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ABSTRACT 

Spiranthes parksii Correll, a terrestrial orchid protected under the Endangered 

Species Act, and its congener Spiranthes cernua (L.) Rich, were studied in the Post Oak 

Savanna Ecoregion of Central Texas in 2014 and 2015. The species are sympatric and 

each produces a single inflorescence in the fall with emergence of a basal rosette during 

flower senescence or early spring. Objectives of this study were to 1) assess variation in 

annual and seasonal growth 2) determine the impact of vertebrate and invertebrate 

herbivores on the rosette and flower phases, and 3) identify invertebrate herbivores that 

utilize S. parksii and S. cernua. To assess variation in annual growth patterns between 

years, an analysis of precipitation, demographic (presence or absence), and growth data 

(leaf area and inflorescence height) was performed. From 2014 to 2015, there was a 

reduction in precipitation, plants present, plant height, and the number of flowering 

plants that survived to seed production. To determine the difference between vertebrate 

and invertebrate herbivores, a 2 x 3 factorial experiment was conducted. Plants were 

randomly assigned to one of five treatments: Control (accessible to vertebrates and 

invertebrates), insecticide with no cage (Vertebrate Only), cage with no insecticide 

(Invertebrate Only), caged with insecticide (Cage+Insecticide; no vertebrate or 

invertebrate), and cage with mesh cover and no insecticide (Mesh; access by only small 

invertebrates). During the flower season, herbivory was visually estimated for plant stalk 

and inflorescence by 5 percent increments. For rosettes, herbivory was visually 

estimated for each leaf in 5 percent increments and averaged over the whole rosette. 

During the first flowering season, vertebrates consumed more reproductive tissue (46%) 
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than invertebrates (3%), while in the second season, there was no significant difference 

between the two at 19% and 2%, respectively. There was no significant difference in 

percent herbivory of rosettes by vertebrates or invertebrates at 9% and 14% in 2014 and 

16% and 11% in 2015.  Invertebrates that were observed consuming Spiranthes sp. 

inflorescences and rosettes were armyworms (Order Lepidoptera: Family Noctuidae), 

grasshoppers (Family Acrididae), and an unidentified member of the Actiinae subfamily. 

This experiment confirms that vertebrates have a direct effect on Spiranthes sp. fitness 

through removal of reproductive tissue and an indirect impact by consuming rosettes. In 

addition, it documents that invertebrate herbivores can have a similar effect on 

inflorescence and rosettes. This knowledge can be important in understanding the 

influence of plant-herbivore interactions on conservation and management plans for S. 

parksii. 
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CHAPTER I  

INTRODUCTION AND OBJECTIVE 

Spiranthes parksii Correll is a federal and state listed endangered terrestrial 

orchid endemic to 13 counties in east central Texas. Of these 13 counties, the largest 

documented colonies are located in Grimes and Brazos counties with the majority of S. 

parksii found within a specific habitat of the Post Oak Savanna ecoregion (Wonkka et al. 

2012). In the last century anthropogenic activities such as agriculture, urbanization, 

timber harvest, crude oil and natural gas extraction, and lignite mining have increased in 

Grimes and Brazos counties (Jackson 2010) which has caused fragmentation and 

reduced habitat for S. parksii populations (USFWS 2009; Wonkka 2010).  

In 2007 the Brazos Valley Solid Waste Management Agency (BVSWMA) began 

construction of the Twin Oaks waste management facility in Grimes County. 

Environmental surveys conducted to meet federal regulatory requirements in 2000 and 

2001 by HDR, Inc. located 750 S. parksii on the Twin Oaks property (Hammons 2008). 

For mitigation purposes, BVSWMA created 13 deed-restricted areas to protect known 

populations of S. parksii from being damaged during development of the landfill and 

supplied funds for research on S. parksii and its congeners. This research contributed to 

knowledge of S. parksii demographics, life history, mycorrhizal associations, habitat, 

and associated plant community dynamics (Hammons 2008, Wonkka et al. 2012; Ariza 

2013). Additional work focused on the improvement of S. parksii survivability through 

habitat manipulations and transplantation of individuals into protected conservation sites 
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(Hammons et al. 2010; Bruton 2014). Despite a decade of research at Twin Oaks, 

knowledge gaps still exist. One is the lack of empirical data to describe the role of insect 

herbivore on S. parksii survivability, fitness, and life history. 

During transplanting research conducted by Hammons (2008) and large 

herbivore experiments by Wonkka (2010) insects were noted utilizing S. parksii, but the 

extent of their impact remained unknown. Insect herbivores can have considerable 

influence on individual plant fitness and plant community dynamics (Crawley 1998; 

Huntly1991; Delaney & Macedo 2001; Kessler & Baldwin 2002). Louda (1994) and 

Kindlmann & Balounová (2001) suggest that relationships between herbivores 

(vertebrate or invertebrate) and plants are complex with each species responding 

differently to tissue removal. Thus, the impact of insect herbivores on each species of 

interest should be investigated to create effective conservation plans. 

The objective of this research was to determine if invertebrate herbivores utilize 

S. parksii and differentiate the impacts between vertebrate and invertebrate herbivory on 

the survivability of the species. Information gained will provide insight into the life 

history of S. parksii and assist in determining if herbivore management should be 

incorporated into conservation efforts. 
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CHAPTER II  

LITERATURE REVIEW 

The influence of herbivores on plants is as complex and diverse as the species 

involved in the process.  Herbivory can have a negative or positive impact on plant 

survival (Batzli & Pitelka 1970; McNaughton 1984; Prins & Nell 1990; Huntly 1991; 

Rosenthal & Kotanen 1994). For example, Gomez & Zamora (2000) found that Lolium 

multiflorum seed production is greatly reduced by consumption of vegetative material by 

herbivores, while Paige & Whitham (1987) discovered that Ipomopsis aggregata seed 

production is increased by herbivory.  

Plant-herbivore interaction is further complicated by the type of herbivores. 

Herbivores range in size from microscopic to megafauna. They can be generalist feeders, 

consuming any above and below ground plant material, or selective feeders that 

consume a specific species or plant part (Huntley 1991).  

Except in cases of outbreaks, insects have often been considered minor 

consumers of plant tissue, but studies have suggested the extent of their pressure on 

plants is underestimated (Crawley 1989).  For example, the damage done by insects with 

chewing mouthparts is easily identified by observation of missing tissue, while injuries 

from piercing mouthparts are not as obvious. Insects with piercing mouthparts can 

directly consume xylem and phloem which reduces a plants’ ability to access water and 

nutrients, transmit diseases, and inject growth-altering chemicals (Huntly 1991; Stone & 

Schönrogge 2003). Crawley (1989) and Huntly (1991) concluded that through their 
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diversity of utilization, selective feeding, feeding styles, and temporal scale, insect 

herbivory could significantly impact individual plants and plant community dynamics. 

 The majority of plant-insect interaction research on members of Orchidaceae has 

focused on pollinator or pests of cultivated species under controlled conditions (Darwin 

1862, Delaney & Macedo 2001). However, orchids experience interactions with insects 

other than as pollinators and receive greater pressures in natural ecosystems than in 

greenhouse experiments. These pressures come from a variety of herbivores, 

mycorrhizal associations, tuber carbon storage, and a number of biotic and abiotic 

factors (Strauss & Agrawal 1999; Delaney & Macedo 2001). Endangered orchids could 

be especially vulnerable to these pressures. It is important to study the effects of these 

variables on each species to facilitate development of the best management practices. 

 There is no known research that focuses on insect herbivory of S. parksii. 

Research conducted by Wonkka (2010) showed that large herbivores directly affect S. 

parksii by consuming the inflorescence during the flowering season. This reduces seed 

production and could affect population size. Wonkka also concluded that herbivores 

could indirectly affect S. parksii flower and seed production by reducing rosette leaf 

surface area and access to photosynthetic energy and nutrients. In field studies, insects 

have been observed removing photosynthetic and reproductive material of S. parksii, but 

the amount of herbivory has not been documented (M.C. Ariza and D.D. Nally, personal 

communication and observations; Hammons 2008). 
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CHAPTER III                                                                                                            

STUDY SITE 

Research was conducted at the BVSWMA Twin Oaks landfill site (Twin Oaks), 

a 246 ha parcel of land located in north Grimes County, Texas (96°8’51.66” W 

30°35’47.25” N). For conservation of S. parksii, 56 ha of land on the Twin Oaks site 

have been excluded from the landfill footprint and divided into 13 deed-restricted areas 

(DRAs). In accordance with conservation requirements set by United States Fish and 

Wildlife Service, yearly surveys are conducted on the DRAs to track population density. 

Surveys conducted during the 2013 flowering season were evaluated to determine DRAs 

with large populations of newly discovered S. parksii and its congener S. cernua. Of the 

13 DRA’s, DRA 11 (~16 ha), had the largest population of S. parksii and S. cernua and 

was selected as the focus for this study (Fig. 1). 

 The study site is located within the Post Oak Savanna Ecoregion.  Climate of the 

study area is classified as humid subtropical with an average annual precipitation of 88.9 

to 114.4 cm from west to east. Precipitation falls in a bimodal pattern with peaks in late 

May through early June and October. Annual average temperature low and high are 

11°C (January) and 35 °C (August) (USDA 1996, Bruton 2014, SRCC 2012). 

The regional geology for the site is underlain by the Wellborn formation (USGS 

1993). Soils on the site are mapped as the Burlewash soil series intermixed with 

Boonville, Hatliff, Robco, Tabor and a small patch of Koether-rock (NCSS 2007).  

 

 



6 

Figure 1. Thirteen deed-restricted areas at BVSWMA’s Twin Oaks Location in Grimes 

County, Texas with DRA 11 enlarged to emphasize plant locations (yellow points). 

Burlewash is the only soil series mapped in DRA 11. Burlewash are well-

drained, slightly acidic to acidic fine sandy loam soils over a claypan subsoil with slope 

ranging from 1to15% (USDA 1996, NCSS2007). The terrain in DRA 11 is gently 



1
Taxonomic nomenclature follows Diggs et al. 1999 (Plants) 
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sloping at less than 4% with estimated 20 to 40% open woody canopy, and an ephemeral 

stream that forms gullies from north to south through the middle of the site. 

Much of the Post Oak Savanna originally consisted of open grasslands with a 

variety of grass species such as little bluestem (Schizachyrium scoparium), Indiangrass 

(Sorghastrum nutans), and switchgrass (Panicum virgatum)
1
. Tree species include post

oak (Quercus stellata), blackjack oak (Quercus marilandica) and winged elm (Ulmus 

alata). With the suppression of the natural fire regime and large grazers that once 

maintained the open grasslands associated with the Post Oak Savanna, woody 

encroachment has resulted in an increase in canopy cover. This can affect species that 

are sensitive to reduced light caused by the increase in woody species canopy cover. 

