates

Figures 5.9, and 5.10 show the time constant images, time constant reliability

and equilibrium point images of all studied cases when a 7x7 mean filter was applied

to the strain images.

It is worth noting that in figure 5.9, the colorbar is the same for the top 3 rows,

where the inclusion is more permeable than the background. The colorbar range
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Figure 5.7: Average percent acceptable number of Equilibrium Point estimates when
the threshold is set to 3 percent

Figure 5.8: Average percent acceptable number of Equilibrium Point estimates when
the threshold is set to 5 percent
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Figure 5.9: Time constant images of all studied cases

had to be reduced for the bottom 2 rows of this figure so as to allow the display

of the inclusion. This shows that when the background is more permeable than the

inclusion there is a visible and dramatic reduction in the time constants of the entire

image. However, the images also show that an increased permeability in the inclusion

does not manifest itself as a change in the time constant images. This would suggest

that the background’s permeability plays a dominant role in time constant imaging.

This is consistent with the findings in [14].

Figure 5.10 shows that the underlying stiffness, Es, and permeability k contrast

have an effect of the reliability of time constant estimates. For all cases there are
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Figure 5.10: Time constant reliability images of all studied cases

regions in the bottom left and right corners where the time constant estimate relia-

bility is above 10%. The figure also shows that, in the cases where the background is

5 times stiffer than the inclusions, nearly the entire bottom half of the images show

time constant reliabilities above 10%, suggesting that the simplified single exponen-

tial model maybe unsuitable for this scenario.

Figures 5.11, 5.12, 5.13 show how the underlying Es contrast affects the average

number of pixels in time constant images that are considered acceptable. Of note

in figure 5.13 is the fact that even when the threshold of reliability is loosest, less

than 80% of all time constant estimates in the background are considered acceptable
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Figure 5.11: Average percent acceptable time constant estimates with respect to
stiffness contrast when the threshold is set to 5 percent.

when the background is 5 times stiffer than the inclusion.

Figures 5.14, 5.15, 5.16 show how the underlying k contrast affects the average

number of pixels in time constant images that are considered acceptable. These

figures show that there is a decrease in time constant estimate acceptability as the

background becomes more permeable than the inclusion. As shown in figure 5.9 the

time constant estimates show a decreasing tendency as the background permeability

increases. The study of sampling requirements shown by [50] shows that for the same

time sampling frequency of strains, the quality of time constant estimation worsens

as the time constant becomes smaller. However, figure 5.16 shows that when the

measure is loosened to 15%, in all contrast cases, more than 90% of all time constant

estimates are acceptable. The figures show that the acceptability of the TC estimates

is the same for the cases where the inclusion is more permeable than the background

and the case where there is on contrast in permeability. This behavior is predictable
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Figure 5.12: Average percent acceptable time constant estimates with respect to
stiffness contrast when the threshold is set to 10 percent.

Figure 5.13: Average percent acceptable time constant estimates with respect to
stiffness contrast when the threshold is set to 15 percent.
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inclusion 2x 

permeable

equal permeability background 2x 

permeable

background 5x 

permeable

Permeability Contrast

Figure 5.14: Average percent acceptable time constant estimates with respect to
permeability contrast when the threshold is set to 5 percent.

from figures 5.9 and 5.10, because an increase in inclusion permeability contrast has

no observable effect on the time constant images.

5.3.3 Effect of Es and k on equilibrium estimates

Figure 5.17 shows the equilibrium point images for all the different underlying

contrast scenarios studied when a 7x7 mean averaging filter is used. The figure

shows that the equilibrium point estimates are not dependent on the underlying

permeability contrast but only on the underlying stiffness, Es. This is consistent with

findings in previous literature ([2]). Since 5.6 shows that for this filtering scenario,

nearly 100% of all pixels are acceptable even when the threshold is set to 1%, an in-

depth study of how Es and k contrast affects equilibrium point estimate acceptability

would be uninteresting and is not reported.
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inclusion 2x 
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background 5x 

permeable

Permeability Contrast

Figure 5.15: Average percent acceptable time constant estimates with respect to
permeability contrast when the threshold is set to 10 percent.
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inclusion 2x 

permeable

equal permeability background 2x 
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background 5x 

permeable

Permeability Contrast

Figure 5.16: Average percent acceptable time constant estimates with respect to
permeability contrast when the threshold is set to 15 percent.
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Figure 5.17: Equilibrium point images of all studied cases
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5.4 Discussion