S. parksii habitat on the Twin Oaks site is dominated by little bluestem and post 

oak, but Chasmanthium laxum var. sessiliflorum, Andropogon ternarius, Drosera annua, 

yaupon (Ilex vomitoria) and American beautyberry (Callicarpa americana) are often 

associated with the species (Hammons 2008).  This matrix of grass, shrub, and tree 

species forms a slightly open canopy of 20 to 40% with light to medium litter depth, 

found to be associated with the habitat of S. parksii at Twin Oaks. Research conducted 

on woody encroachment of the Twin Oaks site from 1958 to 2004 noted that yaupon, 

eastern red cedar (Juniperus virginiana), and other woody species had increased which 

resulted in less open canopy for S. parksii (Hammons 2008). 

The Twin Oaks site hosts several small and large mammalian herbivores such as 



2
Taxonomic nomenclature follows Schmidly 1994 (Mammals), 

3
Triplehorn & Johnson 2005 (Insects)

8 

white-tail deer (Odocoileus virginianus), eastern cottontail rabbits (Sylvilagus 

floridanus), field mice (Peromyscus spp.), and feral hogs (Sus Scrofa)
2
. Insect herbivores

such as leafhoppers (Family Cicadellidae), katydids (Family Tettigoniidae), and 

grasshoppers (Family Acrididae)
3 

have been observed at the site. Common within the

leaf litter on the Twin Oaks site are mites from the family Tetranychidae and detritivores 

from the family Armadillidiidae (D.D. Nally, personal observations).
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CHAPTER IV          

METHODS 

Since 2007, undergraduate and graduate students associated with the Department 

of Ecosystem Science and Management at Texas A&M University in College Station, 

Texas have conducted yearly surveys to monitor populations of S. parksii and identify S. 

cernua in the 13 DRAs at the Twin Oaks site. These surveys are conducted at the peak 

of the Spring rosette and Fall flowering season.  

To reduce the influence of environmental differences between DRAs, the 2013 

Fall flower survey focused on locating a sufficient population of S. parksii in one DRA. 

Once the 2013 flower surveys were concluded, DRA’s with large populations of S. 

parksii were evaluated for homogeneity of terrain and clustering of individual plants, but 

an insufficient population of S. parksii was located within any single DRA. To increase 

sample size, Spiranthes cernua was included in the experiment. 

 In central Texas, S. parksii and S. cernua often share a similar habitat, but S. 

cernua is not restricted to the Post Oak Savanna and can be found from Canada to Texas. 

Aside from the difference in distribution and habitat restrictions, both species are 

genetically alike and research conducted by Ariza (2013) found many similarities in life 

history and phenology. To determine if the S. parksii and S. cernua in this experiment 

shared the phenological similarities in inflorescence height and rosette leaf area found by 

Ariza, an analysis was conducted at the end of the experiment to compared growth of the 

two species. Analysis was run using Microsoft Excel’s two sample t-test assuming 

unequal variance. In flowering plant height, there was no significant difference between 
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S. parksii or S. cernua for 2014 (t(57)= -0.3812, p= 0.7045) and 2015 (t(30)= -1.3157, 

p= 0.1983). There was also no significant difference in total rosette leaf area between the 

two species in 2015 (t(46)=-0.1167,p=0.9076). Since measurements were not taken on 

maximum rosette growth in 2014, it was not used for analysis. The growth of the two 

species and habitat relationships were similar and hence combined for the analysis. 

 In determination of the best site for the experiment, DRA 11 had the largest 

number of S. parksii and S. cernua identified, with the majority of the population 

clustered within 4 hectares (ha) of the northern section of the plot (Fig. 1).  This northern 

section was evaluated with 1.5 ha along an ephemeral stream determined to be mostly 

homogenous with a sufficient population of S. parksii and S. cernua (Fig. 2 (A&B)).  

 

 

Figure 2. Caged and uncaged (yellow flags) plants near ephemeral stream (not visible) 

with gentle sloping topography and typical herbaceous vegetation cover for Fall 2014 

(A) and Spring 2015 (B). 
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In the 2014 Spring rosette survey, plants located in the northern section of DRA 

11 during the 2013 Fall flower survey were visited with 27 S. parksii and 73 S. cernua 

located. The 100 plants were permanently marked and identified by species with two 46 

cm plain vinyl steel stake wire flags, each placed 15 cm equidistance to the north and 

south of the plant.  Aluminum 2.54 x 8.89 cm write-on tags were used to label plants 

with identification numbers and secured to the northern positioned flag.  

The 100 plants were randomly assigned to a 2 x 2 factorial treatment of 1) 25 not 

caged and not treated with insecticide (Control) 2) 25 not caged and treated with 

insecticide (Vertebrate Only) 3) 25 caged and not treated with insecticide (Invertebrate 

Only) and 4) 25 caged and treated with insecticide (Cage + Insecticide) using 

Random.org.  The set of caged plants were enclosed in cylindrical 45 cm tall by 15 cm 

diameter galvanized wire cages with 1 cm
2
 openings to exclude vertebrate herbivores 

such as deer, hogs, rabbits, and mice, while allowing the inclusion of small invertebrates 

(Hammons 2008) (Fig. 3(A)). For the insecticide treatment, the insecticide was applied 

to the plant, and a surrounding 15 cm radius, until saturation at 5 to 10 ml of 0.126% 

Carbaryl (Garden Tech, Sevin ready-to-use spray bottle). For plants not treated with 

insecticide, the plant and a 15 cm radius around it were saturated with 5 to 10 ml of 

water. In Fall 2013 and Spring 2014, rosettes were retreated with insecticide every 7 to 

10 days until dormancy. 

After observations in the field and initial analysis of the 2014 rosette data, it was 

observed that the size of invertebrates utilizing S. parksii and S. cernua could influence 

the type and intensity of herbivory damage. To compare the influence of small and large 
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invertebrates, a new treatment to exclude large insects was established before the 2014 

Fall flower season. This increased the experiment to a 2 x 3 factorial design. Since all 

identified plants from the 2013 flower surveys were incorporated into the experiment, 25 

unidentified plants from the 2014 rosette survey were utilized for the new treatment. 

Rosettes were enclosed in a cylindrical 45 x 20 cm, 1 cm
2
 galvanized wire cage 

encompassed by off-white 1 mm nylon matte tulle mesh (Fig. 3(B)). Rosettes were 

marked with flags and aluminum tags similar to plants in the caged and not caged 

experiment. Plants were later identified as 22 S. cernua and 3 S. parksii. 

 

 
Figure 3. Cylindrical 45 cm tall and 20 cm in diameter, 1 cm

2
 galvanized wire cage (A) 

and the same size cage lined with off white 1 mm nylon matte tulle mesh (B). 
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Rosette growth was observed weekly in spring 2014 with demographic data and 

growth measurements taken only once during the estimated maximum growth in May. 

Measurements included number of leaves produced, leaf length and width at the primary 

axis of each rosette, and percent herbivory per leaf. For analysis, leaf area of the whole 

rosette was calculated by the equation 0.7854Ld with (L) the leaf length, (d) the leaf 

width, and 0.7854 to represent the elliptical area of S. parksii and S. cernua (Wonkka 

2010). Percent herbivory was visually assessed, in situ, of tissue removed from each 

rosette leaf, based on the prediction of the elliptical area of the leaf. Estimation of 

material removed for each leaf was in 5 percent increments and averaged over the whole 

rosette for percent herbivory used in rosette herbivory analysis (Wonkka 2010).  

After observed stress of rosettes sprayed with insecticide during the 2014 rosette 

season, and suggested overtreatment by the insecticide manufacturer, the period between 

insecticide treatments was increased from 7 to 10 days to every 14 to 17 days for the 

remainder of the experiment. Demographic data and growth measurements were 

increased to a 7 to 14 day rotation until dormancy, with a total of 10 sample periods 

taken, in order to collect details on herbivory and the growth cycle of S. parksii and S. 

cernua in the experiment.  

Demographic data and growth measurements for the Fall 2014 and Fall 2015 

flower season was recorded for plant presence, plant height, inflorescence length, stalk 

diameter, and number of flowers open and closed. Stalk length was calculated by 

subtracting plant height and inflorescence length. In 2014, leaf like bracts (stalk leaves) 

were observed encasing the inflorescence during plant emergence. To determine the 
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possible contribution of the stalk leaves to inflorescence emergence, number of leaves 

present and percent herbivory in increments of 5 was recorded during emergence and 

development of the flowering plant. Herbivory was recorded separately for plant stalk 

and inflorescence, based on estimated tissue removed from a fully intact plant part by 5 

percent increments. Whole plant herbivory was calculated by the average tissue removed 

from plant stalk and inflorescence. 

Spring 2015 rosette demographic data and growth measurements were recorded 

weekly by procedures established in the spring 2014 rosette season until dormancy, with 

36 sample periods recorded. During this time, observation and demographic data was 

also collected on emerging seedlings from the 2014 flower season.  At time of analysis, 

2016 rosettes had not reached their maximum leaf area or herbivory and only 

demographic data is presented to show consistency of rosette presence throughout 

growth seasons. 

At the end of the 2015 rosette season, new growth was observed emerging from 

rosettes previously identified as dormant. Length and width Measurements and 

presence/absence were recorded weekly on this new growth. 

In conjunction with growth measurements, invertebrate and vertebrate 

observations and data were collected. Invertebrates found utilizing, or within a 15 cm 

diameter of, Spiranthes sp. were collected for identification. Invertebrates were collected 

by hand, insect nets, or syphoning tubes and stored in a 20 ml glass vial filled with 70 to 

90% Isopropyl until identified. When collection was not successful, observation of 

known invertebrates was noted and combined with collected specimens to categorize 
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frequency of families utilizing Spiranthes sp. Collected invertebrate were classified as 

common (>5 observations), uncommon (3-5 observations), or rare (1-2 observations) 

related to 36 sample periods in the rosette season and 11 in the flower season. 

Identification of vertebrate utilizing the plant was done through visual identification, 

tracks, or scat near plants with damaged tissue in the same sample periods. 

During the 2015 rosettes season, roly poly (Armadillidium vulgare, family 

Armadillidiidae) activity was observed near several emerging seedlings with herbivory 

(Fig. 4). Research has indicated that roly polies consume seeds and seedlings of 

agriculture species in greenhouses. To determine if roly polies consume Spiranthes sp. 

seedlings, an observation only, limited feed choice experiment was implemented 

(Mariani & Alcoverro 1999; Saska 2008; Sutton 2013). Roly polies were collected in 

DRA11 and placed into 5 cages similar to the Mesh treatment, with 10 roly polies per 

cage. The 5 cages were placed over 4, 5, 4, 4, and 5 seedlings, consecutively, that had no 

prior herbivory with the cages buried 1 cm into the soil to discourage burrowing.  Before 

cages were installed, vegetation was removed from the area with only Spiranthes sp. 

seedling, leaf litter, and less than 5% live vegetation inside. Plants were revisited within 

24 hours with seedling herbivory and roly poly presence recorded.  
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Figure 4. Suspected leaf herbivory of Spiranthes parksii seedlings (red arrows) by 

Armadillidiidae. 

 

 

 

Plants require essential elements to grow, but access to some nutrient can be 

limiting factors to their development and reproduction. Macro and micronutrients can 

also attract herbivores that require a specific element. There is no information in the 

literature of the micro and micronutrient makeup of S. parksii or S. cernua. To gain 

insight into essential elements that may be limiting factors to Spiranthes sp. growth and 

possibly attract herbivores, a macro and micro nutrients analysis was conducted. In 

spring 2016, leaves from 10 S. parksii and S. cernua rosettes located and identified in 

fall 2015 were collected for analysis. Of the 10 plants, 15 rosette leaves were collected 

before peak growth with less than 10% herbivory and no more than one third of the 
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whole plant removed. Leaves were collected and combined into one sample for each 

species and immediately taken to the Texas A&M Agrilife Extension Service Soil, 

Water, and Forage testing laboratory for analysis. 

To analyze possible influence of weather on Spiranthes sp. growth and 

herbivory, temperature and precipitation data was collected daily during the study period 

by a Davis Vantage Pro 2, located 800 meters from DRA 11. The weather data was 

collected and averaged for the week prior to each growth measurement. 

  Spring 2014 rosette analysis, rosette leaf area (LA) and percent herbivory of 

Spiranthes sp. were recorded for only one sampling period during estimated peak rosette 

growth (May). Data for growth and herbivory was collected 10 times for the Fall 2014 

and 2015 flower season and 36 times for the 2015 rosette season. To compare 

approximate peak growth and herbivory between 2014 and 2015 rosettes, one sample 

point in May 2015 that corresponded to the sample date in 2014 was used to test for 

significant differences between years. Plants absent during data collection were not used 

for analysis, giving varied sample sizes per treatment.  

Data was analyzed using JMP Statistic Software, and data normality evaluated 

using the distribution platform and Shapiro-Wilks test. Normality assumptions were 

rejected and data reassessed using transformation methods (Ott & Longnecker 2010).  

Transformation was unsuccessful for all sample periods, and the nonparametric 

Wilcoxon Each Pair test was used to determine significant difference between treatments 

at alpha p<0.05 (Schmid & Trede 1996; Ott & Longnecker 2010).  
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CHAPTER V                                                                                                        

RESULTS 

Flower Presence, Growth, and Herbivory 

The number of flowering plants present and that survived to seed maturity 

decreased from 2014 to 2015 (Table1). In 2014, of the 125 plants across all treatments, 

103 (83%) produced an inflorescence, with an average of 21 blooms, while 100 (80%) 

produced seeds. During 2015, flowering plants present dropped to 71 (57%) with 13 

blooms per inflorescence and only 40 (32%) producing seeds.  

 

 

 

Table 1. Original number of flowering plants in experiment by year, subdivided into 

number per treatment (n=25). The flower column represents plants present at beginning 

of season used in growth, herbivory and demographic analysis/plants survived to 

produce seed. 

Treatment 
Flowers 2014 

(n=125) 
Flowers 2015 

(n=125) 

Control (=25) 14/13 12/5 

Vertebrate Only (n=25) 17/15 11/4 

Invertebrate Only (n=25) 23/23 12/8 

Cage+Insecticide (n=25) 24/24 16/10 

Mesh (n=25) 25/25 20/13 

Total 103/100 71/40 
 

 

 

Precipitation in the flower season (August-October) was below the 30-year 

average for 2014 and 2015. In fall of 2014 the Twin Oaks site received 4.82 cm 

compared to the long-term average of 8.87 cm, while 2015 received only 1.65 cm (Fig. 5 

(A)).  A decrease in flowering plants presence and growth was also seen with the 

reduced precipitation in 2015 (Table 1). All treatments produced similar flowering 
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growth patterns in 2014 and 2015 with an average height of plants caged and not caged 

at 9 to 10.4 cm
2
 and the latter at 3 to 4.5 cm

2
 (Fig. 5 (B)), respectively.  

 

     

Figure 5. Precipitation (cm) and temperature (°C) for the study period at the Twin Oaks 

site from September 2014 to December 2015 (A), and Growth cycle of Spiranthes sp. 

from September 2014 to December 2015, by treatment (B). Plant growth expressed as 

area in centimeters squared. 

 

 

 

In 2014 there was no significant difference in maximum plant height, stalk 

length, or inflorescence length between treatments with mean plant height that ranged 

from 23 to 26cm (Table 2).  Mean flower production ranged from 17 to 19 blooms per 
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inflorescence with no significant difference in maximum flower production between 

treatments.  

In 2015, flowering plants present above ground decreased by 31% with a 60% 

decrease in survival to seed production and a significant reduction in mean plant height 

that varied in growth between caged and not caged plants at 7 to 14cm when compared 

to 23 to 26cm in 2014 (p<0.0001). This could be due to the lack of precipitation just 

before and at the beginning of inflorescence emergence (Fig. 5 (A)). The Mesh treatment 

had the most growth with a significant difference in maximum plant height from 

Vertebrate Only (p=0.0197), and between Vertebrate Only and Cage+Insecticide 

(p=0.0483) (Table 2).  Stalk length was significantly different in Vertebrate Only and 

Mesh (p=0.0111) and in inflorescence length between Control, Mesh (p=0.0142), and 

Cage+Insecticide (p=0.0435). 

 In flower production there was a significant difference between Control and 

Mesh (p=0.0484) with mean flower production that ranged from 9 to 16 blooms per 

inflorescence.  
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Table 2. Maximum plant height, stalk length, and inflorescence length in centimeters 

(mean ± SE) with significant difference by treatment for 2014 and 2015 flower season. 

Significant difference calculated by Wilcoxon Each Pair test and indicated in uppercase 

letters. 

 

 

 In the 2014 flower season, there was a significant difference in herbivory of 

plant (stalk + inflorescence), stalk, and inflorescence between caged and not caged 

treatments. Maximum plant herbivory was significantly different between Control, 

Invertebrate Only (p<.0001), Cage+Insecticide (p<0.0001), and Mesh (p<0.0001), as 

well as between Vertebrate Only, Invertebrate Only (p=0.0026), Cage+Insecticide 

(p=0.0008) and Mesh (p=0.0034) (Table 3).  Stalk herbivory was significantly different 

between Control, Invertebrate Only (p=0.0060), Cage+Insecticide (p=0.0008), and Mesh 

(p=0.0109), as well as between Vertebrate Only, Invertebrate Only (p=0.0029), 

Cage+Insecticide (p=0.0003) and Mesh (p=0.0052). The significant difference between 

treatments in inflorescence herbivory was Control, Invertebrate Only (p<.0001), 

Cage+Insecticide (p<.0001), and Mesh (p<.0001), as well as between Vertebrate Only, 

Invertebrate Only (p=0.0021), Cage+Insecticide (p=0.0017) and Mesh (p=0.0003). 

Treatment Height  
2014 

Stalk 
2014 

Inflorescence 
2014 

Height  
 2015 

Stalk 
2015 

Inflorescence 
2015 

Control 25.8±5.8 
A 

20.1±0.9 
A 

6.7±0.6 
A 

10.5±1.8 
AB 

8.5±1.5 
AB 

2.4±0.5 
A 

Vertebrate 
Only 

23.8±5.5 
A 

18.5±10.0 
A 

5.6±0.5 
A 

7.6±1.9 
A 

5.4±1.3 
A 

2.4±0.7 
AB 

Invertebrate 
Only 

26.1±6.3 
A 

20.0±10.0 
A 

7.0±0.4 
A 

12.2±1.9 
AB 

8.4±1.3 
AB 

4.1±0.6 
AB 

Cage 
+ Insecticide 

24.4±7.1 
A 

18.7±1.1 
A 

7.4±10.0 
A 

12.6±1.6 
B 

8.6±1.0 
AB 

4.4±0.6 
B 

Mesh 25.3±5.0 
A 

19.2±0.6 
A 

6.8±0.4 
A 

14.5±1.3 
B 

10.1±0.9 
B 

4.7±0.5 
B 
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Herbivory in the 2015 flowering season showed a significant difference in plant 

herbivory between Control, Cage+Insecticide (p=0.0352) and Mesh (p=0.0390) (Table 

3). Interestingly, though Invertebrate Only received less herbivory than the Mesh 

treatment, it was not significantly different than Control as indicated for 

Cage+Insecticide and Mesh. Stalk herbivory had no difference between treatments while 

there was a significant difference in inflorescence herbivory between Control, 

Invertebrate Only (p=0.0129), and Cage+Insecticide (p=0.0273). Thought there was a 

significant difference of herbivory in treatments each year, there was no difference 

between 2014 and 2015. 

 

Table 3. Maximum percent plant, stalk, and inflorescence herbivory (mean ± SE) with 

significant difference by treatment for 2014 and 2015 flower season. Significant 

difference calculated by Wilcoxon Each Pair test and indicated in uppercase letters. 

 

 

 

The S. parksii flowering plant is often described as a single leafless flowering 

stem, but at the beginning of flower emergence the plant may have 3-7 leaves present 

(Fig. 6 (A)). The leaves act like a sheath that covers the inflorescence during emergence 

Treatment Plant 
 2014 

Stalk 
2014 

Inflorescence 
2014 

Plant 
2015 

Stalk 
2015 

Inflorescence 
2015 

Control  50.2±12.4 
A 

57.7±13.3 
A 

50.0±48.6 
A 

21.5±8.7 
A 

14.5±7.4 
A 

30.4±12.0 
A 

Vertebrate 
Only  

44.8±11.7 
A 

45.3±11.8 
A 

45.9±48.0 
A 

17.4±8.8 
AB 

15.3±8.6 
A 

19.2±11.1 
AB 

Invertebrate 
Only 

2.9±0.5 
B 

1.5±0.6 
B 

2.0±2.9 
B 

4.6±1.7 
AB 

7.1±3.2 
A 

1.7±1.3 
B 

Cage 
+Insecticide  

2.4±0.7 
B 

1.9±0.9 
B 

1.7±4.3 
B 

2.3±0.8 
B 

1.6±0.8 
A 

2.5±1.1 
B 

Mesh 2.9±0.3 
B 

0.8±0.4 
B 

.8±1.9 
B 

12.0±6.1 
B 

8.0±4.1 
A 

15.8±8.1 
AB 
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(Fig. 6 (B)). In 2015 these leaves receive up to 30% herbivory with no damage observed 

to the inflorescence (Fig. 6 (C)). 