The end-purpose of a mathematical model or equation is to define the relation-

ships of different observable physical phenomena. It is likely that the current com-

plexity of the equations surrounding the observable mechanical behavior of poroelas-

tic materials with ultrasound strain elastography have caused the field to stagnate.

While a simplified relationship, as shown in 5.1 has frequently been suggested or

hinted at by previous works [51, 50, 49, 63], the model has been frequently criticized

for being unverified. This work has aimed to show that the simplified mathematical

model has the potential to be useful for poroelasticity tumor imaging because the

time-series of observable data indeed fits the single exponential time constant model.

Figures 5.9 and 5.10 suggest that the model may be unsuitable for the case in

which the background is stiffer than the inclusion. However, this scenario is clini-

cally uninteresting for poroelasticity imaging as inclusions that are softer than the

background are often fluid filled cysts which can be easily diagnosed with standard

ultrasound B-mode imaging. However, for all other cases studied, the equation suit-

ably describes the strain behavior of more than 90% of a poroelastic tissue with

an inclusion within at most a 15% spread when a 7x7 mean filter is applied to the

localized strain measurements. As shown in figures 5.3, 5.4 and 5.5, increasing the

size of the averaging filter improves the suitability of the fit, though it would cer-

tainly come at the cost of a decreased spatial resolution in the time constant and

equilibrium point images.

This study has also shown the effects underlying permeability and stiffness con-

trasts have on the measured time constant and equilibrium point images. When the

background is more permeable than the inclusion, a lowering in the time constant

estimates of the entire image can be observed. In the cases where the inclusion is
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more permeable than the background, the time constant images show no apprecia-

ble difference from the time constant images calculated when the background and

the inclusion were equally permeable. These observations would suggest that the

background’s permeability plays a dominant role in the time constant estimates of

the entire region of interest. When considering that the time dependent strain be-

havior of poroelastic tissues is highly characterized by the fluid flow behavior, it can

be reasoned that the background appears to act as a limiter on the inclusion. The

background’s dominance can be explained by the fact that for fluid to exude out of

the inclusion, it must flow into the background.

This study has shown that the time constant images are dependent on the per-

meability and also the stiffness. This study has also shown that the equilibrium

point images seen are completely dependent on the stiffness contrast of the images.

Indeed, an in-depth study of how permeability and stiffness affect both the time

constant and equilibrium point images, so as to be able to measure the permeability

and stiffness distribution of the region of interest from these images alone is well

beyond the scope of this study. However, the fact that the equilibrium point images

are only dependent on the stiffness contrast of the images suggest that they could

be used to isolate the underlying stiffness distribution. This isolated stiffness distri-

bution information could then be used to enhance the permeability information that

we have demonstrated is present in the time constant images.

Finally, this study showed a ”back-door” FEM-aided approach to simplification

that has not been used before. Ideally, one would want to conduct experiments using

tissue mimicking poroelastic phantoms instead of having to rely solely on FEM sim-

ulation phantoms. However, the challenge with this is that, as of this writing, there

are no poroelastic phantoms with which one can conduct experiments to corroborate

the findings in the FEM-aided approach. While tofu has been frequently used for
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this [51, 50, 49, 63], experiments with controlled permeability and stiffness are not

yet possible. Additionally, the mathematical complexities regarding poroelasticity

imaging have been significant enough, that it would be difficult to interpret the re-

sults from such experiments, even if they could be executed. Indeed, what this work

is attempting to accomplish is to simplify these mathematical complexities so that

poroelasticity imaging experiments can be carried out and successfully interpreted.