 

 

  

Figure 6. S. parksii leaf emergence at the beginning of the flower season (A), 

inflorescence encased by protective leaves (B), and inflorescence emerging from leaves 

(indicated by red arrow) with herbivory (indicated by black arrows) (C). 

 

 

Rosette Presence, Growth, and Herbivory  

In 2014, the increase in leaf area of rosettes occurred in a short period of time 

similar to the bolting phase of flowering plants, with 95 of 100 (95%) rosettes present at 

the beginning of the season (Table 4).  In 2015, 121 (97%) rosettes were present and the 

rosette growth pattern was similar for all treatments with peak growth in early to mid-

April. Rosette growth was initiated in mid-October but little growth occurred until 

temperatures and favorable precipitation occurred in late January and early February. 

The Mesh and Cage+Insecticide treatment produced the greatest peak growth of 21.7cm
2
 

 



 

 

24 

 

and 19.7cm
2
. The remaining three treatments peaked at about 12 to 14cm

2
. Growth 

continued in all treatments until late July with some regrowth in August.  

 

 

Table 4. Original number of rosettes in experiment by year, subdivided into number per 

treatment (n=25). Rosettes in 2014 include number of plants present in January/plants 

present for growth, herbivory and demographic analysis at peak growth in May. 

Treatment 
Rosettes 2014 

(n=100) 
Rosettes 2015 

(n=125) 
Rosettes 2016 

(n=125) 

Control (n=25) 25/18 23 21 

Vertebrate Only (n=25) 22/13 23 21 

Invertebrate Only (n=25) 23/20 25 22 

Cage+Insecticide (n=25) 25/22 25 24 

Mesh (n=25) NA* 25 25 

Total 
* Not added to experiment until 2014 
flower season. 95/73 121 116 

 

 

 

In the 2014 rosettes growth there was no significant difference in leaf area 

between treatments (Table 5). Though no significant difference was detected, 

Invertebrate Only and Cage+Insecticide plants had the largest mean leaf area at 13.8 and 

13.6 cm
2
, with Control and Vertebrate Only at 10 and 8.7 cm

2
 respectively.  

In May 2015 there was no significant difference in leaf area between treatments 

(Table 5). Leaf area increased slightly in 2015 with a range from 9 to 16 cm
2
,
 
but was 

not significantly different than 2014 (p=0.5831). 
 

In maximum leaf area for 2015, the numbers of rosettes present was similar 

throughout treatments with a variation of growth that ranged from an average of 13 to 22 

cm
2
. Across all treatments, Mesh plants had the largest maximum leaf area with 
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significantly more growth in Mesh than Control (p=0.0452), Vertebrate Only (p=0.0093) 

and Invertebrate Only (p=0.0153) (Table 5).  

In comparing maximum leaf area of 2015 to the sample period in May 2014, 

there was no significant difference (p=0.0894). However, there was a significant 

difference between May 2015 and maximum leaf area in 2015 (p=0.0340). 

In the 2015 rosette season, seedling demographic data was collected with 

significantly more Mesh cages containing seedlings than Control (p=0.0347). Though no 

significant difference was detected in number of seedlings between treatments, Mesh 

and Cage+Insecticide had the most seedlings at 67 and 41 compared to Control and 

Vertebrate Only at 23 and 25, respectively. 

 

Table 5. Leaf area in centimeters squared (mean ± SE) and significant difference of 

rosettes by treatment for May 2014, May 2015, and maximum growth (MAX) in 2015. 

Significant difference calculated by Wilcoxon Each Pair test and indicated in uppercase 

letters. 

 

Treatment May 2014 May 2015 MAX 2015 

Control 10.0±9.6 
A 

10.0±9.8 
A 

14.3±7.4 
A 

Vertebrate Only 8.7±7.7 
A 

9.3±6.6 
A 

12.7±7.0 
A 

Invertebrate 
Only 

13.8±7.9 
A 

10.3±9.7 
A 

14.0±10.3 
A 

Cage+Insecticide 13.6±9.1 
A 

16.7±14.3 
A 

19.7±15.1 
AB 

Mesh 
*Not added to experiment 
until 2014 flower season 

* * 21.7±12.0 
B 
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Herbivory for rosettes in May of 2014 was significantly greater in Control 

compared to Cage+Insecticide (p=0.0041) (Table 6). Plants protected from vertebrates 

and invertebrates received the least herbivory, while damage received by rosettes from 

insect or mammals alone was not significantly different.  Percent herbivory between 

Vertebrate Only, Invertebrate Only, and Cage+Insecticide treatments ranged from 9% to 

15% compare to Control at 39%.  

Similar herbivory was observed in May of 2015 with significantly more 

herbivory in Control than Cage+Insecticide (p=0.0237) (Table 6). There was 

significantly more herbivory in 2015 than 2014 (p=0.0225) with a range from 15% to 

36% for Vertebrate Only, Invertebrate Only, and Cage+Insecticide with Control the 

same as 2014 at 39%. 

In the 2015 rosettes season, the dynamics between treatments increased in 

complexity.  Maximum percent herbivory in 2015 was significantly less in Mesh 

compared to Control (p=0.0003) and Vertebrate Only (p=0.0005). A similar reduction in 

herbivory was seen when comparing Cage+Insecticide to Control (p=0.0161) and 

Vertebrate Only (p=0.0142). Interestingly, there was also a significant difference found 

between Mesh and Invertebrate Only (p=0.0295) (Table 6).  
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Table 6. Percent herbivory (mean ± SE) and significant difference of rosettes by 

treatment for May 2014, May 2015, and maximum (MAX) percent herbivory in 2015. 

Significant difference calculated by Wilcoxon Each Pair test and indicated in uppercase 

letters. 

 

 

 

In the life history of S. parksii, the observed growth cycle has been recorded as 

bimodal with rosettes in the spring followed by a dormant phase before the flower 

season in the fall. However, recent observations have recorded aboveground growth 

from June to August that shows Spiranthes sp. can remain active without a dormant 

period (Fig. 7). This growth may appear shortly after spring rosettes have desiccated in 

June or July but does not resemble rosette tissue.   

Treatment May 2014 May 2015 MAX 2015 

Control 38.8±39.8 
A 

39.0±32.6 
A 

58.5±36.4 
A 

Vertebrate Only 15.8±26.1 
AB 

27.2±29.4 
AB 

56.7±37.7 
A 

Invertebrate Only 11.0±20.3 
AB 

36.0±34.1 
AB 

38.1±37.6 
AB 

Cage+Insecticide 9.4±14.7 
B 

14.8±29.8 
B 

32.6±37.5 
BC 

Mesh 
*Not added to experiment 
until 2014 flower season 

* * 22.7±32.7 
C 
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Figure 7. Meristematic growth of Spiranthes parksii observed on August 20th 2015, 

(highlighted by red circle) and desiccated rosette leaves from Spring rosette season 

(indicated by red arrows). 

 

 

 

Invertebrate and Vertebrate Observations 

Insects and other invertebrate collected and observed throughout the experiment 

varied in their presence on Spiranthes sp. (Table 7). Coleoptera were frequently seen 

within a 10 cm diameter of Spiranthes sp., but rarely observed utilizing the plant. 

Lepidoptera larvae and Hymenoptera frequented both rosettes and flowers, with 

Lepidoptera larvae varied between seasons.  
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Table 7. Identified invertebrate and frequency observed of presence on or within 15 cm 

of Spiranthes sp. Categories of frequency are: common (>5 observations), uncommon 

(3-5 observations), or rare (1-2 observations) for 36 observations in 2014 rosette and 11 

observations in 2015 flower season. ** indicates insects observed consuming plant 

tissue. 

              

 
 

 

 

During the spring, armyworms (Lepidoptera:Noctuidae) were the most common 

larvae observed consuming rosettes while armyworms and larvae from the Arctiinae 

Order Family Common Name 
Presence 

(10 cm diameter) 
Presence 

on Rosettes 
Presence 

on Flowers 

Coleoptera 
  

Common Rare None 

 
Carabidae Ground Beetles 

   

 
Cicindelidae Tiger Beetles 

   
      

Diptera 
  

Uncommon Rare Rare 

Hemiptera 
  

Common Common Rare 

 
Blissidae 

    

 
Cicadellidae Leafhopper 

   

 
Corimelaenidae Shield Bugs 

   

 
Membracidae Treehoppers 

   

 
Pentatomidae Stink Bugs 

   

 
Rhyparochromidae Seed Bugs 

   
Hymenoptera 

 
Common Common Common 

 
Formicidae Ants 

   
Isopoda Armadillidiidae Roly Poly or Pill bug Common Common None 

Lepidoptera 
 

Common Common Common 

 
Arctiinae** Tiger Moth 

   

 
Geometridae Inchworms 

   

 
Noctuidae** Owlet Moths 

   
Thysanoptera  Thrips Unknown None Uncommon 

Trombidiformes Tetranychoidea Spider mite Common Common Common 

Orthoptera 
     

 
Acrididae** 

Short Horned 
Grasshoppers Common Uncommon Uncommon 

 
Gryllidae Crickets Rare None None 

 Tettigonidae Katydid Common Rare None 
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family were observed consuming flower and stalk tissue of infloresence in the fall (Fig. 

8). Of lepidoptera larvae capture or observed throughout the experiment, 30% were 

recorded in October 2015  during the flowering season. 

 

 

 

Figure 8. Armyworm larvae burrowing into immature inflorescence (A) and Armyworm 

consuming xylem and phloem tissue (B) after removing inflorescence (indicated by red 

arrow). 
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Vertebrates were difficult to observe actually consuming Spiranthes sp. tissue, 

but several mice, rabbits, and deer were observed near freshly damaged plants. Mice 

(order: Rodentia family: Muridae) activity was observed near tubers that received 

herbivory, with 8 plants tubers damaged in total. In addition to tissue removal by 

herbivores there was several observation of tubers uprooted by feral hogs (Fig. 9 (A)), 

and consumption of Spiranthes sp. roots by mice (Fig. 9 (B)) in the rosettes season.  

 

  

Figure 9. Rooting by feral hogs (A) and mouse hole with exposed S. parksii roots with 

herbivory (roots indicated by red arrow) (B). 