5.5 Conclusion

This work and indeed this entire dissertation tested if a simplified saturating

single-exponential equation can describe the strain-vs-time behavior of a non-homogeneous

poroelastic tissue with an inclusion. The quality of fit was measured using the res-

imulation of noise method. The study showed that the simplified model has the

potential to be useful for clinically relevant poroealasticity tumor imaging.
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6. PROPOSED FUTURE WORK AND CONCLUSION

This chapter discusses recommendations on how to expand the findings of this

dissertation so as to improve the field of medical ultrasonic poroelasticity imaging.

The field is complex and even with the work completed in this dissertation is far from

being an acceptable clinical tool. Indeed, the completion of the recommendations

made here will not themselves make the jump towards clinical use, but it’s likely

that they will be a push in the correct direction.

6.1 Scientific improvements

6.1.1 Time constant images to parameter contrast

This dissertation confirmed that the single exponential saturating model the-

oretically fits the axial strain vs time response of a non-homogeneous poroelastic

tissue under creep compression. However, the usefulness of this fit is still in question

as the translation of time constant and equilibrium point maps to poisson’s ratio,

permeability and stiffness maps is non-trivial.

At the onset of this study, it was my belief that the time constant contrast would

give information about permeability contrast. Figure 6.1 shows the time constant

figures when the inclusion is stiffer than the background along with the ratios of

the average time constant of the inclusions, τi, and the average time constant of

the background, τb. These images show that time constant ratio is strictly increasing

with respect to the stiffness contrast in the images as every image in that figure has a

smaller ratio than the one to its left. However, there is no easily recognizable pattern

between the time constant ratios and the permeability contrast. While the pattern

is clear with respect to the stiffness, that information is reflected more efficiently in

the equilibrium point images.
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Figure 6.1: Time constant ratios when the inclusion is stiffer than the background

83



That fact does not, in itself, kill the field of poroelasticity time constant imaging.

It is clear from figure 6.1 that when the background permeability contrast increases,

the time constants in the entire image decrease. Furthermore, it is common in clinical

studies to see background permeability contrasts of more than 5x. Figure 6.2 shows

simulated time constant figures when the background is more permeable. Generally,

after the background is more than 5 times more permeable than the inclusion, there

is a more noticeable increase in time contrast contrast.

6.1.2 Considerations of multiple exponentials

At the onset of the study, it was conjectured it was very likely that a sum of

multiple exponentials like in 6.1 would more suitably fit the axial strain vs time data

from a creep experiment.

s(ti) =
k=m∑
k=1

ηk + (αk − ηk)
− t
τk (6.1)

However, when attempts to implement the LSE estimator when m = 2 for this

model, it became clear that it brought in more complications than clarifications.

As mentioned earlier, the LSE estimator operates by minimizing the LSE. When

attempting to find the parameters τk and ηk that minimize the Least Square Error, it

becomes clear that the optimization problem is not convex. This is evident by the fact

that the τk from the above equation are interchangeable. Furthermore, interpretation

of how the set of τk and ηk are affected by poisson’s ratio, permeability and stiffness

becomes more complicated. As poroelasticity imaging is complicated enough and

the single exponential equation has already been shown to be rich with possibilities,

investigating this more complicated model is at this moment not required.
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Figure 6.2: Time constant rations when the inclusion is stiffer than the background
and the background is more permeable than the inclusion
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6.2 Engineering improvements

6.2.1 FEM runtime improvements

The work shown in this dissertation required an extensive FEM study. To carry

out the scientific improvements suggested in this chapter would require a significant

extension of these simulations. However, the processing time requirements for do-

ing this in a similar fashion to the way this study was realized would make this

prohibitively time-taking.

Almost all FEM simulations for this study were run on a Windows machine

equipped with a Core i5 4460 processor and 8 GB of 1600 MHz RAM. Even with

this equipment, the FEM simulations would take on average 3 hours to complete

successfully. This estimate does not include the number of FEM simulations that

were deemed unsuccessful due to bad setup of time sampling requirements. While,

indeed, this is a vast improvement over the runtimes the TAMU ultrasound lab

experienced 3 years ago, it still makes efficient use of manpower difficult.