 

 

In the Armadillidiidae seedling experiment conducted during the 2015 rosette 

season, 2 cages experienced complete consumption of at least one seedling with some of 

the remaining plants receiving 10 to 45% herbivory (Fig. 10). The remaing three cages 

had roughly 2-3 plants with 5 to 25% herbivory with the remaining seedlings untouched.  
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Figure 10. Spiranthes sp. seedlings from feed experiment with herbivory indicated by 

red arrows and Armadillidiidae indicated by black arrows. 

 

 

Rosette Macro and Micro Nutrient Analysis 

In Spring 2016, an analysis was conducted to provide a potential measure of the 

forage quality of S. parksii and S. cernua. Plant analysis of S. parksii and S. cernua 

indicate high amounts of Nitrogen, Phosphorus,  Potassium, Zinc, and Copper (Table 8), 

with S. parksii higher in Potassium. In contrast, both species had low amounts of 

Magnesium, Iron, and Manganese, with S. cernua higher in Manganese. Percent nitrogen 

was multiplied by 6.25 to calculated crude protein at 16.7% for S. parksii and 16.8% in 

S. cernua (Crisan 1978). 
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Table 8. Micro and macro nutrient analysis based on 100% dry matter of S. parksii and 

S. cernua rosette leaves collected at peak growth during spring 2016. 

Nutrient %/ppm Measurment 

S. parksii 

Measurment 

S. cernua 

Nitrogen % 2.67 2.69 

Phosphorus % .17 .20 

Potassium % 3.81 2.97 

Calcium % 1.52 1.04 

Magnesium % .38 .40 

Sodium ppm 1213 1612 

Zinc ppm 169 164 

Iron ppm 83 74 

Copper ppm 31 24 

Manganese ppm 79 142 

Sulfur ppm 1578 1577 

Boron ppm 17 16 
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CHAPTER VI                                                                                                

DISCUSSION AND CONCLUSION 

Precipitation Influence on Flower Presence, Growth, and Herbivory 

Terrestrial orchids that occur in regions with dry summer conditions rely on wet 

cool winters and early spring for carbon and nutrient storage (Rasmussen 1995, Ariza 

2013).  Specifically in S. parksii and S. cernua, a correlation has been observed between 

precipitation in the rosettes season from January to March and before flower emergence 

in August to flower emergence in September at the Twin Oaks site (Hammons 2008, 

Ariza 2013, Bruton 2014).  

Within this study, precipitation recorded in 2014 and 2015 fell in previously 

observed measurements for January to March, but lower than average precipitation 

occurred during August and September in 2015. The decrease in plants present and 

survival in 2015 shows that January through March precipitation may assist with flower 

emergence, but August and September precipitation is potentially critical for plants to 

break dormancy or persist through inflorescence initiation to seed production. This study 

also suggests a critical precipitation and growth threshold for Spiranthes sp. In 2013, 

Ariza recorded average plant height to be 25.1 cm with above average precipitation. In 

2014, precipitation was half the 30-year average at 4.82cm, but plant average remained 

at 25 cm. In 2015, precipitation was reduced to less than a fourth of the 30-year average 

at 1.62 cm, and plants averaged half the height of 2014 at 12 cm. This indicated that 

there is a precipitation threshold between 4.82cm and 1.64 cm that influences the height 

of Spiranthes sp. It was also observed in both years that plants below 9 cm did not 
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flower and that flower production is moderately correlated to plant height ( r
2
=0.552). 

Though these observations only cover two years and a small sample size, it could 

indicate that Spiranthes has a height threshold for reproduction that is influenced by 

precipitation. If this is proven correct, fluctuation in precipitation due to global climate 

change could influence persistence of the species.  

Precipitation can also have an indirect influence on plant-insect interaction. 

There are many hypotheses that indicate the complexity of plant-insect interaction 

dealing with plant stress and allocation of nutrient that may influence herbivory. The 

Plant Stress hypothesis indicates that plants under physiological stress may be vulnerable 

to herbivory while in contrast the Plant Vigor hypothesis states that herbivores prefer 

healthy plants (Price 1991). An even more specific theory states that plants able to 

acquire the optimal balance of nutrients for growth are less susceptible to herbivores 

(Beanland et al. 2003).  

The herbivory observed in this research tends to support the Plant Vigor and 

Plant Stress hypothesis depending on the herbivore. The majority of herbivory observed 

in 2014 was by large herbivores when precipitation was closer to the 30-year average, 

and plants were presumably under little water stress with large visible inflorescences. 

White tail deer have been specifically indicated as targeting large or flowering plants of 

some herbaceous species (Knight et al 2009).  In the 2015 flower season there was an 

80% decrease in precipitation from the 30-year average and large herbivore activity 

decreased while herbivory increased in the insect inclusion treatment. Inflorescences 

were visibly weaker and smaller than the previous year and therefore may have not been 
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as attractive to large herbivore, while nutrients may have been concentrated in the 

stressed plant thereby more attractive to insects (Mattson & Haack 1987). In both cases, 

the amount of reproductive tissue removed by vertebrates and invertebrates in 2015 was 

similar to damage incurred by only vertebrates in 2014. Indicating that invertebrate can 

cause considerable damage to flowering plants in times of stress from environmental 

pressures. 

Flower Presence, Growth, and Herbivory by Treatment 

In Fall 2014, the mean plant height of inflorescence was comparable to those 

observed by Ariza (2013) with no difference between treatments. In fall 2015, there was 

a distinct difference between plants present in caged plants compared to plants not in a 

cage with the most growth and inflorescence emergence seem in the Mesh treatment. 

The mesh could reduce light intensity and moisture loss while increasing temperature 

similar to what is seen in other insect exclusion-inclusion experiment (Hand & Keaster 

1967), and provided a favorable microclimate for plant emergence.  

Although mesh treatment had the greatest growth and flower production, Mesh 

received a high percentage of herbivory during the 2015 flower seasons compared to 

2014. This could be due to the type of insects utilizing Spiranthes sp. and their 

development stages.  During the 2015 flowering season more army worms were 

observed at the study site than in 2014.  Armyworms are considered serious pest of 

agricultural crops but have a wide host range. They consume foliage and burrow into 

buds, stunting potential growth (Fig. 6). In ideal conditions, larvae will disperse in large 

numbers consuming all vegetation within their range. In their early stage of 
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development, the width of armyworm head capsules is roughly 0.35 mm and can easily 

pass through the holes of mesh fabric and consume plant material while the mesh may 

protect them from larger predators (Mayer & Babers 1944).  As seen in the no 

significant difference in herbivory when comparing herbivory in 2014 and 2015, there 

was also no significant difference between Invertebrate Only and Vertebrate Only in 

2015. Once again, this indicates that during times of low precipitation or other stressors, 

vertebrate and invertebrate may damage similar amounts of reproductive material.  

Rosette Presence, Growth, and Herbivory by Treatment 

Unlike inflorescences, rosettes have a tendency to be present consistently from 

year to year in the experiment. Research has indicated that S. parksii and S. cernua have 

a high cost of reproduction (Antlfinger & Wendel 1997, Ariza 2013), while in S. cernua 

rosettes can contribute 92% of seasonal carbon storage (Antlfinger & Wendel 1997).  

Rosettes being the main contributor to carbon storage required for reproduction could 

explain their consistent presence. In the 2014 and 2015 rosette season, the average leaf 

area of caged plants was the greatest, presumably from lack of damage by large 

herbivores. Surprisingly of the uncaged plants, Vertebrate Only plants had lower growth 

that the control plants exposed to tissue removal by all herbivores.  

In 2015, the maximum leaf area was greater than recorded in May 2014 and 

significantly higher than May 2015. This indicated that measurements should be taken 

throughout the rosette season, instead of only one sample period, to correctly evaluate 

growth dynamics of the species. Similar to the reduced growth observed in 2014, 

maximum leaf area was lower in Vertebrate only compared to the other treatments. A 
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higher percentage of herbivory was observed on the Vertebrate Only rosettes two weeks 

before noted in the other treatments. This early herbivory could have influenced the 

plants potential growth. There is also a suspicion that the insecticide treatment may have 

influenced the reduction of leaf area. Though not definitive, the fact that it had the 

lowest leaf are but received less herbivory that the Control treatment in both years could 

confirm the suspicion of an inhibitory effect.  There was also a slight difference between 

the mesh treatment and Invertebrate Only that was unexpected. Observations in the field 

indicate that the protective cages were too small and may have inhibited growth with 

leaves desiccating where they touched the cage wire. Leaves in the Mesh treatment were 

usually observed resting on the mesh fabric without contact with wire.  

Overall treatment assessment 

Caged plants achieved a greater leaf area than plants not caged, while herbivory 

decreased in plants caged. Except for the 2014 flower season, there was not a significant 

difference between plants accessible to vertebrate and invertebrate and plants protected 

from vertebrates alone. This indicates that insects may consume portions of plant 

material similar to vertebrates.  

There are different intensities and seasonal patterns of herbivory between the 

rosette and flower stage of Spiranthes sp. This could be due to temporal variability with 

rosettes above ground, and available to herbivores, for a longer period of time (~7 

months). They are also exposed during spring when typically high temperature and 

moisture is conducive to vertebrate and invertebrate activity. For example, during the 

beginning of the rosettes phase when temperature are cooler (December – January) there 
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is little herbivory except for occasional low (chronic) herbivory. Only 18% of the insects 

observed and collected were during this period. In the spring rosette season, herbivores 

became more active and acute and chronic herbivory was observed. During the 

flowering season, plants in the experiment where above ground for a much shorter time 

(~2.5 months) and received more acute herbivory by full removal of inflorescence. The 

acute herbivory received on the inflorescence could be due to temporal and spatial 

variability. Temporally, S. parksii inflorescence could be visibly targeted during the fall 

flower season when fewer flowering plants are present. Spatially, herbivores may not 

choose a plant by random coincidence, but by consuming the nearest neighbors when 

plants are grouped together (Gross et al. 1995). Since S. parksii are often found along 

game trail in small groups, vertebrate herbivores could target the easily accessible plants 

and ignore those off the path. Winged insect herbivores may also target specific patches 

on the landscape for consumption or depositing eggs.  

 Rooting by feral hogs and consumption of Spiranthes sp. tubers by mice 

occurred during the rosette and dormant phase. It has been documented that herbivory by 

vertebrates can make a plant produce compounds that attracts and benefit specific insect 

herbivores (Martinsen 1998). The reverse could be the case for Spiranthes sp. rosettes 

that when stressed by herbivory or resource limited they produce a chemical that attracts 

vertebrates. 
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Growth Observations 

Understanding the growth cycle of a species can influence how it is managed. 

The tissue observed above ground during the normal dormant phase of Spiranthes sp. 

could be an important clue to how the species responds to biotic and abiotic stressors 

before flowering. Though it has not been verified, it is suspected that this new growth 

may be meristematic tissue. Meristematic tissue is undifferentiated cells that can develop 

into rosettes or inflorescence depending on environmental variables (Okamuro 1996; 

Clark 2001). Since this tissue was observed a month before normal inflorescence 

activity, it could indicate that conditions during this time have the most influence on the 

plants ques to flower. 

The meristematic tissue could also influence the growth and development of the 

leaves observed encasing the emerging inflorescence. In some epiphytic orchids, sheath 

like bracts and cataphyll form around developing inflorescence and offer protection from 

herbivores and abiotic influences. Within a month of recording meristematic tissue 

above ground, the leaves observed encasing Spiranthes sp. inflorescence begin to 

emerge. If the meristematic tissue is triggered by favorable or unfavorable conditions it 

could cue the emerging plant to form a more protective barrier around the plant, or 

trigger it not to reproduce. It is unclear if the meristematic tissue develops into the leaves 

and inflorescence, but the new growth can come from the same area of the tuber as the 

rosette and inflorescence. Herbivory observed on the emerging leaves indicated they 

may offer some protection from consumption. 



 

 

41 

 

Understanding the influence of leaf emergence with inflorescence and the role of 

the unknown summer vegetation could help increase knowledge of S. parksii’s life cycle 

to improve conservation efforts. 

Growth Variability 

Plant growth can vary due to microclimate, developmental stages of plants, and 

their ability to intake and allocate resources (Jones 1993). In this study, there was wide 

variability in plant growth and herbivory. Even among the same species there are plants 

that outperform and underperform for a variety of reasons such as microclimate and 

plant development stage. Though the study site was chosen for homogeneity, variability 

in soil properties, shade, moisture and other environmental variables can influence 

individual plants on a microclimate scale that could affect growth. For Spiranthes sp. 

there was significant variability in rosettes and flower plants size. In 2014 the average 

growth of flower plants was 25 cm, but some plants achieved height over 35 cm and 

under 13 cm. One plant observed in a particularly favorable microclimate reached a 

height of 36.5 cm. This was also noted in rosettes where one rosette reached a maximum 

leaf area of 58 cm when the average range was from 14 to 22 cm. 

This variability was also noted in percent herbivory where a plant may 

experience only 5 percent herbivory and another 100 percent. This variability could be 

due to the spatial and temporal selection by herbivores, where a group of plants may be 

easily accessible or highly visible and consumed, while another group is missed.  

This wide range of growth and extreme outliers did not allow for normality even 

after transformation attempts or equal variance requiring the analysis to be completed by 
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non-parametric methods. This explains the difference seen between calculated mean 

growth and the statistical analysis. For example, in Table 5 the mean Leaf Area in May 

2014 looks significantly different between Vertebrate Only and Invertebrate Only, but 

the non-parametric analysis which uses the median growth did not detect a difference 

with the influence of the outliers. This is also seen in the 2015 plant herbivory analysis 

where the mean herbivory ranges from 2.3 to 21.5 percent but extremes ranged from 0 

and 100 percent herbivory. This caused the median to indicate no significant difference 

between Invertebrate Only and Control when the mean indicated there should be a 

difference.  

Continuation of this study should include data collection and analysis of potential 

influential environmental variables to account for variation in future analysis. 

Invertebrate Observation 

At the Twin Oaks site, insects where often seen on or near plants, but it was 

uncertain of their utilization. For example, there was an observation of fire ants attacking 

and killing an armyworm on a S. parksii. The carcass was stripped of skin, but half of 

the flesh was left, leaving the observer to wonder if they simply killed it due to territory 

or were hunting specific prey on the plant. Arachnids were often seen on or near the 

plant, but it was undetermined if this was due to predation of insects on Spiranthes sp. or 

simply resting on the plant.  

In the roly poly experiment, there was indication that the species could be a 

major contributor to seed and seedling mortality. Since this consisted of a mostly 

observation analysis, due to no control cages, this is an area that requires more research.  
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Some insects, however, were very clear in their purpose on the plant. The 

majority of other insect herbivores may have injured healthy tissue or reduced fecundity, 

but only members of the Acrididae and Noctuidae family directly affect reproduction by 

removing inflorescence before seed production. Though they do not consume as many 

plants as large herbivores, these species are just as detrimental to individual plants 

ability to reproduce.  

Nutrient Analysis 

Micro and macronutrients are compounds required for plant growth and 

reproduction. Deficiency in nutrients can affect the development, size, and ability of a 

plant to reproduce. These nuances of nutrients required by a plant are specific to each 

species and have to be studied independently. To date there is no known research on the 

nutrient requirements of S. parksii or S. cernua. Based on general plant biochemistry, 

Spiranthes sp. falls above the norms in macronutrients such as Nitrogen (1.5%) and 

Potassium (1.0%), but is below average in Phosphorus (0.2%) (Epstein 1965). Wonkka 

(2012) found that during the flower season, S. parksii biomass is increased with 

phosphorus addition but not Nitrogen. The below average phosphorus in rosette tissue 

indicates that phosphorus is a limiting nutrient, and may be related to their association 

with mycorrhizal fungi (Bolan 1991). Spiranthes sp. is also above average in the 

micronutrients Sulfur (1,000 ppm). Sulfur volatiles are known to be a deterrent against 

herbivores and can be combined with nitrogen to form other volatiles.  

The nutrient in a plant can also affect the behavior of herbivores. Plants that are 

high in nutrients are often targeted by mobile herbivores and parental insect selection of 
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egg deposit sites. For insect plant nutrients are specifically crucial since some may spend 

most of their life cycle on a single plant or have to expend immense energy to relocate.  

This can be either directly by a plant dying due to lack of nutrients, or indirectly 

by the plant unable to store enough carbon for reproduction by having to reallocate 

nutrients for survival during times of stress. With elevated levels, some nutrients can be 

toxic to plant or reduce the ability to uptake another element. 

 A negative influence on most endangered plants species survival is 

anthropogenic activity (Wilcove et al. 1998). The identification and reduction of these 

natural pressures on endangered species could potentially mitigate some of this 

influence. In the reproductive stage of Spiranthes sp., this experiment showed that 

vertebrates can consume up to 50% of the inflorescence tissue causing a direct impact on 

reproduction and fitness of the species. In the rosettes stage, invertebrates and 

vertebrates were shown to consume 39% to 58% leaf area of rosettes. This reduction in 

leaf area could reduce Spiranthes sp. ability to flower, number of flowers produced, and 

seed production (Wonkka 2013). 

Herbivores can have an even stronger effect on plant fitness in savannas where 

cycles of normal precipitation are often followed by drought. This was seen in 2015 

when drought reduced inflorescence production and the few plants that flowered were 

eaten by herbivores before they could seed. Although this study did not address how a 

reduction in flowering plants may influence Spiranthes sp. persistence, it did prove that 

vertebrate and invertebrate herbivory can decrease the seedbank and the ability of 

individual plants to reproduce. This indicated that Spiranthes sp. should be protected 
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from large herbivores in the flowering phase to improve chance of seed dispersal, and 

invertebrate impact managed during the rosette season to promote root carbon storage. 

The majority of studies on plant-insect herbivory interactions with orchids have 

been conducted under controlled greenhouse conditions. However, the complex and 

dynamic interactions observed in this study show the importance of understanding the 

influence of herbivores, especially invertebrates, on orchids in their native habitat. The 

knowledge gained in this experiment can not only be used to improve conservation and 

management plans for S. parksii, but may provide clues that lead to the discovery of 

invertebrate impacts on other species.  
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APPENDIX 

2014 Flowering Plant Height, Stalk Length, and Inflorescence Length by Treatment 

Treatment -Treatment p-Value Z-score 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Control Vertebrate Only 0.361 0.239 0.279 -0.913 -1.178 -1.083 

Control Cage+Insecticide 0.378 0.522 0.794 -0.378 -0.640 0.261 

Control Invertebrate Only 0.639 0.850 0.607 0.470 0.189 0.514 

Control Mesh 0.803 0.586 0.941 -0.249 -0.545 0.074 

Vertebrate Only Mesh 0.287 0.512 0.145 1.064 0.656 1.456 

Vertebrate Only Invertebrate Only 0.213 0.216 0.133 1.245 1.237 1.504 

Vertebrate Only Cage+Insecticide 0.427 0.550 0.119 0.794 0.598 1.558 

Invertebrate Only Cage+Insecticide 0.530 0.455 0.877 -0.628 -0.747 0.155 

Mesh Cage+Insecticide 0.992 0.928 0.833 0.010 -0.090 -0.315 

Mesh Invertebrate Only 0.710 0.431 0.753 -0.372 -0.787 -0.212 
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2014 Flowering Plant Height, Stalk Length, and Inflorescence Length by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Mesh Control  -0.947  -2.061 0.278 3.803 3.783 3.760 

Cage+Insecticide Control  -1.413  -2.375 0.961 3.736 3.713 3.685 

Invertebrate Only Control 1.723 0.689 1.838 3.668 3.651 3.574 

Vertebrate Only Control  -2.995  -3.842  -3.516 3.280 3.263 3.247 

Mesh Vertebrate Only 4.101 2.520 5.534 3.854 3.841 3.800 

Invertebrate Only Vertebrate Only 4.654 4.603 5.473 3.738 3.721 3.638 

Cage+Insecticide Vertebrate Only 3.014 2.261 5.828 3.796 3.781 3.740 

Cage+Insecticide Invertebrate Only  -2.511  -2.980 0.596 4.000 3.987 3.855 

Mesh Cage+Insecticide 0.041  -0.367  -1.265 4.082 4.069 4.018 

Mesh Invertebrate Only  -1.502  -3.172  -0.834 4.043 4.028 3.946 

 

2014 Flowering Plant Height Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 13.5 16.5 22.8 24.7 30.8 33.9 35.3 

Vertebrate Only 16.2 16.6 18 24 27.5 31.3 35.6 

Invertebrate Only 7.5 18.6 23.3 26.2 29 35.3 36.5 

Cage+Insecticide 5.9 12.2 21.2 25.5 29.6 32.3 33.7 

Mesh 17.5 17.9 20 26.4 29.1 31.5 32.8 
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2014 Stalk Length Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 15 16 17 19 22.25 26 27 

Vertebrate Only 13 13 14.5 18 21 23.2 28 

Invertebrate Only 7 13.8 17 20 23 25.6 28 

Cage+Insecticide 5 10 16 19.5 22 26 26 

Mesh 13 13 16 19 22.5 24.4 25 

 