In the past decade the use of graphics cards for scientific computations has become

prevalent [10, 33, 15]. They have even been used to accelerate FEM simulations [13,

34]. GPUs have shown the potential to speed up computationally intense procedures

by orders of magnitued [10]. Implementation of Poroelasticity FEM simulations in

GPUs could significantly accelerate ultrasound poroelasticity time constant imaging

research.

6.2.2 Resimulation of noise improvements

GPU acceleration would not only improve the actual execution of FEM simula-

tions. As has been shown in [49], the resimulation of noise method used to create

fit reliability maps is extremely parallelizeable and therefore an excellent candidate

for GPU acceleration. Indeed, the field of medical imaging frequently employs GPU
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acceleration [21]. The TAMU ultrasound lab is no stranger to GPU implementations

[88] and indeed the LM optimized LSE estimator has itself been accelerated with a

GPU [51].

In the simulation procedure used in this dissertation, the employment of the

resimulation of noise method to generate reliability maps is time taking. With the

hardware used to create the FEM simulations, applying the resimulation of noise

method takes around 4 hours per case. Implementing this algorithm to a GPU could

reduce this to runtime to the order of minutes [51]. This would not only be an

improvement to research. It would also allow for the quick generation of reliability

maps in clinical scenarios.

6.2.3 Experimental improvements

A frequently recurring theme seen in poroelasticity imaging is the lack of con-

trollable ultrasound poroelasticity phantoms [51, 50, 49, 14]. Extensive work in the

field of poroelasticity imaging has been done using tofu, however, it is becoming

clear that tofu phantoms are inconsistent because experiments cannot be conducted

with control of stiffness, Poisson’s ratio and permeability. Moreover, creating non-

homogeneous poroelastic phantoms with a connected inclusion, as of this writing,

have not been invented.

Anuj Chaudhry has made some recent advances in the TAMU ultrasound group

with regards to poroelastic phantoms. Chaudhry has extended polyacrylamide-based

gel phantoms, which were previously used in ultrasound viscoelasticity imaging [41],

to become suitable for poroelasticity ultrasound imaging research. These new gel

phantoms’ pore size and stiffness can be controlled. As well, his initial findings show

that it is possible to create poroelastic connected inclusion phantoms from them.

However, the phantoms still need some more investigation to mature into a viable
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tool for poroelasticity imaging research. They should certainly be studied and should

be used to corroborate the findings in this dissertation.

Along with Chaudhry’s polyacrylalamide-based gel phantoms, it would be inter-

esting to consider the employment of 3-d printing to generate phantoms. Currently,

sub-millimeter resolution 3-d printed phantoms have been characterized for the use

for MRI and CT [8]. Recent literature has also employed 3-d printing to aid in

the creation of medical ultrasound tissue mimicking phantoms [17]. While it is still

farfetched to consider directly printing micrometer sized pores directly to create a

phantom, it should be possible to use 3-d printers to control phantom geometries.

6.3 Conclusion

Even with the work developed for this discussion, ultrasound poroelasticity imag-

ing is still far from being a clinically viable tool for diagnosis. However, it is important

to note that tissues should theoretically be poroelastic because all living tissue has a

high fluid content that is required to flow through it for survival. Progress in the field

has been slow for various reasons. Perhaps the extreme mathematical complications

that arise in the poroelastic model coupled with the fact that linear and viscoelastic-

ity imaging are still extremely fruitful despite having less complications can explain

why medical poroelasticity imaging’s slow progress.

This dissertation proposed that the single exponential time constant equation

could describe the strain vs time behavior of a non-homogeneous poroelastic mate-

rial. The work shown in here extensively expanded knowledge about least square

error estimation for time constant curves. Additionally a reliability measurement

which correctly showed the precision with which a least square error estimated curve

fit experimental data was developed as well as implemented and tested for single

exponential time constant curves. This reliability measurement was then used to see
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how well the curve fit simulated experiments. This work showed that under scenar-

ios of clinical interest, the single exponential time constant curve, fit, within 10%

precision the strain data for over 90% of all data in the non-homogeneous simulated

phantom when a mean average mask filter was applied on the localized strain data.
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