2014 Inflorescence Length Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 3 3.5 5 6.5 9 10 10 

Vertebrate Only 2 2 4 6 7.5 8 8 

Invertebrate Only 1 5 6 7 7 11 11 

Cage+Insecticide 1 2.5 6 7 8 9 28 

Mesh 3 4.6 5 7 8 9 13 
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2015 Flowering Plant Height, Stalk Length, and Inflorescence Length by Treatment 

Treatment -Treatment p-Value Z-score 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Control Vertebrate Only 0.434 0.224 0.908 -0.782 -1.217 -0.116 

Control Cage+Insecticide 0.254 0.709 0.043* 1.141 0.373 2.019 

Control Invertebrate Only 0.683 1.000 0.064 0.408 0.000 1.852 

Control Mesh 0.065 0.285 0.014* 1.843 1.069 2.452 

Vertebrate Only Mesh 0.020* 0.011* 0.072 2.333 2.540 1.798 

Vertebrate Only Invertebrate Only 0.281 0.372 0.218 1.078 0.892 1.232 

Vertebrate Only Cage+Insecticide 0.048* 0.080 0.068 1.974 1.752 1.827 

Invertebrate Only Cage+Insecticide 0.610 0.693 0.626 0.511 0.395 0.488 

Mesh Cage+Insecticide 0.454 0.316 0.975 0.748 1.003 0.032 

Mesh Invertebrate Only 0.213 0.129 0.413 1.246 1.518 0.818 

 

2015 Flowering Plant Height, Stalk Length, and Inflorescence Length by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Mesh Vertebrate Only 7.961 8.665 6.129 3.412 3.411 3.409 

Mesh Control 6.346 3.680 8.440 3.442 3.443 3.441 

Cage+Insecticide Vertebrate Only 6.136 5.446 5.676 3.107 3.108 3.106 

Mesh Invertebrate Only 4.266 5.200 2.800 3.424 3.424 3.422 

Cage+Insecticide Control 3.625 1.185 6.413 3.178 3.177 3.176 

Invertebrate Only Vertebrate Only 3.049 2.526 3.484 2.829 2.831 2.829 

Mesh Cage+Insecticide 2.643 3.543 0.112 3.532 3.532 3.530 

Cage+Insecticide Invertebrate Only 1.604 1.239 1.531 3.140 3.139 3.139 

Invertebrate Only Control 1.201 0.000 5.448 2.945 2.945 2.941 

Vertebrate Only Control  -2.265  -3.524  -0.335 2.895 2.896 2.892 
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2015 Flowering Plant Height Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 1.6 1.8 3.2 10.6 16.6 18.6 18.9 

Vertebrate Only 1.3 1.3 1.5 5.1 13.1 17.7 17.7 

Invertebrate Only 0.7 1.2 7.7 12.4 16.0 22.6 25.2 

Cage+Insecticide 2.2 2.3 6.6 13.5 17.7 20.7 23.3 

Mesh 2.2 4.2 10.5 15.8 17.9 20.7 24 

 

2015 Flower Stalk Length Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0.9 1.2 2.3 7.4 11.5 15.7 16.1 

Vertebrate Only 0.5 0.54 1.3 4.1 10 10.5 10.6 

Invertebrate Only 0.3 0.75 5.5 8.1 10.2 16.0 17.6 

Cage+Insecticide 1.6 1.6 4.3 9.3 11.3 13.2 15.6 

Mesh 1.7 3.2 7.0 10.1 13.1 15.1 17.4 

 

2015 Inflorescence Length Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0.3 0.46 0.8 2 3.2 5.3 6.5 

Vertebrate Only 0.2 0.3 0.8 1 4.6 7.1 7.2 

Invertebrate Only 0.4 0.49 2.15 3.8 5.5 7.0 7.6 

Cage+Insecticide 0.6 0.67 1.7 4.5 6.9 7.8 8.1 

Mesh 0.5 0.76 2.2 5.1 6.4 6.6 7.2 
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2014 Flowering Plant Herbivory by Treatment 

Treatment -Treatment p-Value Z-score 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Control Vertebrate Only 0.555 0.862 0.265 -0.5903 0.174 -1.114 

Control Cage+Insecticide <.0001* 0.0008* <.0001* -4.216 -3.359 -4.456 

Control Invertebrate Only <.0001* 0.0060* <.0001* -4.184 -2.750 -4.393 

Control Mesh <.0001* 0.011* <.0001* -4.184 -2.547 -4.886 

Vertebrate Only Mesh 0.0034* 0.0052* 0.0003* -2.929  -2.796 -3.636 

Vertebrate Only Invertebrate Only 0.0026* 0.0029* 0.0021* -3.011  -2.974 -3.075 

Vertebrate Only Cage+Insecticide 0.0008* 0.0003* 0.0017*  -3.370 -3.581 -3.141 

Invertebrate Only Cage+Insecticide 0.274 0.155 0.955 -1.095 -1.423 -0.056 

Mesh Cage+Insecticide 0.183 0.052 0.415 1.333 1.947 -0.814 

Mesh Invertebrate Only 0.7183 0.5799 0.372 0.36076 0.554  -0.892 
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2014 Flowering Plant Herbivory by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Mesh Cage+Insecticide 5.104 7.145  -2.327 3.670 3.828 2.857 

Mesh Invertebrate Only 1.293 1.920  -2.546 3.468 3.586 2.852 

Vertebrate Only Control  -1.900 0.543  -3.393 3.129 3.219 3.045 

Cage+Insecticide Invertebrate Only  -4.087  -5.108  -0.170 3.590 3.734 3.040 

Invertebrate Only Vertebrate Only  -10.690  -10.332  -10.281 3.474 3.550 3.343 

Mesh Vertebrate Only  -10.771  -9.931  -11.957 3.552 3.678 3.288 

Cage+Insecticide Vertebrate Only  -12.410  -12.913  -10.601 3.606 3.683 3.374 

Invertebrate Only Control  -14.568  -9.090  -14.869 3.305 3.481 3.384 

Mesh Control  -15.200  -8.652  -16.544 3.397 3.632 3.385 

Cage+Insecticide Control  -15.298  -11.740  -15.298 3.495 3.631 3.433 

 

2014 Flowering Plant Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 3 3 5 53 98 99 99 

Vertebrate Only 0 0 3 10 98 99.2 100 

Invertebrate Only 0 0 3 3 3 5 10 

Cage+Insecticide 0 0 0 1.5 4.5 5 15 

Mesh 0 0 3 3 4 5 5 
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2014 Stalk Herbivory  Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 2 5 5 95 98 98 

Vertebrate Only 0 0 5 10 95 98.2 99 

Invertebrate Only 0 0 0 5 5 8 10 

Cage+Insecticide 0 0 0 0 5 7.5 10 

Mesh 0 0 2.5 5 5 10 10 

 

2014 Inflorescence Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 2 5 100 100 100 100 

Vertebrate Only 0 0 0 10 100 100 100 

Invertebrate Only 0 0 0 0 5 5 10 

Cage+Insecticide 0 0 0 0 3.75 5 20 

Mesh 0 0 0 0 0 5 5 
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2014 and 2015 Flowers Produced by Treatment 

Treatment -Treatment p-Value Z-score 

  2014 2015 2014 2015 

Control Vertebrate Only 0.871 0.739 0.161 0.333 

Control Cage+Insecticide 0.533 0.073 -0.622 1.787 

Control Invertebrate Only 0.552 0.106 -0.594 1.613 

Control Mesh 0.621 0.0484* -0.493 1.973 

Vertebrate Only Mesh 0.285 0.270 -1.067 1.102 

Vertebrate Only Invertebrate Only 0.203 0.445 -1.272 0.762 

Vertebrate Only Cage+Insecticide 0.229 0.331 -1.201 0.971 

Invertebrate Only Cage+Insecticide 0.948 0.651 0.064 0.451 

Mesh Cage+Insecticide 0.710 1.000 0.371 0.000 

Mesh Invertebrate Only 0.634 0.498 0.476 0.676 

 

2014 and 2015 Flowers Produced by Treatment 

Treatment  -Treatment Score Mean Difference Standard Error Difference 

  2014 2015 2014 2015 

Control Vertebrate Only 0.502 0.825 3.106 2.476 

Control Cage+Insecticide  -2.312 5.322 3.716 2.978 

Control Invertebrate Only  -2.167 4.416 3.645 2.737 

Control Mesh  -1.870 6.466 3.788 3.276 

Vertebrate Only Mesh  -4.053 3.600 3.797 3.264 

Vertebrate Only Invertebrate Only  -4.681 2.016 3.678 2.643 

Vertebrate Only Cage+Insecticide  -4.495 2.843 3.740 2.925 

Invertebrate Only Cage+Insecticide 0.255 1.385 3.987 3.066 

Mesh Cage+Insecticide 1.511 0.000 4.033 3.445 

Mesh Invertebrate Only 1.920 2.266 4.033 3.349 
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2014 Flowers Produced Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 11 11.4 13.5 17 22 25.8 27 

Vertebrate Only 11 11.6 16 19 21 27.8 35 

Invertebrate Only 0 10.4 14 16 20 29 37 

Cage+Insecticide 0 4 14 16 20 25.5 30 

Mesh 8 11 14 17 19 24 25 
 

2015 Flowers Produced Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0 0 0 3.5 16.4 20 

Vertebrate Only 0 0 0 0 14.75 20.9 21 

Invertebrate Only 0 0 0 8 12.25 21.6 24 

Cage+Insecticide 0 0 0 10 18.75 22.3 23 

Mesh 0 0 0 10 14.75 21.8 22 

 

2015 Flowering Plant Herbivory by Treatment 

Treatment -Treatment p-Value Z-score 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Control Vertebrate Only 0.803 0.974 0.345  -0.249 0.033  -0.945 

Control Cage+Insecticide 0.035* 0.162 0.021*  -2.109  -1.400  -2.309 

Control Invertebrate Only 0.238 1.000 0.013*  -1.179 0.000  -2.486 

Control Mesh 0.039* 0.190 0.061  -2.065  -1.311  -1.876 

Vertebrate Only Mesh 0.06 0.116 0.490  -1.873  -1.572  -0.692 

Vertebrate Only Invertebrate Only 0.394 0.898 0.150  -0.853  -0.129  -1.439 

Vertebrate Only Cage+Insecticide 0.058 0.133 0.328  -1.893  -1.502  -0.979 

Invertebrate Only Cage+Insecticide 0.144 0.074 0.462  -1.461  -1.785 0.736 

Mesh Cage+Insecticide 0.654 0.872 0.891  -0.450  -0.162 0.137 

Mesh Invertebrate Only 0.106 0.068 0.383  -1.617  -1.825 0.872 

 



 

 

61 

 

2015 Flowering Plant Herbivory by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  Plant Stalk Inflor. Plant Stalk Inflor. 

Vertebrate Only Control  -0.696 0.087  -2.583 2.796 2.663 2.733 

Mesh Cage+Insecticide  -1.406  -0.450 0.393 3.132 2.783 2.865 

Invertebrate Only Vertebrate Only  -2.352  -0.348  -3.333 2.758 2.705 2.317 

Invertebrate Only Control  -3.333 0.000  -6.416 2.826 2.761 2.581 

Cage+Insecticide Invertebrate Only  -4.302  -5.104 1.750 2.943 2.859 2.377 

Mesh Invertebrate Only  -5.133  -5.533 2.266 3.173 3.031 2.599 

Cage+Insecticide Vertebrate Only  -5.599  -4.142  -2.625 2.958 2.756 2.682 

Mesh Vertebrate Only  -5.918  -4.579  -2.000 3.160 2.912 2.890 

Cage+Insecticide Control  -6.343  -3.864  -6.635 3.007 2.761 2.873 

Mesh Control  -6.600  -3.800  -5.800 3.196 2.898 3.092 

 

2015 Flowering Plant Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0 0.75 6.5 44.7 88.2 99 

Vertebrate Only 0 0 0 5 25 91 100 

Invertebrate Only 0 0 0.75 3 5 17.9 20 

Cage+Insecticide 0 0 0 1.5 3 13 13 

Mesh 0 0 0 0 3 75 75 
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2015 Stalk Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0 0 2.5 20 76.1 98 

Vertebrate Only 0 0 0 5 10 89.2 99 

Invertebrate Only 0 0 0 5 10 31 40 

Cage+Insecticide 0 0 0 0 5 13 20 

Mesh 0 0 0 0 3.75 50 50 

 

2015 Inflorescence Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0 0 7.5 76.2 100 100 

Vertebrate Only 0 0 0 0 21.2 100 100 

Invertebrate Only 0 0 0 0 0 12 15 

Cage+Insecticide 0 0 0 0 5 8 15 

Mesh 0 0 0 0 5 100 100 
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2014 and 2015 Rosette Growth by Treatment 

Treatment -Treatment p-Value Z-score 

  May ‘14 May ‘15 Max 

‘15 

May ‘14 May ‘15 Max ‘15 

Control Vertebrate Only 0.410 0.694 0.404  -0.823 0.394  -0.835 

Control Cage+Insecticide 0.783 0.107 0.398 0.276 1.611 0.846 

Control Invertebrate Only 0.675 0.981 0.380 0.420 0.024  -0.877 

Vertebrate Only Invertebrate Only 0.102 0.627 0.934 1.635  -0.486  -0.083 

Vertebrate Only Cage+Insecticide 0.084 0.136 0.173 1.729 1.493 1.362 

Invertebrate Only Cage+Insecticide 0.562 0.121 0.233  -0.579 1.552 1.193 

Mesh Cage+Insecticide ------ ------ 0.415 ------ ------ 0.815 

Mesh Invertebrate Only ------ ------ 0.015* ------ ------ 2.425 

Control Mesh ------ ------ 0.045* ------ ------ 2.002 

Vertebrate Only Mesh ------ ------ 0.009* ------ ------ 2.600 

 

2014 and 2015 Rosette Growth by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  May ‘14 May ‘15 Max ‘15 May ‘14 May ‘15 Max ‘15 

Cage+Insecticide Vertebrate Only 6.181 5.835 5.509 3.573 3.909 4.044 

Invertebrate Only Vertebrate Only 5.600  -1.898  -0.333 3.424 3.909 4.044 

Invertebrate Only Control 1.457 0.092  -3.547 3.469 3.909 4.044 

Cage+Insecticide Control 0.993 6.298 3.422 3.601 3.909 4.044 

Cage+Insecticide Invertebrate Only  -2.195 6.400 4.920 3.789 4.123 4.123 

Vertebrate Only Control  -2.476 1.421  -3.304 3.007 3.605 3.957 

Mesh Vertebrate Only ------ ------ 10.518 ------ ------ 4.044 

Mesh Invertebrate Only ------ ------ 10.000 ------ ------ 4.123 

Mesh Control ------ ------ 8.097 ------ ------ 4.044 

Mesh Cage+Insecticide ------ ------ 3.360 ------ ------ 4.123 
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2014 Rosette Growth (cm2 ) Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 2.3 2.3 4.5 12.1 18.7 28.8 30.2 

Vertebrate Only 2.4 2.5 3.8 6.6 12.6 24.8 26.3 

Invertebrate Only 0.3 2.5 8.7 12.2 19.4 24.6 31.3 

Cage+Insecticide 4.7 5.1 6.5 10.8 17.6 30.8 37.4 

Mesh ------ ------ ------ ------ ------ ------ ------ 

 

2015 May Rosette Growth (cm
2 

) Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0.182 4.6 12.7 19.1 27.4 39.2 

Vertebrate Only 0.22 0.322 5.0 7.6 15.0 20.0 27.4 

Invertebrate Only 0.09 2.162 4.0 8.4 16.5 33.0 38.2 

Cage+Insecticide 0.86 1.984 8.3 14.7 30.1 38.4 58.4 

Mesh ------ ------ ------ ------ ------ ------ ------ 

 

2015 Max Rosette Growth (cm
2 

) Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0.24 4.6 9.2 15.0 19.3 26.1 29.4 

Vertebrate Only 3.8 4.3 6.5 11.6 17. 22.6 28.8 

Invertebrate Only 3.6 3.6 6.6 10.5 18.0 33.0 38.1 

Cage+Insecticide 1.4 2.4 8.3 15.7 30.2 43.4 58.4 

Mesh 6.2 8.1 10.2 18.4 32.9 41.1 44.0 
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2014 and 2015 Rosette Herbivory by Treatment 

Treatment -Treatment p-Value Z-score 

  May ‘14 May ‘15 Max ‘15 May ‘14 May ‘15 Max ‘15 

Control Vertebrate Only 0.056 0.143 0.974  -1.914  -1.466  -0.032 

Control Cage+Insecticide 0.004* 0.024* 0.016*  -2.870  -2.262  -2.407 

Control Invertebrate Only 0.075 0.767 0.060  -1.779  -0.297  -1.883 

Vertebrate Only Invertebrate Only 0.662 0.528 0.061 0.437 0.632  -1.873 

Vertebrate Only Cage+Insecticide 0.402 0.243 0.014*  -0.839  -1.168  -2.453 

Invertebrate Only Cage+Insecticide 0.165 0.086 0.533  -1.390  -1.719  -0.623 

Mesh Cage+Insecticide   0.091    -1.692 

Mesh Invertebrate Only   0.030*    -2.177 

Control Mesh   0.0003*    -3.609 

Vertebrate Only Mesh   0.0005*    -3.457 

 

2014 and 2015 Rosette Herbivory by Treatment 

Treatment -Treatment Score Mean Difference Standard Error Difference 

  May ‘14 May ‘15 Max ‘15 May ‘14 May ‘15 Max ‘15 

Invertebrate Only Vertebrate Only 1.396 2.107  -7.554 3.198 3.335 4.033 

Cage+Insecticide Vertebrate Only  -2.814  -3.815  -9.850 3.355 3.267 4.015 

Cage+Insecticide Invertebrate Only  -4.963  -4.766  -2.560 3.570 2.773 4.106 

Vertebrate Only Control  -5.961  -5.192  -0.127 3.115 3.542 3.987 

Invertebrate Only Control  -6.069  -0.972  -7.676 3.411 3.276 4.076 

Cage+Insecticide Control  -10.151  -7.311  -9.800 3.536 3.231 4.071 

Mesh Cage+Insecticide    -6.920   4.089 

Mesh Invertebrate Only    -8.920   4.096 

Mesh Vertebrate Only    -13.899   4.020 

Mesh Control    -14.659   4.061 
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2014 Rosette Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 4.5 5 15 90 95.3 98 

Vertebrate Only 0 1 3.7 5 12.5 75 85 

Invertebrate Only 0 0.25 5 5 10 19.2 95 

Cage+Insecticide 0 0 2.5 5 5 43.5 50 

Mesh ------ ------ ------ ------ ------ ------ ------ 

 

 2015 May Rosette Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 0 10 30.8 65.6 98 98 

Vertebrate Only 0 0 5 5 50 64 98 

Invertebrate Only 0 0.50 3.7 28.7 56.1 96.8 98 

Cage+Insecticide 0 0 0.93 5 13.7 89.9 98 

Mesh ------ ------ ------ ------ ------ ------ ------ 

 

2015 Max Rosette Herbivory Quantiles by Treatment 

 Quantiles 

Treatment Minimum 10% 25% Median 75% 90% Maximum 

Control 0 9 23.5 59 95 99 99 

Vertebrate Only 0 6.2 20 60 98 98.6 99 

Invertebrate Only 0 0.6 6.5 23 80 98 99 

Cage+Insecticide 0 0.6 4 15 59 98 98 

Mesh 0 0 0 5 35.5 92 95 
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t-Test for Maximum plant Height between 2014 and 2015 

 
Variable 1 Variable 2 

Mean 25.0 11.9 

df 141  

t Stat 13.5 
 

P(T<=t) one-tail 1.55201E-27 
 

t Critical one-tail 1.6557 
 

P(T<=t) two-tail 3.10403E-27 
 

t Critical two-tail 1.9769 
 

 

t-Test for Maximum Plant Herbivory between 2014 and 2015 

 
Variable 1 Variable 2 

Mean 15.8 13.5 

df 162  

t Stat 0.4695 
 

P(T<=t) one-tail 0.3196 
 

t Critical one-tail 1.6543 
 

P(T<=t) two-tail 0.6392 
 

t Critical two-tail 1.9747 
 

 

t-Test for May Rosette Growth between 2014 and 2015 

 Variable 1 Variable 2 

Mean 12.7 11.8 

df 154  

t Stat 0.5499 
 

P(T<=t) one-tail 0.2915 
 

t Critical one-tail 1.6548 
 

P(T<=t) two-tail 0.5831 
 

t Critical two-tail 1.9754 
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t-Test for May Rosette Herbivory between 2014 and 2015 

 
Variable 1 Variable 2 

Mean 18.2 30.5 

df 117  

t Stat -2.3123 
 

P(T<=t) one-tail 0.0112 
 

t Critical one-tail 1.6579 
 

P(T<=t) two-tail 0.0225 
 

t Critical two-tail 1.9804 
 

 




